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Abstract

More than 95% of phytophagous true bug (Hemiptera: Heteroptera) species belong to four superfamilies: Miroidea (Cimico-
morpha), Pentatomoidea, Coreoidea, and Lygaeoidea (all Pentatomomorpha). These iconic groups of highly diverse, overwhelm-
ingly phytophagous insects include several economically prominent agricultural and silvicultural pest species, though their
evolutionary history has not yet been well resolved. In particular, superfamily- and family-level phylogenetic relationships of
these four lineages have remained controversial, and the divergence times of some crucial nodes for phytophagous true bugs
have hitherto been little known, which hampers a better understanding of the evolutionary processes and patterns of phy-
tophagous insects. In the present study, we used 150 species and concatenated nuclear and mitochondrial protein-coding genes
and rRNA genes to infer the phylogenetic relationships within the Terheteroptera (Cimicomorpha + Pentatomomorpha) and
estimated their divergence times. Our results support the monophyly of Cimicomorpha, Pentatomomorpha, Miroidea, Pentato-
moidea, Pyrrhocoroidea, Coreoidea, and Lygaeoidea. The phylogenetic relationships across phytophagous lineages are largely
congruent at deep nodes across the analyses based on different datasets and tree-reconstructing methods with just a few excep-
tions. Estimated divergence times and ancestral state reconstructions for feeding habit indicate that phytophagous true bugs
explosively radiated in the Early Cretaceous—shortly after the angiosperm radiation—with the subsequent diversification of the
most speciose clades (Mirinae, Pentatomidae, Coreinae, and Rhyparochromidae) in the Late Cretaceous.
© 2022 Willi Hennig Society.

Introduction

True bugs (Hemiptera: Heteroptera), comprising
more than 45 000 described extant species (Henry,
2017; Schuh & Weirauch, 2020), contain seven infraor-
ders: Enicocephalomorpha, Dipsocoromorpha, Gerro-
morpha, Nepomorpha, Leptopodomorpha,
Cimicomorpha, and Pentatomomorpha. Highly
diverse, exclusively or predominantly phytophagous

clades belong to the latter two infraorders (Cimico-
morpha and Pentatomomorpha, together comprising
the Terheteroptera). Almost all phytophagous cimico-
morphans belong to the Miroidea, of which the Thau-
mastocoridae and Tingidae feed exclusively on plants
(Schaefer & Panizzi, 2000; Slater, 1973), while the
Miridae are mostly phytophagous, with a minority
being predatory or zoophytophagous (Wheeler, 2001).
Apart from fungivorous Aradoidea, the other five pen-
tatomomorphan superfamilies (Pentatomoidea, Idios-
toloidea, Pyrrhocoroidea, Coreoidea, and Lygaeoidea,
together comprising the Trichophora) are mainly
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phytophagous, with the exception of only a few lin-
eages such as Asopinae (Pentatomoidea) and Geocori-
nae (Lygaeoidea; Schuh & Weirauch, 2020).
The vast majority of phytophagous true bugs belong

to five superfamilies, Miroidea, Pentatomoidea,
Lygaeoidea, Coreoidea, and Pyrrhocoroidea, the first
four covering more than 95% of the species level
diversity of this assemblage. Many species have consid-
erable ecological and economic impact in natural envi-
ronments and agricultural systems. Species of immense
economic importance in their native distribution areas
include Lygus and Adelphocoris spp. (Miridae), the pri-
mary pests of transgenic Bacillus thuringiensis cotton,
causing serious quality and yield losses in Asia and
North America (Layton, 2000; Lu et al., 2010; Wu
et al., 2002), and the bean bug, Riptortus pedestris
(Alydidae), one of the most destructive pests of soy-
bean in Asia, significantly reducing yield by feeding on
pods and seeds (Bae et al., 2014; Li et al., 2019b). Sev-
eral phytophagous true bug species are invasive, the
most well-known being the brown marmorated stink
bug, Halyomorpha halys (Pentatomidae), a species
native to Eastern Asia but introduced to North Amer-
ica and Europe where it inflicts severe damage upon
many crops and horticultural plants (Hamilton et al.,
2018; Leskey et al., 2012; Wermelinger et al., 2008).
Over the past several decades considerable effort has

gone into clarifying terheteropteran phylogenetic rela-
tionships. The monophyly of both the infraorders Cimi-
comorpha and Pentatomomorpha as well as their sister
relationship was supported by several studies (Cassis &
Schuh, 2012; Johnson et al., 2018; de Moya et al., 2019;
Schuh & �Stys, 1991; Weirauch et al., 2019; Wheeler
et al., 1993). Although the monophyly of most super-
families and families included in these major clades is
clear, there remain controversies on the relationships of
specific higher taxa, such as superfamilial relationships
within the Eutrichophora, i.e., alternative hypotheses:
(i) Coreoidea + (Lygaeoidea + Pyrrhocoroidea), (ii)
Lygaeoidea + (Coreoidea + Pyrrhocoroidea), and (iii)
Pyrrhocoroidea + (Coreoidea + Lygaeoidea)) (Henry,
1997; Hua et al., 2008; Li et al., 2016; Liu et al., 2019;
Tian et al., 2011; Weirauch et al., 2019; Xie et al., 2005;
Yuan et al., 2015).
Total-evidence phylogenetic analyses of Heteroptera

based on a comprehensive sampling (Weirauch et al.,
2019) provided to date the most robust phylogenetic
framework for Cimicomorpha and Pentatomomorpha
at superfamily level. Various detailed parts in the
family- and subfamily-level phylogenetic relationships
within the four major phytophagous superfamilies,
however, still need to be further solved, especially for
the early divergent groups of extant taxa for each
superfamily, such as the position of Thaumastellidae
within Pentatomoidea (Grazia et al., 2008; Lis et al.,
2017; Weirauch et al., 2019; Wu et al., 2018), and

Isometopinae, Psallopinae and Cylapinae within Miri-
dae (Jung & Lee, 2012; Namyatova & Cassis, 2019;
Schuh et al., 2009; Schuh, 1974, 1976).
The evolution of feeding habits for true bugs has been

studied recently, providing different evolutionary scenar-
ios for the evolution of phytophagy within the group. Li
et al. (2017) proposed that the phytophagy originated
from the most recent common ancestor (MRCA) of Mir-
oidea and Pentatomomorpha based on the topology of
non-monophyletic Cimicomorpha, while Weirauch et al.
(2019) demonstrated a more reasonable evolutionary
scenario that phytophagous Miroidea and Trichophora
derived independently from predatory ancestors based
on a widely supported monophyletic Cimicomorpha
mentioned above. Such different evolutionary scenarios
of phytophagy imply that a robust and correct phyloge-
netic relationship is the basis to evaluating the evolution-
ary patterns of feeding habits.
Divergence time estimations of Cimicomorpha and

Pentatomomorpha have been reported, though most
of them focused on deep nodes of Heteroptera and
have poor samplings of phytophagous lineages. Diver-
gence times inferred for various nodes within Cimico-
morpha and Pentatomomorpha by previous studies
appear to be imprecise. Notably, Miridae was inferred
to diverge in the Permian or in the Cretaceous, with a
huge variance of 184 Ma between the median esti-
mated times (Johnson et al., 2018; Jung & Lee, 2012;
Table 1). Meanwhile, little chronological discussion
has been made focusing on the origin and diversifica-
tion of phytophagous cimicomorphans and pentato-
momorphans as a whole with comprehensive sampling
of its diversity. Moreover, the potential driving forces
including biotic and abiotic ecological factors for the
diversification of phytophagous true bugs have not
been comprehensively investigated, although the
coevolution between plants and other phytophagous
insects has been considered as an important factor for
the diversification of phytophagous insects (Cruaud
et al., 2012; Janz & Nylin, 1998; Janz et al., 2006;
Percy et al., 2004).
In the present study we reconstruct the phylogeny of

Terheteroptera (Cimicomorpha + Pentatomomorpha)
based on concatenated 76 nuclear protein-coding genes
(PCGs) selected from 98 taxa, and mitochondrial
PCGs and rRNA genes of 150 taxa, covering all super-
families within these two infraorders. Furthermore, we
estimate divergence times to depict evolutionary time-
scales for Cimicomorpha and Pentatomomorpha based
on the reconstructed phylogenetic trees reported here
and multiple calibration points. Finally—combining
the chronogram, the ancestral state reconstruction of
feeding habit, and the currently recognized patterns of
angiosperm evolution—we discuss the evolutionary
timescale and possible driving forces for the diversifi-
cation of phytophagous true bugs.

404 F. Ye et al. / Cladistics 38 (2022) 403–428
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Materials and methods

Taxon sampling and generation of molecular data

A total of 150 terminal species were included in our taxon sam-
pling, of which 42 cimicomorphans and 96 pentatomomorphans were
ingroups, and three leptopodomorphans and nine nepomorphans
were used as outgroups. The 138 ingroup species represented 54 fam-
ilies, covering all 11 superfamilies and 90% of families in Ter-
heteroptera. Among these, molecular data of 100 species were newly
sequenced by Sanger sequencing or high-throughput-sequencing
(HTS) in this study. For the Sanger method, total genomic DNA
was extracted from legs or/and thorax of a single individual for 15
species, due to the limited availability of specimens, using DNeasy
Blood and Tissue Kit (Qiagen); the remaining bodies were subse-
quently preserved in absolute ethanol as voucher specimens. Mito-
genomes and complete 18S and 28S rDNA sequences were produced
by PCR amplification employing universal primers (Table S1), San-
ger sequencing, and fragments overlapping. The methods of PCR
amplification and sequencing followed the description of Wang et al.
(2016). For the HTS method, heads and thoraces were used to
extract total genomic DNA using the CTAB method (Reineke et al.,
1998). Independent DNA libraries for 85 species were built with an
insert size of 250 base pairs (bp), and sequenced with a 150-bp
paired end (PE) on the HiSeq X Ten platform at BGI Genomics
(Shenzhen, China). Raw reads were pre-processed by removing reads
containing adaptor contamination, poly-Ns (>5 bp Ns), and PE
reads with >10 bases of low-quality scores (<20) (Wu et al., 2018).
After data filtration, we obtained 10 073 914 to 30 823 226 clean
reads per species. All the voucher specimens were deposited in the
Systematic Entomology Lab, Sun Yat-sen University, Guangzhou,
China. The rest of published mitogenomes, 18S and 28S rDNAs,
genomes, and transcriptome data were downloaded from the
National Center for Biotechnology Information database. The sam-
pling list and the corresponding data accession numbers are provided
in Table 2.

Assembly, annotation, and alignment

The Sanger sequencing data were assembled with Geneious soft-
ware (Biomatters Ltd., Auckland, New Zealand), and the HTS data
were de novo assembled using SOAPdenovo-Trans (Xie et al., 2014),
followed by BLAST against local databases containing 18 known
Heteroptera mitogenomes and 30 known complete Heteroptera 18S
and 28S rDNAs, respectively, using the program BLAST+ (Camacho
et al., 2009). All the reference sequences of mitogenomes and
nrDNA were downloaded from the GenBank database.

Mitochondrial PCGs and 12S and 16S rDNAs were identified by
alignment with homologous sequences through BLAST searches of
GenBank. Boundary definitions of 18S and 28S rDNAs were also
realized by alignment with homologous genes.

To better mine the HTS data for phylogenetic reconstruction, we
used aTRAM 2.0 (Allen et al., 2018) to assemble extra nuclear PCG
sequences from the HTS clean data. Firstly, aTRAM libraries of
HTS clean data were built using the script atram_preprocessor.py
available in the aTRAM package. The aTRAM assembly was run
for three iterations using the Trinity (Grabherr et al., 2011) option
for de novo assembly, with a reference set of 2394 single-copy orthol-
ogous PCG sequences from Cimex lectularius (https://www.orthodb.
org/), which are also suggested to be single-copy orthologs in
Oncopeltus fasciatus, Gerris buenoi, Halyomorpha halys, Rhodnius
prolixus, Myzus cerasi, and Homalodisca vitripennis. All other param-
eters retained the default values. Next, the resulting contigs from
aTRAM (BLAST values greater than 70) were processed using an
exon stitching pipeline (https://github.com/juliema/exon_stitching) toT
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identify and stitch together the exons of each gene. Afterwards, for
further sifting the best matching contigs, we used Orthograph (Peter-
sen et al., 2017) to map all contigs for each species to a set of target
orthologous genes, which were built using the single copy genes men-
tioned above. Finally, the accompanying script summa-
rize_orthograph_results.pl was used to summarize the Orthograph
results from all taxa. All Orthograph parameters were left at the
default values.

After batch filtering the primary nuclear orthologous genes, retain-
ing only genes present in more than 74 species, all the nuclear and
mitochondrial PCGs were aligned individually using Multiple Align-
ment using Fast Fourier Transform (MAFFT) software with the L-
INS-i algorithm (Katoh & Standley, 2013) at the translational (amino
acid) level. The alignments of corresponding nucleotide sequences
were conducted using a local version of TranslatorX (Abascal et al.,
2010). Simultaneously, ambiguously aligned sites were removed from
both the amino acid and the nucleotide alignments using GBlocks
(–b3 = 8, –b4 = 5, –b5 = h options) implemented in TranslatorX.
Then, we further filtered the genes by removing sequences composed
mainly of gaps or alignments shorter than 33 amino acids. We also
implemented a batch filtering to remove sequences composed mainly
of “X” and “NNN” at amino acid and nucleotide level, respectively.
Genes with fewer than 75 taxa (50% of total sampling) were waived.
Therefore, 76 PCGs were retained for the following analyses. Four
RNA genes were individually aligned with MAFFT using the L-INS-
i algorithm, and the original alignments were checked and manually
corrected on the basis of the secondary structure models (Li et al.,
2013; Yu et al., 2013). Subsequently, the ambiguous regions were
deleted using GBlocks with the same parameters.

PCGs and RNA genes were concatenated to two matrices, namely
PCGAARNA and PCGNT12RNA (Dataset S1 and S2). The former
matrix comprised nucleotide sequences of four RNA genes and
amino acid sequences of the 89 PCGs with a total of 6651 nucleotide
sites and 21 977 aligned amino acid sites, respectively. The latter
matrix showed 50 605 aligned nucleotide sites in length, including
four RNA genes and only the first two codon positions of the 89
PCGs. Using the saturation analysis provided by DAMBE 5 (Xia,
2013), the substitution of the third codon position of the PCGs was
detected as saturated (Table S2), and thus the nucleotides in the
third codon positions were excluded from the matrix.

Phylogenetic inference and divergence time estimation

Phylogenetic analyses were performed using maximum likelihood
(ML), Bayesian inference (BI), and parsimony methods based on the
two matrices. IQ-TREE (Nguyen et al., 2015) was used to examine
substitution models and partitioning schemes of two supermatrices
under the corrected Akaike information criterion with the default
model set of ModelFinder (Kalyaanamoorthy et al., 2017) for ML
analyses, and the Bayesian information criterion with Bayesian
model set for BI analyses respectively. The ML analyses were also
conducted using IQ-TREE with the estimated best-fit model assigned
to each of 46 and 66 partitions for PCGAARNA and
PCGNT12RNA datasets, respectively (Table S3). Nodal support val-
ues were inferred using the ultrafast bootstrap approach with 5000
replicates (Hoang et al., 2018). Bayesian inferences were imple-
mented by the MPI version of MrBayes 3.2.6 (Ronquist et al., 2012)
with the appropriate models for 25 and 28 partitions with regard to
the PCGAARNA and PCGNT12RNA data sets (Table S3). Two
simultaneous runs with each of four Markov chains (three heated
and one cold) were conducted with a random starting tree for
20 000 000 generations and sampled every 1000 generations. Conver-
gence was confirmed by visualized likelihood values against the gen-
eration number, and the first 1 000 000 generations were discarded
as burn-in. For parsimony analyses executed in TNT (Goloboff &
Catalano, 2016), the tree searches were run by new technology

search method with rigorous parameter settings (initial level 99 and
hits 20) and sectorial search, ratchet, drift, and tree fusing options.
The nepomorphan species Sigara septemlineata was used as the out-
group for parsimony analyses of TNT. One and ten parsimony trees
were found for PCGNT12RNA and PCGAARNA datasets, respec-
tively, and then a majority-rule consensus tree with a cut off of 50%
was calculated from the ten parsimony trees of PCGAARNA data-
set. All characters shared equal weighting and gaps were regarded as
missing characters. Clade robustness was assessed by 1000 replicates
of standard bootstrap resampling with collapsing rule 1. Apart from
the aforesaid phylogenetic analyses based on two 150-species matri-
ces, to test the effect of outgroup sampling additional ML analyses
using the same parameter settings were performed based on another
two matrices which excluded all sequences of nine nepomorphans.

MCMCTree from the Phylogenetic Analysis by Maximum Likeli-
hood (PAML) 4.9 package (Yang, 2007) was used to estimate diver-
gence times of Cimicomorpha and Pentatomomorpha with a relaxed
molecular clock based on all six topologies corresponding to the
datasets PCGNT12RNA and PCGAARNA, and 16 nodes were cali-
brated with fossil records. According to the assessed overall muta-
tion rate (0.078270 per unit time for PCGNT12RNA dataset;
0.081255 per unit time for PCGAARNA dataset) obtained utilizing
baseml (in PAML) under the GTR+G substitution model
(model = 7, alpha = 0.5) and codeml (in PAML) under empirical
substitution model (model = 2, alpha = 0.5), the Dirichlet-gamma
prior for the overall substitution rate was set as rgene_gamma = 1,
13 for PCGNT12RNA dataset and rgene_gamma = 1, 12 for
PCGAARNA dataset. The MCMCTree program was run for
2 500 000 MCMC steps and sampled every 50 after a 50 000 burn-
in. The robustness of the MCMCTree results was checked by com-
paring the consistency of at least two independent runs, with all
parameters at least 200 for the effective sample sizes. The lineage-
through-time (LTT) plots were generated using the R package phy-
tools with the ltt function (Revell, 2012) at the subfamily level—
based on the pruned chronogram (one individual per subfamily) of
six trees inferred from both PCGNT12RNA and PCGAARNA data-
sets in this study—for true bugs, and at the order level—based on
the reported chronogram of seed plants (Li et al., 2019a)—for
angiosperms. The pruning of six trees of true bugs was conducted
using the ape package with the drop.tip function (Paradis & Schliep,
2019). The six LTT plots of true bugs were drawn using the pruned
chronogram of phytophagous lineages. In addition, the reported
chronogram of seed plants only contains two gymnosperm splits dur-
ing the past 250 Ma; therefore, the range of LTT from 250 Ma to
present can represent the angiosperm evolutionary history.

As for the demonstration of the used fossils, the details for 16 nodes
are summarized in Table 3. Most nodes used the oldest fossil records
for corresponding taxonomic categories, with a few exceptions, e.g.,
Tingidae node (Appendix S1). The earliest fossil of Tingidae in the
Paleobiology Database (https://paleobiodb.org/) is Archetingis ladi-
nica, dated back to 242.0–235.0 Ma, but that fossil is considered as a
doubtful taxonomic placement (Schuh & Weirauch, 2020, as well as
our opinion); a boom in tingid fossils began only in the lower Creta-
ceous Aptian Stage (125.0–113.0 Ma). To reduce the risk of potentially
erroneous placement of the oldest fossil record, we selected the second
oldest fossil record, Golmonia pater (125.0–113.0 Ma), to calibrate the
Tingidae node. Apart from the calibrating nodes of the root, Nepo-
morpha, and Leptopodomorpha, all the rest of calibrating nodes used
an additional earlier Stage/Age and an additional later Stage/Age
based on the Stage/Age of the fossil species belonging to set the starting
and the ending time of soft boundaries with 95% confidence interval.

Ancestral character state reconstruction

To explore the evolution of phytophagy in true bugs, we built a
dataset of feeding habits following a careful survey to conduct

412 F. Ye et al. / Cladistics 38 (2022) 403–428
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ancestral character reconstructions using the ML method imple-
mented in MESQUITE 3.61 (Maddison & Maddison, 2019). The
Markov k-state 1 parameter model was used in the ML ancestral
character reconstruction. Feeding habits were analyzed with the fol-
lowing defined types: fungivorous, predatory (including hematopha-
gous and scavenging), phytophagous sap-feeding, phytophagous
seed-feeding and phytophagous mesophyll-feeding (Table S4).

Results

Phylogenetic analyses

The results of ML analyses inferred from
PCGNR12RNA dataset and summarized support

values of BI and parsimony analyses are shown in
Fig. 1, and the specific topologies for these analyses
are presented in Figs S1–S8. The monophyly of Cimi-
comorpha and Pentatomomorpha was confirmed in all
analyses, and the sister group relationship between
them was recovered with strong support values. Nearly
all the superfamilies were consistently recovered as
monophyletic. Within Cimicomorpha, Reduvioidea
was recovered as the sister group of the remaining
cimicomorphans, and Miroidea was grouped with
Cimiciformes sensu lato comprising Microphysoidea,
Naboidea, and Cimicoidea. Within Pentatomomorpha,
analyses consistently supported the Aradoidea as the
sister group to the remaining lineages. For the

Table 3
Fossil calibrations used in divergence time estimation

Calibration node Fossil record Taxonomic group PBDB age (Ma) Prior distributions and shapes References

Root Actinoscytina
belmontensis

Coleorrhyncha:
Progonocimicidae

254.17–252.17 B (2.472,2.541,0.025,0.025) Tillyard (1926)

Arlecoris louisi Naucoroidea:
Triassocoridae

247.2–242.0 Shcherbakov (2010)

Nepomorpha Arlecoris louisi Naucoroidea:
Triassocoridae

247.2–242.0 B (2.28,2.472,0.025,0.025) Shcherbakov (2010)

Lufengnacta
corrugis

Corixoidea 228.0–208.5 Lin (1977)

Ochteroidea +
(Naucoroidea+
Notonectoidea)

Propreocoris
maculatus

Ochteroidea:
Propreocoridae

196.5–189.6 B (1.827,2.013,0.025,0.025) Popov et al. (1994)

Notonectoidea Liadonecta
tomiensis

Notonectoidea:
Notonectidae

182.7–170.3 B (1.683,1.908,0.025,0.025) Popov (1971)

Leptopodomorpha Britannicola
senilis

Saldoidea:
Archegocimicidae

208.5–201.3 B (1.82,2.085,0.025,0.025) Popov et al. (1994)

multiple Leptopodomorpha 183.0–182.0
Naboidea Karanabis

kiritshenkoi
Naboidea: Nabidae 166.1–157.3 B (1.521,1.683,0.025,0.025) Becker-Migdisova

(1962)
Tingidae Golmonia pater Miroidea: Tingidae:

Cantacaderinae:
Golmoniini

125.0–113.0 B (1.005,1.294,0.025,0.025) Popov (1989)

Isometopinae Myiomma voigti Miroidea: Miridae:
Isometopinae:
Myiommini

38.0–33.9 B (0.2782,0.412,0.025,0.025) Popov and Herczek
(1992)

Mirinae Cretamystilus
herczeki

Miroidea: Miridae:
Mirinae:
Mecistoscelini

99.6–93.5 B (0.898,1.13,0.025,0.025) Kim and Jung (2021)

Mezirinae Myanmezira
longicornis

Aradoidea: Aradidae:
Mezirinae

99.6–93.5 B (0.898,1.13,0.025,0.025) Heiss and Poinar
(2012)

Urostylididae Urochela
pardalina

Pentatomoidea:
Urostylididae:
Urostylidinae:
Urostylidini

20.44–15.97 B (0.1382,0.2303,0.025,0.025) Zhang (1989)

Cydnidae +
(Dinidoridae +
Tessaratomidae)

Cilicydnus
robustispinus

Pentatomoidea:
Cydnidae: Amnestinae

125.45–122.46 B (1.13,1.294,0.025,0.025) Yao et al. (2007)

Dinidoridae Dinidorites
margiformis

Pentatomoidea:
Dinidoridae

56.0–47.8 B (0.412,0.592,0.025,0.025) Cockerell (1921)

Acanthosomatidae Acanthosoma sp. Pentatomoidea:
Acanthosomatidae

15.97–11.608 B (0.072,0.2044,0.025,0.025) Fujiyama (1987)

Micrelytrinae Eothes elegans Coreoidea: Alydidae:
Micrelytrinae

37.2–33.9 B (0.2782,0.412,0.025,0.025) Swanson (2020)

Berytidae Metacanthus
serratus

Lygaeoidea: Berytidae 33.9–28.4 B (0.2303,0.3771,0.025,0.025) Theobald (1937)
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Lyctocoris beneficus
Orius insidiosus

Curalium cronini
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Scotomedes sp.2
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Joppeicus paradoxus
Ischnobaenella hainana 

Triatoma infestans Brontostoma colossus
Ptilocnemus lemur

Cnizocoris sinensis
Camarochilus sp.Saldula arsenjevi 

Calacanthia angulosa
Valleriola javanica Helotrephes semiglobosus 

Ochterus marginatus

Paraplea frontalis
Enithares tibialis

Aphelocheirus ellipsoideus 
Nerthra indica

Diplonychus rusticus
Sigara septemlineata

Micronecta sahlbergii

Isometopus sp.

Megaris sp.

Terheteroptera 

>400 >4000

+Pseudophloeinae
Hydarinae

Pyrrhocoroidea

not support

Fig. 1. Phylogenetic tree of Terheteroptera inferred from maximum-likelihood analyses based on PCGNT12RNA dataset covering 150 taxon
samples. The bootstrap values of maximum-likelihood analyses and parsimony analyses, and posterior probabilities of Bayesian analyses are
summarized and labelled around each node. Gray balls on the right indicate the taxa diversity richness of each family or subfamily within four
major phytophagous superfamilies (Henry, 2017; Schuh & Weirauch, 2020).
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phylogenetic relationships among the superfamilies of
Trichophora, the results of PCGNT12RNA dataset
repeatedly recovered the framework as Pentato-
moidea + (Idiostoloidea + (Pyrrhocoroidea +
(Coreoidea + Lygaeoidea))).
Within Miroidea, all families were recovered as

monophyletic. Within Miridae, Isometopinae was
placed as the sister group to the remaining mirids in
phylogenetic trees of PCGNT12RNA dataset.
Orthotylinae was grouped with Phylinae in all analy-
ses, and Mirinae was recovered as the sister group to
Deraeocorinae in most analyses.
Within Pentatomoidea, Thaumastellidae was recog-

nized as the sister group to the remaining pentato-
moids. Although the topologies within Pentatomoidea
were not stable, the sister group relationships between
Lestoniidae and Acanthosomatidae as well as Cyd-
nidae sensu stricto (sensu Pluot-Sigwalt & Lis, 2008)
and (Dinidoridae + Tessaratomidae) were consistently
supported in most topologies. In addition, Pentatomi-
dae was recovered as the sister group to Plataspidae in
most topologies. The hypothesis of Cydnidae sensu
lato (sensu Dolling, 1981; see also Schuh & Weirauch,
2020) was rejected.
Within Coreoidea, Hyocephalidae, and Stenocephali-

dae were the early divergent lineages of extant coreoids,
and Rhopalidae was recovered as the sister group to
Coreidae and Alydidae. All analyses strongly suggested
the non-monophyly of both Coreidae and Alydidae,
since both the coreid subfamilies Hydarinae and Pseu-
dophloeinae were nested within Alydidae, which further
clustered with Coreinae as the sister group.
Within Lygaeoidea, all analyses strongly suggested

an early split of a lineage comprising Pachygronthidae
and Heterogastridae, which was recovered as the sister
group to the rest of the lygaeoid lineages. Two addi-
tional well-supported groups, namely Arthenei-
dae + (Oxycarenidae + Piesmatidae) and Blissidae +
(Ninidae + Cymidae), were also constant in topologies.
Rhyparochromidae and Malcidae were allied together
as a monophyletic group in ML analyses. The phylo-
genetic reconstructions based on matrices including or
excluding nepomorphan data showed almost identical
topologies, with only a few differences (Figs S9 and
S10).

Divergence time estimation

MCMCTree results of divergence times based on
ML tree of PCGNT12RNA dataset are shown in
Fig. 2 and Table 4 and all detailed results of diver-
gence times estimation are also shown in Figs S11–S16
and Table S5, with a median node height and a 95%
highest posterior density (HPD) interval for each node.
Here we use the divergence times of Fig. 2 with the
range of all divergence times estimated from six trees

for the corresponding nodes to display these results.
The early divergence of Reduvioidea from other cimi-
comorphans could be dated back to 219 Ma (192–
225 Ma), and the split between Miroidea and Cimici-
formes sensu lato was estimated to occur 11 Ma after
that event. The Miroidea was estimated to begin to
diversify at around 193 Ma (175–200 Ma), with the
successive divergence between Miridae and Tingidae
taking place at 181 Ma. The early diversification of
Miridae occurred at 138 Ma (138–177 Ma), in the Cre-
taceous, and the hyperdiverse Mirinae radiated after
91 Ma (91–94 Ma), in the Late Cretaceous.
The split between Aradoidea and Trichophora

occurred in the Early Jurassic (198 Ma, 198–231 Ma).
Pentatomoidea diverged from the remaining tri-
chophorans at 178 Ma (178–225 Ma) and began to
diversify around 163 Ma (163–215 Ma). Pyrrho-
coroidea diverged from the Eutrichophora at 151 Ma
(151–208 Ma). The divergence between Coreoidea and
Lygaeoidea was inferred to occur at 144 Ma (144–
193 Ma), with subsequent diversification after 112 Ma
(112–180 Ma) and 137 Ma (137–176 Ma), respectively.
The minimal difference in divergence times of Pyrrho-
coroidea and (Coreoidea + Lygaeoidea), and Coreoi-
dea and Lygaeoidea seems to explain the persistent
problems with inferring their phylogenetic relation-
ships. Pentatomidae, Coreinae, and Rhyparochromi-
dae each began to diversify in the Late Cretaceous,
between 69 and 80 Ma. For convenience we will use
the four major phytophagous clades to indicate Miri-
nae, Pentatomidae, Coreinae, and Rhyparochromidae
in the following paragraphs.

Ancestral state reconstruction of feeding habits

The results of ML ancestral character reconstruction
of feeding habits based on ML tree of PCGNT12RNA
dataset are shown in Fig. 2, and the other results of
ML ancestral character reconstruction are also shown
in Figs S17–S21. The MRCA of Terheteroptera is
hypothesized to exhibit predatory feeding habits. After
the divergence of Cimicomorpha and Pentatomomor-
pha, the feeding strategy has evolved in different ways
in each clade. Most cimicomorphan lineages retained
the original predatory diet. While the MRCA of Mir-
oidea shifted from predatory to phytophagous habits
in all reconstruction results except for those inferred
from PCGNT12RNA parsimony-based topology. The
ancestral feeding habit of Miridae was likely phy-
tophagous, retained in most of the subfamilies, but
predation apparently evolved in the family several
times independently (e.g., Isometopinae and Deraeo-
corinae), as zoophytophagy (e.g., Orthotylinae). Some
clades, e.g., Cylapinae, acquired specialized fungivo-
rous feeding habits. As the overwhelming majority of
the Pentatomomorpha are phytophagous, this was
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Fig. 2. Estimated divergence times of major terheteropteran lineages based on maximum-likelihood tree inferred from PCGNT12RNA dataset.
The pie charts on the nodes and terminals indicate the likelihood ancestral state reconstruction of feeding habit.
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likely the ancestral feeding habit for the entire clade or
at least of the Trichophora (seed-feeding with 87.1–
91.9% proportional likelihood except for result of
parsimony-based topology inferred form
PCGNT12RNA dataset). Transitions from seed-
feeding to sap-feeding occurred in the deep node of
Pentatomoidea and that of Coreoidea, respectively,
while Lygaeoidea and Pyrrhocoroidea retained the
seed-feeding habit in most descendent groups. A few
terminal lineages, most notably the Asopinae (within
the superfamily Pentatomoidea) and the Geocorinae
(within the Lygaeoidea), and Cleradini (within the
Lygaeoidea), acquired predatory or hematophagous
feeding habits secondarily.

Discussion

Phylogeny of Cimicomorpha and Pentatomomorpha

Based on the newly sequenced data of 100 species,
and previously reported data of 50 species together
representing a broad sample within Cimicomorpha
and Pentatomomorpha, our investigation resulted in a
series of well-resolved and supported relationships,
corroborating previously recognized backbone of ter-
heteropteran phylogeny. The monophyly of both Cimi-
comorpha and Pentatomomorpha, and their sister
relationship suggested by previous authors, based on
various morphological and molecular evidence (e.g.,
Kieran et al., 2019; de Moya et al., 2019; Tian et al.,
2008; Wang et al., 2016, 2019; Weirauch et al., 2019;
Wheeler et al., 1993), were corroborated with strong
support values. The paraphyly of Cimicomorpha

proposed by a few studies based on mitogenomic data
(Li et al., 2017; Liu et al., 2018) was not corroborated.
Despite using the site-heterogeneous model, the mito-
chondrial phylogenetics may still suffer from a bias in
base composition and mutational rate (Yang et al.,
2018). Besides, phylogenetic signals provided by the
mitogenome still limit the higher-level reconstruction
of insect phylogeny (Song et al., 2016). The established
monophyly of Cimicomorpha corroborates the recog-
nition of both micropyles and aeropyles around the
operculum of the eggs as a synapomorphy of this
infraorder (Weirauch et al., 2019; Wheeler et al.,
1993). Prior to this study the phylogenetic relation-
ships within Cimicomorpha had been investigated,
with various taxa sampled morphologically and/or
molecularly, resulting in different topologies (Schuh &
�Stys, 1991; Schuh et al., 2009; Tian et al., 2008; Weir-
auch et al., 2019). Our results support the superfamily-
level phylogenetic relationships, namely Reduvioidea +
(Miroidea + Cimiciformes sensu lato), in concordance
with the results reached by previous authors based on
morphology (Schuh & �Stys, 1991) and combined mor-
phological and molecular data (Weirauch et al., 2019).
Within Miroidea, the relationships of the three fami-

lies are so far still equivocal. The sister relationship
between Miridae and Tingidae was recovered in ML
and BI analyses based on the PCGNT12RNA
dataset alone. The same topology has also been pro-
posed in previous phylogenetic analyses of morpholog-
ical or combined data (Schuh & �Stys, 1991; Weirauch
et al., 2019), which constitute independent support for
such a topology. The alternative topologies, ML and
BI trees of PCGAARNA dataset (Miridae + Thaumas-
tocoridae) and parsimony trees of PCGNT12RNA
and PCGAARNA datasets (Tingidae + Thaumasto-
coridae), were also recovered by the previous studies
(Wang et al., 2016, 2019). The obvious long branch of
Thaumastocoridae may lead to the varied topologies
in this study. The higher classification of Miridae with
eight recognized subfamilies (Cassis & Schuh, 2012)
has been generally accepted by the taxonomic commu-
nity, but with considerable disagreement regarding the
phylogenetic relationships among these subfamilies
(Jung & Lee, 2012; Lin & Yang, 2005; Schuh, 1976;
Schuh et al., 2009; Weirauch et al., 2019). Most mor-
phological analyses (Leston, 1961; Schuh, 1974, 1976)
recovered Isometopinae as the sister group of the
remainder of the Miridae. Our study reached the same
conclusion with the ML, BI and parsimony analyses
of the PCGNT12RNA dataset, corroborating the
hypothesis that the greatly reduced number of tri-
chobothria on the meso- and metafemora represents
an apomorphy for the subfamily, while the presence of
ocelli is also a synapomorphy for Isometopinae
(Schuh, 1976). Two consistently monophyletic groups
within the clade of non-isometopine mirids, already

Table 4
Estimation of divergence times (Ma) based on maximum-likelihood
tree inferred from PCGNT12RNA dataset for major groups in this
study

Clade Mean 95% HPD

Cimicomorpha 219 209–228
Reduvioidea 187 166–208
Cimicoidea 159 146–173
Naboidea 156 151–164
Microphysoidea 157 119–185
Miroidea 193 181–204
Miridae 138 127–150
Mirinae 91 88–97
Pentatomomorpha 198 185–211
Pentatomoidea 163 149–176
Pentatomidae 79 63–93
Idiostoloidea 104 71–130
Pyrrhocoroidea 115 99–130
Coreoidea 112 93–131
Coreinae 69 60–78
Lygaeoidea 137 125–149
Rhyparochromidae 80 67–93
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proposed by previous authors, were also recovered in
the present study; these are Mirinae + Deraeocorinae
(Jung & Lee, 2012; Kelton, 1959; Leston, 1961; Schuh,
1974, 1976; Schuh et al., 2009; Slater, 1950) and
Orthotylinae + Phylinae (Kelton, 1959; Leston, 1961;
Menard et al., 2014; Schuh, 1974, 1976; Schuh et al.,
2009; Slater, 1950; Weirauch et al., 2019).
Within the Pentatomomorpha, the sister relationship

of Aradoidea and Trichophora was consistent across
our analyses and previous studies (Hua et al., 2008;
Kieran et al., 2019; Li et al., 2017; Liu et al., 2019; de
Moya et al., 2019; Wang et al., 2016; Weirauch et al.,
2019). Within the Trichophora our analyses based on
PCGNT12RNA dataset suggest a sister relationship
between Idiostoloidea and Eutrichophora, supporting
the recognition of Idiostoloidea as a separate super-
family (Henry, 1997; �Stys, 1964; Weirauch et al.,
2019). The relationships of the three Eutrichophora
superfamilies have been investigated repeatedly but
remain ambiguous. Although the support values of
ML and parsimony analyses are low, nearly all our
analyses are in favor of Pyrrhocoroidea + (Coreoidea
+ Lygaeoidea), which was also supported by previous
analyses using 18S rDNA (Xie et al., 2005), mitogen-
ome (Hua et al., 2008), ultraconserved element loci
(Forthman et al., 2019), and combined rDNA and
morphological characters (Weirauch et al., 2019).
Besides, investigation of gut symbionts revealed that
the Burkholderia symbionts of most lygaeoids and cor-
eoids belong to the same lineage, while those of
pyrrhocoroids belong to another lineage (Gordon
et al., 2016; Kikuchi et al., 2011), also suggesting a
close relationship between Coreoidea and Lygaeoidea.
These phylogenetic results will have immense impact
on our understanding of eutrichophoran morphology.
For example, the resultant topology suggests open tri-
chobothrium associated with the trichome (Gao et al.,
2017; Hemala et al., 2020; Kment et al., 2019) as a
synapomorphy of Eutrichophora, subsequently lost in
Coreoidea (except for the Hyocephalidae) and in some
Lygaeoidea lineages.
Concerning Pentatomoidea phylogeny, our analyses

support Thaumastellidae as representing the earliest
split from the ancestral pentatomoid stock, in accor-
dance with the result of 16S rDNA data using the
direct optimization method of Grazia et al. (2008) and
Weirauch et al. (2019). The clade, including two mor-
phologically very similar families, Saileriolidae and
Urostylididae (previously recognized as subfamilies of
a more inclusively defined Urostylididae), represents
early divergent extant groups, recognized by the analy-
sis of four loci using the direct optimization method of
Grazia et al. (2008), Wu et al. (2018) and Weirauch
et al. (2019). The phylogenetic positions of Parastra-
chiidae and Canopidae are still unclear, which might
be ascribed to few phylogenetic signals from limited

sequence data. As seen above, Dolling’s (1981)
hypothesis of Cydnidae sensu lato (including Thaumas-
tellidae, Thyreocoridae, Parastrachiidae and Cydnidae
sensu stricto; see also Schuh & Weirauch, 2020) is
rejected, consistently with recent study by Roca-
Cusachs et al. (2022). Lestoniidae + Acanthosomatidae
and Cydnidae sensu stricto + (Dinidoridae + Tes-
saratomidae) were also recovered as two well-
supported monophyletic groups by our analyses, con-
sistently with previous studies (Grazia et al., 2008; Wu
et al., 2018).
Within the Pyrrhocoroidea, our results confirm the

monophyly of Largidae, recently doubted by Hemala
et al. (2020, 2021) due to lack of morphological evi-
dence, and its sister relationship with Pyrrhocoridae.
Within the Coreoidea, recent phylogenomic results

recovered Hydarinae and Pseudophloeinae as clades
nested within the Alydidae, resulting in a rejection of
the monophylies of both Alydidae and Coreidae
(Forthman et al., 2019). This hypothesis is further sup-
ported by a recent morphological study of coreoid
spermatheca (Pluot-Sigwalt & Moulet, 2020) and the
metathoracic scent gland peritreme (Hemala et al.,
2021). Therefore, the higher classification of Coreoidea
should be revised, with two equally sound alternative
solutions: (i) incorporating Alydidae into a broadly
defined Coreidae; or (ii) transferring Hydarinae and
Pseudophloeinae into Alydidae sensu lato. As a five-
family taxonomic arrangement of Coreoidea has been
generally accepted for decades, the second solution,
being more compliant with the established classifica-
tion, appears more agreeable. It is, however, stressed
that a formal reclassification of Coreoidea must rest
on an analysis performed on a much broader sample.
We also confirm Hyocephalidae and Stenocephalidae
as the early divergent groups of extant Coreoidea (cf.
Kment et al., 2019).
For Lygaeoidea, our results highly support the sister

relationship between (Pachygronthidae + Heterogastri-
dae) and the remaining lygaeoids, differing from previ-
ous results of morphological cladistic analysis
recovering (Pachygronthidae + Heterogastridae) +
Rhyparochromidae as sister group to other lygaeoids
(Henry, 1997). In fact, Rhyparochromidae has never
been recovered as an early divergent extant group
either in molecular (Liu et al., 2019; de Moya et al.,
2019; Tian et al., 2011) or in combined analyses (Weir-
auch et al., 2019). The branch that subsequently split
is another well-supported lineage formed by Arthenei-
dae + (Oxycarenidae + Piesmatidae). Although the
placement of Piesmatidae has a tortuous history,
recent authors universally recognize it as a member of
Lygaeoidea (Henry, 1997; Tian et al., 2011; Xie et al.,
2005), and a sister relationship with Oxycarenidae has
also been proposed (Xie et al., 2005). The supposedly
monophyletic ‘malcid-line’, proposed to comprise
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Berytidae, Colobathristidae, Cryptorhamphidae, Cymi-
dae, Malcidae, and Ninidae (�Stys, 1967), and subse-
quently also Piesmatidae (Schaefer, 1975), was
recognized in a cladistic analysis based on morphologi-
cal data (Henry, 1997), but it was recovered neither in
our analyses nor in several recent phylogenetic studies
(Hua et al., 2008; Liu et al., 2019; de Moya et al.,
2019; Weirauch et al., 2019). Of the putative families
within the ‘malcid-line’, Ninidae + Cymidae were
invariably grouped with Blissidae with high support
values, in a way consistent with a previous study based
on 18S rDNA (Xie et al., 2005).

Dating the evolutional history of phytophagous true
bugs

For several nodes, the MCMCtree results show rela-
tively large differences in estimated divergence times
(Table S5), which is mainly attributed to the different
topologies used for analyses. The dissimilar datasets
may also be a potential resource for these differences.
Comparing the phylogenetic trees reported in this study
and previously proposed phylogenies, the ML tree of
PCGNT12RNA dataset show the higher consistency

with current view of terheteropteran phylogeny
(Table 5), and thus the corresponding results of diver-
gence time estimation may be more credible. This
chronogram generally demonstrates the similar esti-
mated divergence times of nodes between superfamilies
and families in Cimicomorpha to some of previous stud-
ies (Table 1). Our estimated divergence time of Miridae,
however, is 139 Ma later than that of Jung and Lee
(2012). In the latter analysis, four fossil mirid species
were used to calibrate the nodes of four subfamilies,
among which Miridoides mesozoicus and Scutellifer
karatavicus (Herczek & Popov, 2001) were regarded as
the oldest known fossils of Orthotylinae and Mirinae,
respectively. Recently the taxonomic placement of both
fossils was questioned; M. mesozoicus was recognized as
the oldest fossil mirid, whilst the position of S. karatavi-
cus was treated as uncertain (Schuh & Weirauch, 2020).
The geologically estimated time span of M. mesozoicus
(Late Jurassic) is slightly earlier than the phylogeneti-
cally estimated time interval of early divergence of the
Miridae in our study (138 Ma).
The divergence of the infraorder Pentatomomorpha

was found to have occurred at 198 Ma (the Early Juras-
sic), a result very close to the estimation of Johnson

Table 5
Phylogenetic relationships of major phytophagous lineages derived from this study and references

Clade
Li et al.
(2017)

Johnson et al.
(2018)

de Moya et al.
(2019)

Wang et al.
(2019)

Weirauch
et al. (2019)

ML
analyses BI analyses

Parsimony
analyses

Cimicomorpha – Transcriptome Transcriptome Transcriptome M&rDNA NT12, AA NT12, AA NT12, AA
Miroidea NA NA NA Transcriptome M&rDNA NT12, AA NT12, AA NT12, AA
TMS + (MIR + TIN)
(Schuh & �Stys, 1991)

NA NA NA – M&rDNA NT12 NT12 –

ISO + other mirids
(Schuh, 1976)

NA NA NA NA – NT12 NT12 NT12

Pentatomomorpha MT Transcriptome Transcriptome Transcriptome M&rDNA NT12, AA NT12, AA NT12, AA
Aradidae +
Trichophora

(Wheeler et al., 1993)

MT Transcriptome Transcriptome Transcriptome M&rDNA NT12, AA NT12, AA NT12, AA

Idiostoloidea +
Eutrichophora
this study

NA NA NA NA – NT12 NT12 NT12, AA

PYR + (COR + LYG)
(Xie et al., 2005)

– – – – M&rDNA NT12, AA NT12, AA NT12

Pentatomoidea MT Transcriptome Transcriptome NA M&rDNA NT12, AA NT12, AA NT12, AA
THA + other
pentatomoids

(Weirauch et al., 2019)

NA NA NA NA M&rDNA NT12, AA NT12, AA AA

Coreoidea MT Transcriptome Transcriptome NA M&rDNA NT12, AA NT12, AA NT12, AA
PSE + Alydinae
(Forthman et al., 2019)

NA NA NA NA NA NT12, AA NT12, AA NT12, AA

Lygaeoidea MT Transcriptome Transcriptome NA M&rDNA NT12, AA NT12, AA NT12, AA
(PAC + HET) +
other lygaeoids

(Tian et al., 2011)

NA NA NA NA NA NT12, AA NT12, AA NT12, AA

AA, PCGAARNA dataset; ALY: Alydinae; COR: Coreoidea; Dashes, not recovered; HET: Heterogastridae; ISO: Isometopinae; LYG:
Lygaeoidea; M&rDNA, combined morphological and rDNA data; MIR: Miridae; MT: mitogenome data; NA, not tested; NT12,
PCGNT12RNA dataset; PAC: Pachygronthidae; PSE: Pseudophloeinae; PYR: Pyrrhocoroidea; THA: Thaumastellidae; TIN: Tingidae; TMS:
Thaumastocoridae.
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et al. (2018) (200 Ma). The estimated times from most
other previous studies varied from 153 Ma to 237 Ma
(Table 1), while fossils of Pentatomomorpha are known
from as early as the Late Triassic: Pachymerus zucholdi
(Pachymeridiidae) from the Rhaetian Stage, 201.3–
208.5 Ma (Giebel, 1856; Schuh & Weirauch, 2020),
apparently supporting the results around the boundary
of the Triassic and Jurassic. Our analyses showed Pen-
tatomoidea diverged in the Jurassic, and that of the
superfamilies Coreoidea, Lygaeoidea, Pyrrhocoroidea
and Idiostoloidea appeared in the Early Cretaceous.
The mean estimated ages of extant groups of these
superfamilies recovered by previous studies largely con-
flicted with each other, ranging from the Late Jurassic
to Early Cretaceous for each superfamily node
(Table 1), and the divergence times between families of
Pentatomomorpha were also inconsistent. In fact, the
earliest fossil which can be unambiguously placed in the
Pentatomoidea is Mesopentacoris orientalis (Mesopenta-
coridae) from the Middle Jurassic, 166–170 Ma (Popov,
1989; Schuh & Weirauch, 2020). Additionally, credible
fossils of Coreoidea and Idiostoloidea can be dated back
to the Early Cretaceous (Schuh &Weirauch, 2020), indi-
cating that our estimated ages are in better agreement
with the fossil record for the majority of the Pentatomo-
morpha nodes.
Comparing the results of ancestral state reconstruc-

tion of feeding habits with previous studies, both ten
(Weirauch et al., 2019) and five feeding types for ances-
tral state reconstruction of feeding habits show similar
results of the origin of phytophagy and most deep nodes
within Pentatomomorpha and Cimicomorpha. The dif-
ferent feeding types used in ancestral state reconstruc-
tion may make direct impact more regularly on shallow
nodes. Combining divergence time estimation with an
ancestral state reconstruction of feeding habits, three
phases in the evolutionary history of phytophagous true
bugs can be recognized. Although divergence times
inferred from ML tree of PCGNT12RNA dataset with
more confidence mentioned above, we still integrated all
six MCMCTree results of divergence time estimation to
display a more credible and stable evolutionary pattern
of phytophagous true bugs. Along with the independent
origin of phytophagy within the Cimicomorpha and
Pentatomomorpha, the potentially earliest boundary of
the shift to phytophagy in Pentatomomorpha is 198 Ma
(198–231 Ma), and Cimicomorpha is 193 Ma (175–
200 Ma). In Pentatomomorpha, phytophagy was
acquired no later than 178 Ma (178–225 Ma; the
MRCA of Trichophora). After the initial emergences of
the above lineages, phytophagous true bugs diversified
smoothly during the Jurassic, with the emergence of the
most trichophoran superfamilies and three miroid fami-
lies. During the Early Cretaceous, phytophagous true
bugs underwent a rapid radiation phase (Fig. 3), result-
ing in the establishment of most extant and extinct

families of the Trichophora and most of the present sub-
families of the Miroidea. Within the third phase (after
the Early Cretaceous), the family- and subfamily-level
diversification rate of phytophagous true bugs gradually
decreased. The diversification of the four major phy-
tophagous clades (Mirinae, Pentatomidae, Coreinae,
and Rhyparochromidae) within the major phy-
tophagous superfamilies (Miroidea, Pentatomoidea,
Coreoidea, and Lygaeoidea) mainly occurred in the
Late Cretaceous.

Patterns and driving forces of the diversification of
phytophagous true bugs

Phytophagous lineages account for more than 60%
of the total species level diversity of Heteroptera. Its
members occupy all terrestrial habitats where plants
are present. Phytophagy is therefore apparently a vital
factor in the diversification of true bugs. The evolu-
tionary process and essential drivers of the diversifica-
tion of phytophagous true bugs have remained poorly
understood in comparison with those of various preda-
tory groups of the order, such as the true water bugs
(Wang et al., 2021; Ye et al., 2020) or assassin bugs
(Hwang & Weirauch, 2012; Zhang et al., 2016). In the
present study we combined our results of the inferred
evolutionary history of the group with information
currently available on paleoenvironmental and paleo-
climatic history, as well as angiosperm evolution, to
investigate the patterns and driving forces of diversifi-
cation in phytophagous true bugs.
Among the five well-known mass extinctions that

took place during the Phanerozoic, the Permian-Triassic
boundary event (PTB) was the most destructive, result-
ing in a substantial reduction in marine (Raup, 1979),
terrestrial vertebrate (Maxwell, 1992) and insect fauna
(Labandeira & Sepkoski, 1993) as well as in plants
(McElwain & Punyasena, 2007). A gradual recovery of
terrestrial fauna from the PTB mass extinction occurred
during the Early and Middle Triassic (Grauvogel-
Stamm & Ash, 2005; Irmis & Whiteside, 2012; Shcher-
bakov, 2008). The earliest reliable angiosperm fossil can
be dated back to the Early Cretaceous, i.e., the micro-
fossils pollen grains found in the Valanginian-
Hauterivian Stage (129–139 Ma; Brenner, 1996; Hughes
& McDougall, 1987; Hughes et al., 1991) and the
macrofossils reported from the Barremian–earliest
Aptin (124–129 Ma; Friis et al., 2006; Li, 2003; Sun
et al., 1998). There is no reliable pre-Cretaceous angios-
perm fossil described to date, while recent phylogenomic
studies have consistently confirmed that the early diver-
gence of angiosperms occurred in the Triassic (207–
248 Ma; Barba-Montoya et al., 2018; Li et al., 2019a;
Yang et al., 2020; Zhang et al., 2020), which implies the
really older angiosperm fossils in pre-Cretaceous may
not have been recovered or identified yet. Phytophagous
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true bugs may arise in the Late Triassic to the Early
Jurassic (Fig. 3), being relatively posterior to the early
divergence of angiosperms (the Triassic).
Apart from the PTB event, two additional mass

extinction events took place in or around the Meso-
zoic: one in the Triassic-Jurassic boundary (TJB) and
another in the Cretaceous-Paleogene boundary. Dur-
ing the extinction event happened in the Jurassic-
Cretaceous boundary (Tennant et al., 2016), neither
the plants nor the insects were seriously affected
(Cascales-Mi~nana & Cleal, 2014; Dmitriev et al., 2018;
Grimaldi & Engel, 2005). The plant LTT plot based

on the reported chronogram (Li et al., 2019a) reveals
that angiosperms underwent an explosive radiation
during the Early Cretaceous, and the true bugs LTT
plots based on all inferred chronograms consistently
show the phytophagous true bugs also experienced a
rapid diversification phase shortly after that of angios-
perms (Fig. 3). The angiosperms completed their
order-level diversification in the Late Cretaceous, while
the phytophagous true bugs exhibited a slightly lower
diversification rate at family and subfamily level in the
same period, which result might be associated with the
less comprehensive taxon sampling at subfamily level.
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The diversification of the four major phytophagous
clades proceeded simultaneously during the Late
Cretaceous.
Plant-feeding insects frequently undergo reproduc-

tive isolation after colonizing a novel host plant,
resulting in speciation (Favret & Voegtlin, 2004);
therefore, phytophagous insects are generally younger
than their host plant lineages (Percy et al., 2004; Til-
mon, 2008). Many phytophagous insects follow this
evolutionary pattern, especially for higher categories.
Only strict insect-plant coevolution groups, e.g., fig-
pollinating wasps (Cruaud et al., 2012), show strong
contemporaneous diversification patterns. Asyn-
chronous radiations of the phytophagous true bugs
and the angiosperms with similar diversification rates
during the Early Cretaceous indicate that the angios-
perm explosion was an important biotic driving force
for the evolution of phytophagous true bugs. Members
of most of the extant phytophagous lineages feed on
host plants belonging to several taxonomically unre-
lated plant clades, but a few lineages are indeed closely
associated with specific plant lineages, such as all
members of Xylastodorinae (Miroidea: Thaumasto-
coridae), which develop only on palms (Couturier
et al., 1998; van Doesburg et al., 2010; Schuh & Weir-
auch, 2020), or the majority of blissids (Lygaeoidea:
Blissidae), which are associated with Poaceae (Schuh
& Weirauch, 2020; Slater, 1976). These lineages exhibit
strong affinity with host-plant lineages (Couturier
et al., 1998; Slater, 1976), and the correlated diversifi-
cation patterns of the angiosperm lineages and the
associated true bug clades can be explored.
Spatio-temporal variations in abiotic factors of the

environment and climate have long been considered to
play significant roles in biological evolution through
geological time (Condamine et al., 2013; Lewitus &
Morlon, 2018). The global atmospheric oxygen level
rose and hit the Triassic peak during the inferred early
diversification phase of the angiosperms and early ori-
gin phase of phytophagous true bugs, under a warm
climate (Ward, 2006; http://www.scotese.com/climate.
htm; Fig. 3). From the end-Triassic (Rhaetian) to the
Early Jurassic the global atmospheric oxygen level and
temperature dropped precipitously; simultaneously the
Earth suffered the fourth biodiversity crisis, the TJB
mass extinction. From the Late Jurassic global temper-
ature began to rise steadily, with an increase in the
atmospheric oxygen level. From the Jurassic to the
Cretaceous was the only period of the Mesozoic with-
out mass extinctions, and the continuous steady and
recovering environment offered optimal conditions for
flourishing plant and insect life. The rapid explosion of
phytophagous true bugs in the Early Cretaceous sug-
gests that, along with rising temperature, an increasing
atmospheric oxygen level could facilitate—rather than
inhibit—biodiversification (Edwards et al., 2017;

Reinhard et al., 2016; Wang et al., 2019). The explo-
sive radiation of angiosperms in the Cretaceous
occurred with the continuously rising temperature,
indicating a close correlation between biodiversity and
global temperature (Mayhew et al., 2008). The remark-
able congruence between the rising atmospheric oxy-
gen level and temperature and the rapid diversification
of phytophagous true bugs suggests that paleoenviron-
mental and paleoclimatic changes, especially atmo-
spheric oxygen level, might have promoted the
evolution for phytophagous true bugs.
Divergence time estimation and ancestral state

reconstruction of feeding habits implies a potentially
parallel origin and Early-Cretaceous fast radiation of
phytophagous lineages between Miroidea and Pentato-
momorpha, and indeed the separate evolutionary his-
tories of these two major lineages have apparently
resulted in distinct traits of phytophagy in these
groups. The great majority of phytophagous miroid
species feed mainly on actively growing tissues of vege-
tative and generative parts, in particular the mesophyll
tissues in the leaves (Wheeler, 2001), while most
lygaeoids, pyrrhocorids, and members of the early
divergent lineages of Pentatomoidea and Coreoidea
generally feed on nearly mature and/or dry seeds.
Apart from seed feeders, most of the remaining phy-
tophagous Trichophora feed in the plant circulatory
system including underground plant organs, primarily
roots. All these significant differences of feeding habits
between phytophagous miroids and pentatomomor-
phans are also reflected by the feeding mechanisms
and structure and composition of digestive system.
Miroidea bugs are cell-rupture feeders, while most sap-
feeding pentatomomorphans are salivary sheath feed-
ers or osmotic pump feeders (Panizzi et al., 2021).
Meanwhile, most miroids do not produce the gelling
saliva that is present in the salivary range of pentato-
momorphans (Panizzi et al., 2021; Sharma et al.,
2014). In addition, the salivary gland organs of mir-
oids possess the accessory salivary gland vesicles serv-
ing the recirculation of water to keep a flow of saliva,
which is absent in pentatomomorphans. In fact, cell-
rupture feeders generally do not suffer from a great
excess of water during feeding process, while the gas-
tric caeca system as a water eliminating system allows
sap-sucking pentatomomorphans to metabolize the
excess water, a feature which is absent in miroids
(Goodchild, 1963). Besides, there also exist differences
in the mouthpart structures of true bugs with various
feeding preference (Cobben, 1978; Wang et al., 2020).
The distribution and frequency of transformation of

feeding habits within Miroidea and Trichophora are
quite different. Of Miroidea, the Tingidae and Thau-
mastocoridae are exclusively phytophagous lineages.
Within the Miridae, which accounts for over 80% of
the diversity of Miroidea (Henry, 2017), one can
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observe the evolution from phytophagy to zoophagy
across nearly all the subfamilies: the apparent sister
group of the remaining Miridae, Isometopinae, is zoo-
phagous, and many genera or species from several
other subfamilies such as Orthotylinae and Deraeo-
corinae are zoophagous or zoophytophagous. Yet, the
Bryocorinae, Mirinae and Phylinae are predominantly
or exclusively phytophagous with a few glaring excep-
tions e.g., the zoophytophagous Dicyphini of Bry-
ocorinae and the genus Phytocoris of Mirinae (Schuh
& Weirauch, 2020; Wheeler, 2001). In contrast, Tri-
chophora retained phytophagy as the primary diet for
the nearly all lineages during their evolution. The three
major pentatomomorphan superfamilies almost univer-
sally retained phytophagy, except for three well-
defined lineages which secondarily shifted to zoophagy:
Asopinae (Pentatomoidea), Geocorinae, and Cleradini
(both Lygaeoidea), the last of which even became
hematophagous (Schuh & Weirauch, 2020), and a few
predaceous Pyrrhocoridae (Ahmad & Schaefer, 1987)
and zoophytophagous Berytidae species (Morkel,
2007). Despite the evolution of phytophagy acquisi-
tion, the mechanism of feeding behavior and the estab-
lishment of a preferred plant part, exhibiting distinct
pattern differences between the Miroidea and Pentato-
momorpha, similar diversification trends dominate the
independent evolutionary processes and pattern for
phytophagous true bugs within two infraorders.
In conclusion, we reconstructed the phylogenetic

relationships within Terheteroptera (Cimicomor-
pha + Pentatomomorpha) based on 138 ingroups rep-
resenting 90% of terheteropteran family-level diversity
using ML, BI, and parsimony methods; in so doing
we recovered a robust scheme of superfamily-level
relationships, i.e., (Reduvioidea + (Miroidea + (Micro-
physoidea + (Cimicoidea + Naboidea)))) + (Aradoidea
+ (Pentatomoidea + (Idiostoloidea + (Pyrrhocoroidea
+ (Coreoidea + Lygaeoidea))))). This study provides
an evolutionary timescale for Terheteroptera and an
ancestral state reconstruction of their feeding habits
and supports that phytophagous true bugs underwent
a family-level rapid adaptative radiation in the Early
Cretaceous. The best possible evidence to date, i.e., the
inferred scenario of phytophagous true bugs evolving
together with the angiosperms, along with the paleoen-
vironmental and paleoclimatic history, supports the
hypothesis that angiosperm radiation and increasing
atmospheric oxygen level could be important biotic
and abiotic drivers for the diversification of phy-
tophagous true bugs, respectively.
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Fig. S9. Phylogenetic tree of Terheteroptera based

on PCGNT12RNA dataset including 141 taxon sam-
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values < 50% are not shown.
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using maximum-likelihood analysis. The bootstrap val-
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Fig. S16. Estimated divergence times of major ter-

heteropteran lineages inferred from PCGAARNA par-
simony tree and PCGAARNA dataset. Blue bars
indicate 95% mean confidence intervals.
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