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A B S T R A C T   

For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) 
covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. 
Publicly available occurrence data along with ecological niche models might help to overcome this gap and to 
quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use a 
published occurrence database of 271 species from the cacao family (Malvaceae) to explore how South American 
PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the 
performance of online databases, expert knowledge, and modelled species distributions in estimating species 
coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American 
PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered 
by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but 
little information on species distribution within PA available. Also, raw georeferenced occurrence data were 
underestimating the number of species in PAs, and projections from ecological niche models were more prone to 
overestimating the number of species represented within PAs. We discuss that the protection of South American 
flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including 
collecting specimens inside PAs in less collected areas, and the delimitation of areas for protection in more 
known areas.   

1. Introduction 

Identifying spatial biodiversity patterns is crucial for conservation, 
given accelerating land use change and habitat destruction (Diniz-Filho 
et al., 2013; Gaston et al., 2008). For vascular plants, data collection of 
relevant areas is often challenging, especially in regions with high levels 
of species richness and endemism with collection biases, such as South 
America (Oliveira et al., 2017; Ulloa-Ulloa et al., 2017). It is against this 
background that large-scale databases of species distributions compiled 
from natural history collections, observation networks and, increas-
ingly, citizen science initiatives have become primary sources for 
assessing biodiversity patterns and are important resources for conser-
vation planning (Greve et al., 2016; Robertson et al., 2014; Williams and 
Crouch, 2017). 

Despite recent endeavors to digitize herbarium collections and 
making them available (see Robertson et al., 2014), little occurrence 
information is accessible for large parts of South America, namely in 
Amazonia (Feeley, 2015). As for most areas of Earth, biodiversity 
documentation is heavily biased towards accessible regions, e.g., near 
cities, roads and waterways (Daru et al., 2019; Oliveira et al., 2017; 
Zizka et al., 2020a). Consequently, the South American protected areas 
network (henceforth “South American PAs”) may only represent a 
biased subset of continental plant diversity, putatively missing taxa with 
a narrow distribution. This bias can be problematic for conservation 
planning, because species threatened with extinction may not be 
covered by PAs (Oliveira et al., 2017), and current efforts to evaluate 
species' extinction risk in the first place—i.e., Red Listing—primarily 
rely on occurrence records from PAs (Bridgewater, 2016; Le Saout et al., 
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2013). Currently, PAs cover around 24% of South American land surface 
with large differences among countries, provinces, and biomes for 
numerous reasons (Baldi et al., 2019). In fact, despite significant efforts 
to use the protection of endangered species or other biological factors as 
justification on PA creation (Rylands and Brandon, 2005; Salvio and 
Gomes, 2018), political and economic reasons were often at least equally 
important for PA designations (Jim and Xu, 2004; Joppa et al., 2008; 
Rydén et al., 2020). 

One attempt to overcome low collection efforts and biased sampling 
in key areas are ecological niche models (ENMs) based on occurrence 
records and environmental variables (Hopkins, 2007; Kramer-Schadt 
et al., 2013). ENMs can provide putative species distributions for areas 
with little data, and therefore can give an estimate of the biodiversity in 
each area and point to potential diversity hotspots in need of further 
field sampling. Many different ENM algorithms of varying complexity 
exist (Miller, 2010); nevertheless, for many South American species little 
physiological data and only few occurrence records are available. Thus, 
in practice, the use of ENMs for cross-taxonomic studies is limited to 
algorithms that can work with such limited data, for instance Maxent 
(Anderson and Gonzalez, 2011), regression or random forest-based al-
gorithms (Evans et al., 2010) or the bioclim algorithm (Palkar et al., 
2020). 

Hence, addressing the proportion of biodiversity covered by PAs in 
South America under different mechanistic approaches seems to be a 
necessary task for conservation planning. Yet, typical challenges for 
large-scale approaches are a heterogeneous sampling effort thorough 
particular PAs on the continent (Colli-Silva et al., 2016; Daru et al., 
2019), a poor documentation of the flora of many PAs, and geographic 
errors and misidentifications in existing botanical collections (Maldo-
nado et al., 2015; Yesson et al., 2007; Zizka et al., 2020b). Here, we 
selected a published dataset from species of the cacao family (Malva-
ceae) as model group. Malvaceae is widespread throughout the tropics, 
with species richness centers in different regions, including different 
environments of Tropical Americas (Colli-Silva and Pirani, 2020). Spe-
cifically, in this study, we aimed to explore how ecologically different 
species (i.e., species from different biomes, and species potentially 
threatened and not threatened) are represented within PAs, and how 
species of these groups are covered by South American PAs considering 
different spatial approaches (i.e., ENMs vs. point occurrence data). 

2. Methods 

2.1. Database and spatial delimitations 

In this study, we used a revised occurrence database of Colli-Silva 
and Pirani (2020). This database focuses on three of the nine subfamilies 
of Malvaceae sensu Alverson et al. (1998)—Byttnerioideae, Helicter-
oideae and Sterculioideae—which are species-rich in South America and 
include multiple taxa of economic importance such as cacao (Theobroma 
cacao L.), the West Indian elm (Guazuma ulmifolia Lam.) and the tropical 
chestnuts (Sterculia spp.). This database was built considering an 
extensive survey of the taxonomic literature and an expert review of the 
materials deposited in relevant herbarium collections for the group 
(including the largest American, European and South American 
herbaria, namely the MO, NY, RB, MBM, HUEFS, CEN, CEPEC, LIL, SPF, 
INPA and IPA collections (herbarium acronyms follows Thiers, 2022)). It 
also included an extensive review of the geographic distribution of all 
records, attributing or correcting geographic coordinates based on the 
location information described in the voucher labels found at herbaria. 

The database comprises c. 15,000 occurrence records for 271 species 
in 11 genera for South America. Species occur in different habitats, 
encompassing either narrowly distributed or widespread species in 
genera prevalent in open, seasonally dry areas (Ayenia L., Helicteres L., 
Melochia L., Rayleya Cristóbal, Waltheria L.), forested formations (Her-
rania Goudot, Theobroma L., Pterygota Schott. & Endl., Sterculia L.), as 
well as genera with species occurring in multiple biomes (Byttneria Loefl. 

and Guazuma Adans.). For more details on the database, we refer to 
Colli-Silva and Pirani (2020). 

For PA delimitations, we downloaded the World Database on Pro-
tected Areas (UNEP-WCMC, 2021), for a homogeneous and standard 
nomenclature of PAs across different countries in South America. We 
adopted the biome delimitations of Olson et al. (2001), except that we 
considered the Atlantic Forest and Amazonia as two biomes in their own 
right, because these two major blocks of South American “Tropical and 
Subtropical Moist Broadleaf Forests” sensu Olson et al. (2001) differ in 
their biogeographic history, accessibility, and conservation status for 
our study group. 

2.2. Ecological niche modeling 

All downstream analyses were run in the R Environment (R Core 
Team, 2021). Firstly, we modelled species ranges based on Colli-Silva 
and Pirani (2020) occurrence database (see section above) and climatic 
variables, using the “sdm” package v. 1.0–67 (Naimi and Araújo, 2016). 
To do so, we downloaded 10 min resolution bioclimatic variables from 
the WorldClim project v. 2, which are derived from monthly tempera-
ture and rainfall values often used in ecological modeling techniques 
(Fick and Hijmans, 2017; Karger et al., 2017). 

We reduced geographically sampling bias of nested point occur-
rences by a spatial thinning of species occurrence records with the 
“spThin” package v. 0.2.0 (Aiello-Lammens et al., 2015) with a 25 km 
buffer. For the cases where we developed ENMs (i.e. species with 10 or 
more occurrence records), background points were extracted from the 
area delimited by a minimum convex hull around the occurrence points. 
We used the thinned occurrences to model species distributions using 
the following workflow: (1) for species with more than 15 records, we 
did a Principal Component Analysis (using the “rasterPCA” function of 
the RStoolbox v. 0.2.6 package; Leutner et al., 2019) of the bioclimatic 
variables and considered the first three principal components as pre-
dictors in our ENM; (2) for taxa with 10 to 14 records, we did a similar 
approach but considered only the first two principal components; (3) for 
species with 3 to 9 records, we approximated the range by a convex hull 
polygon around the occurrence points; finally, (4) for species with less 
than 3 records, we adopted a buffer of 25 km radius around the occur-
rence as species range. The rationale for the choice of the number of 
specimen records to develop ENMs or to approximate species' distribu-
tion range by convex hull polygons is that less than three records are 
prone to develop inaccurate ENMs (Proosdij et al., 2015). 

We used an ensemble/consensus approach of obtaining an un-
weighted averaging mean of random forest, Maxent and bioclim models, 
with five replicates and cross-validations each. We then generated spe-
cies presence/absence distributions using a threshold of equal sensitivity 
and specificity (see Liu et al., 2005). For model evaluation, we reported 
the mean Area Under the Curve (AUC) and the True Skill Statistic (TSS; 
check Allouche et al., 2006 for more info on these metrics). 

2.3. Obtaining threat status 

As only less than 20% of our study species were officially Red Listed 
by the IUCN, the International Union for Conservation of Nature (www. 
iucn.org), we estimated species' threat levels using a preliminary con-
servation assessment via the “IUCNN” package v. 0.9.3 (Zizka et al., 
2020c) based on Colli-Silva and Pirani (2020) point occurrence database 
(see Section 2.1.), classifying species either as “threatened” or “non- 
threatened”, according to “IUCNN” threat status suggestions. 

IUCNN suggests preliminary threat categories by approximating 
species' Red List assessments according to the scheme of the IUCN (Zizka 
et al., 2020c). Briefly, IUCNN training models are based on three neural 
network algorithms that predict the conservation status of a species as a 
regression task. Each model incorporated by the package is conceptually 
different but have individual advantages and limitations. Detailed per-
formances of every model, as well as their implementation in R 

M. Colli-Silva et al.                                                                                                                                                                                                                             

http://www.iucn.org
http://www.iucn.org


Ecological Informatics 69 (2022) 101668

3

Environment are detailed by Zizka et al. (2020c). Approximations were 
based on geographic species occurrences, environmental data as pre-
diction features, and existing IUCN Red List assessments as training data. 
While these assessments are only an approximation of IUCN full as-
sessments, the accuracy of the approach in approximating assessments 
on the threatened vs. non-threatened level has been shown to be above 
80% in other taxa (Zizka et al., 2020c). Hence, in the absence of a full 
assessment, “IUCNN” provides a rapid proxy to discuss potential con-
servation measures when only occurrence data is available. 

As training dataset for the IUCNN models, we downloaded a second 
alternate database of preserved specimens obtained from GBIF, the 
Global Biodiversity Information Facility repository (GBIF.org, 2021). It 
should be noted that, prior to generating the training set, we performed 
standard data cleaning procedures of the GBIF database above-
mentioned, removing invalid and inaccurate coordinates (e.g., points in 
the sea, country or state centroids, incomplete coordinates), using the 
“CoordinateCleaner” v. 2.0–18 package (Zizka et al., 2019). 

2.4. Assessing the coverage of species in PAs 

To evaluate the coverage of species in PAs considering their occur-
rence in different biomes (see Section 2.1.) and their threat status (see 
Section 2.3.), we calculated the empirical representation index F as the 
mean fraction of records within PA across all species s in the dataset. We 
then compared F with a simulated null model Fr. To do so, we sampled 
occurrences for s species across South America, with the same distri-
bution of occurrence numbers but with randomized locations and 
calculated Fr based on this simulated data. We replicated this calculation 
1000 times (r = 1000) and obtained an Fr fraction for all species, ac-
cording to the following equation: 

Fr =
1
s
*

(
∑

s

ns

Ns

)

Where ns is the number of records that the species s has inside South 
American PAs and Ns is the total number of records of the species s for a 
given replicate r. Data for all s species were obtained, and we used a two- 
side Kolmogorov-Smirnov Test, which also considers the variance of 
data, to test if the empirical distribution and the simulated replicates 
differed at a significance level of 0.05. We assumed as null hypothesis 
that empirical and simulated distributions would not be different. 

Finally, to study the coverage in different biomes, we used the same 
approach as described above, but restricted the sampling of random 
points to the respective biome of interest. To assess which species were 
underrepresented in PAs, we separately examined potentially threat-
ened species (see Section 2.3.) and species from different biomes 
(assigning species to a biome if more than 70% of its records were within 
that biome). 

2.5. Contrasting species coverage of ENMs and point occurrence data 

To contrast the performance of ENMs and point occurrence data, we 
used the Colli-Silva and Pirani (2020) database as gold standard for 
comparison with two other databases: (1) point occurrence data for the 
same species of Colli-Silva and Pirani (2020), but whose occurrence 
points were automatedly downloaded from GBIF repository (GBIF.org, 
2021) with no further revision, except for standard data cleaning pro-
cedures (see Section 2.3.), and (2) predicted range from the distribution 
modeling binaries (see Section 2.2). 

For ENM and point occurrence data, we counted the species richness 
and number of endemic species in each country. Furthermore, the 
presence or absence of every species in South American PAs according to 
ENM or point occurrence data results were summarized to create a 
confusion matrix. Then, we calculated omission (false negatives) and 
commission (false positives) errors as well as other accuracy metrics 
using the “caret” package v. 6.0–84 (Kuhn et al., 2019). 

3. Results 

3.1. Ecological niche models (ENMs) 

We obtained AUC scores higher than 0.8 for most of the distribution 
models (Appendix S1 in Supplementary Material), indicating good 
model fit in general. Our ENMs suggested moderate to high species 
richness in sparsely sampled areas in Central and Northwestern South 
America (Fig. 1). Modelled richness also suggested western Amazonia, 
the Caatinga in Northeastern Brazil and the dry deciduous forest for-
mations of central-western Brazil as centers of species richness in the 
study group. 

ENMs suggested higher species numbers than found by raw occur-
rences for most countries, for instance in Peru and Uruguay (Table 1). 
However, for some countries, such as in Argentina, Paraguay and Guy-
ana, species richness decreased compared to point occurrences. Brazil, 
Colombia, Paraguay and Bolivia were also the countries projected to 
harbor more species and endemic species (Table 1). Compared to raw 
occurrences, the distribution models suggested a lower country-level 
endemism, especially in Bolivia, Paraguay and Venezuela (Table 1). 
Model outputs are available as Supplementary Material (Appendix S2). 

3.2. Species coverage in PAs 

The coverage of occurrence records in South American PAs varied 
among species, biomes, and threat levels. In total, 79 of the 271 study 
species (29%) lacked known occurrences in any PAs; of these, 20 were 
indicated as potentially threatened by our preliminary assessment (i.e., 
as “Vulnerable”, “Endangered” or “Critically Endangered”; see Table S2 
for the full occurrence data per species). Our preliminary conservation 
assessment suggested 23 species as potentially threatened and only three 
of these, Byttneria abutiloides A.St.-Hil. and Naudin, Byttneria obtusata 
Benth. And Helicteres urupensis Leane had at least one record inside any 
PA. Interestingly, these three species are all restricted to forested envi-
ronments: Byttneria abutiloides from the Brazilian Atlantic Forest, and 
B. obtusata and H. urupensis from different sites of Amazonia (see also 
Colli-Silva and Pirani, 2020). 

In general, species were underrepresented in PAs compared to a 
random expectation (Fig. 2a) and threatened species were less covered 
in PAs than non-threatened species (Fig. 2b and c). Noteworthy excep-
tions from the Amazonian and the Atlantic Forest were Pterygota, Ster-
culia and Theobroma species, which are well represented in PAs from 
forested biomes. In contrast, examples of underrepresented genera in 
PAs were Ayenia and Byttneria, mostly from open seasonally dry for-
mations, and Herrania from less collected areas of Amazonia, especially 
Western Brazil, Eastern Colombia and Northern Peru. 

Within the individual South American biomes, Amazonian and 
Atlantic Forest species were best represented (Fig. 3). For the other bi-
omes with less delimited PAs, i.e., Deserts and Xeric Woodlands and 
Tropical and Subtropical Grasslands and Savannas, species coverage was 
as underrepresented given the PAs network for these biomes (Fig. 3). 
Amazonia exhibited, on median, higher percentages of species inside 
protected areas (27.3%), whilst other biomes exhibited 7 to 11% of 
median records per species inside PAs, a smaller fraction due to less 
protected-areas delimited. 

3.3. Accuracy of ENMs and point-occurrence approaches 

The GBIF point occurrence database revealed high levels of sensi-
tivity and specificity, while ENMs had a low sensitivity scores, reflecting 
errors of commission, with where there is an incorrect account of the 
species in PAs (Table 2). Conversely, lower levels of sensitivity reported 
in our results (Table 2) reflect that ENM predictions failed in predicting 
the occurrence of species inside PAs. In other words, despite the use of 
spatial filters to reduce over-prediction of species richness, ENM pre-
dictions were more prone to errors of commission (overestimating the 
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number of species represented within PAs). Nevertheless, there were 
also cases of errors of omission (underestimation of the presence of 
species), and projected species richness in some countries decreased 
when compared to the point occurrence database. 

4. Discussion 

Our results showed that different species are unequally covered by 
South American PAs, as almost a third of all species had no occurrence 
records in any PA. Secondly, the coverage in PAs was also different 
among threat levels and biomes, as we found most of the potentially 

Fig. 1. Species richness maps based on (a) manual revisited point occurrences and (b) ENM predictions at 0.5◦ gridcells. From the map (b), we selected four major 
areas (c-f), with highest levels of predicted species richness, intersecting it with the South American PAs: (c) the Espinhaço Range, (d) Brazilian-Peruvian Amazonian 
indigenous lands, (e) Brazil/Bolivia Pantanal/Chaco areas and (f) Chapada dos Veadeiros. The shade areas represent PAs. 

Table 1 
Species richness and endemism levels of South American countries based on known (point occurrences) and projected (species distribution modeling, ENM) species 
occurrences. The first three columns show the total number of species for each country, and the latter three shows the number of endemic species to each country. For 
each case, besides the number of species considering known and projected occurrences, there are also the “change” column indicating the percent change from one 
approach to another. For “endemic species to the country”, the percent from all species are in parenthesis.  

Country Total no. of species Endemic species to the country 

Total point 
occurrences 

Total 
ENM 

Change from ENM to point 
occurences 

Point occurrences (% 
Total) 

ENM (% 
Total) 

Change from ENM to point 
occurences 

Argentina 44 38 −14% 4 (9%) 5 (10%) 20% 
Bolivia 69 73 6% 4 (6%) 2 (0%) −100% 
Brazil 179 195 9% 80 (45%) 59 (30%) −26% 
Chile 0 2 – – – – 
Colombia 67 74 10% 13 (19%) 6 (10%) −54% 
Ecuador 54 57 6% 6 (11%) 1 (0%) −83% 
French 

Guyana 
18 19 6% – – – 

Guyana 34 32 −6% 1 (3%) 1 (0%) 0% 
Peru 17 80 371% 2 (12%) 5 (10%) 150% 
Paraguay 73 31 −58% 9 (12%) 0 (0%) −100% 
Suriname 16 22 38% – – – 
Uruguay 2 7 250% – – – 
Venezuela 48 51 6% 3 (6%) 1 (0%) −67%  
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threatened species only outside PAs. Thirdly, we found that point 
occurrence records without any further data curation underestimated 
species coverage in areas where sampling effort is low (namely in 
Amazonia), whereas ENMs overestimated the occurrence of species in 
PAs in general. 

Our results can be interpreted under a number of perspectives: 1) 
considering the impact of different approaches to obtain species occur-
rences inside PAs (either considering point occurrences or their pro-
jected area); 2) the heterogeneity of their presence or absence inside PAs 
(which species, from which biomes or threat status, are better repre-
sented in PAs); 3) in which levels these species are more, less or as ex-
pected to occur inside PAs when comparing to a simulated scenario 
under null conditions. In the next sections, we shall discuss each inter-
pretation in detail. 

4.1. Impacts of ENMs and point-occurrence approaches 

The reported over-prediction of species (Table 2) present in PAs by 
ENMs is expected, because rarely all environmentally suitable areas are 
effectively occupied by a species (Aranda and Lobo, 2011; Mendes et al., 
2020). The common approach to account for this limitation by using 
spatial buffers as filters proved to be insufficient in the case of our study, 
cautioning against the use of simple ENMs to predict the species richness 
of specific PAs. Nevertheless, we see the major use of correlative ENMs 
in detecting potential conservation gaps in unprotected or undocu-
mented areas and promising locations for field sampling (e.g., Graham 
and Hijmans, 2006; Hopkins, 2005; Oliveira et al., 2019). In this sense, 
despite their limitations, ENMs are useful when little information is 
available. 

It should be noted that the models we used in our study—random 
forest, Maxent and bioclim, which are the widest applied algorithms in 
ENM studies (Mi et al., 2017; Phillips et al., 2006)—were ensembled to 
create the outcomes, which resulted in high AUC and TSS scores 
(Table 1; Appendix S1). We attribute this characteristic to the fact that 
while logistic regression models are highly interpretable (but less ac-
curate), because it is easy to extract individual coefficients, they end up 
being less accurate. Conversely, random-forest models are highly accu-
rate but less interpretable. Both accuracy and interpretability are 
important characteristics in ENMs, and ensembling the information 
provided by both algorithms resulted in a good niche characterization of 
the species in our group. Moreover, our results reinforce what other 
studies have indicated on the utility to use ENMs to predict species 
distribution (Costa et al., 2009; García, 2006). Particularly in the study 
of Costa et al. (2009), the authors highlight the advantages of ENMs in 
projecting squamate distribution in areas far apart from known localities 
or inaccessible PAs of the Brazilian Cerrado. Namely, the “Parque 
Nacional da Chapada das Mesas”, in Northeastern Brazil, known for 
being little disturbed but poorly collected for their study group. In their 
work, predictions are better reached using specific models, such as 
Maxent, and maximized the chance of tackling areas for further sam-
pling. In the case of our study, both the park and the model were 
included, and we found similar results, which shows the use of ENMs as 
a remedy to avoid sampling bias in poorly collected areas. 

Another remedy is the mobilization of existing data. Recent efforts in 
this direction include for instance the documentation of the flora of 
Brazilian PAs in and openly accessible online Floral Catalogue of Bra-
zilian Protected Areas coordinated by the Rio de Janeiro Botanical 
Garden (“Catálogo de Plantas das Unidades de Conservação do Brasil”, 
https://catalogo-ucs-brasil.jbrj.gov.br/), and the Distributed Informa-
tion System for Biological Collections: Integrating Species Analyst and 
SinBiota (“speciesLink network”) initiative to make available occur-
rence records from species of the Brazilian fauna and flora derived from 
museums (Canhos et al., 2015). In South America, a similar initiative 
exists for the flora of the Guianas as well (http://portal.cybertaxonomy. 
org/flora-guianas/node/1). Our results stress the importance of such 
initiatives together with targeted floristic and taxonomical surveys 

Fig. 2. Compared boxplots of the percent of records in PAs for species given 
empirical and simulated distributions. Distribution data consider all species, 
then only threatened, and only not threatened considering our preliminary 
conservation assessment. All data used to build these graphs are available as 
Supplementary Material (Table S3). 
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within particular PAs (Hopkins, 2005; Ribeiro et al., 2018; Zappi et al., 
2019), to achieve global commitments such as the Global Strategy for 
Plant Conservation goals (CBD-Convention on Biological Diversity, 
2016), which requires that 75% of a country's threatened species should 
be covered within its PAs network. In addition, targeted collections are 
indispensable for updating the taxonomical knowledge on individual 
genera and families and to update herbarium collections (Hopkins, 
2007). 

4.2. Different coverage in South American PAs 

For our study group, species are less covered by PAs in open/dry 
biomes when compared to their occurrence in PAs from forested envi-
ronments (Fig. 3). This can be a result of the reduced proportion of these 
biomes protected by PAs due to the historical neglect of open/dry bi-
omes compared to forests in conservation decisions (Baldi et al., 2019; 
Pennington et al., 2006). Such neglect has various causes, as discussed in 
Pennington et al. (2006) including (1) the failure to consider different, 
naturally fragmented open/dry biomes as a distinct biome; (2) the 
disagreement on the nomenclature of each biome (e.g., adopting the 
nomenclature “Cerrado” vs. “savannas”; “Caatinga” vs. “dry deciduous 
forest” in areas of Brazil); or (3) the ongoing fragmentation of already 
naturally fragmented biomes due to human land use. 

Conversely, larger PAs, such as those found in Amazonia, may be 
effective in protecting their biodiversity and are under less human 
pressure (Jones et al., 2018), although this is a matter of debate (see 
Fahrig, 2001). These large PAs seem to be essential for protecting our 
study species, particularly in Northern Brazil, the Guianas, Colombia, 
Peru, Ecuador, and Venezuela (Table 1). Our findings of a lower-than- 
expected coverage of species in Amazonia (Fig. 3) may be an artifact 
of the difficult accesses to these PAs and the resulting incomplete 

Fig. 3. Compared boxplots of the percent of records in PAs given empirical and simulated distributions, but per major biomes. This figure consider species with 
>70% of their records within the main biome delimitations sensu Olson et al. (2001), and random points were generated within each biome delimitation (see Section 
2.4 in Methods). All data used to build these graphs are available as Supplementary Material (Table S3). 

Table 2 
Goodness of fit when comparing (1) GBIF automated cleaned occurrence data-
base (GBIF.org, 2021) and modelled (ENM framework) with a manually verified 
occurrence database (Colli-Silva and Pirani, 2020) as gold standard. See 
Table S1 in Supplementary Material for a full dataset used in this analysis.  

Metrics GBIF database ENM predictions 

Sensitivity (reflects commission errors) 0.78 0.06 
Specificity (reflects omission errors) 0.85 0.97 
Positive Predicted Value 0.68 0.50 
Negative Predicted Value 0.90 0.71 
Prevalence 0.29 0.29 
Detection Rate 0.23 0.02 
Detection Prevalence 0.33 0.04  
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knowledge of their flora and fauna as suggested in other studies (Feeley, 
2015; Hopkins, 2007; Oliveira et al., 2016), including for our study 
group (Colli-Silva and Pirani, 2020). 

In contrast to the PAs of Amazonia, most remnants of intact habitat in 
the coastal regions of South America or in the center remain unprotected 
(Baldi et al., 2019; Watson et al., 2014). Examples are areas of open/dry 
habitats encompassing the Brazilian Caatinga or the Chaco. Most of 
these areas are also failing to reach some of the Aichi Biodiversity Tar-
gets (Baldi et al., 2019)—a set of global targets established at the 
Convention on Biological Diversity (CBD), held in Nagoya, Japan, in 
2010—indicating that improved strategical planning towards protecting 
species and centers of plant endemism in these areas is necessary. 

Lastly, our results show a good representation of our study group in 
the PAs of the Atlantic Forest where plant species are both relatively well 
sampled and where the floras of PAs are relatively better known (Oli-
veira et al., 2017; Ribeiro et al., 2018; Rodrigues et al., 2004). This 
contrasts with findings from the open/dry biomes—where the coverage 
was as expected based on the area protected but with few species pro-
tected in absolute numbers, and Amazonia, where we found a lower 
fraction of species covered by large areas of PA. Increasing initiatives 
observed in conserving and restoring the Atlantic Forest over the past 
decade (Joly et al., 2014; Rezende et al., 2018; Tabarelli et al., 2010), 
and ongoing efforts in documenting biodiversity (e.g., Colli-Silva et al., 
2020) may reflect the better performance of the PAs in the Atlantic 
Forest. Still, some authors have considered the existing efforts as 
insufficient to guarantee the conservation of Atlantic Forest biodiversity 
(Tabarelli et al., 2005). 

In conclusion, despite the progress made in the past decades in un-
derstanding Neotropical diversity (see Antonelli et al., 2018) and 
defining PAs (including national parks, reserves, and indigenous terri-
tories), our results indicate that, by using species of the Malvaceae 
family as model organisms, a large fraction of South American plant 
diversity remains unprotected or poorly known (as revealed by the 
contrast of ENMs and point-occurrence approaches). This may be related 
to the limited knowledge diversity, for instance in Amazonia which is 
mostly based on collections from spatially restricted historical expedi-
tions in Venezuela (Huber and Wurdack, 1984), Colombia (Baker et al., 
1954), Ecuador (Renner, 1993) and Brazil (Hopkins, 2005; Prance, 
1971), or the long-term neglect of certain habitats, as in the case of 
open/dry biomes. Nonetheless, the issue of limited and biased data 
availability, in particular from Amazonia, will likely persist, since the 
number of expeditions has dropped in the last two decades (ter Steege 
et al., 2016), and the focus of on-going collection on accessible areas 
(Oliveira et al., 2017, 2019), due to high cost of field expeditions in 
remote PAs. 
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Registros de espécies vasculares em unidades de conservação e implicações para a 
lista da flora ameaçada de extinção no estado de São Paulo. Rodriguésia 67, 
405–425. https://doi.org/10.1590/2175-7860201667212. 

Colli-Silva, M., Reginato, M., Cabral, A., Forzza, R.C., Pirani, J.R., Vasconcelos, T.N.C., 
2020. Evaluating shortfalls and spatial accuracy of biodiversity documentation in the 
Atlantic Forest, the most diverse and threatened Brazilian phytogeographic domain. 
TAXON 69, 567–577. https://doi.org/10.1002/tax.12239. 

Costa, G.C., Nogueira, C., Machado, R.B., Colli, G.R., 2009. Sampling bias and the use of 
ecological niche modeling in conservation planning: a field evaluation in a 
biodiversity hotspot. Biodivers. Conserv. 19, 883–899. https://doi.org/10.1007/ 
s10531-009-9746-8. 

Daru, B.H., le Roux, P.C., Gopalraj, J., Park, D.S., Holt, B.G., Greve, M., 2019. Spatial 
overlaps between the global protected areas network and terrestrial hotspots of 
evolutionary diversity. Glob. Ecol. Biogeogr. 28, 757–766. https://doi.org/10.1111/ 
geb.12888. 

Diniz-Filho, J.A.F., Loyola, R.D., Raia, P., Mooers, A.O., Bini, L.M., 2013. Darwinian 
shortfalls in biodiversity conservation. Trends Ecol. Evol. 28, 689–695. https://doi. 
org/10.1016/j.tree.2013.09.003. 

Evans, J.S., Murphy, M.A., Holden, Z.A., Cushman, S.A., 2010. Modeling Species 
Distribution and Change Using Random Forest. Predictive Species and Habitat 
Modeling in Landscape Ecology, pp. 139–159. https://doi.org/10.1007/978-1-4419- 
7390-0_8. 

Fahrig, L., 2001. How much habitat is enough? Biol. Conserv. 100, 65–74. https://doi. 
org/10.1016/s0006-3207(00)00208-1. 

Feeley, K., 2015. Are we filling the data void? An assessment of the amount and extent of 
plant collection records and census data available for tropical South America. PLoS 
One 10, e0125629. https://doi.org/10.1371/journal.pone.0125629. 

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate 
surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/ 
10.1002/joc.5086. 

García, A., 2006. Using ecological niche modelling to identify diversity hotspots for the 
herpetofauna of Pacific lowlands and adjacent interior valleys of Mexico. Biol. 
Conserv. 130, 25–46. https://doi.org/10.1016/j.biocon.2005.11.030. 

Gaston, K.J., Jackson, S.F., Cantú-Salazar, L., Cruz-Piñón, G., 2008. The ecological 
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