

Interesting Images

The West Atlantic Hoary Rubble Crab, Banareia palmeri, Behaves Like a Corallivore

L. Alev Ozten Low ¹, Max Willems ^{2,3} and Bert W. Hoeksema ^{3,4,*}

- ¹ Kaya Seabird 1C, Kralendijk, Bonaire, Caribbean Netherlands; alevozten@icloud.com
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, P.O. Box 120161, 27515 Bremerhaven, Germany; max.willems@naturalis.nl
- Marine Evolution and Ecology Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands
- * Correspondence: bert.hoeksema@naturalis.nl

Abstract: Various photographs of the West Atlantic hoary rubble crab, Banareia palmeri (Rathbun, 1894), published on the internet show individuals being perched on branching octocorals. This habitat relationship has not been given attention in the scientific literature. The crab belongs to the brachyuran decapod family Xanthidae, which includes other species that associate with corals and zoantharians. Other aspects of the biology of B. palmeri, such as its diet, are unknown. During a night dive in Bonaire, an individual of B. palmeri was observed cutting off the tip of a sea rod, Pseudoplexaura sp., and pulling the loose fragment to its hiding place. The crab has also been observed in association with other octocoral species, such as Gorgonia ventalina Linnaeus, 1758. Close examination of the crab's claws revealed that the inner edges resemble saws by bearing tooth-like structures with sharp edges, which explains how this animal is able to cut through the coral's soft tissue and horny axis. These findings suggest that the crab is an expert in clipping octocoral branches, which may explain why some sea rod branches can be observed missing their original rounded tips and have regenerated pointy ends instead. Considering the octocoral's regeneration capacity, it would be relevant to study how fast these branch tips are able to heal and whether fragments escaping from the crab's claws are able to survive. Future examination of the crab's gut contents and aquarium experiments may be able to provide more information about its dietary preferences.

Keywords: citizen science; Bonaire; Brachyura; Xanthidae; Octocorallia; corallivory; coral damage; coral predator

Some marine animal species receive little attention in the scientific literature but are well known among underwater photographers who publish their pictures on the Internet. As experienced recreational divers, they notice rare species or animals that show remarkable behaviour. In particular, nocturnal animals may show activities that are only seen by night-diving naturalists who frequently visit their favorite dive spots and know their underwater environment very well. When recreational divers and professional biologists share a mutual interest, their collaboration may result in unusual observations being published in the scientific literature, which is becoming an increasingly common phenomenon [1–7]. Here, we report a new example of citizen science, involving the behaviour of a crab cutting off a branch tip of a sea rod, which may explain why some octocorals miss some of their original branch tips. This observation and others, which are published on the Internet,

Academic Editor: Pamela Hallock

Received: 21 January 2025 Revised: 14 February 2025 Accepted: 18 February 2025 Published: 21 February 2025

Citation: Ozten Low, L.A.; Willems, M.; Hoeksema, B.W. The West Atlantic Hoary Rubble Crab, *Banareia palmeri*, Behaves Like a Corallivore. *Diversity* **2025**, *17*, 144. https://doi.org/10.3390/d17030144

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Diversity 2025, 17, 144 2 of 11

suggest that cutting octocorals is normal behaviour of this crab species and that it could be a corallivore.

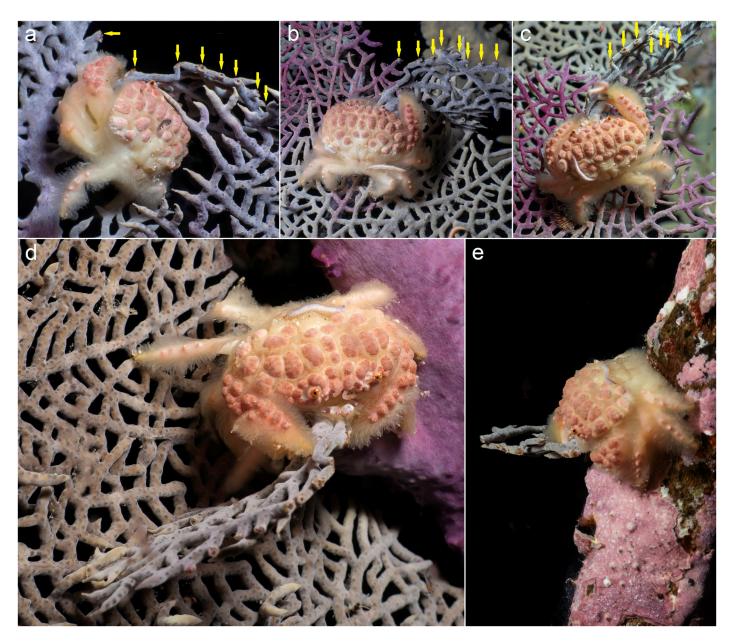

During a night dive in southern Bonaire (12°04′15″N 68°16′50″W; 23 August 2024; 20:20–20:30 h), the first author observed a hoary rubble crab, *Banareia palmeri* (Rathbun, 1894), perched on a sea rod, *Pseudoplexaura* sp., at an 8 m depth (Figure 1). Upon initial observation, the crab's activity was unclear until it was seen severing a substantial segment of the coral, approximately three times its own size. After detaching the tip of the sea rod, the crab transported the loose fragment downward along the coral's length to its base. Subsequently, the crab retreated with the piece into a coral crevice, disappearing from view.

Figure 1. A hoary rubble crab, *Banareia palmeri*, cutting off a branch tip of a sea rod, *Pseudoplexaura* sp., in the southern part of Bonaire (2024). Dive site: Tori's Reef (12°04′15″N 68°16′50″W), 8 m depth. (a) Crab on top of the sea rod cutting the branch. (b) The branch tip is loose and taken by the crab. (c,d) The crab is carrying the branch tip downward. (e) Overview of the sea rod. Photo credits: L.A.O.L.

Diversity 2025, 17, 144 3 of 11

During an earlier night dive in the northern part of Bonaire (12°13′04″N 68°20′40″W; 9 June 2020; 20:08–20:14 h), the same diver found two crab individuals on coral colonies belonging to other octocoral species. The first one was in the process of cutting and removing a piece of coral from a sea fan, *Gorgonia ventalina* Linnaeus, 1758, at a 5–6 m depth (Figure 2). This coral fragment was also carried downward to the coral's base. The second crab was smaller and observed within a time frame of less than five minutes (20:22–20:26 h). It was cutting a small branch of a sea rod belonging to a different plexaurid species (Figure 3). The octocoral appeared to be secreting mucus from the wounds (Figure 3b), which glued to the crab's body when it descended (Figure 3d).

Figure 2. A hoary rubble crab, *Banareia palmeri*, cutting off a piece of a sea fan, *Gorgonia ventalina*, and moving it to the base of the coral during a night dive in the northern part of Bonaire (2020). Dive site: Bruce's Rappel (12°13′04″N 68°20′40″W), 5–6 m depth. (a) The crab was in the process of cutting the coral fragment, which was still partly attached. (b–d) The coral fragment being carried over the coral's surface. (e) The coral fragments were transported downward over the coral's base. Arrows: fresh cuts. Photo credits: L.A.O.L.

Diversity 2025, 17, 144 4 of 11

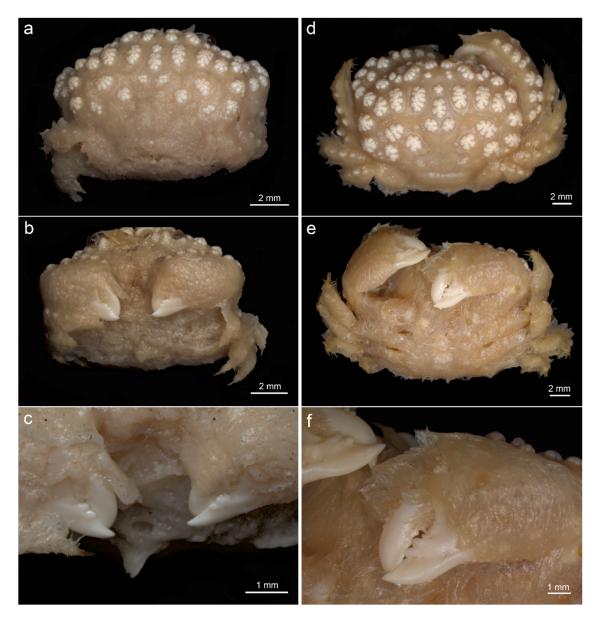


Figure 3. A hoary rubble crab, *Banareia palmeri*, cutting and transporting a small branch of a plexaurid octocoral during a night dive in the northern part of Bonaire (2020). Dive site: Bruce's Rappel (12°13′04″N 68°20′40″W), 5–6 m depth. (a) The crab cutting the branch. (b) The coral branch is severed and excretes mucus at the wound (arrow). (c). The detached branch is carried downward. (d) The crab and the branch are partly covered by sticky coral mucus. Photo credits: L.A.O.L.

This crab species is infrequently encountered in Bonaire's dive sites, potentially due to divers' preferences for certain sites over others that are more remote or challenging to access. Also, the crab appears to be active during the night, when there are not so many divers around. The sightings in northern Bonaire (Figures 2 and 3) occurred at a dive site that is inaccessible from the shore and, consequently, less frequented during night dives. The sighting in southern Bonaire (Figure 1), while accessible from shore, is not visited a lot at night. The crab is quite small (Figure 4) and, therefore, divers do perhaps not pay much attention to the crab's nocturnal activities at the tips of sea rods and sea fans.

The reason for the crab severing the tips of octocorals remains uncertain. As this species is not a decorator crab [8–10], it is unlikely that the fragment is utilised for camouflage. A plausible hypothesis is that the crab engages in predation on the octocorals. After detaching coral fragments, the crab might consume them within the seclusion of its den.

Diversity 2025, 17, 144 5 of 11

Figure 4. Ethanol-preserved museum specimens (Naturalis Biodiversity Center, Leiden) of *Banareia palmeri* showing habitus and claws: (a–c) small female (carapace 0.9 cm wide) from Bonaire, Lac Boca, behind the reef, October 1948 (RMNH.CRUS.D.8166); (d–f) large male (carapace 1.8 cm wide) from the Dominican Republic, SW of Isla Beata, 19 July 1970 (RMNH.CRUS.D.29064); (a,c) dorsal sides; (b,d) ventral sides; (c,f) close-ups showing the sharp-edged teeth of the saw-shaped inner edges of the claws. Photo credit: M.W.

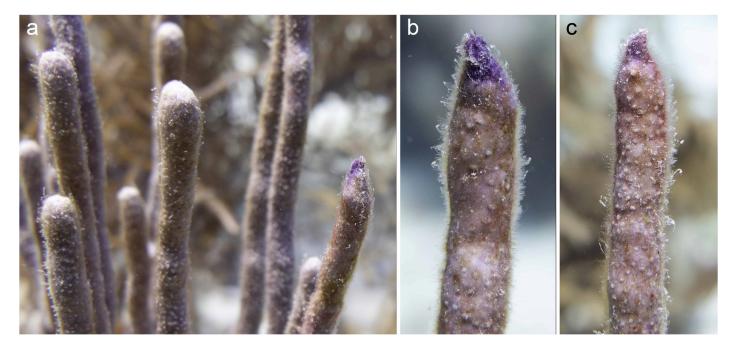
Close examination of museum specimens from Bonaire (a female with a carapace width of 0.9 cm) and the Dominican Republic (a male with a carapace width of 1.8 cm) revealed that the inner edges of the crab's claws resemble saws by bearing tooth-like structures with sharp edges (Figure 4). This explains how the small crabs are able to cut through relatively thick, soft tissue and the strong horn-like axis found in most Caribbean octocorals [11,12]. According to provenance data of old museum specimens, *B. palmeri* has been collected from stony corals, sponges, and the octocoral *Plexaurella regia* Castro, 1989 [13–16], but these associations are not confirmed by recent observations during SCUBA diving and could be based on host misidentifications since not all sea rods are easily recognised as octocorals when their polyps are retracted (Figure 1).

Pictures on the Internet show additional examples of the same hosts [17–21] and others, such as the sea rod *Eunicea* sp. in Bonaire [22]. In most of these records, the crab

Diversity 2025, 17, 144 6 of 11

has erroneously been identified as the nodose rubble crab, *Paractaea rufopunctata* (H. Milne Edwards, 1834), which is originally described as being from Mauritius in the Indian Ocean and is also known from other Indo-West Pacific localities [23–26]. Online records at iNaturalist and GBIF show a misidentified specimen of *B. palmeri* in the Cayman Islands [17,18] displaying similar coral-cutting and coral-fragment-carrying behaviour as the individuals of Bonaire. In other photographs from the Cayman Islands, a misidentified *B. palmeri* individual appears to be eating a fragment of *G. ventalina* [27,28]. These misidentifications are shortchanging knowledge on the distribution of *B. palmeri* and its behaviour. *Banareia palmeri* has originally been found in Florida [29], and subsequent records are from various other localities in the Gulf of Mexico [30], the Caribbean [31], and Brazil [16,32,33]. It has also been reported from rubble at depths up to 145 m [30,33].

The presumed predatory nature of the relationship between Banareia palmeri and its octocoral prey would resemble that of crabs of the genus Platypodiella Guinot, 1967 (family Xanthidae), which cut holes in zoantharians by use of their claws [34–36]. Sequencing of gut contents of *Platypodiella picta* (A. Milne-Edwards, 1869) revealed that this crab species actively feeds on the zoantharian *Palythoa caribaeorum* Duchassaing & Michelotti, 1860 [37]. The association between B. palmeri and different octocoral species also resembles that of the well-known corallivorous snail Cyphoma gibbosum (Linnaeus, 1758), which is common in the Caribbean and predates on a large range of octocorals [38–42]. Cyphoma individuals, however, are commonly found alongside the branches of their hosts, where they may leave large, elongated scars [43-47], very different from the apical damage inflicted by B. palmeri. The corallivorous gastropod Coralliophila salebrosa H. Adams and A. Adams, 1864 (previously known as Coralliophila caribaea Abbott, 1958) has been reported to cause harm to five genera of octocorals and some scleractinians [42,47]. In contrast to B. palmeri, both snail species graze on their host corals in situ and do not take fragments away. Another corallivorous invertebrate, the bearded fireworm Hermodice carunculata (Pallas, 1766), is also known to attack gorgonians [48,49], but unlike *Banareia*, it is unable to cut their horny axis. Hermodice carunculata is a generalist predator known to attack a large range of prey, which is not limited to corals, although some prey species are more preferred than others [49–52]. So far, it appears that B. palmeri is a corallivore with a preferred diet consisting of a few octocoral species, but there is no definitive evidence for this. The species is unique by being able to cut through the horny octocoral axis and take fragments away. Additional research is needed to examine the foraging behaviour of B. palmeri and its gut contents. In addition, aquarium experiments may help to clarify if this crab species has any prey preferences. This study would not be the first showing that the discovery of novel trophic relationships and feeding strategies in the sea are serendipitous, often depending on recreational and professional divers being at the right time and the right place, which is corroborated by the increasing popularity of underwater photography that enables the documentation of such new observations [1–3,53–67].


Various octocorals are known for their strong regeneration capacity [68,69]. They may be able to heal wounds, but when the horny axis is cut and the apex is taken away, it is unlikely that the branch will continue to grow further, and the original rounded tip may remain damaged. On Bonaire, some sea rods can be seen with regenerated branch tips, which are either blunt or sharp, depending on the presence of the axis (Figures 5–7). These could be the result of the crab's coral-cutting behaviour because well-known predators are not known to cut the branch tips and there are also no diseases or parasites known to affect octocorals in this way [70–73]. One octocoral colony with multiple damaged branch tips showed one branch with a large unfinished cut, as if the axis gave too much resistance (Figure 5). The fate of disconnected branch fragments is not known. If they are not consumed or only partly eaten, it is possible that the fragments survive the crab attacks

Diversity 2025, 17, 144 7 of 11

and contribute to asexual reproduction [74]. The fate of octocorals that have been damaged by the tiny coral-cutting crabs also needs further investigation.

Figure 5. *Pseudoplexaura* sp. at Bonaire (2025). Dive site: Jeanie's Glory (12°05′14″N 68°16′59″W), 6–8 m depth. (a) Overview of a coral colony showing various damaged and regenerated branch tips. (b) Variation in wounded branch tips. (c) Close-up of a cut-off branch tip with an unfinished cut underneath, consistent with the cutting behaviour of the crab *Banareia palmeri*. Photo credits: L.A.O.L.

Figure 6. Examples of healthy and damaged branch tips of sea rods, *Pseudoplexaura* sp., at Bonaire (2024). Dive site: Tori's Reef (12°04′15″N 68°16′50″W), 8–9 m depth. (a) Overview of a coral colony showing one wounded, regenerated branch (most right). (b,c) Close-ups of regenerated branches with the original apical tips missing, which could have been removed by the crab *Banareia palmeri*. Photo credits: L.A.O.L.

Diversity 2025, 17, 144 8 of 11

Figure 7. Close-ups of damaged branch tips of sea rods, *Pseudoplexaura* sp., at Bonaire (2025). Dive site: The Rock (12°04′30″N 68°16′51″W), 5–9 m depth. They show regeneration of soft tissue around cut-off axis tips, varying from blunt (**a**) to medium sharp (**b**) and very sharp (**c**). Photo credits: L.A.O.L.

Author Contributions: Conceptualisation, L.A.O.L. and B.W.H.; field work, L.A.O.L. and B.W.H.; laboratory work, M.W.; writing—original draft preparation, L.A.O.L., M.W. and B.W.H.; writing—review and editing, L.A.O.L., M.W. and B.W.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding authors.

Acknowledgments: We thank Charles Fransen for the identification of the crab species. We are indebted to two anonymous reviewers for their constructive comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. De Gier, W.; Fransen, C.H.J.M.; Ozten Low, A.; Hoeksema, B.W. Reef fishes stalking box crabs in the southern Caribbean. *Ecology* **2020**, *101*, e03068. [CrossRef] [PubMed]
- 2. Muller, E.; de Gier, W.; ten Hove, H.A.; van Moorsel, G.W.N.M.; Hoeksema, B.W. Nocturnal predation of Christmas tree worms by a Batwing coral crab at Bonaire (Southern Caribbean). *Diversity* **2020**, *12*, 455. [CrossRef]
- 3. Muller, E.; Harasti, D.; Hoeksema, B.W. Seahorse predation by octopuses in the Caribbean and the West Pacific. *Diversity* **2022**, *14*, 125. [CrossRef]
- 4. Roberts, C.J.; Vergés, A.; Callaghan, C.T.; Poore, A.G. Many cameras make light work: Opportunistic photographs of rare species in iNaturalist complement structured surveys of reef fish to better understand species richness. *Biodivers. Conserv.* **2022**, *31*, 1407–1425. [CrossRef]
- 5. Camins, E.; Stanton, L.M.; Correia, M.; Foster, S.J.; Koldewey, H.J.; Vincent, A.C. Advances in life-history knowledge for 35 seahorse species from community science. *J. Fish. Biol.* **2024**, *104*, 1548–1565. [CrossRef]
- 6. Fourreau, C.J.L.; Macrina, L.; Lalas, J.A.A.; Takahata, A.; Koido, T.; Reimer, J.D. The Trojan seahorse: Citizen science pictures of a seahorse harbour insights into the distribution and behaviour of a long-overlooked polychaete worm. *Proc. R. Soc. B* **2024**, 291, 20241780. [CrossRef] [PubMed]
- 7. Miranda, L.S.; Tavares, S.; dos Santos, A.; Gonçalves, E.J.; Serrão, E.A.; Coelho, M.A. *Lipkea ruspoliana* Vogt, 1886 (Cnidaria: Staurozoa) in Portugal: The contribution of citizen science to range extension and taxonomic discussion of rare species. *Aquat. Ecol.* 2024, 58, 31–45. [CrossRef]
- 8. Ruxton, G.D.; Stevens, M. The evolutionary ecology of decorating behaviour. Biol. Lett. 2015, 11, 20150325. [CrossRef] [PubMed]
- 9. Hein, S.R.; Jacobs, M.W. Decorating behavior begins immediately after metamorphosis in the decorator crab *Oregonia gracilis*. *Mar. Ecol. Prog. Ser.* **2016**, 555, 141–150. [CrossRef]
- 10. Goodhill, C.; Desbiens, A.A.; Wolfe, K. Biology and epibiont community of the red decorator crab, *Schizophrys aspera*, on the southern Great Barrier Reef. *Coral Reefs* **2024**, *43*, 455–466. [CrossRef]

Diversity 2025, 17, 144 9 of 11

11. Chester, W.M. The structure of the gorgonian coral *Pseudoplexaura crassa* Wright and Studer. *Proc. Am. Acad. Arts Sci.* **1913**, 48, 737–774. [CrossRef]

- 12. Bayer, F.M. The shallow-water Octocorallia of the West Indian region. Stud. Fauna Curação Other Caribb. Isl. 1961, 12, 1–373.
- 13. Boone, L. Notes on the West Indian crabs of the genus Actaea. Bull. Am. Mus. Nat. Hist. 1930, 61, 117–127.
- 14. Rathbun, M.J. The cancroid crabs of America of the families Euryalidae, Portunidae, Atelecyclidae, Cancridae, and Xanthidae. In *Bulletin of the United States National Museum*; Government Printing Office: Washington, DC, USA, 1930; Volume 152, pp. 1–593, pls. 1230.
- 15. Guinot, D. Constitution de quelques groupes naturels chez les Crustacés Décapodes Brachyoures. I. La superfamille des Bellioidea et trois sous-familles de Xanthidae (Polydectinae Dana, Trichiinae de Haan, Actaeinae Alcock). *Mem. Mus. Natl. Hist. Nat. Paris* (A) 1976, 97, 1–308, pls. 1–19.
- 16. Tavares, M.; Carvalho, L.; Mendonça, J.B., Jr. Towards a review of the decapod Crustacea from the remote oceanic archipelago of Trindade and Martin Vaz, South Atlantic Ocean: New records and notes on ecology and zoogeography. *Pap. Avulsos Zool.* **2017**, 57, 157–176. [CrossRef]
- 17. Kely, K. Paractaea rufopunctata. Available online: https://www.inaturalist.org/observations/99569463 (accessed on 12 December 2024).
- 18. Kely, K. *Paractaea rufopunctata* (H. Milne Edwards, 1834), Nodose Rubble Crab Observed in Cayman Islands. Available online: https://www.gbif.org/occurrence/4597228644 (accessed on 12 December 2024).
- Mustard, A. Hoary Rubble Crab (Banareia palmeri) Gripping on to a Sea Rod, Grand Cayman, Cayman Islands, Caribbean Sea. Available online: https://www.naturepl.com/stock-photo-hoary-rubble-crab-banareia-palmeri-gripping-on-to-a-sea-rod-grand-nature-image01700664.html (accessed on 12 December 2024).
- 20. Radosta, O. Crab Database: Banareia palmeri. Available online: https://www.crabdatabase.info/en/crabs/brachyura/eubrachyura/heterotremata/xanthoidea/xanthidae/banareia/banareia-palmeri-2033 (accessed on 12 December 2024).
- 21. Ozten Low, L.A. BonaireFish: Creatures: Crabs. Available online: https://www.bonairefish.com/creatures/crab (accessed on 12 December 2024).
- 22. De Molenaar, A. Bonairereef. Nodose Rubble Crab. Available online: https://bonairereef.com/crabs.html (accessed on 12 December 2024).
- 23. Titgen, R.H. Hawaiian Xanthidae (Decapoda: Brachyura) I. Specimens at the California Academy of Sciences. *Bish. Mus. Occas. Pap.* **1987**, 27, 106–114.
- 24. Mendoza, J.C.E.; Lasley, R.M., Jr.; Ng, P.K.L. New rock crab records (Crustacea: Brachyura: Xanthidae) from Christmas and Cocos (Keeling) Islands, Eastern Indian Ocean. *Raffles Bull. Zool.* **2014**, *30*, 274–300.
- 25. Takeda, M.; Komatsu, H. A new and some rare crabs of the families Trapeziidae, Oziidae and Xanthidae (Crustacea: Decapoda: Brachyura) from the Ogasawara Islands, Japan. *Bull. Natl. Mus. Nat. Sci. Ser. A Zool.* **2024**, *50*, 97–122. [CrossRef]
- 26. Serène, R. Crustacés Décapodes Brachyoures de l'Océan Indien occidental et de la Mer Rouge. Xanthoidea: Xanthidae et Trapeziidae. Addendum Carpiliidae et Menippidae par A. Crosnier. In *Faune Tropicale*; O.R.S.T.O.M.: Paris, France, 1984; Volume 24, pp. 1–349, pls. 1–48.
- 27. Schofield, D. Paractaea rufopunctata. Available online: https://www.inaturalist.org/observations/202395546 (accessed on 12 December 2024).
- 28. Schofield, D. *Paractaea rufopunctata* (H. Milne Edwards, 1834), Nodose Rubble Crab Observed in Cayman Islands. Available online: https://www.gbif.org/occurrence/4597012920 (accessed on 12 December 2024).
- 29. Rathbun, M.J. Descriptions of a new genus and four new species of crabs from the Antillean Region. In Proceedings of the United States National Museum; Smithsonian Institution Press: Washington, DC, USA, 1894; Volume 17, pp. 83–86.
- 30. Felder, D.L.; Álvarez, F.; Goy, J.W.; Lemaitre, R. Decapoda (Crustacea) of the Gulf of Mexico, with comments on the Amphionidacea. In *Gulf of Mexico Origin, Water and Biota*; Felder, D.L., Camp, D.K., Eds.; Texas A&M University Press: College Station, TX, USA, 2009; Volume 1, pp. 1019–1104.
- 31. Poupin, J. Les Crustacés Décapodes des Petites Antilles, Avec de Nouvelles Observations Pour St. Martin, La Guadeloupe et La Martinique; Muséum National d'Histoire Naturelle (Patrimoines Naturels 77): Paris, France, 2018; pp. 1–264.
- 32. Coelho, P.A.; Alemida, A.O.; Bezerra, L.E.A. Checklist of the marine and estuarine Brachyura (Crustacea: Decapoda) of northern and northeastern Brazil. *Zootaxa* **2008**, *1956*, 1–58. [CrossRef]
- 33. Tavares, M.; Mendonça, J.B. Brachyuran crabs (Crustacea, Decapoda) from the remote oceanic Archipelago Trindade and Martin Vaz, South Atlantic Ocean. *Zootaxa* **2022**, *5146*, 1–129. [CrossRef]
- 34. Den Hartog, J.C.; Holthuis, L.B. A note on an interesting association of the crab *Platypodiella picta* (A. Milne-Edwards, 1869) and species of Zoantharia. *Cour. Forschungsinst. Senckenb.* **1984**, *68*, 21–29.
- 35. Den Hartog, J.C.; Türkay, M. *Platypodiella georgei* spec. nov. (Brachyura: Xanthidae), a new crab from the island of St. Helena, South Atlantic Ocean, with notes on the genus *Platypodiella* Guinot, 1967. *Zool. Meded.* **1991**, 65, 209–220.
- 36. García-Hernández, J.E.; Reimer, J.D.; Hoeksema, B.W. Sponges hosting the Zoantharia-associated crab *Platypodiella spectabilis* at St. Eustatius, Dutch Caribbean. *Coral Reefs* **2016**, *35*, 209. [CrossRef]

Diversity 2025, 17, 144 10 of 11

37. Moreno-Borges, S.; Arranz, V.; Fernández-Martín, S.; Clemente, S.; Xavier, R.; Vasconcelos, R. Assessing diets of marine fauna associated with emerging zoantharian habitats in the Canary Islands. *Mar. Biol.* **2024**, *171*, 109. [CrossRef]

- 38. Lasker, H.R.; Coffroth, M.A.; Fitzgerald, L.M. Foraging patterns of *Cyphoma gibbosum* on octocorals: The roles of host choice and feeding preference. *Biol. Bull.* **1988**, 174, 254–266. [CrossRef]
- 39. Chiappone, M.; Dienes, H.; Swanson, D.W.; Miller, S.L. Density and gorgonian host-occupation patterns by flamingo tongue snails (*Cyphoma gibbosum*) in the Florida Keys. *Caribb. J. Sci.* **2003**, *39*, 116–127.
- 40. Reijnen, B.T.; Hoeksema, B.W.; Gittenberger, E. Host specificity and phylogenetic relationships among Atlantic Ovulidae (Mollusca: Gastropoda). *Contrib. Zool.* **2010**, *79*, 69–78. [CrossRef]
- 41. Lucas, M.Q.; Rodríguez, L.R.; Sanabria, D.J.; Weil, E. Natural prey preferences and spatial variability of predation pressure by *Cyphoma gibbosum* (Mollusca: Gastropoda) on octocoral communities off La Parguera, Puerto Rico. *Int. Sch. Res. Not.* **2014**, 2014, 742387. [CrossRef]
- 42. Verboom, L.; Hoeksema, B.W. Resource partitioning by corallivorous snails on Bonaire (southern Caribbean). *Diversity* **2023**, *15*, 34. [CrossRef]
- 43. Harvell, C.D.; Suchanek, T.H. Partial predation on tropical gorgonians by *Cyphoma gibbosum* (Gastropoda). *Mar. Ecol. Prog. Ser.* 1987, 38, 37–44. [CrossRef]
- 44. Gerhart, D.J. Fouling and gastropod predation: Consequences of grazing for a tropical octocoral. *Mar. Ecol. Prog. Ser.* **1990**, *62*, 103–108. [CrossRef]
- 45. Ruesink, J.L.; Harvell, C.D. Specialist predation on the Caribbean gorgonian *Plexaurella* spp. by *Cyphoma signatum* (Gastropoda). *Mar. Ecol. Prog. Ser.* **1990**, *65*, 265–272. [CrossRef]
- 46. Burkepile, D.E.; Hay, M.E. Predator release of the gastropod *Cyphoma gibbosum* increases predation on gorgonian corals. *Oecologia* **2007**, 154, 167–173. [CrossRef] [PubMed]
- 47. Potkamp, G.; Vermeij, M.J.A.; Hoeksema, B.W. Genetic and morphological variation in corallivorous snails (*Coralliophila* spp.) living on different host corals at Curação, southern Caribbean. *Contrib. Zool.* **2017**, *86*, 111–144. [CrossRef]
- 48. Wahle, C.M. Habitat-related patterns of injury and mortality among Jamaican gorgonians. Bull. Mar. Sci. 1985, 37, 905–927.
- 49. Krželj, M.; Cerrano, C.; Di Camillo, C.G. Enhancing diversity knowledge through marine citizen science and social platforms: The case of *Hermodice carunculata* (Annelida, Polychaeta). *Diversity* **2020**, *12*, 311. [CrossRef]
- 50. Schulze, A.; Grimes, C.J.; Rudek, T.E. Tough, armed and omnivorous: *Hermodice carunculata* (Annelida: Amphinomidae) is prepared for ecological challenges. *J. Mar. Biol. Assoc. UK* **2017**, *97*, 1075–1080. [CrossRef]
- 51. Barroso, R.; Almeida, D.; Contins, M.; Filgueiras, D.; Dias, R. *Hermodice carunculata* (Pallas, 1766) (Polychaeta: Amphinomidae) preying on starfishes. *Mar Biodivers*. **2016**, *46*, 333–334. [CrossRef]
- 52. Vreeland, H.V.; Lasker, H.R. Selective feeding of the polychaete *Hermodice carunculata* Pallas on Caribbean gorgonians. *J. Exp. Mar. Biol. Ecol.* **1989**, 129, 265–277. [CrossRef]
- 53. Alamaru, A.; Bronstein, O.; Dishon, G.; Loya, Y. Opportunistic feeding by the fungiid coral *Fungia scruposa* on the moon jellyfish *Aurelia aurita*. *Coral Reefs* **2009**, *28*, 865. [CrossRef]
- 54. Hoeksema, B.W.; Waheed, Z. It pays to have a big mouth: Mushroom corals ingesting salps at northwest Borneo. *Mar. Biodivers.* **2012**, *42*, 297–302. [CrossRef]
- 55. Hoeksema, B.W.; Tuti, Y.; Becking, L.E. Mixed medusivory by the sea anemone *Entacmaea medusivora* (Anthozoa: Actiniaria) in Kakaban Lake, Indonesia. *Mar. Biodivers.* **2015**, 45, 141–142. [CrossRef]
- 56. Mehrotra, R.; Scott, C.M.; Rohrer, J.M.; Hoeksema, B.W. Predation on a sacoglossan gastropod by a mushroom coral. *Coral Reefs* **2015**, *34*, 517. [CrossRef]
- 57. Mehrotra, R.; Scott, C.M.; Hoeksema, B.W. A large gape facilitates predation on salps by *Heteropsammia* corals. *Mar. Biodivers*. **2016**, *46*, 323–324. [CrossRef]
- 58. Musco, L.; Vega Fernández, T.; Caroselli, E.; Roberts, J.M.; Badalamenti, F. Protocooperation among small polyps allows the coral *Astroides calycularis* to prey on large jellyfish. *Ecology* **2018**, *99*, 2400–2401. [CrossRef]
- 59. Lindemann, Y.; Eyal, G.; Genin, A. Intense capture of swarming pteropods by large-polyp corals. *Galaxea J. Coral Reef. Stud.* **2019**, 21, 9–10. [CrossRef] [PubMed]
- 60. Padate, G.; Mirza, R.; Viradiya, A.; Salunke, S. Scyphozoa *Pelagia noctiluca* (Forsskal, 1775): Blooming on the coast of Gujarat, India and its predation by *Anemonia viridis* (Forsskal, 1775). *Zool. Ecol.* **2020**, *30*, 157–164. [CrossRef]
- 61. Shlesinger, T.; Akkaynak, D.; Loya, Y. Who is smashing the reef at night? A nocturnal mystery. *Ecology* **2021**, 102, e03420. [CrossRef] [PubMed]
- 62. Ter Horst, L.J.V.; Hoeksema, B.W. Salpivory by colonial reef corals at Curação, Southern Caribbean. *Diversity* **2021**, *13*, 560. [CrossRef]
- 63. Gregorin, C.; Musco, L.; Puce, S. Protocooperation in *Tubastraea* cf. *micranthus* to catch large planktonic prey. *Mar. Biodivers.* **2022**, 52, 34. [CrossRef]
- 64. Betti, F. Opportunistic feeding behaviour of Trachurus mediterraneus. Mar. Biodivers. 2024, 54, 50. [CrossRef]

Diversity 2025, 17, 144 11 of 11

65. Betti, F.; Hoeksema, B.W. The box crab *Calappa hepatica* as a nuclear species for the opportunistic foraging hehaviour of the flowery flounder, *Bothus mancus*, in the Indo-Pacific. *Diversity* **2024**, *16*, 662. [CrossRef]

- 66. Wang, Y.C.; Chen, T.C. A sea anemone, *Stichodactyla gigantea* (Forsskål, 1775), ensnares a live sea snake, *Emydocephalus ijimae* (Stejneger, 1898), on Green Island, Taiwan. *Mar. Biodivers.* **2024**, *54*, 63. [CrossRef]
- 67. Morejon-Arrojo, R.D.; Lopez-Figueroa, N.B.; Hernandez-Albernas, J.I.; Rodriguez-Viera, L.; Stoner, E.W. From sand to bell: Novel predation of scyphozoans by the giant Caribbean sea anemone *Condylactis gigantea* (Weinland, 1860) from the western Atlantic. *Diversity* 2025, 17, 111. [CrossRef]
- 68. Wahle, C.M. Regeneration of injuries among Jamaican gorgonians: The roles of colony physiology and environment. *Biol. Bull.* **1983**, 165, 778–790. [CrossRef]
- 69. Shirur, K.P.; Jackson, C.R.; Goulet, T.L. Lesion recovery and the bacterial microbiome in two Caribbean gorgonian corals. *Mar. Biol.* **2016**, *163*, 238. [CrossRef]
- 70. Kim, K. Diseases in octocorals. In *Coral Diseases*; Woodley, C., Downs, C.A., Bruckner, A., Porter, J., Galloway, S.B., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 410–415. [CrossRef]
- 71. Weil, E.; Rogers, C.S.; Croquer, A. Octocoral diseases in a changing ocean. In *Marine Animal Forests*; Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–55. [CrossRef]
- 72. Calderón-Hernández, A.; Urbina-Villalobos, A.; Mora-Barboza, C.; Morales, J.A.; Fernández-García, C.; Cortés, J. Lesions in octocorals of the Costa Rican Caribbean during the 2015–2016 El Niño. *Coral Reefs* **2021**, *40*, 1167–1179. [CrossRef]
- 73. Korzhavina, O.A.; Nikitin, M.A.; Hoeksema, B.W.; Armenteros, M.; Reimer, J.D.; Ivanenko, V.N. Tracing geographic and molecular footprints of copepod crustaceans causing Multifocal Purple Spots Syndrome in the Caribbean sea fan *Gorgonia ventalina*. *Diversity* **2024**, *16*, 280. [CrossRef]
- 74. Lasker, H.R. Asexual reproduction, fragmentation, and skeletal morphology of a plexaurid gorgonian. *Mar. Ecol. Prog. Ser.* **1984**, 19, 261–268. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.