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INTRODUCTION

The importance of floral traits for plant- pollinator in-
teractions has been apparent since the 18th century (e.g. 
Sprengel, 1793). Darwin placed the origin of floral traits 
into the modern evolutionary framework (Darwin, 1859, 
1862). Following suggestions of floral trait classifica-
tions according to their adaptive relationships to partic-
ular pollinators resulted in an influential ecological and 
evolutionary hypothesis, the pollination syndrome hy-
pothesis (Faegri & van der Pijl, 1979; Fenster et al., 2004; 
Vogel, 1954). It defines that specific sets of convergent 
floral traits (e.g. colour, shape, odour or production and 

display of floral rewards) presumably evolved to attract 
particular groups of pollinators (Faegri & van der Pijl, 
1979).

Nevertheless, the pollination syndrome hypothesis 
has been recently questioned. Community- wide studies 
exploring complex plant- pollinator networks demon-
strated a higher generalisation in pollination systems 
and a lower predictability of pollinators based on floral 
traits than expected (Ollerton et al., 2009; Waser et al., 
1996). This discrepancy may be related to considering 
all plants in the community, compared with individual 
case studies frequently targeting highly specialised and 
‘attractive’ pollination systems (Dellinger, 2020; Waser 
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Abstract

The pollination syndrome hypothesis predicts that plants pollinated by the same 

pollinator group bear convergent combinations of specific floral functional traits. 

Nevertheless, some studies have shown that these combinations predict pollinators 

with relatively low accuracy. This discrepancy may be caused by changes in the 

importance of specific floral traits for different pollinator groups and under differ-

ent environmental conditions. To explore this, we studied pollination systems and 

floral traits along an elevational gradient on Mount Cameroon during wet and dry 

seasons. Using Random Forest (Machine Learning) models, allowing the ranking 

of traits by their relative importance, we demonstrated that some floral traits are 

more important than others for pollinators. However, the distribution and impor-

tance of traits vary under different environmental conditions. Our results imply 

the need to improve our trait- based understanding of plant- pollinator interactions 

to better inform the debate surrounding the pollination syndrome hypothesis.
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et al., 1996). Additionally, the degree of specialisation 
can differ among regions depending on their evolu-
tionary history and stability (Johnson & Steiner, 2000). 
Recent empirical efforts have shown that the predict-
ability of pollination syndromes in individual pollina-
tion systems varies from relatively high (e.g. Dellinger, 
Chartier, et al., 2019; Fenster et al., 2015; Hargreaves 
et al., 2004; Muchhala, 2006; Rosas- Guerrero et al., 2014; 
Vandelook et al., 2019) to low (e.g. Ollerton et al., 2009; 
Paudel et al., 2019; Rocha et al., 2020; Wang et al., 2020). 
Researchers also demonstrated that pollination systems 
can show parallel adaptations to multiple pollinator 
groups (Dellinger, Scheer, et al., 2019; Muchhala et al., 
2009), and suggested reclassification of some pollination 
syndromes (Dellinger, Chartier, et al., 2019), or proposed 
that the pollination syndrome theory can be improved 
by other concepts such as evolutionary stable strategy 
(Pyke, 2016). Additionally, Abrahamczyk et al. (2017) 
highlighted the importance of using quantitative data, 
besides the common categorical traits, when testing pol-
lination syndromes.

Simultaneously, detailed studies on particular traits 
from pollination syndromes have shown our insuf-
ficient understanding of their functions and impor-
tance (Dellinger, 2020). For instance foraging from 
long- spurred flowers do not always correspond to 
long- proboscid visitors (Vlašánková et al., 2017), while 
hummingbird visits are driven rather by nectar reward 
than other floral traits (Maruyama et al., 2013; Waser 
et al., 2018). The traditional pollination syndrome hy-
pothesis, as a generalising concept, also largely over-
looks some traits specific for individual plant lineages. 
For example a pollen expulsion mechanism representing 
an adaptation to buzz- pollination by bees (De Luca & 
Vallejo- Marín, 2013; Dellinger, Chartier, et al., 2019), 
or various corolla constrictions limiting access of visi-
tors (Clark et al., 2015). Furthermore, the observed trait 
configuration is not necessarily an adaptation to polli-
nators only. Floral antagonists exert negative selection 
on floral traits, like size or amount of flowers, coun-
teracting pollinator- mediated selection (Gélvez- Zúñiga 
et al., 2018). It is questionable to what extent red flow-
ers are an adaptation to bird vision, or defence against 
nectar- thieving bees (Chittka & Waser, 1997; Rodríguez- 
Gironés & Santamaría, 2004; Wester et al., 2020), and if 
this role differs spatially (Chen et al., 2020). Moreover, 
some traits such as floral colour could have an additional 
role in interspecific plant competition for pollinators 
(Muchhala et al., 2014). Altogether, if individual floral 
traits largely differ in their role in plant- pollinator inter-
actions (e.g. Maruyama et al., 2013; Schmid et al., 2015) 
and their synergistic effects are important (Fenster et al., 
2015), the original category- based ordinations and clas-
sifications of individual traits are probably not the best 
expression of the real situation in nature (Abrahamczyk 
et al., 2017). Hence, new approaches are needed to re-
flect more complex interactions among floral traits and 

to assess their importance for pollinators (Cutler et al., 
2007; Dellinger, Chartier, et al., 2019; Pichler et al., 2020).

The role of individual floral traits and the associated 
selection can also vary in space and time (Abrahamczyk 
et al., 2011; Albrecht et al., 2018; Chen et al., 2020; Hawkins 
& Devries, 2009), which makes relying on traits to pre-
dict pollinators even more challenging. Consequently, 
the concept of pollination syndromes as a simple clas-
sification system represented by the categorical table of 
individual floral traits for particular pollinator groups 
(reviewed in Waser, 2006) should change into a flexible 
system considering different importance of individual 
traits for particular pollinators (i.e. Figure 1a), and/or 
under different environments (i.e. Figure 1b,c).

Elevational gradients in seasonal ecosystems feature 
high adaptive trait differentiation. This makes them 
an opportunity to study the spatiotemporal variability 
in the importance of individual floral traits in plant- 
pollinator interactions. Elevational gradients allow us 
to observe substantial changes in abiotic and biotic fea-
tures (McCain & Grytnes, 2010), including taxonomi-
cal and functional diversities of plants and pollinators 
(Albrecht et al., 2018; Janeček et al., 2015), as well as their 
interactions (Mertens et al., 2021; Olesen & Jordano, 
2002; Ramos- Jiliberto et al., 2010). Seasonal differ-
ences in communities and interactions are also known 
(Abrahamczyk et al., 2011; Maicher et al., 2018; Mertens 
et al., 2021). Distribution of individual floral traits have 
also been reported along elevation or among seasons 
(Chen et al., 2020), their role, however, remains unclear.

The importance of individual floral traits can be 
related to pollinator requirements and pollinator- 
community organisation. Spatiotemporal variation in 
the role, importance and diversity of pollinators has 
been observed (Abrahamczyk et al., 2011; Fenster & 
Dudash, 2001; Mertens et al., 2021), although little is 
known on the related variation in floral traits, except 
for floral resource availability. Pollinators have greater 
energetic requirements at higher elevations due to lower 
temperatures, or lower air pressure which hinders flight 
(Feinsinger et al., 1979), or during the wet season in 
humid tropical forests (Janeček et al., 2015; Maicher 
et al., 2018). Consequently, such conditions can increase 
the importance of floral traits related to energetic re-
wards (e.g. nectar production or concentrations), causing 
a higher specialisation of endothermic bird pollinators 
for floral resources during wet season (Janeček, Chmel, 
Mlíkovský, et al., 2021). The unfavourable conditions 
might also cause the increasing prevalence of larger pol-
linators during wet seasons, such as nectarivorous birds 
whose flight is less affected by rainy conditions compared 
with insects (Cruden, 1972; Janeček et al., 2015; Maicher 
et al., 2018). Nevertheless, some relationships remain sta-
ble, independent of seasonal changes, as was confirmed 
for the relationship between corolla tube length and bill 
length in hummingbird- plant interactions (Weinstein & 
Graham, 2017).
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We aimed to reveal how trait importance differs for 
different pollinator groups and under contrasting envi-
ronmental conditions (Figure 1). We mainly focused on 
the role of floral traits for primary pollinators to challenge 
the pollination syndrome hypothesis. We recorded plant- 
pollinator interactions and floral traits at the community 
level at four sites along an elevational gradient on Mount 
Cameroon. We sampled in distinct seasons, with extreme 
rains in the wet season and almost no rain during the dry 
season (Maicher et al., 2020). We challenged the following 
hypotheses: (1) The relative importance of individual floral 
traits differs among particular groups of primary pollina-
tors (Figure 1a); (2) There are environmentally (i.e. seasonal 
and elevational) driven changes in floral trait distribution 
and their relative importance for pollinators (Figure 1b,c).

M ATERI A LS A N D M ETHODS

Study sites

This study was carried out on Mount Cameroon, 
Southwest Region, Cameroon (4.203°N and 9.170°E), the 
highest mountain in Western and Central Africa (4095 m 

a.s.l.; Cable & Cheek, 1998). It represents an important 
biodiversity and endemism hotspot due to its location in 
the Cameroon Volcanic Line on the border of the Congo 
and Guinean bioregions (Sosef et al., 2017; Ustjuzhanin 
et al., 2018).

We sampled along the continuous elevational gradient 
of pristine rainforests, from lowland (650 m a.s.l.), to up-
land (1100 and 1450 m a.s.l.) and montane (2200 m a.s.l.) 
forests at the natural timberline on the southwestern 
slope of the mountain (Hořák et al., 2019; Maicher et al., 
2020). The region experiences strong seasonality, with 
annual precipitation exceeding 12,000 mm at the lower 
elevations with monthly precipitation of over 2000 mm 
during the wet season (June to September), and almost 
no rainfall during the dry season (mid- November to 
February; Maicher et al., 2018, 2020). At each studied el-
evation, six transects (200 m × 10 m; at least 100 m apart) 
were established to characterise the local forest hetero-
geneity. We sampled along these transects; however, the 
search area also included the surrounding vegetation in 
case of insufficient replicates for particular plant spe-
cies. All samplings were repeated in the dry and wet sea-
sons of 2017 (1450 and 2200 m a.s.l.) and 2018 (650 and 
1100 m a.s.l.).

F I G U R E  1  Conceptual figure. (a) Compared to the ‘traditional’ pollination syndromes, floral traits differ in their relative importance 
for individual pollinator groups. (b, c) The relative importance of individual floral traits differs under different environmental conditions, for 
example along an elevational gradient and between seasons. (d) Examples of flower visitors found on Mount Cameroon: Apallaga meditrina 
on Aframomum sp., Rhingia sp. on Impatiens burtonii and Cyanomitra oritis on Impatiens sakeriana (first two pictures are screenshots from the 
video recordings, the third picture was taken by Š. Janeček). Note that the relationships shown here do not reflect the situation in the field, they 
are purely meant to conceptualise our study

Differences in trait importance

(a) (b) (c)

FlyBee Butterfly

(d)

Differences due to environmental conditions

Bird
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Floral trait measurements

We selected floral traits commonly included in the pol-
lination syndromes definitions (Ollerton et al., 2009; 
Ollerton & Watts, 2000; Table S1). Morphometric traits 
(size, tube length/width) were measured with an elec-
tronic calliper, whilst visual (shape, symmetry, colour, 
flower/anther position, nectar guides) and olfactory 
traits (odour strength) were recorded by the observer. We 
simplified the classification of odour to weak- no, moder-
ate and strong odour. Observers were trained together 
to minimise the individual bias for estimations of odour 
strength. The traits were measured for up to five indi-
viduals of the focal plant species.

Quantification of nectar sugar production was done 
by covering flowers with mesh bags for 24  h. Nectar 
from individual flowers with high nectar production was 
extracted following Bartoš et al. (2012) using capillary 
tubes. The nectar concentration was measured using a 
Pal- 1 (Atago co.) pocket refractometer, after which we 
calculated the amount of sugar per µl of nectar following 
Galetto and Bernardello (2005). This was converted to 
the amount of sugar per flower by multiplying it with the 
measured volume in capillary tubes. For low- nectar pro-
ducing flowers, we washed the flowers using a Hamilton 
syringe with filtered water, added ethanol to the sam-
ples and boiled it for 15  min to deactivate enzymes 
(Chlumská et al., 2014; Janeček, Chmel, Ewome, et al., 
2021). The nectar samples were dried in the laboratory, 
where they were transferred into constant volumes. The 
concentrations of individual sugars were measured with 
high- performance liquid chromatography (HPLC) using 
the ICS- 3000  system (Dionex) with an electrochemical 
detector and CarboPac PA 1 column (Janeček, Chmel, 
Ewome, et al., 2021).

Visitor recording

The flowering plant species along the studied tran-
sects were recorded for 24  h using security cameras 
(VIVOTEK IB8367T with IR night vision; for more 
information on the methodology see Mertens et al., 
2018, 2020; Klomberg et al., 2019) to detect their visi-
tors. We recorded flowers at all vegetation strata from 
understorey to canopies (reached using tree climbing 
methods).

The functional groups were defined following the 
common pollination syndrome groups (birds, flies, bees, 
wasps, beetles, butterflies, moths, non- flying- mammals; 
Willmer, 2011), with the addition of cockroaches 
(Mertens et al., 2018; Vlasáková et al., 2019).

Only visitors observed touching anthers or stigmas 
were considered potential pollinators (referred to as 
pollinators in our paper) and included in our analyses 
(Padyšáková et al., 2013). Although pollination effec-
tiveness of each flower visitor should combine visitation 

frequency and pollen transfer per visit (Mayfield et al., 
2001; Rosas- Guerrero et al., 2014), the scale of this study 
did not allow to include pollen transfer, and we relied on 
contact with reproductive organs as a proxy of pollina-
tion (similar to e.g. Biella et al., 2019).

Statistical analyses

Following Dellinger, Chartier, et al. (2019), we used 
Random Forest models (abbreviated as RF; Breiman, 
2001) to identify the most important floral traits for the 
primary pollinators (used as the categorical response 
variable, consistently with the pollination syndrome hy-
pothesis). Here, we emphasise that ‘importance’ refers 
explicitly to model testing as we have not performed any 
ethological experiments that query the animals directly. 
We distinguished plants according to their most primary 
pollinators based on the visitation frequency, expressed 
as number of visits standardised by the recording time 
and recorded flowers, that is visitation frequency per 
flower and minute of recording.

RF is a classifier tool capable of evaluating the im-
portance of both categorical and continuous predictor 
variables to classify given objects into particular groups 
of interest, in our case, plants with different pollination 
syndromes. This approach is based on selection among a 
high number of individual decision trees created by ma-
chine learning (i.e. a model automatically conditioned 
using a training data set to classify certain types of ob-
jects). Its branching algorithm is composed of nodes in 
which the objects (e.g. plants in our case) can be clas-
sified according to some rule into one of two groups 
(e.g. plants with smaller or larger flowers than 5  cm), 
branches leading from one node to another and termi-
nal nodes. First, each decision tree is constructed using 
a randomly selected training subset of samples from our 
data set (e.g. a subset of plant species). Consequently, 
only a few randomly selected variables are evaluated 
for each node split, that is it is determined how well they 
split the objects of different properties (e.g. pollinator 
groups) and the best is then chosen for this particular 
node. The samples which were not used to build a given 
tree (‘out of bag’ samples in the RF terminology, abbre-
viated as OOB) serve for an estimation of the accuracy of 
the individual variables’ classification in the given tree. 
In our case, the accuracy with which the plants from the 
used subset of data are correctly classified into primary 
pollinator groups according to their floral traits. The 
importance of each variable is measured by a decrease 
in the classification accuracy before and after random 
permutation of the variable values in the OOB samples. 
The results from individual trees are then pooled and the 
final decision on the importance (e.g. mean decrease in 
the accuracy) of each variable is made. Values ≤0 depict 
variables which did not improve the model's prediction 
accuracy. For more details on RF and its application 
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in ecology see Cutler et al. (2007), Johnson (2013), or 
Dellinger, Chartier, et al. (2019).

To reveal general patterns in floral trait importance, 
we firstly performed a single aggregated RF model for 
all floral traits and all four elevations and seasons. To 
test the most predictive model we afterwards removed 
the floral traits not improving the whole model accuracy 
(Table S3). These traits increase the model noise and 
decrease its total accuracy, because whenever only the 
unimportant traits are selected in a particular node of 
a decision tree of RF, the plants are affiliated into di-
chotomously created ‘false’ groups and such tree con-
sequently reduce the model ability to classify the plants 
correctly. In both whole and reduced models, the pri-
mary pollinator was the most frequent visitor of each 
plant species without considering where and when the 
plants were recorded. Additionally, seasonal and eleva-
tional differences in the trait importance were explored 
by: (1) eight RF models separately for each season x el-
evation combination, (2) two RF models separately for 
wet versus dry season and (3) four RF models separately 
for each elevation. In these cases, the primary pollinator 
was the most frequent visitor of each plant species sep-
arately for individual elevations and/or seasons. We ran 
RFs comprising 300, 500, 1000 or 2000 trees each, and 
one to eight variables tested at each split (called mtry), 
our decision on the settings was made during the model 
tuning in caret package (Kuhn, 2008). For the individual 
elevations and seasons, the most important trait for each 
primary pollinator group was extracted from these anal-
yses (based on the mean decrease in accuracy; MDA). 
Per trait, we listed the most common trait value found 
in plants visited by the specific pollinator groups in 
our data set. For the analyses, we used the randomFor-
est package (Liaw & Wiener, 2002) in R 3.6.1 (R Core 
Team, 2019). To test the RFs’ significance, we compared 
model OOB error against random OOB errors after the 
response variable (primary pollinators) randomisation. 
The null distribution of random OOB errors was per-
formed by 199 permutations using rf.significance func-
tion in rfUtilities package (Evans & Murphy, 2018). To 
explore the accuracy of RF models for plants visited by 
particular primary pollinators, we calculated sensitivity 
(i.e. proportion of plants visited by the primary pollina-
tor correctly predicted by the RF model) and specificity 
(i.e. proportion of plants correctly predicted as unvisited 
by the primary pollinator).

To study differences in the distribution of individ-
ual floral traits among elevations and seasons, we used 
Canonical Correspondence Analysis (CCA), a unimodal 
constrained multivariate method based on fitting the 
explanatory variables into the ordination space defined 
by the response variables (Ter Braak, 1986). We consid-
ered only those traits found to be the most important 
for at least one primary pollinator in at least one season 
x elevation combination (Table 3). Occurrence of plant 
species in individual seasons and elevations served as 

explanatory variables, whilst floral traits’ values for in-
dividual plant species were used as response variables. 
We applied Monte Carlo permutation tests to evaluate 
the effect of elevation and season on the distribution of 
individual floral traits (Šmilauer & Lepš, 2014).

Additionally, we performed eight (i.e. separately for 
individual elevations and seasons) step- wise forward- 
selection CCAs to find the five most important (ac-
cording to their contribution to variability explained 
by particular models) traits for the composition of pol-
linator communities in each elevation and season. In 
these analyses, the floral traits’ values represented ex-
planatory variables, whilst the visitation frequencies of 
individual pollinator groups to individual plant species 
served as response variables. All CCAs were performed 
using Canoco 5 (ter Braak & Šmilauer, 2012).

RESU LTS

Based on the 24- h video recordings of flowers of 117 
plant species with a complete set of floral traits, we ob-
served 13,024 individual interactions with potential pol-
linators, defined as contacting the plants’ reproductive 
organs (Table S2). Bees were the most common primary 
pollinators (for 44 plant species), followed by flies (for 
38 plant species), moths (for 14 plant species), birds (for 
7 plant species), butterflies (for 7 plant species), beetles 
(for 4 plant species) and wasps (for 3 plant species), while 
cockroaches and non- flying mammals were primary 
pollinators of no plant species. Nevertheless, four and 
three plant species with beetles and wasps as the pri-
mary pollinators, respectively, were excluded from the 
RF analyses, because they were too rare for this method. 
Using our extensive floral trait database for all studied 
co- occurring flowering species at our focal sites, we were 
able to identify the importance of each trait for the pri-
mary pollinators across elevation and seasons. Most of 
the floral traits had small (if any) importance, and in 
consequence the complex RF model was not significantly 
predicting the pollinators (OOB error =  0.600; random 
OOB error = 0.650; p = 0.09; Table S3). Nevertheless, the 
simplified model including only three traits consider-
ably improved the model mean accuracy (colour, sugar 
per flower and floral size), significantly predicting the 
plant pollinators (OOB error  =  0.518; random OOB 
error = 0.645; p < 0.001; Table 1), indicating these three 
traits to be crucial in the studied plant- pollinator sys-
tems. For individual primary pollinators, our model 
showed the importance of colour for bees and moths, 
sugar per flower for birds and flies and floral size for 
butterflies (Table 1). However, the model sensitivity and 
specificity for individual pollinator groups largely dif-
fered. Whereas plants pollinated primarily by bees or 
flies were relatively well predicted, the model predic-
tions based on the combinations of the floral traits were 
relatively unreliable for the other primary pollinators, 
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expressing the highly variable importance of the tested 
floral traits for different pollinator groups (Table 1).

We revealed spatiotemporal differences in the traits’ 
importance in individual elevations and seasons (Table 2; 
see also detailed results of the RF models separately for 
individual seasons and elevations in Table S4), as well as 
in the traits’ importance for the particular primary pol-
linators in individual elevations and seasons (Table 3; 
Table S5). The most conspicuous patterns were the com-
mon importance of sugar per flower in wet season, and 
of floral size at lower elevations. Various other traits were 
important in particular situations, such as anther posi-
tion as the most important trait in the dry season at the 
highest elevations, and tube length in plant- pollinator 
communities around 1450  m a.s.l. (Table 2; Tables S4 
and S5). Colour seemed to be important during the dry 
season at lower and middle elevations (Table 2; Tables S4 
and S5). Looking at the particular primary pollinators, 
we identified the importance of high amounts of nectar 
sugar per flower for birds at two elevations in the wet 
season, whereas low amounts of nectar sugar were most 
important for flies at two elevations (Table 3). The only 
important floral traits for butterflies were floral size 
and shape. The traits important for bees and moths were 
highly variable. Nevertheless, the traits typical for the 
mellitophilous (bee- pollinated) and phalaenophilous and 
sphingophilous (moth- pollinated) pollination syndromes 
(e.g. nectar guides for bees, and strong odour for moths) 
were revealed as most important in particular elevations 
and seasons, similarly to the above- mentioned traits most 
important for the other primary pollinators (Table 3).

Elevation and season marginally significantly in-
fluenced the distribution of most important traits for 
pollinator composition, as listed in Table 3 (Figure 2a; 
F = 1.2, p = 0.07, 17.2% explained variability). The first 
and second axes correlated with season and elevation 
respectively. The CCA showed higher amounts of nec-
tar sugar per flower at the highest elevation (Figure 2a), 
whereas some other traits, for example longer tubes or 
larger flowers, were affiliated to the lower elevations. 
Closed zygomorphic and opened actinomorphic flowers 
occurred mainly in wet and dry season respectively.

The partial CCA models identifying the role of flo-
ral traits in particular seasons and elevations revealed 

an increase in the variability explained by the traits to-
wards the higher elevations and from dry to wet season 
(Figure 2b; for details on individual traits’ importance 
see Table S6). These analyses confirmed the importance 
of floral traits for pollinators in conditions with scarcer 
resource availability (flowering plant diversity and 
amount of nectar resources; i.e. higher elevations and wet 
season). Additionally, we found that floral colours were 
often among the significant traits explaining the compo-
sition of pollinator communities at lower elevations and 
dry season, and that the high sugar production increased 
in its importance at higher elevations and during the wet 
season (Figure 2b).

DISCUSSION

In the tropical forests of Mount Cameroon, our study 
showed that: (1) individual elevations and seasons hosted 
flowering plants with specific floral traits, (2) individual 
floral traits differed in their importance for particu-
lar groups of primary pollinators and under differing 
environmental conditions and (3) the floral traits were 
not only associated with the primary pollinators, but 
also with the composition of all pollinators. These, to-
gether with the low number of floral traits predicting 
the primary pollinators in our complex models and the 
low specificity and sensitivity of these predictions for 
some pollinator groups (Table 1), questioned validity 
of the ‘traditional’ definition of pollination syndromes. 
Nevertheless, such a low predictability does not mean 
that some plants are not pollinated according to the 
traditionally defined syndromes. On Mount Cameroon, 
the validity of pollination syndromes was already ap-
proved by case studies of several individual pollination 
systems (Klomberg et al., 2019; Mertens et al., 2018, 
2020). Nevertheless, we have shown that individual flo-
ral traits play different roles for particular primary pol-
linators, which is getting even more complicated with 
differing environmental conditions. This is congruent 
with butterflies dominating in pollination of psycho-
philous (i.e. butterfly- pollinated) Scadoxus cannabarinus 
at lower elevations only (Mertens et al., 2020), or with 
nectarivorous sunbirds specialising in ornithophilous 

Floral trait

Primary pollinator

Whole modelBees Birds Butterflies Flies Moths

Colour 0.0442 0.0337 0.0272 0.048 0.0091 0.0396

Sugar per flower 0.0338 0.1488 0.0031 0.0898 — 0.0447

Size 0.0087 — 0.0908 0.0283 — 0.0113

Sensitivity 0.7045 0.1429 0.1429 0.5263 0

Specificity 0.5 1 0.9905 0.7222 0.9688

Note: In bold, the most important trait for each pollinator group and for the whole model are highlighted. 
‘— ’ means no importance of the trait for a particular primary pollinator (i.e. Mean Decrease in 
Accuracy ≤ 0).

TA B L E  1  Floral traits’ importance 
(expressed as the Mean Decrease in 
Accuracy), sensitivity and specificity for 
individual primary pollinator groups and 
for the whole RF models with the three 
most important traits

 14610248, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.13958 by N

aturalis B
iodiversity C

enter, W
iley O

nline Library on [21/01/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



   | 845KLOMBERG Et aL.

plants during the wet season (Janeček et al., 2015) whilst 
being more generalised during the dry season (Janeček, 
Chmel, Ewome, et al., 2021). Additionally, the seemingly 
low predictability of our models for some primary pol-
linators could also be related to the complexity of plant- 
pollinator interactions, whilst our analyses focused on a 
few selected floral traits. For instance the low ability of 
complex models to predict plants visited (or unvisited) by 
birds is congruent with a recent study on the asymmetric 
nature of sunbird- plant interactions (Chmel et al., 2021). 
Its authors demonstrated that while few plants with bird- 
pollination syndromes were frequently visited by birds, 
they also visited a wide spectrum of plants with other 
traits.

Seasonality affected the distribution of floral traits 
and their importance for the individual primary polli-
nator groups. The prevalence of closed flowers in the wet 
season (in contrast to open flowers in the dry season, 
Figure 2a) might be explained by their role in limiting 
the dilution of nectar (Aizen, 2003; Dafni, 1996; Pacini & 
Nepi, 2007), washing and/or damaging of pollen (Huang 
et al., 2002; Pacini & Franchi, 1984) or as a shelter for vis-
itors. Rainfall increases the energy costs of flight in birds 
and bats (Aizen, 2003; Voigt et al., 2011), and especially 
for smaller insects whose activity or even abundance 
can be reduced by direct damage from rain (Kishimoto- 
Yamada & Itioka, 2015; Maicher et al., 2018; Struck, 
1994). Accordingly, the nectar production was a good 
predictor of pollinators at the highest (2200 m) and mid-
dle (1100 m) elevations and during the wet season. Nectar 
sugar production was especially important for birds, the 
most energy- demanding pollinator group (Aizen, 2003), 
during the wet season. Since birds are more capable of 
dealing with rainfall (Aizen, 2003), other floral traits 

associated with birds are expected to stand out as well. 
According to the individual RF analyses (Table 3), nec-
tar sugar production was indeed more important for bird 
pollination. It has been already suggested that mainly 
food rewards determine pollinators’ floral choice (Chmel 
et al., 2021; Janeček, Chmel, Ewome, et al., 2021; Schmid 
et al., 2016; Waser et al., 2018). Additionally, red and or-
ange flower colours, associated with the bird pollination 
syndrome (Faegri & van der Pijl, 1979) and proven by 
numerous studies (Rodríguez- Gironés & Santamaría, 
2004; Wester et al., 2020, although see Waser et al., 2018), 
were confirmed important to determine the composition 
of the pollinators (Figure 2b).

The particular floral traits’ role for pollinating flies 
has been repeatedly studied, for example floral shape 
and symmetry were revealed as important (Lázaro et al., 
2008). Comparing to bees, flies and vertebrates are more 
common pollinators at the higher elevations (Dellinger 
et al., 2021; Willmer, 2011). Fly- related traits (e.g. open 
flowers) were more common (Figure 2a) and generally 
more important for pollinator community composition 
at our highest elevation (Figure 2). This is contrary to 
a sharp decrease of floral traits associated with fly or 
hawkmoth pollination in orchid species along elevation 
in Réunion (Jacquemyn et al., 2005). In our study, the 
tube length and odour were more important traits for 
moth pollination consistent with Martins and Johnson 
(2013), Johnson et al. (2017) and Mertens et al. (2021).

We showed floral colour as the most important trait 
for bees (Table 1), although various traits were important 
in particular elevations and seasons (Table 3). This can be 
related to the high diversity in bees’ morphology and re-
ward preferences (e.g. pollen, nectar, resin) allowing the 
group to exploit a wide range of floral designs (Ollerton, 

TA B L E  2  Importance of floral traits (expressed as Mean Decrease in Accuracy) for primary pollinators in separate RF models for the four 
elevations and two seasons

Floral trait

Elevation 2200 m 1450 m 1100 m 650 m

Season Dry Wet Dry Wet Dry Wet Dry Wet

Colour — 0.0024 — 0.0082 0.0299 — 0.0315 0.0017

Sugar per flower 0.0714 0.0100 — — — 0.0168 0.0258 0.0058

Size — 0.006 0.0059 0.0587 0.0083 0.0300 0.0079

Shape 0.003 — — 0.0068 0.0068 — 0.0079 — 

Symmetry — — 0.0068 0.0003 0.0039 — — — 

Tube length — — 0.0375 0.0099 0.0030 0.0081 0.0115 — 

Odour strength 0.0045 — 0.0008 0.0095 — — — — 

Anther position 0.0736 0.0032 — 0.0033 — — 0.0001 — 

Nectar guides 0.0181 — — 0.0048 0.0086 — — — 

Flower position — — — — — — — 0.003

Model OOB error 0.2222 0.2105 0.5238 0.3200 0.4418 0.4737 0.4444 0.2105

Random OOB error 0.5556 0.2632 0.7143 0.3600 0.5882 0.4737 0.5556 0.2352

p- value 0.010 0.010 0.075 0.116 0.010 0.365 0.350 0.005

Note: In bold, the most important trait for the each elevation × season model is highlighted. ‘— ’ means no importance of the trait for a particular primary 
pollinator (i.e. Mean Decrease in Accuracy ≤ 0).
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2017; Willmer, 2011). Therefore, a single syndrome for 
such a diverse group can be problematic, and some al-
ternative views, such as the buzz- pollination syndrome, 
have been recently considered (De Luca & Vallejo- 
Marín, 2013; Dellinger, 2020). In a global analysis of 
pollination syndromes (Ollerton et al., 2009), bee and fly 
pollinated plants were predicted more accurately than 
the other syndromes, while other studies did not show 
such patterns (e.g. Johnson, 2013). This is confirmed by 
our local study where these groups were correctly asso-
ciated as primary pollinators of most plants predicted 
by their floral traits (Table 1). Besides both groups are 
key pollinators in many ecosystems, they were the most 
common floral visitors and primary pollinators in our 
study (Table S2), which should substantially increase 
the efficiency of the applied machine- learning methods. 
However, we are aware that the single most frequent visi-
tor may not accurately depict true pollination (Mayfield 
et al., 2001), especially when visitation is clouded by 
abundant generalists (Dellinger, 2020; Padyšáková et al., 
2013). Moreover, the less frequent visitors also generate 
selection (Aigner, 2001). Plants with morphologically 
generalised flowers are rather prone to this mismatch 
(Bartoš et al., 2015) and are thought to form a generalist 
syndrome (Waser et al., 1996; Willmer, 2011).

Flower size was shown as the most important trait for 
butterflies (Table 1), together with closed and tubular 
flower shape (Table 3). This partly follows the definitions 
of traditional pollination syndrome which highlighted 
their preference for large, brightly coloured flowers with 
longer floral tubes and ample amounts of nectar (Faegri 
& van der Pijl, 1979; Willmer, 2011). Nevertheless, floral 
trait importance was shown to differ among butterfly 
families (e.g. Mertens et al., 2021).

As we have shown, not all floral traits are equally 
important for individual pollinator groups (Tables 1 
and 3), as has also been confirmed by others (Dellinger, 
Chartier, et al., 2019; Johnson, 2013). However, such 
complex view has not been implemented in recent syn-
drome or classification- related studies (Dellinger, 2020). 
From a methodological standpoint, machine learning 
approaches (such as RF) offer an avenue for dealing 
with such shifts in individual trait importance, although 
strong data sets are needed (in our study, the most 
common primary pollinators showed the most robust 
results). However, the necessity of complete and non- 
collinear traits could be limiting (Dellinger, Chartier, 
et al., 2019; Pichler et al., 2020). Regardless, even with-
out a priori floral trait selection, the robustness of RF 
seems to allow for an ecologically realistic inference of 
pollinator predictability (Pichler et al., 2020).

CONCLUSION

Our results showed the importance of individual 
floral traits for plant- pollinator interactions in the T
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understudied Afrotropics, with the traits being more 
important for pollinator composition towards higher 
elevations and wet seasons. These shifts in floral trait 
dependence among elevations and seasons showed the 
importance of including spatiotemporal factors within 
pollination studies. Consequently, the pollination syn-
dromes varied in their ability to accurately predict 
primary pollinators under different conditions and for 
particular pollinators. Additionally, variation in the im-
portance of specific discriminative traits for individual 
pollinator groups, together with spatiotemporal differ-
ences within these groups, suggested that following a 
complex predetermined list of equally important traits 
can be problematic for predicting potential pollinators. 
This spatiotemporal and pollinator- specific variation 
has convinced us to step back from the rigid definition of 
pollinator syndrome and rather improve our trait- based 
understanding of plant- pollinator interactions at a com-
munity level under different environmental conditions in 
the future studies.
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F I G U R E  2  (a) CCA ordination diagram visualising the distribution of individual floral traits between seasons and along elevation (m 
a.s.l.). (b) Summarised outcomes of individual CCAs of floral trait importance per elevation and season. Visualising the five most important 
floral trait characteristics for pollinator community composition based on step- wise forward selection. The traits are sorted from left to right 
according to their decreasing importance. Percentages in the middle states the variation explained by each model. See Table S6 for detailed 
statistics on the importance of individual floral traits
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