The wood structure of 71 species representing 24 genera of the pantropical Lecythidaceae s.l., including the edible Brazil nuts (Bertholletia excelsa) and the spectacular cannon-ball tree (Couroupita guianensis), was investigated using light and scanning electron microscopy. This study focused on finding phylogenetically informative characters to help elucidate any obscure evolutionary patterns within the family. The earliest diverging subfamily Napoleonaeoideae has mixed simple/scalariform vessel perforations, scalariform vessel-ray pitting, and high multiseriate rays, all features that are also present in Scytopetaloideae. The wood structure of Napoleonaea is distinct, but its supposed close relative Crateranthus strongly resembles Scytopetaloideae. The isolated position of Foetidia (Foetidioideae) can be supported by a unique type of vessel-ray pitting that is similar in shape and size to intervessel pitting (distinctly bordered, ,5 lm). The more derived Planchonioideae and Lecythidoideae share exclusively simple perforations and two types of vessel-ray pitting, but they can easily be distinguished from each other by the size of intervessel pitting, shape of body ray cells in multiseriate rays, and the type of crystalliferous axial parenchyma cells. The anatomical diversity observed is clearly correlated with differences in plant size (shrubs vs. tall trees): the percentage of scalariform perforations, as well as vessel density, and the length of vessel elements, fibers, and multiseriate rays are negatively correlated with increasing plant size, while the reverse is true for vessel diameter.

, , , , ,
American Journal of Botany
Staff publications

Lens, F., Baas, P., Jansen, S., & Smets, E. (2007). A search for phylogenetically informative wood characters within Lecythidaceae s.l. American Journal of Botany, 94(4), 483–502.