Apomixis, the clonal formation of seeds, is a rare yet widely distributed trait in flowering plants. We have isolated the PARTHENOGENESIS (PAR) gene from apomictic dandelion that triggers embryo development in unfertilized egg cells. PAR encodes a K2-2 zinc finger, EAR-domain protein. Unlike the recessive sexual alleles, the dominant PAR allele is expressed in egg cells and has a miniature inverted-repeat transposable element (MITE) transposon insertion in the promoter. The MITE-containing promoter can invoke a homologous gene from sexual lettuce to complement dandelion LOSS OF PARTHENOGENESIS mutants. A similar MITE is also present in the promoter of the PAR gene in apomictic forms of hawkweed, suggesting a case of parallel evolution. Heterologous expression of dandelion PAR in lettuce egg cells induced haploid embryo-like structures in the absence of fertilization. Sexual PAR alleles are expressed in pollen, suggesting that the gene product releases a block on embryogenesis after fertilization in sexual species while in apomictic species PAR expression triggers embryogenesis in the absence of fertilization.

, , , ,
doi.org/10.1038/s41588-021-00984-y
Nature Genetics
Staff publications

Underwood, Charles J., Vijverberg, K., Rigola, Diana, Okamoto, Shunsuke, Oplaat, Carla, Camp, Rik H. M. Op den, … van Dijk, Peter J. (2022). A parthenogenesis allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nature Genetics, 54(1), 84–93. doi:10.1038/s41588-021-00984-y