Maniola butterflies undergo summer dormancy in dry and hot habitats and deposit their eggs only in early autumn when conditions become more favourable for their offspring. Female individuals of this genus are therefore relatively long-lived. For long-lived butterflies adult diet is of particular importance. We tested if added amino acids in nectar substitute fed to the butterflies affected timing of oviposition, fecundity and longevity. A hundred Maniola females were sampled from Mediterranean and Central European populations and made to oviposit under controlled laboratory conditions. Forty individuals were offered sucrose solution with additional amino acids while the remainder were fed with plain sucrose solution. We found that egg-laying strategies and longevity depended on geographic provenance rather than diet. Supplementary amino acids in adult diet did neither prolong lifetime nor increase total egg production. Maniola females from Sardinia started to lay eggs at least 20 days later relative to Central European M. jurtina and lived three times as long. Mediterranean individuals had on average twice the length of reproductive period and lifespan relative to Central European ones, and individuals of Pannonian origin lived longer than Alpine butterflies. Average total egg numbers were 200-350 eggs per female and did not differ significantly between populations. The fact that oviposition strategy could not be altered through diet may indicate that for univoltine butterflies, like Maniola, diet-quality at the adult stage is less important than endogenous factors, or factors the butterflies are exposed to in an earlier developmental stage than the imago. Oviposition strategy closely matched the climatic conditions that prevail in the geographic regions where these butterflies fly.

, , , , , ,
Contributions to Zoology

Released under the CC-BY 4.0 ("Attribution") License

Naturalis journals & series

Grill, A., Cerny, A., & Fiedler, K. (2013). Hot summers, long life: egg laying strategies of Maniola butterflies are affected by geographic provenance rather than adult diet. Contributions to Zoology, 82(1), 27–36.