Quantifying the abundances of fungi is key to understanding natural variation in mycorrhi-zal communities in relation to plant ecophysiology and environmental heterogeneity. High-throughput metabarcoding approaches have transformed our ability to characterize and com-pare complex mycorrhizal communities. However, it remains unclear how well metabarcodingread counts correlate with actual read abundances in the sample, potentially limiting their useas a proxy for species abundances. Here, we use droplet digital PCR (ddPCR) to evaluate the reliability of ITS2 metabarcodingdata for quantitative assessments of mycorrhizal communities in the orchid speciesNeottiaovatasampled at multiple sites. We performed specific ddPCR assays for eight families oforchid mycorrhizal fungi and compared the results with read counts obtained from metabar-coding. Our results demonstrate a significant correlation between DNA copy numbers measured byddPCR assays and metabarcoding read counts of major mycorrhizal partners ofN. ovata,highlighting the usefulness of metabarcoding for quantifying the abundance of orchid mycor-rhizal fungi. Yet, the levels of correlation between the two methods and the numbers of falsezero values varied across fungal families, which warrants cautious evaluation of the reliabilityof low-abundance families. This study underscores the potential of metabarcoding data for more quantitative analysesof mycorrhizal communities and presents practical workflows for metabarcoding and ddPCRto achieve a more comprehensive understanding of orchid mycorrhizal communities

, , , ,
New Phytologist

Released under the CC-BY 4.0 ("Attribution 4.0 International") License

Staff publications

Wang, D., Trimbos, Krijn B., Gomes, Sofia I. F., Jacquemyn, Hans, & Merckx, V. (2023). Metabarcoding read abundances of orchid mycorrhizal fungi are correlated to copy numbers estimated using ddPCR. New Phytologist, 2023. doi:10.1111/nph.19385