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Abstract 
Allometry, the relationship between body size and the size of other body parts, explains a significant portion of morphological variation across 
biological levels, at the individual level, within and between species. We used external morphology measurements of 6 Triturus (sub)species, 
focussing on the T. marmoratus species group, to explore allometric parameters within and between taxa. We tested for allometry of sexual 
size dimorphism in body, head, and limb dimensions and examined whether intraspecific allometry directed evolutionary allometry, as described 
by Rensch’s rule. Our findings indicated that female-biased trunk and head dimensions exhibited positive allometry, whereas male-biased limb 
dimensions showed isometric relationships or weak correlations with body size. Morphological divergences between sexes occurred along 
common allometric slopes, most often through changes in the intercepts. Among taxon, comparisons revealed that (sub)species diverged in 
the direction of the allometric slopes. In line with Rensch’s rule, sexual size dimorphism in female-biased traits significantly decreased as overall 
body size increased. However, the observed intraspecific allometric parameters deviated from theoretical expectations because the steepest 
allometric slopes for female-biased traits were recorded in the larger species. Our results contribute to understanding the dynamics of allometric 
relationships and sexual dimorphism in amphibians and provide a robust baseline for future comparative analyses.
Keywords: sexual selection, sexual size dimorphism, standardized major axes, Triturus

Introduction
The study of size and its biological consequences, known as 
allometry, has fascinated biologists for centuries (e.g., Snell, 
1892; Thompson, 1917; Huxley, 1932; Gould, 1966; see also 
Stevens 2009). Allometry refers to the covariation between 
body size and the size of other body parts, capturing a crucial 
aspect of phenotypic variation across biological levels—from 
ontogeny and within individuals to variation among individ-
uals, populations, and species. During ontogeny, organisms 
grow and change in shape following specific phenotypic tra-
jectories, which are directed by species-specific developmen-
tal programs (Alberch, 1980). These changes are described 
by ontogenetic allometry, which captures the relationship 
between size and shape as organisms develop. Variations in 
individual phenotypic trajectories result in differences in size 
and shape among individuals within a population or spe-
cies, including size-related shape changes, a pattern known 
as static allometry. In contrast, size-related changes in shape 
among phylogenetically related species are referred to as evo-
lutionary allometry (Klingenberg, 1998).

Due to its developmental origins and hierarchical nature, 
static allometry is expected to mirror ontogenetic allometry 
and, in turn, shape evolutionary allometry (e.g., Klingenberg, 
1998, 2005; Pélabon et al., 2013). Additionally, the direc-
tions of size-related shape changes—allometric slopes—are 
often considered evolutionary stable among phylogenetically 

related species (e.g., Voje et al., 2014). This stability can be 
attributed, at least in part, to shared developmental programs 
inherited from a common ancestor. As a result, allometric 
slopes are frequently regarded as phylogenetical constraints 
(Gould, 1966, 1977; Klingenberg, 1998, 2005; Lande, 1979; 
Niklas, 1994; Pélabon et al., 2013). However, despite this 
conservatism, allometric slopes are also subject to natural and 
sexual selection and are thus evolvable (Bolstad et al., 2015; 
Bonduriansky & Day, 2003; Reyes-Puig et al., 2023).

Sexual size dimorphism (SSD) is a significant source of 
phenotypic variation in many species, driven by a combina-
tion of sexual selection, fecundity selection, and ecological 
factors, which leads to niche divergences between the sexes 
(Andersson, 1994; Arnold & Wade, 1984; Bro-Jørgensen, 
2007; Herrel et al., 2012; Shine, 1989). SSD refers to both 
the direction of intersexual differences and the magnitude of 
the divergence (Lovich & Gibbons, 1992). If females are the 
larger sex, SSD is referred to as female-biased; if males are the 
larger sex, SSD is referred to as male-biased. SSD is most often 
associated with differences in overall body size (Fairbairn 
et al., 2007; Lovich & Gibbons, 1992). However, different 
body parts may be subject to different selection pressures and 
may vary in the direction and intensity of SSD in relation 
to each other and to overall body size. For instance, trunk 
size in newts may be influenced by fecundity selection, which 
favours a larger trunk and body size in females, whereas other 
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traits, such as a dorsal crest or leg size, may be shaped by 
sexual selection, resulting in crest proliferation and larger leg 
size in males (Reinhard & Kupfer, 2015; Wiens et al., 2011). 
Therefore, SSD is not limited to body size but also manifests 
in the size of other traits and the relative proportions of dif-
ferent body parts (e.g., Machado et al., 2021; Petrović et al., 
2017). These differences may arise through changes in allo-
metric relationships between the sexes. The divergences in 
static allometry parameters therefore reflect SSD (Adams et 
al. 2020; Kalezić et al., 2000; Kaliontzopoulou et al. 2015; 
Reyes-Puig et al., 2023; Sanger et al., 2013).

At the evolutionary level, an allometric pattern of change 
in the magnitude of SSD relative to species size, known as 
Rensch’s rule (RR), has been observed in many taxa (Abouheif 
& Fairbairn, 1997; Fairbairn, 1997; Fairbairn et al., 2007). 
Specifically, RR states that as species size increases, SSD tends 
to increase for male-biased traits and decrease for female-
biased traits (Rensch, 1950, 1959). To distinguish between the 
two patterns described by RR, an increase in SSD of male-
biased traits with increasing species size is here designated as 
RR+, while a decrease in SSD for female-biased traits with 
increasing species size is designated RR−. Despite numerous 
studies, there is no generally accepted explanation for RR, with 
sexual selection, natural selection and developmental con-
straints frequently mentioned as causative factors (Colleoni 
et al., 2014; Dale et al., 2007; Fairbairn, 1997; Fairbairn et 
al., 2007; Reyes-Puig et al., 2023). The same holds for the 
proximate mechanisms leading to RR (e.g., Blanckenhorn et 
al., 2007), though it has been proposed that sexual differen-
tiation of static allometric slopes at the species level is under-
lying and directing RR (Reyes-Puig et al., 2023). According 
to this hypothesis, for male-biased sexually dimorphic traits, 
steeper allometric slopes at the static level would lead to an 
increase in SSD in larger taxa (RR+), whereas a shallower 
slope for female-biased sexually dimorphic traits would result 
in a decrease in SSD in larger taxa (RR−). Empirical data are 
crucial for assessing the evolvability of allometric slopes, par-
ticularly robust datasets that allow comparisons of allome-
tric slopes at different biological levels (e.g., Klingenberg & 
Zimmermann, 1992; Voje & Hansen, 2013; Voje et al., 2022).

One animal group with great research potential in the 
study of allometry is the genus Triturus, also known as “large-
bodied newts.” These newts display an eco-morphological 
gradient, from the less aquatic, stout and short-bodied mar-
bled newts to the more aquatic and elongated and slender 
crested newts. Allometric changes in limb size (Ivanović et 
al., 2008) and skull shape (Ivanović & Arntzen, 2014) have 
been shown to drive morphological differences across species. 
Also, the phylogenetic relationships of Triturus species are 
well-documented, with two main clades, the T. marmoratus 
and T. cristatus species groups, which separated from one 
another approximately between 24 and 16 million years ago 
(Marjanović & Laurin, 2014; Steinfartz et al., 2007; Wielstra 
et al., 2014). Our study focuses on the T. marmoratus species 
group, which includes marbled and pygmy newts. Their diver-
sification occurred approximately five to two million years 
ago (Arntzen, 2024b; Kazilas et al., 2024), with distributions 
limited to the Iberian Peninsula and France (Arntzen, 2024c, 
2024d).

Triturus newts have a basic tetrapod body plan, biphasic 
life cycle, and fascinating courtship rituals, which take place 
underwater. Males often exhibit specific postures or swim 
in distinct patterns to catch the female’s attention (Green, 

1989; Hidalgo-Vila et al, 2002; Sparreboom & Teunis, 
1990; Zuiderwijk & Sparreboom, 1986). The male deposits 
a packet of sperm (spermatophore) on the substrate at the 
bottom of the water body. The female is then guided over the 
spermatophore by the male, and she picks it up with her clo-
aca. Fertilization is internal, and the female newt lays about 
400 fertilized eggs (Arntzen & Hedlund, 1990) one by one, 
attaching them to aquatic plants and folding leaves around 
the embryo (Díaz-Paniagua, 1989; Miaud, 1995).

Females are the larger sex, whereas males have longer 
limbs (Colleoni et al., 2014; Malmgren & Thollesson, 1999; 
Reinhard & Kupfer, 2015). To date, two studies on European 
newts, which included Triturus species, have not found clear 
support for RR (Colleoni et al., 2014; Ivanović et al., 2008). 
While most attention has so far been given to members of the 
T. cristatus species group (Ivanović & Kalezić, 2012; Ivanović 
et al., 2008; Malmgren & Thollesson, 1999), the counterpart 
T. marmoratus species group may be more promising because 
size variation between taxa is more pronounced, with a ca. 
20% (females) to 30% (males) difference in body size among 
the smallest and largest species. It must be noted that pygmy 
newts (as the name implies) are of relatively small size and 
that they show substantial size variation as affected by envi-
ronmental conditions (Díaz-Paniagua et al., 1996) and pos-
sibly representing a latitudinal geographical cline (Arntzen, 
2018).

The aims of the study are to quantify sexual dimorphism 
using standard SSD indices and allometry and to explore and 
compare allometric relationships between the sexes and taxa. 
We analyze data on seven measurements of the body, head, 
and limbs of five taxa in the T. marmoratus species group as 
obtained earlier (Arntzen, 2018, 2024b) to which we include 
the northern crested newt, T. cristatus, for comparison. We 
selected snout-vent length as a measure of overall body size, 
along with one trunk dimension and two measurements each 
for the head, forelimbs, and hind limbs. Using these mea-
surements, we aimed to examine sex-based divergences and 
to infer potential ultimate and proximate mechanisms driv-
ing SSD, focussing on the allometric relationships between 
trait sizes and body size and on shifts in these relationships 
between sexes and across species. Based on RR and a hypoth-
esis suggesting that differences in allometric slopes at the spe-
cies level underlie and direct RR (Reyes-Puig et al., 2023), we 
expect the following: for female-biased traits, we anticipate 
a decrease in the magnitude of sexual dimorphism in larger 
taxa (denoted as RR-), with these traits exhibiting shallower 
allometric slopes, whereas for male-biased traits, we expect 
the opposite trend, where the magnitude of sexual dimor-
phism increases in larger taxa (denoted as RR+), with these 
traits showing steeper allometric slopes.

Materials and methods
Samples and measurements
Five (sub)species of T. marmoratus species group were ana-
lyzed: two subspecies of the marbled newts—T. marmoratus 
harmannis (338 females and 247 males from 46 populations) 
and T. m. marmoratus (80 females and 70 males from five 
populations), and three taxa of pygmy newts namely T. p. 
pygmaeus (26 males and 24 females from five populations), 
T. pygmaeus lusitanicus (317 females and 254 males from 
38 populations) and T. rudolfi (126 females and 125 males 
from six populations). Hybrid populations were excluded 
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from suppressing the admixture of morphological trait 
data (Arntzen, 2018, 2024a, 2024b). In the further text, 
the (sub)species are arranged by size, from the smallest, T. 
p. pygmaeus, to the largest, T. m. marmoratus, along with a 
sample of T. cristatus (15 males, 30 females from one popu-
lation). All measured individuals were adults. The following 
eight morphometric traits were analyzed: snout-vent length 
(SVl), as representative of overall body size, was measured 
from the tip of the snout up to and including the insertion 
of hind limbs, interlimb distance (ILd), head width (Hw), 
head length (Hl), forelimb length (FLl), third finger length 
(TFl), hindlimb length (HLl) and fourth toe length (FTl). SVl 
as here measured purposely excludes the cloaca, the size of 
which is season-dependent. That measure largely corresponds 
to the more commonly used measure up to the cloacal slit 
(e.g., Reinhard & Kupfer, 2015). The analyzed dataset is 
compilation of published (Arntzen, 2018, 2024b, 2024c) and 
newly collected data and covers the entire distribution range 
(Arntzen, 2024c, 2024d). All animals were measured on the 
field by the senior author under relevant licenses (France—
Prefecture de la Mayenne, by permit number 2003-A-2007; 
Spain—various provinces by permits numbers CN0010/12/
ACA, CN03/0085, CN04/0269, CN10/0030, DGMEN/SEN/
avp_12_015_aut, DNP 27/2008, E.P-107/04 (MG), IS/pa/
EPCYL/129/2012 and SGYB/FOA/AFR/CFS, Consejerías 
de Medio Ambiente de Castilla la Mancha, Castilla y León, 
Comunidad de Madrid (Grant PID2020-116289GB-I00, 
FEDER/Ministerio de Ciencia, Innovación y Universidades-
Agencia Estatal de Investigación, Spain), and Portugal—
Instituto da Conservação da Natureza, by letters dated 
26/10/1998, 19/4/2000 and 19/3/2002 and by permit num-
bers 397/2007/CAPT, 102/2010/CAPT, 103/2010/CAPT and 
107/2012/CAPT; sampling in the Doñana National Park was 
carried out under permit number 27/2008).

SSD index and allometric parameters
SSD was extensively studied across animal taxa, and the 
most frequently used estimates of intersexual differentiation 
are indices of SSD that relate to size in females and males 
(Lovich & Gibbons, 1992). To quantify SSD for each trait 
separately we used the standard index [(trait size of the larger 
sex/trait size of the smaller sex) − 1] (Lovich & Gibbons, 

1992), arbitrarily defined as positive when the trait is larger 
in females and vice versa.

The allometric relationship is described by the power law 
y = a xb (Huxley, 1932). On a log–log scale, the relationship 
between traits is linear, with x representing body size, y rep-
resenting trait size, a as the intercept of the allometric line on 
the y-axis, and b as the slope exponent that describes how 
trait size (y) changes relative to body size (x). If the allometric 
slope does not significantly depart from unity (b ≈ 1), trait 
size increases proportionally with an increase in body size 
(isometry), whereas b ≠ 1 indicates positive or negative allom-
etry (Figure 1). Differentiation in body proportions between 
groups, such as females and males, can be achieved through 
a change in the direction of the allometric slope (Figure 1, 
pattern A), a lateral shift (elevation), where sexes share the 
same allometric slope but differ in the intercept (pattern B), 
or a shift in position along a shared allometric slope (pattern 
C), also the combination of the latter two is possible, with 
changes in elevation as well as shift along a common slope 
(pattern D).

To estimate trait-specific allometry for each sex and sub-
(species) separately and to estimate patterns of change 
in allometric parameters between sexes and (sub)species  
(Figure 1), we used standardized major axis (SMA) analysis. 
This procedure estimates the allometric slope between log 
values of body size and trait size, accounting for measurement 
error in both variables and without assuming a distinction 
between independent and dependent variables and has been 
proposed as an appropriate approach for the study of allome-
try (Warton et al., 2006; but see Meiri & Liang, 2021, for an 
opposing view). Rensch’s Rule (RR) was also tested by esti-
mating the allometric slope. Unlike static allometry, where the 
slope describes the relationship between body size and trait 
size, the RR allometric slopes were fitted between the mean 
trait values of males and females, calculated separately for 
each (sub)species. A slope value of b > 1 indicates that SSD 
increases with an increase in male size, whereas b < 1 suggests 
that SSD decreases as the size of females increases.

Statistical analyses
All statistical analyses were conducted using R (R Core 
Team, 2022). The significance of differences in mean trait size 

Figure 1. Schematic representation of patterns of change in allometric parameters after Warton et al. (2006), with log body size on the horizontal axis 
and log trait size on the vertical axis. Left panel—lines showing isometry (b ≈ 1) versus positive (b > 1) and negative (b < 1) allometry. Right panel—
changes in allometric relationships between groups, such as here females and males. Ellipses represent the bivariate cloud of data points for both 
sexes in morphological space defined by body size and the size of the morphometric trait of interest. (Un)interrupted lines are the allometric slopes for 
one sex or the other. The direction of change in allometric parameters is assigned randomly.
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Table 1. Allometric relationships and changes in allometric parameters between females and males in five (sub)species in the Triturus marmoratus 
species group and T. cristatus.

Females Males Slope (b) Elevation Shift Pattern

(Sub)species

r2 b CI 2.5% CI 97.5% r2 b CI 2.5% CI 97.5%

T. p. pygmaeus

ILd 0.025 0.688 −0.884 0.910 0.333 0.883 0.621 1.563 NA None

Hl 0.623 1.093 0.866 1.358 0.705 0.958 0.818 1.299 NS NS * C

Hw 0.596 0.788 0.628 0.949 0.752 0.808 0.697 1.027 NS NS * C

FLl 0.561 0.991 0.707 1.282 0.491 1.234 0.899 2.033 NS * * D

TFl 0.459 1.287 0.928 1.655 0.242 1.364 0.932 2.564 NS * * D

HLl 0.698 1.012 0.806 1.229 0.651 1.285 1.024 1.933 NS * * D

FTl 0.583 1.719 1.271 2.178 0.556 1.807 1.405 3.000 NS * * D

T. p. lusitanicus

ILd 0.615 1.361 1.267 1.446 0.494 1.432 1.306 1.566 NS * * D

Hl 0.451 0.973 0.888 1.068 0.333 1.123 0.998 1.270 NS * * D

Hw 0.549 0.974 0.900 1.051 0.470 0.938 0.851 1.030 NS * * D

FLl 0.408 0.939 0.859 1.022 0.332 1.026 0.911 1.160 NS * * D

TFl 0.119 1.805 1.638 1.976 0.005 2.086 −2.210 2.358 NS * * D

HLl 0.389 1.020 0.936 1.106 0.275 1.101 0.983 1.247 NS * * D

FTl 0.088 1.828 1.638 2.056 0.001 1.869 −2.013 2.053 NS * NS B

T. rudolfi

ILd 0.757 1.316 1.203 1.431 0.714 1.313 1.194 1.440 NS NS * C

Hl 0.340 1.055 0.927 1.191 0.319 1.026 0.871 1.200 NS * * D

Hw 0.645 1.082 0.987 1.183 0.518 1.011 0.888 1.144 NS * * D
FLl 0.661 1.037 0.918 1.154 0.550 1.110 0.986 1.230 NS * * D
TFl 0.147 1.446 1.173 1.751 0.151 1.687 1.320 2.075 NS * * D
HLl 0.618 1.106 0.984 1.24 0.471 1.157 1.007 1.317 NS * * D
FTl 0.044 1.601 1.239 1.936 0.131 1.708 1.479 1.994 NS * NS B
T. m. harmannis
ILd 0.517 1.337 1.250 1.436 0.471 1.203 1.087 1.341 NS NS * C
Hl 0.435 1.304 1.209 1.413 0.391 1.243 1.117 1.396 NS * * D
Hw 0.589 1.086 1.007 1.166 0.588 0.985 0.908 1.071 NS * * D
FLl 0.503 0.994 0.904 1.083 0.505 1.156 1.058 1.276 NS * NS B
TFl 0.121 1.859 1.685 2.049 0.228 1.678 1.459 1.932 NS * NS B
HLl 0.450 1.057 0.967 1.147 0.484 1.081 0.978 1.195 NS * NS B
FTl 0.026 2.128 1.912 2.380 0.165 1.704 1.485 1.957 * NA NA A
T. m. marmoratus
ILd 0.556 1.719 1.493 1.971 0.423 1.325 1.085 1.629 NS NS NS None
Hl 0.665 1.304 1.152 1.494 0.024 1.144 NA NA NS NS NS None
Hw 0.705 1.218 1.077 1.406 0.196 0.939 0.781 1.153 NS NS NS None
FLl 0.524 1.087 0.193 1.281 0.108 1.192 0.942 1.496 NS * NS B
TFl 0.268 2.286 1.913 2.779 0.136 −2.811 −3.611 −2.264 NS * NS B
HLl 0.270 0.944 0.794 1.114 0.125 1.156 0.918 1.498 NS * NS B
FTl 0.136 2.553 2.090 3.114 0.157 −3.485 −4.556 −2.781 NA None
T. cristatus
ILd 0.593 1.507 1.159 1.621 0.783 1.742 1.263 2.456 NS NS NS None
Hl 0.054 1.377 −1.356 1.711 0.266 1.223 0.634 2.290 NA None
Hw 0.299 1.483 1.081 1.716 0.124 1.301 0.446 2.532 NA None
FLl 0.263 1.081 0.769 1.211 0.301 1.139 0.654 1.824 NA None
TFl 0.179 2.913 1.816 3.769 0.007 −1.360 −2.284 2.454 NA None

HLl 0.065 1.234 0.657 1.695 0.462 0.984 0.648 1.640 NA None

FTl 0.029 −2.376 −3.103 2.181 0.434 2.401 −1.939 4.204 NA None

Note. The strength of the association between snout-vent length and the specified trait is expressed by the square of Pearson’s correlation coefficient (r2). 
The value of the allometric slope (b) was given along with the CI with a 95% confidence level. Statistically significant results are shown in boldface type. 
Values not relevant because of the lack of significant support for the presence of an axis (i.e., r2 is not significant) are shown in italics. Significances of values 
for the intercept (elevation) and shift along a common slope are shown at the right, along with the inferred pattern of allometric change (A, B, C, D or 
none, see Figure 1).
Bonferroni’s corrected significances are: *p < 0.05; NS = not significant; NA = not applicable.
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between the sexes was tested by t-tests using the t.test func-
tion. The allometric relationships between females and males 
within (sub)species and among (sub)species, as well as RR 
was explored using SMA with the smatr package (Warton 
et al., 2012, 2018). First, we plotted trait measures versus 
SVl (all log-transformed) for each (sub)species and sex sep-
arately using sma function. The strength of the association 
between SVl and the specified trait was estimated by the 
square of Pearson’s correlation coefficient (r2). The statisti-
cal significance of the fitted allometric slope for each sex and 
(sub)species was estimated by the sample correlation between 
residuals and fitted values. We subsequently tested whether 
the allometric slope is nonisometric (b ≠ 1). Differentiation 
of the sexes was explored by testing for differences in the 
direction of allometric slopes (Figure 1, pattern A). When no 
differences were found, we tested for lateral shifts that led to 
a change in elevation (pattern B), shifts along the common 
allometric slope (pattern C), or both (pattern D).

We tested for RR using again the sma function. The 
log-transformed mean values for specific traits in females ver-
sus males for each (sub)species were plotted and tested for 
isometry (b = 1). To test for common slopes across taxa and 
between pairs of taxa, we used the slope.com function. First, 
we calculated the common slope for each of the traits for all 
six taxa with pooled males and females as these have com-
mon slopes (Table 1) and estimated its statistical significance 
based on the (Bartlett-corrected) likelihood ratio statistic test-
ing for common slope (Taskinen & Warton, 2013; Warton & 
Weber, 2002; Warton et al., 2006). We did post hoc multiple 
comparisons of slopes by calculating the common slope for 
pairs of taxa for each trait. Interpretation of all statistical tests 
was done using the standard Bonferroni correction for multi-
ple comparisons.

To calculate 95% CIs for the values of allometric slopes 
in all aforementioned tests, we used boot package (Canty & 
Ripley, 2024; Davidson & Hinkley, 1997). We defined boot-
strap function and then used replicate function to create 
bootstrap samples. CIs were calculated by using the quan-
tile function. All R scripts and data used are available as 
Supplementary Material on the Dryad database: https://doi.
org/10.5061/dryad.w6m905qzm.

Results
Females were, on average, larger than males, with the dif-
ferences between sexes decreasing as overall size increased 
(Figure 2). Females had longer bodies (SVl, ILd) and wider 
heads (Hw) than males, as indicated by significantly positive 
SSD values, across all taxa except T. m. marmoratus and T. 
cristatus (Figure 2; see Supplementary Table 1 for details), 
Positive SSD was observed for head length (Hl) in pygmy 
newts but not in marbled and crested newts. In contrast, 
male-biased SSD was more pronounced in digit lengths (TFl, 
FTl) compared to limb lengths (FLl, HLl).

The amount of variation explained by body size varied 
across traits. Interlimb distance (ILd) and head width (Hw) 
showed the strongest covariation with SVl, while limb mea-
surements, particularly digit lengths (TFl, FTl), showed weak 
covariation with SVl (Table 1). In all taxa except T. p. pyg-
maeus, ILd showed positive allometry (b > 1), whereas head 
width (Hw) and limb lengths (FLl and HLl) were largely iso-
metric (b ≈ 1) or uncorrelated with SVl (T. m. marmoratus, T. 
cristatus). The 95% CIs for allometric slopes (CI) reflected 

the strength of association between traits and SVl (r2). The 
CI ranges were broader for traits with weak covariation with 
SVl (Table 1), especially digits (TFl, FTl). However, CI also 
increased in larger species represented by smaller sample sizes 
(T. m. marmoratus and T. cristatus).

Changes in elevation (pattern B) and shifts along a com-
mon allometric slope (pattern C) were frequently observed, 
either independently (pattern B eight times, pattern C four 
times) or in combination (pattern D seventeen times). A sig-
nificant difference aligning with the allometric slope (pattern 
A) was observed only once for toe length, which showed weak 
or no correlation with SVl. Support for RR− was found in 
female-biased traits (SVl, ILd, and Hw; Table 2). Male-biased 
traits were either isometric (b ≈ 1) or could not be estimated, 
providing no support for RR.

Comparisons among taxa revealed divergences in allome-
tric slopes, represented by pattern A (Table 3). Post hoc com-
parisons of slopes showed that pygmy newts (T. p. pygmaeus, 
T. p. lusitanicus, and T. rudolfi) had significantly shallower 
allometric slopes for female-biased traits (ILd, Hl, and Hw) 
than marbled and crested newts, especially T. marmoratus. 
The highest number of significant directional differences in 
allometric slopes was observed for finger and toe lengths. 
However, the model explained only a small amount of varia-
tion (Table 1), and the data supported neither RR+ nor RR−.

Discussion
By analyzing a large dataset that covers morphological vari-
ation in five (sub)species, we provided evidence for patterns 
of sexual dimorphism and the underlying allometry of sex-
ual differences in marbled newts. Their close phylogenetic 
relatedness (Kazilas et al., 2024; Pincheira-Donoso et al., 
2021), overall similar ecological preferences when compared 
to crested newts (Arntzen & Espregueira Themudo, 2008; 
Wielstra et al., 2019), and the robustness of the dataset 
allowed us to obtain reliable estimates of allometric diver-
gences between the sexes and changes in SSD. In all taxa, the 
direction and pattern of SSD largely corresponded to those 
observed in a population of T. marmoratus (Reinhard & 
Kupfer, 2015) we . We found that trunk and head dimensions 
(ILd, Hl, Hw) were female-biased and that the larger dimen-
sions in females were achieved through positive allometric 
growth without changes in the direction of sex-specific allo-
metric slopes. A female-biased sexual dimorphism in newts 
is often explained by fecundity selection toward longer body 
and trunk sizes, which are directly related to reproductive 
output (Malmgren & Thollesson, 1999; Kupfer, 2007; but see 
Monroe et al., 2015). Egg size in Triturus newts is species-
specific, with larger species producing larger eggs (Furtula et 
al. 2008). Additionally, there is variation in the number of 
eggs between females both within and between species (Vučić 
et al., 2020). However, to our knowledge, no empirical data 
currently support the relationship between female fecundity 
and trunk size in newts.

Another possible explanation for SSD is the “niche diver-
gence hypothesis” (Van Valen, 1965) stating that intersexual 
competition drives divergence between males and females 
(Bolnick & Doebeli, 2003; Ivanović & Kalezić, 2012; 
Peñalver‐Alcázar et al., 2019), which also remains to be 
empirically tested. Sex-specific mortality was invoked as a 
possible proximate source of sexual dimorphism in amphibi-
ans (Kupfer, 2007; Shine, 1989), but it has been documented 
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that in large-bodied newts sexual dimorphism in body size 
arises through divergences in the growth rate of females and 
males after reaching sexual maturity, generally with unity sex 
ratio (Arntzen, 2000; Bugarčić et al., 2022; Cogălniceanu et 
al., 2020; Francillon-Viellot et al., 1990).

Limb sizes (FLl and HLl) and digit sizes (TFl and FTl) were 
male-biased. The change in limb size was proportional to the 
change in body size. The observed isometry of the fore- and 
hind limbs may result from stabilizing selection that main-
tains the body and limb proportions, not just for movement 
and body support but also for reproductive output, as females 
use their hind limbs and toes to handle eggs and wrap them in 
submerged vegetation (Miaud, 1995). These highly adaptive 
functional requirements, along with the integration between 
the limbs, support isometry (Tomašević Kolarov et al., 2011). 
However, digit lengths were at best weakly correlated with 
body size. Larger legs and digits (and smaller body size) in 
males may be attributed to sexual selection and related to 
males’ acrobatic mating performances, as observed in birds 
(Székely et al., 2004). In Triturus newts, males use their 
long legs and toes to enhance their posture (Zuiderwijk & 

Figure 2. Sexual size dimorphism (SSD) in eight morphometric traits across five taxa within the Triturus marmoratus species group, including T. 
cristatus. For details on the SSD index and character abbreviations, refer to the text. Solid round symbols represent statistically significant results, 
while open round symbols indicate insignificant results. The middle panel displays the average snout-vent length for females (F) and males (M). The 
background shading corresponds to species in the following order from left to right: T. pygmaeus (brown), T. rudolfi (yellow), T. marmoratus (green) and 
T. cristatus (red). The animal illustrations in the bottom panel depict T. marmoratus (left) and T. cristatus (right), courtesy of Bas Blankevoort, Naturalis 
Biodiversity Center.

Table 2. Test for differentiation of allometric slopes in the Triturus 
marmoratus species group and T. cristatus.

r2 b CI 2.5% CI 97.5%

SVl 0.934 0.666 0.476 0.831

Ild 0.935 0.584 0.448 0.768

Hl 0.891 1.271 0.459 1.560

Hw 0.984 0.781 0.539 0.850

FLl 0.927 0.804 0.569 0.951

TFl 0.899 1.047 0.429 1.277

HLl 0.920 0.756 0.564 1.026

FTl 0.595 0.891 0.350 1.580

Note. Squared correlation coefficients (r2) and common slopes (b) were 
obtained by fitting mean log female and mean log male trait sizes for six 
taxa by standardized major axis analysis. The value of the common slope 
(b) was given along with the CI with a 95% confidence level. Statistically 
significant results are shown in boldface type. Note that Rensch’s rule 
(RR−) is supported for three traits with b < 1. One value not relevant 
because of the lack of significant support for the presence of an axis (i.e., r2 
not significant) is shown in italics.
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Sparreboom, 1986), perhaps even more so in the T. marmor-
atus species group than in T. cristatus, which has a higher 
crest (Wiens et al., 2011). For example, the acrobatic “cat-
buckle” display, where the male’s body is kinked and often 
rests only on the forelegs, may be more difficult or impossible 
to perform for the sturdy T. marmoratus than for the slen-
der T. cristatus (cf. Figure 3). The weak correlation between 
digit size and SVl indicates that strong selection pressure 
breaks developmental constraints on these traits, allowing 
them to change independently (Andersson, 1994; Young & 
Hallgrímsson, 2005). Accordingly, the observed pattern of 
SSD in newts results from both natural and sexual selection, 
which jointly operate on complex phenotypes (Lande, 1979; 
Lande & Arnold, 1983).

Most of the observed differences in body measurements 
between the sexes resulted from changes in allometric 

parameters, regardless of whether SSD was female- or male-
biased. These changes were primarily due to shifts in the 
intercept (pattern B, Figure 1; Table 1), increases in size along 
a shared allometric slope (pattern C), or a combination of 
both (pattern D). These findings align with empirical esti-
mates suggesting low evolvability of allometric slopes within 
taxa (Voje et al., 2014), while the allometric intercept (ele-
vation) is more evolvable. Similar results were reported for 
lizard species with more pronounced male-biased SSD, where 
the majority of interspecific changes were related to a change 
in intercept (Reyes-Puig et al., 2023).

On the other hand, the divergence in allometric slopes 
among taxa indicates that, in marbled newts, allometric 
slopes may be considered highly evolvable. According to 
theoretical expectations, the allometric slope among closely 
related taxa should be conserved (Gould, 1966, 1977; Huxley, 

Table 3. Comparisons among taxon-specific allometric slopes with statistically significant results in boldface type (p < 0.05).

Trait Common slope (b) CI 2.5% CI 97.5% Pairwise comparisons with taxon

pygmaeus lusitanicus rudolfi harmannis

Ild 1.311 1.271 1.352 <l,r,m,c <m

Hl 1.023 0.978 1.065 <h,m <h,m <h,m

Hw 0.945 0.914 0.974 <m <h,m

FLl 0.937 0.895 0.978 <m <h,m

TFl 1.702 1.616 1.788 <l,r,h,m,c <m <l,h,m <m

HLl 0.995 0.952 1.043 <h,m

FTl −1.978 −2.072 −1.866 >l,h,m,c >m >h,m >m

Note. Because no differences in the direction of allometric slopes were found between sexes (Table 1), slopes were calculated from pooled data. The value of 
the common slope (b) was given along with the CI with a 95% CI. Taxa diverge in the direction of the slopes (pattern A, Figure 1). Taxon abbreviations are 
p—Triturus p. pygmaeus, l—T. p. lusitanicus, r—T. rudolfi, h—T. m. harmannis, m—T. m. marmoratus and c—T. cristatus. The symbols < and > stand for 
significantly shallower or steeper allometric slopes, respectively.

Figure 3. “Handstand” breeding postures in Triturus marmoratus (top). For comparison, the “handstand” and “cat-buckle” displays are shown in the 
sturdy T. karelinii (bottom left) and the slender T. dobrogicus (bottom right), both members of the T. cristatus species group. Note that body flexing as in 
T. dobrogicus is not an option in species of stocky built such as T. marmoratus. For courtship displays in T. cristatus and T. pygmaeus see Green (1989) 
and Hidalgo et al. (2002). Photography by Max Sparreboom.
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1932; Klingenberg, 2005; Pélabon et al., 2013; Voje et al., 
2022). Studies estimate that substantial changes in allometric 
slopes and evolutionary divergence generally require millions 
of years (Bolstad et al., 2015; Voje & Hansen, 2013; Voje 
et al., 2022). Our study system allows for such a temporal 
window because the most recent common ancestor of pygmy 
and marbled newts is estimated to have lived approximately 
five million years ago, while basal splits within T. marmoratus 
(leading to T. m. marmoratus and T. m. harmanni) and pygmy 
newts (yielding T. pygmaeus and T. rudolfi) are estimated to 
have occurred in the early Pleistocene, around two million 
years ago (Kazilas et al., 2024).

Although the number of taxa was at the lower limit for 
statistical testing, the substantial divergence in size among 
taxa—ranging from 45 to 68 mm in SVl for males and 65 to 
72 mm for females (Figure 2)—along with a significant trend 
of decreasing SSD along this axis (e.g., for SVl from 0.30 to 
0.05), provided evidence that SSD for female-biased traits 
decreases with increasing species size (RR−). Conversely, for 
male-biased limb traits, no statistical support was found for an 
increase in SSD with increasing species size (RR+). According 
to theoretical expectations, there is a link between variation 
in intraspecific allometric slopes and RR (Reyes-Puig et al., 
2023). In the case of RR− female-biased traits should exhibit 
a shallower slope. However, we did not detect such a pattern 
of divergences in allometric slopes between sexes or species. 
Contrary to expectations, the steepest allometric slopes for 
female-biased traits were recorded in the larger species, par-
ticularly in T. marmoratus. The observed isometry in limb size 
and the low correlation between digit size and body size may 
explain why RR does not apply to these traits.

In ectothermic vertebrates with indeterminate growth, such 
as Triturus newts, various factors—such as resource-mediated 
growth and population age structure—can affect variation 
in body size and the magnitude of SSD among populations 
(Cvetković et al., 2009; Liao et al., 2015; Peñalver‐Alcázar 
et al., 2019; Vale et al., 2024). The dwarf pygmy newts 
from Doñana National Park in southern Spain serve as an 
extraordinary example of this variation (Díaz-Paniagua et 
al., 1996). Our results contribute to the understanding of 
allometric relationships and sexual dimorphism in a group 
of amphibians where sexual dimorphism is present but not 
strongly pronounced. This study highlights the importance of 
static, sex- and species-specific allometric patterns, providing 
a robust baseline for future comparative analyses.
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