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Deconstructing the geography of human
impacts on species’ natural distribution

Conor Waldock 1,2,3 , Bernhard Wegscheider1,2,3, Dario Josi 1,2,3,
BárbaraBorgesCalegari1,2,3,4, JakobBrodersen 1,2, Luiz JardimdeQueiroz1,2,5,6&
Ole Seehausen1,2

It remains unknown how species’ populations across their geographic range
are constrained by multiple coincident natural and anthropogenic environ-
mental gradients. Conservation actions are likely undermined without this
knowledge because the relative importance of the multiple anthropogenic
threats is not set within the context of the natural determinants of species’
distributions. We introduce the concept of a species ‘shadow distribution’ to
address this knowledge gap, using explainable artificial intelligence to
deconstruct the environmental building blocks of current species distribu-
tions. We assess shadow distributions for multiple threatened freshwater
fishes in Switzerland which indicated how and where species respond nega-
tively to threats — with negative threat impacts covering 88% of locations
inside species’ environmental niches leading to a 25% reduction in environ-
mental suitability. Our findings highlight that conservation of species’ geo-
graphic distributions is likely insufficient when biodiversity mapping is based
on species distribution models, or threat mapping, without also quantifying
species’ expected or shadow distributions. Overall, we show how priority
actions for nature’s recovery can be identified and contextualised within the
multiple natural constraints on biodiversity to better meet national and
international biodiversity targets.

Tackling biodiversity loss remains a major challenge for conservation1,
with surging extinction rates driven by catastrophic declines of abun-
dance within some populations2,3 and shrinking of species’ geographic
ranges4–6. Alleviating specific threats with targeted and evidence-based
conservation actions can be highly beneficial for local species’
populations7–9. Targeted conservation actions would be most efficient
when jointly understanding where species naturally occur, which areas
are threatened, and whether species are sensitive to threats. This
requires identifying how multiple natural and anthropogenic factors
together contribute to structuring species’ geographic distributions10.

At present, most studies focus on revealing the overall ranking of
global threats, rather than the local contribution of each threat. For
example, identifying land-use change as the main global cause of ter-
restrial and freshwater biodiversity loss and over-harvesting as the
main global cause of marine biodiversity loss11. However, the local
contribution of each threat to the state of species populations could
differ substantially from the global average. As such, effective con-
servation efforts should alleviate the most limiting anthropogenic
threat(s) in each population’s location across a species’ distribution.
Furthermore, conservation planning must account for the broader
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non-anthropogenic environmental and ecological context alongside
threats, and weakmanagement outcomes for biodiversity occur if this
broader context is overlooked12,13. Implementing conservation actions
at local and sub-national scales is also key to achieving international
biodiversity targets such as the Kunming-Montreal Global Biodiversity
Framework (GBF)14. For instance, Target 2 of the GBF calls for 30% of
degraded areas to be restored by 2030. However, we often do not
know where and which conservation actions will be most effective
because the local contribution of each threat to the state of species
populations is unknown — limiting the capacity to implement and
downscale conservation actions to meet biodiversity targets
effectively.

Niche-based theories on the geography of species populations
recognise the high dimensionality of species niches15–18, and a long-
standing challenge in ecology is to unravel this dimensionality and
reveal where species are constrained by different environmental
factors15. While ecological niche models and species distribution
models (SDMs) are widely applied to make predictions of geographic
areas suitable for species populations to occur19,20, they are less often
applied to understand the geography of environmental factors
affecting populations. Current research also rarely disentangles the
relative influence of natural versus anthropogenic factors on spatial
patterns in environmental suitability predictions21,22, as highlighted
above as critical to conservation and restoration planning13. Recent
work shows that the spatial contribution of different environmental
factors can be identified by applying explainable artificial intelligence
(XAI) to SDMs23,24, which highlights new avenues for generating fun-
damental and applied insights on the geography of environmental
constraints on species populations.

Here, we investigate freshwater fish communities, which are the
most speciose vertebrate group having an estimated extinction rate of
100x natural rates of extinction25. In addition, freshwater fishes live
under multiple coincident and spatially structured threats26–28 that
occur along strong natural gradients in dendritic networks29. Fresh-
water fish are, therefore, a goodmodel to achieve the overarching aim
of this work: to quantify the relative contribution of multiple envir-
onmental factors affecting species’populations in each location across
portions of their geographic distributions. We apply XAI (SHapley
Additive exPlanations, or SHAP values30) combined with species dis-
tribution models to estimate the relative contributions of natural fac-
tors and anthropogenic threats to local predictions of environmental
suitability. SHAP values enable us to decompose net environmental
suitability scores for each location into separate contributions from
each environmental variable. This provides further observation-level
insights compared to traditional variable importance approaches that
only show which variables are overall most important for model per-
formance. We also aggregate SHAP values to explore the rarely
addressed question of how the positive effects of natural factors (a
species’ abiotic niche) and the negative effects of threats influence
species’ populations across their geographic range.

In answering the above, we coin a distributional concept, the
‘shadow distribution’ of a species (Fig. 1). A shadow distribution is the
area where natural abiotic factors defining the realised niche of a
species positively contribute to species population performance, but
threats, contributing negatively, reduce population performance —

quantifying the extent that an observed species distribution is in the
shadow of human influence. We also define the 'expected distribution'
as all areaswhere abiotic realised niche factors positively contribute to
environmental suitability. We then examined the extent to which
shadow distributions mask areas of potentially suitable habitat, which
would indicate that using environmental suitability predictions from
SDMs greatly underestimates the expected distribution of species. If
using indicators of species distributions from environmental suit-
ability predictions alone (e.g.,31,32 and as indicators forGBF targets 1–3),
such differences between raw environmental suitability and expected

distributions could undermine the monitoring, implementation, and
priority setting of any spatial biodiversity assessment.

For specific locations, we ask, how do multiple environmental
factors contribute both negatively and positively to the multiple
potential species that could occur in a location? Further, does the
relative contribution of these multiple environmental factors vary
between contrasting locations? To demonstrate the broad-ranging
applications of our approach we provide single- and multi-species
assessments across species geographic distributions, in addition to
multi-species assessments at specific locations. Overall, our analysis
considered eight native species that are threatened or ecologically
important and one non-native species, in Switzerland, as well as their
responses to 11 natural factors and threats in each of approximately
15,000 river sub-catchments (i.e., around 1.5 million potential local
relative contribution scores). We show how quantifying the funda-
mental natural constraints on species geographic ranges, as well as
how threats act within these fundamental constraints, builds better
expectations for the spatial distribution of biodiversity to manage
the most important threats that constrain realised biodiversity
locally.

Results
Mapping local relative contributions for single- and multi-
species comparisons
The spatial distribution of Alburnoides bipunctatus exhibited the
highest occurrence in the lower elevation main stem of the Aare River
and the adjoining tributaries (Fig. 2a and see Supplementary Fig. 8 for
all species). River discharge, connectivity, and temperature were the
most important environmental factors contributing to environmental
suitability (Fig. 2b, c). The remaining factors of urbanisation, river
morphological modification index, distance to lakes, floodplain avail-
ability and flow velocity had lower contributions. An overview of the
magnitude and direction of all variable effects across species is shown
in Fig. 3. Investigating the spatial distribution of SHAP values revealed
independent contributions of variables to the spatial distribution of
environmental suitability of A. bipunctatus (Fig. 2e–l, and across all
species Fig. 3 and Supplementary Figs. 9–16). For example, river dis-
charge and connectivity had spatially independent contributions to
environmental suitability, even though these variables had similarly
high overall importance (Spearman’s rank correlation, ρ = −0.06). We
found low spatial correlations between all pairwise comparisons
of SHAP values across all variables for A. bipunctatus (|median Spear-
man’s rank correlation| = 0.13, |mean| = 0.2 ± 0.19). The independence
between SHAP values for different variables was generated by initial
differences in the spatial variation in the raw environmental factors
combined with the different effects of each environmental factor on
the environmental suitability of A. bipunctatus in terms of magnitude,
direction, and response shape (i.e., different sensitivity to different
factors; insets in Fig. 2e–l and Supplementary Figs. 9–17).

Deconstructing distributions to build conservation
expectations
Overall, a wide range of the areas within the natural realised abiotic
niche of A. bipunctatus had negative SHAP values for threats, in other
words, A. bipunctatus had a large shadow distribution (Fig. 4). First
partitioning the SHAP values to identify areas where natural factors
support A. bipunctatus revealed a high percentage of sub-catchments
had positive contributions of discharge (33%), minimum temperature
(69%), flow velocity (62%) and proximity to lakes (55%) to environ-
mental suitability. However, the area of geographic distribution within
the abiotic niche dropped dramatically when we considered all natural
factors together in contrast to independently, and this ‘expected dis-
tribution’ covered only 38% of all sub-catchments (i.e., defined as sub-
catchments with positive contribution across the sum of natural
abiotic SHAP values; Fig. 4a, b). Furthermore, only 6% of all sub-
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Fig. 1 | Conceptual definition of species shadow and expected distribution and
an overview of our XAI workflow applying SHAP values to species distribution
models. The top panel (1) shows the spatial relationship of an ecological property
(e.g., species occurrence, presence-absence, or abundance) across a geographic
domain depending on various environmental variables (with environmental suit-
ability indicated from red to green). Locations labelled a-d represent contrasting
locations within a species’ geographic range, each with a different explanation for
the local environmental suitability scores yi defined by model function f xi

� �
. The

locations inside the expected distributions (E) and shadow distribution (S) are
indicated by coloured borders. The middle panel (2) shows a theoretical biplot of
species distributions depending on abiotic and anthropogenic contributions to
environmental suitability. The binary expecteddistribution is definedwhereabiotic
factors have positive SHAP values (grey dashed lines), while the observed dis-
tribution is where both abiotic and anthropogenic contributions are positive. This
observed distribution is typically identified by SDMs that do not account for
anthropogenic effects. The shadow distribution comprises areas where abiotic

factors have positive SHAP values, but anthropogenic factors have negative SHAP
values, as defined by Eqs. 1–4. Conservation strategies are suggested for each dis-
tribution. Quantitative definitions on the right of the panel (2) indicate that loca-
tions c and d fall within the observed distribution, but anthropogenic impacts
reduce the expecteddistribution to the shadowdistribution. Lower panel (3) shows
how SHAP values categorise areas as inside or outside of shadow and expected
distributions. a shows a site where negative SHAP values for natural abiotic factors
reduced environmental suitability from the expected value (E), indicating it is
outside of the species’ expected distribution. b shows a site with a positive SHAP
value for natural abiotic factors, indicating the species is naturally present. c, d
represent a site where the positive effects of natural abiotic factors are countered
by the negative effects of anthropogenic factors placing the site in the ‘shadow
distribution’. Notably, (a) and (b) fall outside of the shadowdistributionbecause (a)
is not inside the expected distribution and (b) does not have negative anthro-
pogenic SHAP values.
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catchments had positive contributions for every individual natural
abiotic factor.

Next, we investigated anthropogenic threats within the expected
distribution, finding that in 89% of A. bipunctatus’s expected distribu-
tion, there was at least one threat with a negative contribution to
environmental suitability (one threat in 29% of areas, two in 33%, three
in 22% and four in 5%). Within the expected distribution, we summed
all potential positive and negative threat effects and found a net
negative effect of threats in 14% of sub-catchments. In sub-catchments
with at least one threat, we also found a 27% reduction in environ-
mental suitability compared to unthreatened sub-catchments. Conse-
quently, within the expected distribution, the rate of predicted
absencewas 1.66 times higher in threatened (78% absent) compared to
unthreatened (47% absent) sub-catchments (Fig. 4c, d).

Quantifying which threats act within the expected distribution
revealed counter-intuitive impacts of threats on species’ distributions
(Fig. 5a, b). Specifically, (lack of) connectivity was often the most
important threat variable in our model (Figs. 2b, 3). However, much of
the negative impact is outside of the natural abiotic realised niche of
the species. As such, only 15% of areas inside the expected distribution
for A. bipunctatuswere negatively impacted by a lack of connectivity –
i.e., areas falling inside the abiotic niche were generally well connected
(Fig. 4c). We found the opposite for habitat quality indicators which
had lower overallmodel importance, but hadnegative contributions to
environmental suitability across a larger percentage of the expected
distribution (e.g., high river morphological modification index = 47%,
low floodplain cover = 62% and high urbanisation = 57%). These single-
species results were highly consistent when assessed across all species

independently, with an average of 88 ± 9% sub-catchments inside
species’ niche having a negative contribution of at least one threat, and
23 ± 12% sub-catchments having a net negative effect of all threats
(Fig. 5a–c, Supplementary Fig. 19 and Supplementary Table 4).

We investigated multi-species quantitative shadow distributions
by calculating the percentage reduction in suitability predictionswhen
including threats compared to when excluding threats (i.e., the
expected suitability; Fig. 5a–c). Across all sub-catchments, we found
environmental suitability in the observed distribution was reduced by
24% (averaged across species per sub-catchment = 0.38) compared to
the expected distribution (0.54; Fig. 6a comparedwith 6b; two-sided t-
test, t = − 100; p <0.001). This average shadow distribution was spa-
tially heterogeneous (Fig. 6d). Some large contiguous patches had
lower than expected suitability, with 10% of areas having suitability
reduced to at least 56% of the expected suitability (Fig. 6c, d). Hiding
beneath these across-species averages were also strong reductions in
suitability for certain species within the expected assemblage (Fig. 6e).
As such, the most negatively impacted species in each sub-catchment
had environmental suitability reduced to only 58% of the expected
suitability on average across sub-catchments (Fig. 6e). The mean sha-
dow distributions correlated negatively with both habitat quality and
connectivity (Fig. 6g, h; Spearman’s rank correlation, ρ = −0.69;
p <0.001; ρ = −0.63; p <0.001) but less for minimum shadow dis-
tributions for habitat (ρ = −0.49; p <0.001) than connectivity
(ρ = −0.68; p <0.001), indicating connectivity constraints defined the
most negative impact within a community. We found the general
spatial patterns of shadow distributions were highly consistent
regardless of how shadow distributions were estimated but, as

Fig. 2 | Decoupled spatial drivers of species occurrence for Alburnoides
bipunctatus in the Aare-Rhine catchment of Switzerland. a shows the predicted
occurrence from a random forest model fitted to presence-absence data, the map
inset places our focal catchment region (red) in the wider Rhine River watershed
(black). b shows variable importance calculated as the average of absolute SHAP
values in the calibration dataset, indicating the average variable contribution to the
overall prediction in the calibrationdataset. c shows thedistributionofSHAPvalues
per variable, indicating whether contributions are positive or negative. Red inten-
sity indicates variable importance in (b–c). d shows the pairwise Spearman’s rank
correlation between each variable’s SHAP values, indicating the extent to which
variable contributions to predictions are spatially correlated. Blue indicates

positive correlations, and red indicates negative correlations. e–l shows the spatial
pattern of SHAP values and, therefore, indicates the contribution of a variable to a
prediction in a given sub-catchment.Wedonot show themaximum temperature to
simplify the figure because it was a highly similar pattern to the minimum tem-
perature. Positive (blue) and negative (red) contributions to the environmental
suitability prediction showdistinct spatial patterns to each threat, as also indicated
in (d). Insets show the environmental values on the x-axis and SHAP values on the y-
axis and, therefore, indicate the shape of the species response curve (see Supple-
mentary Fig. 18 for response curves across all species). Note the change in scales
betweenpanels indicatedby the y-axisof the insets.Data required to reproduce this
Figure is available in Supplementary Data 1 of our Figshare repository86.

Article https://doi.org/10.1038/s41467-024-52993-0

Nature Communications |         (2024) 15:8852 4

www.nature.com/naturecommunications


Fig. 3 | Variation in environmental effects on species distributions amongst
species and between environmental factors. The x-axis shows Spearman’s rank
correlation between environmental values and SHAP values, with high positive or
negative values indicating coupling and a strong contribution of the variable to

determine species spatial variation in environmental suitability. The variation in
Spearman’s rank values between species indicates the magnitude of variation (or
lack of) in species responses to a given variable. Data required to reproduce this
Figure is available in Supplementary Data 2 of our Figshare repository86.

Fig. 4 | Evaluating the relative contribution of natural factors and anthro-
pogenic threats to species distributions using SHAP values for Alburnoides
bipunctatus. a,b SHAP values per sub-catchment for abiotic niche factors that sum
to be positive (a) or negative (b).Colours represent the largest contributing abiotic
niche factor (discharge, flow velocity, minimum and maximum temperature and
distance to the lake). c The qualitative shadow distribution for A. bipunctatus
indicating sub-catchments within the abiotic niche but having negative con-
nectivity SHAP values (poor connectivity), negative habitat quality SHAP values

(poor habitat) or negative habitat quality and negative connectivity SHAP values
(poor connectivity and habitat), as well as no negative SHAP values for threats
(blue). Grey indicates areasoutside the ecological niche (as inb).dThe quantitative
shadowdistribution forA. bipunctatus shows the ratio betweenobserved suitability
and expected suitability, with red indicating a stronger shadow distribution (lower
thanexpected suitability) andblue indicating environmental suitability scores close
to expected suitability. Data required to reproduce this Figure is available in Sup-
plementary Data 1 of our Figshare repository86.

Article https://doi.org/10.1038/s41467-024-52993-0

Nature Communications |         (2024) 15:8852 5

www.nature.com/naturecommunications


Fig. 5 | Deconstruction of geographic ranges reveals counterintuitive threat
impactswithin expected distributions. a The percentage of sub-catchments with
positive abiotic niche-related SHAP values. A high proportion of available sub-
catchments have positive effects of abiotic niche variables, which together define
the expected distributions of species, but discharge contributes positively in the
fewest suitable sub-catchments. b The percentage of sub-catchments inside the
expected distribution with negative threat SHAP values. Lack of connectivity,
despite being the most important predictive threat, has a negative impact in the

fewest sub-catchments within the expected distribution of most species. c The
percentage of sub-catchments with a specified number of negative SHAP values for
threat factors. Boxplots indicate the median (solid line), inter-quartile range (hin-
ges) and 1.5*IQR (whiskers) for properties of the 9 studied species. A large pro-
portion of all species expected distributions have one or more threats acting
negatively on environmental suitability scores. Data required to reproduce this
Figure is available in Supplementary Data 3 of our Figshare repository86.

Fig. 6 | Multi-species average shadow distributions and their constituent parts
per sub-catchment. Panels show average (a) observed suitability which includes
the influence of threats, (b) expected suitability as the suitability excluding the
influence of threats, (c) biplot of average expected vs. observed environmental
suitability (i.e., predicted from models without SHAP adjustment) values coloured
by the mean. The summary of shadow distributions was calculated as the ratio
between observed and expected suitability (maximumof 1 andminimum of 0) and
is shown as an average across species (d), as theminimum value for any species in a
sub-catchment (e) and as the standard deviation amongst species within a sub-
catchment (f). Shadow distributions are contributed by threats that negatively
affect species distributions (g, h), represented here as the occurrence (0 or 1) of

negative contributions for connectivity (g) or habitat quality (h, floodplains, wet-
lands, urbanisation, river morphological modification index) summed within a
catchment and averaged across species. For example, where three of four habitat
quality indicators negatively impact a species in a sub-catchment, the catchment
receives a score of three. i shows a biplot where points are sub-catchments
coloured by the mean shadow distribution value for that sub-catchment. Note that
to avoid uncertainty in averages containing few species, only sub-catchments with
more than 2 species in the expected distributions are shown, areas with 2 or fewer
species are therefore indicated in grey. Data required to reproduce this Figure is
available in Supplementary Data 3 of our Figshare repository86.
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expected, exhibited reduced loss of environmental suitability (Sup-
plementary Figs. 6, 20, 21).

Local relative contributions between contrasting locations
We contrast the more modified Emme River to the more natural
Sense River to reveal the localised impacts of different environ-
mental factors on species in different management contexts. We
found the low connectivity in the upper Emme River contributed
negatively to most species’ environmental suitability (i.e., negative
SHAP values), and many species were absent from this catchment
(Fig. 7). The species found in local surveys (Cottus gobio) had weak
overall contributions of connectivity to environmental suitability
(SHAP values near zero; Fig. 7). The high distance from lakes in the
upper Emme River also contributed negatively to the environmental
suitability for Barbus barbus, Perca fluviatilis, and Squalius cephalus
even though the flow velocity in the Emme contributed positively to
the environmental suitability for these species. In the Emme River,
morphological modification index, urbanisation, and floodplain
availability had SHAP values near zero for most species. In contrast,
the Sense River had strong positive contributions of variables related
to habitat quality across multiple species, which were also directly
observed in local surveys. These positive contributions of high
habitat quality to environmental suitability were counteracted by the
negative contributions of connectivity for some species (e.g., Gobio
gobio, Lampetra planeri, Thymallus thymallus), leading to lower-than-
expected species environmental suitability predictions for these
species.

Discussion
Our framework attributes variation in population performance
between specific locations to the environmental conditions
and potential threats at those locations. Broadly, our approach
using model agnostic explainable AI tools is generalisable to any
ecological or evolutionary property, such as species occurrence,
abundance, reproductive rate and genetic diversity for the purpose of
quantifying species-specific responses of populations to environ-
mental gradients33. We provide two main contributions, which further
theunderstanding of species’ realised spatial distributions and, in turn,
aid biodiversity conservation efforts. First, we partitioned the spatial
drivers of species distributions into natural and anthropogenic factors,
introducing the concept coined a ‘shadow distribution’ (Fig. 1). This
concept provides valuable insights into hidden environmental and
human impacts on species’ geographic range. Second, we address a
long-standing ecological challenge and offer a solution to quantify the
spatial manifestation of species-specific responses to multiple envir-
onmental gradients23,24. This contribution enables the relative impor-
tance of local conditions for species communities to be understood,
supporting conservation decision-making (Fig. 7).

Shadow distributions and spatial drivers of geographic
distributions
To our knowledge, our study is the first to define and quantify a
property like the ‘shadow distribution’. Combining insights from XAI
with ecological principles allowed us to partition the available range
for a species into two parts: the area falling inside the ecological

Fig. 7 | Relative local contribution of variables to environmental suitability
predictions, as indicated by SHAP values, showing species local sensitivities to
each environmental factor in the upper Emme and Sense River catchments for
9 species. a shows the location and habitat of the Sense and Emme Rivers in the
Aare catchment. b shows the contrasting response direction, positive or negative,
and the interpretation of a positive or negative SHAP value for variables with dif-
ferent effect directions. c shows the local variable contributions expressed as the
deviation from the mean occurrence prediction for each species in the model
(vertical black lines). In (b), when variables have a positive effect (green, I, II), a
positive SHAP value indicates that the high values of that variable contribute
positively to environmental suitability, as shown in I (or vice versa in II). Where

variables have a negative effect (orange, III, IV), a positive SHAP value indicates that
the high values of the variable negatively contribute to environmental suitability.
Variable colours in (c) indicatewhether the effects are positive or negative, as in (b).
Bar colours indicate the sign of the SHAP value of effect (red = negative, blue =
positive). If species were recorded in the catchments in surveys, they are indicated
in dark shading, in contrast to light shading where species were absent from
available records. The explanatory variables used in the model are ordered by
average SHAP values across both catchments, from positive to negative. Data
required to reproduce this Figure is available in Supplementary Data 2 of our Fig-
share repository86.
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niche where a species could persist, and the area inside the ecological
niche but where humans negatively impact species’ populations. Our
solution, therefore, reveals the spatial variation in areas negatively
impacting species’ populations and locations where natural factors
support species. This addresses a critical gap in ecological niche the-
ory: that human influences should be better understood as funda-
mental determinants of species’ geographicdistributions10. Our results
imply that if omitting the negative impact of anthropogenic threats on
environmental suitability scores from SDMs, i.e., ignoring shadow
distributions, then biodiversity mapping is likely to underestimate the
potential distributions of species. As such, opportunities for restora-
tion may be overlooked because species are assumed to be naturally
absent when species are actually absent due to threats. Shadow dis-
tributions could, therefore, assist researchers and practitioners in
moving beyond mapping threats or species distributions alone. Sha-
dow distributions could also help to better define reference ecological
conditions based on the expected distribution of species, given their
natural ecological niche.Wenote that previouswork has separated out
the abiotic drivers of species distributions for African elephants23

(Loxodonta africana) or demonstrated how relationships between
environment and performance can vary spatially (e.g., non-
stationarity)34,35. However, these studies do not identify the relative
contributions of natural vs anthropogenic threats in a spatially explicit
way that allows the definition of shadow and expected distributions.

Revealing the shadow distribution of species opens many new
questions that we can only partially answer here. For example, what
factors, both intrinsic and extrinsic to species, determine howandwhy
species differ in their shadow distributions? Our species comprised
widespread temperate freshwater fishes with shadow distributions
that were quite consistent. This consistency likely reflects shared
negative responses of species to a lack of river connectivity and to
indicatorsof river habitat quality (e.g., Fig. 3). Other ecological systems
and species groups could have varying patterns, depending on: (i) the
number of threats, (ii) the strength of a threat’s effect, (iii) the diversity
of responses in a community to a threat, (iv) the abiotic niche breadth
for natural factors or ecological versatility of species and (v) the
diversity of niches in the community. Shadowdistributions are likely to
be larger in more sensitive species facing multiple significant threats
andhaving narrower abiotic niches. Shadowdistributionsmaybemost
consistent among species when the community response diversity is
low, and species share abiotic niche preferences. Future research
should discern how each of these factors independently modifies the
size and structure of species’ shadow distributions and variation
among species. A research agenda on shadow distributions, i.e., areas
where threats negatively impact species natural distributions, would
help identify conservation areas beyond current biodiversity hotspots
or areasof potential threats and instead focus on areaswhere evidence
indicates negative responses to threats given high expected suitability
and diversity. In addition, the reconstruction of expected and refer-
ence community states could occur through summarising the shadow
distributions across multiple species.

Fundamental questions on how species geographic ranges are
spatially structured can be asked and answered with our framework.
For example, the relative role of abiotic or biotic drivers at equator-
ward and poleward range edges has long remained elusive36,37. Our
results also indicate that environmental determinants of range
boundaries and internal range structure can differ. Exploring how
internal range structure is environmentally determined is an emerging
field. In general, the factors influencing the internal structure of a
geographical range are expected to differ from those affecting geo-
graphical range boundaries38. Recent research has revealed that cli-
mate change can modify internal range structure independently from
range edges, which may arise if metapopulation viability differs
between range interior and range edges39. For Alburnoides bipunctatus
and several other species, minimum temperature emerged as a

primary negative factor at the cold-alpine range limit despite many
rivers having adequate discharge. Conversely, within the accessible
thermal niche, we found patchy distribution driven by insufficient
discharge or low habitat quality.

The shadow distributions revealed here confirm the detrimental
effect of hydromorphological alterations on river fish populations,
which more widely drives the poor quality of European rivers for
biodiversity25,40,41. The uncertainty in biodiversity and threat data
makes it difficult to causally attribute biodiversity change to drivers42.
Themechanistic knowledge of the causes of population declines rarely
exists (but see ref. 43), so it is often still necessary to speculate on the
causes of biodiversity change in each specific context, relying on
expert knowledge or anecdotal inference44. Even though our study
focused only on a coarse resolution ‘presence-absence’ biological
response we recovered associations indicating impacts from multiple
co-occurring threats. Our findings suggest a milieu of threats toge-
ther reduce population performance across the riverscape, leading to
absences from multiple locations with negative impacts indicated by:
(i) low longitudinal connectivity due to high river barrier density; (ii)
low physical complexity of rivers; (iii) a lack of natural spatiotemporal
fluvial dynamics that generate riparian floodplains and instream
habitat variation and (iv) distance to urban areas. Which threat acts
where and how is then revealed through our XAI approach. Our find-
ings broadly support findings from more intensive single-species stu-
dies that show reductions in recruitment, growth rates, survival and
migration success from similar threats43,45.

Species-specific responses to multiple environmental gradients
We illuminate how unexpected outcomes of ecological management
can arise: each location in our analysis had environmental factors
with high importance and low importance for each different species,
which also shifted between locations. Equipped with this knowledge,
environmental managers can identify the factors that support or
impede population performance for each species in specific loca-
tions. In turn, this enables more accurate expectations of local-scale
biodiversity responses to restoration and management. In addition,
knowing if species have divergent or similar environmental respon-
ses indicates whether actions support whole communities or indivi-
dual species (e.g., Fig. 3). Furthermore, we provide insights for spatial
conservation planners to account for the spatial sensitivity of species
to threats in order to facilitate planning of multiple conservation
actions across a land- or riverscape46. A lack of experimental evi-
dence on population constraints in specific locations for various
species hinders managers from accurately evaluating the impact of a
single threat amid multiple factors. In river systems, neglecting to
address multiple threats simultaneously prevents biodiversity
recovery. For example, under habitat restoration, critical threats
such as connectivity are often ignored while habitat quality is
addressed but only weakly limits populations12,47. Our work helps
address the challenge of assessing the potential success of different
conservation options, which is crucial for improving long-term
management outcomes for biodiversity48.

Whilst the diversity of species responses to environmental gra-
dients is well-recognised, our work can help reveal how observed local
biodiversity, and biodiversity change, arise from independent
responses of different species to environmental change in any specific
location (e.g., Fig. 7). Previous work often veils the complexity of
species responses to environmental gradients behind an overall pre-
diction of occurrence (or abundance) in a given location, or a measure
of community stability49. This is almost always the casewith predictive
models of species distributions or abundance20,50 (but see ref. 23).
Combining AI tools with phenomenological models of natural systems
can accelerate valuable insights on how multiple threats impact bio-
diversity - insights traditionally only identified through expensive
multi-factorial experimentation51.
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Cautions, limitations and future work
When quantifying species’ shadow distributions we suggest a cau-
tionary inferential approach where each species’ response curve is
well understood and trusted before application of our framework for
shadow and expected distributions. This potentially limits the num-
ber of species studied and the spatial scope of analyses. This gui-
dance contrasts with many applications of species distribution
modelling and machine learning50 where ecological phenomena are
predicted with relatively high accuracy but not necessarily well
understood, and then applied at global scales52 or to tens of thou-
sands of species53. However, making decisions often requires well-
understood models in more local-to-regional contexts to ensure
better matches between information needs and decision contexts54.
All applications of decision-making contain costs, such that trusting
predictions of black-box models risk inefficiencies and wasted
resources23,55. In many such cases, interpretability and explainability
could be a higher priority than the traditional focus on predictive
accuracy and empirical cross-validation by site-specific prediction
tests is recommended.

We attempted to ensure that each variable couldbe partitioned as
an independent effect on environmental suitability, however, even
without multicollinearity issues, the use of XAI does not necessarily
imply causality56,57. It should be noted that SHAP values are not
inherently robust to correlated features, and we needed to check the
multi-collinearity of variables, decorrelate variables that exhibit (non-
linear) dependence, and remove variables that exhibited biologically
implausible relationships (see ref. 30 for further discussion). Our need
to use de-correlated variables echoes deep issues underlying the phi-
losophical foundation of statistical modelling of observational data
that are still imperfectly addressed across multiple scientific domains
and could be further improved56,58. Users should also recognise that
SHAP values do not enable actions directly59 without first under-
standing the direction of species response curves to threats andwhere
locations fall on this curve which enables contrasts with other obser-
vations. For example, in Fig. 7, the directionality of SHAP values only
makes sense in considering the overall response direction (Fig. 7b).We
caution that in estimating shadow distributions, the choice of adjust-
ment to the “reference” state should be carefully explored. Further-
more, we note that other XAI tools, such as counterfactual
explanations, could provide additional insights into the potential
impact of alleviating threats or further exploring scenario building by
modifying the feature space, which is common practice in biodiversity
projections60.

Wenote thatXAI-basedmodel interpretations canonlybeasgood
as the quality of themodel performance (which here ranged fromAUC
of 0.66–0.93), and an accurately performing model must represent
realistic biological phenomena. These points ultimately depend on the
quality of the biological and environmental data input into the model,
secondarily on modelling steps such as the choice of SDM algorithm
and XAI method. For example, in our study, we could not yet include
rarely-available local variables such as multiple forms of pollution, the
alteration of natural flow regimes through hydropower generation,
and the location of extreme drought or thermal events61. In addition,
our natural abiotic variables represent gradients along the natural river
continuum (cold, fast flowing, small headwater streams to warm, slow
flowing, large main stems) rather than human impacts on river tem-
perature, flow and discharge regimes29. Including finer-scale anthro-
pogenic variables may recover additional important conservation-
related responses to threats that are currently missing from our sha-
dow distribution estimates. We opted for the simplicity of a single
algorithm (random forests), but ensembles of SDMs applied to SHAP
couldhelp reveal sources of uncertainty in shadowdistributions62. This
approach would require careful validation of all response curves in all
model types put in the ensemble. Further, we chose SHAP as our XAI
tool,which is a source of unexplored uncertainty, butmanyother tools

exist with different mathematical axioms, some of which may provide
alternative insights (see ref. 33,63,64).

Somemore conceptual caveats applicable to all SDMmodels also
apply to the interpretation of shadow distributions, for example,
whether the model of the realised niche accurately represents the
species fundamental niches influences how well the deconstructed
environmental contributions reveal the shadow and expected dis-
tributions. Future work could also better reveal how species interac-
tions influence species environmental suitability and shape expected
distributions (e.g., reduced expected distributions through competi-
tive exclusion)65. Further, any issues relevant to presence-only SDMs,
such as sampling biases, are also problematic for SHAP explanations of
thesemodels, and as such, we encourage the use of presence-absence
data from standardised surveys to build SDMs. We also note that
probabilistic presence-absence surveys can still containbiases because
some samplingmethodologies bias againstdifficult to samplehabitats,
here large rivers, which biases the amount of data available across
habitat gradients. The limitation that environmental suitability pre-
dictions should relate to population performance for valid biological
interpretation66 also applies here.

Revealingwhether shadowdistributions correlate with declines in
genetic diversity, demographic rates, and population abundance is an
important future validation. Further validations through field manip-
ulations of threats could empirically test whether conservation gains
are greater when guided by the outputs of large-scale modelling
exercises. Future work could also better attribute range loss to spatial
threats using more direct measures of population performance, such
as local abundance, age structure or population health, especially at
the edges of species’ ranges. Because environmental suitability often
non-linearly relates to population viability and potential ecosystem
service provision, we likely underestimate ecological consequences of
threat impacts and, therefore, the size of shadow distributions, using
presence-absences50.

In conclusion, for biodiversity conservation, protection and
recovery, wemust identify and contextualise threat impacts within the
multiple natural constraints on species distributions. We show how to
identify when threat impacts occur in portions of species’ geographic
distributions that are naturally highly suitable. We highlight an
important decoupling between the different factors that determine
species distributions. We define species’ expected distribution and
species’ shadow distribution to help quantify the magnitude of this
decoupling. Our work suggests indicators for national Biodiversity
Action Plans underlying the Kunming-Montreal GBF based on species
distribution models should also consider expected and shadow dis-
tributions. Failing to do so, we miss insights to the negative influence
of anthropogenic threats on species distributions. Our work supports
the assessment of threats to biodiversity at large scales and moves
towards a framework tailoring conservation actions to local threats
demonstrated to impact species distributions.

Methods
Our research complies with all ethical regulations being collected
under the Swiss animal experimentation licences issued by the Kanton
Bern (Office of Veterinary Affairs; permit numbers 34546 BE11/2022
and 34150 BE95/2021).

Overview
We used a species distribution modelling approach to model the
environmental suitability across the spatial distribution of nine fish
species in Switzerland using 11 environmental variables. We next
appliedmodel agnostic explainable artificial intelligence tools to these
models. These tools calculate the local relative contributions of each
environmental variable to the prediction of environmental suitability
at the observation level (here, 2 km sub-catchments). To focus on the
main aim of our work – to investigate the local relative contribution of

Article https://doi.org/10.1038/s41467-024-52993-0

Nature Communications |         (2024) 15:8852 9

www.nature.com/naturecommunications


each variable for each species in each location – here we provide only
an overview of the underlying species distributionmodel protocol and
provide a full ‘ODMAP’ protocol in the Supplementary Methods67.

Species data
We focus on rivers and streams in the Aare, Limmat, Reuss and Rhine
catchments within the political boundaries of Switzerland. These river
catchments drain the northern slopes of the European Alps and
together drain an area of 28,057 km2 into the main Rhine catchment.
The native fish fauna share a commonbiogeographic history.We focus
on nine example species: Alburnoides bipunctatus, Barbus barbus,
Cottus gobio, Gobio gobio, Lampetra planeri, Oncorhynchus mykiss,
Perca fluviatilis, Squalius cephalus, Thymallus thymallus. Note that
Cottus gobio is likely a species complex68. We selected this set of spe-
cies to cover a wide range of ecological preferences with some species
being nationally threatened with uncertain drivers of population
declines and range loss (OFEV /CSCF 2022; note thatO.mykiss is a non-
native species that we include for contrast), while others are common
and important components of river ecosystems.

We compiled quantitative electrofishing surveys that provide
presence-absence records. Field surveys were conducted by scientists,
governmental monitoring and environmental consultancies (see Sup-
plementary Table 1 for an overview of species by survey data and
ODMAP protocol). Fish richness and composition have been shown to
vary little between electrofishing fishing crews or methods such that
our data synthesis is assumed to be robust against potential systematic
biases introduced by combining datasets69. We performed our ana-
lyses on data collected after 2010 to avoid potentially including
records that indicate species presence before themodern threats have
impacted species’ populations causing local extirpation. Supporting
analyses confirmed that, in general, there was higher performance for
models combining all available data (Supplementary Fig. 1), which
together provided a more complete coverage of environmental space
(Supplementary Fig. 2). In total, we analysed 38,100 records of species
presence-absence containing 1933 presence records for 3216 sites
surveyed between 2010 and 2023. There were, on average, 180 pre-
sence records per species ranging from 48 (Thymallus thymallus) to
791 (Cottus gobio).

Environmental data
We compiled and processed data on the spatial distribution of 18
environmental variables representing a range of natural and anthro-
pogenic threat variables to use as covariates in our models (see
ODMAP Protocol). We attempted to cover a wide range of in-water and
riverscape environmental gradients by compiling the following vari-
ables [short-hand name] for consideration in our models: maximum
annual discharge [discharge], minimum slope [slope], mean flow
velocity [velocity], mean annual temperature [mean temperature],
maximum annual temperature [maximum temperature], minimum
annual temperature [minimum temperature], colonisation probability
index [connectivity], minimum distance to the lake [distance to the
lake], river morphological modification index [morphological mod-
ification], proportion cropland cover [cropland], mean tree cover
density [tree cover], mean surface imperviousness [urbanisation],
mean livestock unit density [livestock], proportion wetland habitat
[wetland], proportion floodplain habitat [floodplain], mean diffuse
nitrogen inputs [nitrogen], mean diffuse phosphorous inputs [phos-
phorous], and mean insecticide application rates [insecticide]. We
qualitatively evaluated the expected spatial scale of effect on fresh-
water fish species distribution based on review, elicitation, and dis-
cussion amongst co-authors and processed data according to the
greatest expected scale of effect (seeODMAPprotocol). Depending on
the variable and the dataset, we calculated variables at three potential
spatial scales, (i) the local values within 100m from the river, (ii) sub-
catchments characterising lateral overland flow, (iii) upstream

catchment representing accumulation of environments over a larger
spatial scale than reach contributing areas (seeODMAP for full details).
For convenience during later analysis steps, environmental data were
harmonised to a common 100m by 100m raster grid with an equal
area projection for Europe (ETRS89-extended/LAEA Europe), and
model predictions were aggregated to river sub-catchments using the
‘Topographical catchment areas of Swiss water bodies 2 km²’ Federal
Office for the Environment data product.

Model fitting and evaluation
We fitted ‘down-sampled’ random forests (sensu70) for each species
using environmental data as covariates and species’ presence (1) or
absence (0) as response variables. Random forests perform well at
prediction tasks across multiple data types and have been demon-
strated to perform as well as model ensembles in modelling species
distributions50,71. A major benefit of random forests is the automatic
recovery of non-linearities and variable interactions. We used down-
sampling to address the class imbalances that can lead to models
overfitting training data if absences far outweigh presences70. In this
down-sampling procedure, each tree isfitted to a balanced sub-sample
of presences and absences. As such, model predictions are not strictly
probability of occurrence because presences and absences are
balanced and, therefore, instead represent and index of relative
occurrence. We refer to predictions as ‘environmental suitability’ for
consistency with SDM literature, although this term is often used for
predictions of presence-only models. We set the ntree parameter to
1000, the downsampled ‘sample size’ to be the minimum of either
class (0 or 1), and set the mtry parameter to the square root of the
number of covariates.We follow70 in not further tuning random forests
parameters which exhibit low tuneability72,73. Random forests were fit
using the R package randomForest (version 4.7–1.1;74)

A fundamental aim of our work is to provide interpretable
(understanding inner workings) and explainable (understanding why a
prediction is made) models. Multi-collinearity induces challenges in
interpreting the independence of variable effects and interpretationof
SHAP values59. Through the below procedure our final variables were
highly decoupled having a median absolute correlation of 0.05, a 95th

quantile of 0.26 (Supplementary Fig. 3). We therefore limit the impact
of multicollinearity in our modelling (see Supplementary Methods for
full details).Wefirst checkedbi-plots andSpearman’s rank correlations
between variables and identify potentially confounding factors that
would lead to misinterpretation of focal variable effects. We found
elevation, discharge, slope and distance to lakes were often strongly
related to 8 variables (morphological modification, urbanisation,
livestock, nitrogen, phosphorous, insecticide, cropland, and tree
cover).We then fittedGAMs to relate these variables with the potential
confounders and used the residuals fromGAMs in our random forests.
We retained only residual morphological modification and residual
urbanisation, which had biologically realistic relations with environ-
mental suitability. The interpretation of these processed variables is
the relative value of the variable given the site’s elevation, discharge,
slope and distance to the lake. GAMs were fitted using the R package
‘mgcv’ (version 1.8–38)75. From our final pre-selected set of variables,
we then identified and used only those that were statistically sup-
ported using the BORUTA algorithm in the R package ‘BORUTA’ (ver-
sion 7.0.0)76. Thismethodwasdeveloped to provide a statistically valid
approach to remove variables thatdo not sufficiently improve the fit of
random forest models76.

We first assessed model performance using spatially blocked
5-fold cross-validation by iteratively fitting models to training sets (4/5
folds) and predicting occurrence in testing sets (1/5 folds).Weused the
R package ‘blockCV’ (version 3.1–4) and set the distance to 10 km,
which in preliminary assessments emerged as the scale of environ-
mental autocorrelation in our covariate data77,78. We evaluated model
performance using 13 metrics of model performance (see ODMAP
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protocol), but focused on the True Skill Statistic (TSS), Matthew’s
Correlation Coefficient (MCC) and area under the receiver operating
characteristic curve (AUC) as integrative measures of performance
across the contingency matrix (Supplementary Fig. 4 and Supple-
mentary Tables 2, 3). Random forests presented in the main text were
then fitted to all available data for each species.

SHAP values: estimating local relative contributions of variables
to species environmental suitability
We aimed to quantify the effect of an individual covariate on a species
occurrence in a particular location, sometimes referred to as the ‘local
feature importance’, the ‘situational importance’ or ‘local contribution’
of a variable (Fig. 1). To do so, we approximate Shapley values defined
in game coalition theory79, which are called SHapley Additive exPla-
nations (SHAP) when applied to explain machine learning
predictions30,59,79.

SHAP values are an explainable artificial intelligence (XAI) tool to
explain a predictionmade by amodel. XAImethods aim to explainwhy
complex “black box”models made predictions at an observation level.
SHAP values are one tool to provide an interpretation of the covariate
effect on the predicted outcome at the observation-level in themodel.
A SHAP value indicates the difference between what a variable con-
tributes to a prediction in each location, and what the variable is
expected to contribute given the mean model prediction. Other vari-
able importance approaches generally provide ‘global’ insight to
variables importance across all observations in the model (e.g., per-
mutational variable importance). In contrast, SHAP provides a single
value per observation per variable. This SHAP value indicates the fea-
tures contribution to the prediction for that specific data point. In a
spatial model, the observation level is inherently linked to locations. In
our models of species occurrence, a positive SHAP value indicates a
given variable is contributing positively to the environmental suit-
ability prediction (increases the prediction), and vice versa, and if it is
0, it has no contribution. We can compare SHAP values of all other
variables in the focal location to understand the relative importance of
individual variables within a species distribution. Or, for the same site
we can compare between species the relative contribution of different
variables. SHAP values aremodel agnostic and so can generalise to any
statisticalmodel that explains variation in ecological properties across
environmental gradients (e.g., abundance, biomass, growth rates,
body condition, productivity, species richness). The application of XAI
in ecology and conservation is nascent22,23,55,62,80–83 and so we provide a
detailed explanation of SHAP values in Supplementary Note 1.

In addition to local interpretations, aggregating SHAP values
across all observations in a model gives an indication of ‘global’ vari-
able importance63. Due to SHAP values satisfying the efficiency criteria
of interpretable XAI methods30 (summing to the predicted mean),
summing subsets of variables by groups indicates contributions of
groups of variables to themeanprediction (e.g., summing SHAP values
across all threat variables). We calculated the mean absolute SHAP
value, which indicates a variable’s overall importance in changing
model predictions. We also correlated SHAP values against original
environmental values, which indicates overall response curves
between variables and model predictions. Note that the overall
importance of variables in determining species range-wide distribu-
tions was comparable to traditional measures of ‘global’ variable
importance, such as permutational variable importance scores (Sup-
plementary Fig. 5).

We used the Štrumbelj & Kononenko85 Monte-Carlo approach
using 10,000 repetitions to calculate SHAP values from the down-
sampled Random Forest model, using the explain function in the R
package ‘fastshap’ (version 0.1.1)84. Using SHAP values to calculate
observation-level variable contributions has benefits over other inter-
pretable machine learning approaches, such as LIME, breakdown, or
counterfactual explanations, by satisfying the efficiency, symmetry,

dummy and additivity properties79,85 (see ref. 30,33,59 for further
discussion). Note, however, that multiple options exist for calculating
local model explanations and model-specific faster alternatives for
tree-based methods exist that are a better alternative for larger data-
sets with more features, such as “TreeExplainer”63.

Addressing ecological and conservation challenges with local
relative contribution of variables
(i) Mapping local relative contributions for single- and multi-
species comparisons. Here, we provide an in-depth exploration of
local relative contributions of variables, as quantified using SHAP
values, for the geographic distribution of a single species, the spirlin,
Alburnoides bipunctatus. We chose A. bipunctatus because it is a rela-
tively widespread species in our catchments and is classified as ‘Vul-
nerable’ based on apparent population reduction (criteria A2c) and
extent of occurrence < 20,000 km2with a continueddecline in the area
and quality of habitat (criteria B1biii). We summarised the SHAP values
of each environmental factor to A. bipunctatus environmental suit-
ability prediction in each river sub-catchment. We mapped SHAP
values for each variable to explore the spatial distributions of variable
contributions. We performed pairwise Spearman’s rank correlations
between all variables to assess whether SHAP values for different
variableswithin one species had different spatial distributions.We also
calculated the global variable importance as the mean absolute SHAP
value per variable across all sub-catchments. We quantified the
Spearman’s rank correlation between each variable's raw value and the
variable's SHAP value. We additionally performed the above analysis
for all species as reported in the supporting materials.

(ii) Deconstructing distributions to build conservation expecta-
tions. By decomposing environmental suitability into component
variable contributions, calculating SHAP values enabled us to define
our properties of species’ distributions: ‘expected distributions’ and
‘shadow distributions’ (Fig. 1). We calculate these distributions as a set
using a binary form and as properties of this set using quantitative
representations detailed below. We provide a conceptual overview of
these in Fig. 1 and code to reproduce these properties in Supplemen-
tary Note 2.

Expected distributions. We define a binary expected distribution as
the set of sites (here sub-catchments) inside the abiotic niche of a
species (i.e., separate from any consideration of threats; Fig. 1). Here,
we assumed the factors discharge, slope, temperature, flow velocity,
and distance to lakes contributed to species’ abiotic environmental
niche and represent “natural” ecological constraints on species dis-
tributions. We define the “binary expected distribution” as:

ð1Þ

where si is the i th site in the set of all sites S, and N is the set of natural
variables. This gave a reference set of sub-catchments describing
whether sub-catchments were inside or outside of the expected
distribution (i.e., the naturally realised abiotic niche) for each species.

We define a property of each site inside the set defined by the
binary expected distribution and call this the species’ “quantitative
expected distribution”, defined as:

ð2Þ

where ŷ is themodel mean predicted habitat suitability across all sites,
and A is the set of anthropogenic threat variables including urbanisa-
tion, rivermorphological modification index, (reduction of) floodplain
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area, (reduction of) wetland area, and (loss of) connectivity. This
property represents the improvement towards the optimal condition
of a location for each individual species when alleviating a threat. We
simulated the alleviation of threats, as a best-case scenario by
calculating the 95th quantile of threats positive SHAP values. We used
the 95th quantile of SHAP values to avoid spuriously large positive
SHAP values affecting our measure of the maximum.

Shadow distributions. We also define binary and quantitative prop-
erties of a species’ shadow distribution, which give different insights
into negative anthropogenic influences inside species expected dis-
tributions (Fig. 1). We first define the binary shadow distribution as:

ð3Þ

Wecalculate this binary shadowdistribution for different sets ofA:
for each threat, combinations of all threats, and subsets of different
threats.We combined indicators of habitat-loss related threats of (low)
floodplain cover, (low) wetlands cover, (high) river morphological
modification index, and (high) urbanisation into an indication of
‘habitat quality’ and perceive reduced habitat quality as a threat to
species’ populations. We present this measure in the main manuscript
for Alburnoides bipunctatus.

We also defined a quantitative shadow distribution as:

ð4Þ

where yi is the site's environmental suitability score. The quantitative
shadow distribution estimates the fraction of environmental suitability
loss due to human impacts inside the abiotic niche of species. For
consistency, we calculated yi inside the SHAP framework by adding the
mean environmental suitability score to the local sum of SHAP values,
giving the site environmental suitability score (but is equivalent to the
random forest model prediction).

We calculated the above properties for all species and estimated
across all species per sub-catchment the average environmental suit-
ability for observed distributions and expected distributions. In addi-
tion, we calculated the mean, minimum and standard deviation in
quantitative shadow distribution across species. We also averaged the
presence of negative influences for habitat quality SHAP values
(defined above) and connectivity loss SHAP values as anthropogenic
threats. For example, where three of four habitat quality threats
negatively impact a species in a sub-catchment, the catchment
received a score of three.

Our estimation of shadow distributions by adjusting SHAP values
(e.g., Q0:95ðSHAPÞ) is a hypothetical scenario and comes with
assumptions and uncertainty. To understand the impact of these
choices on our results, we generated two other hypothetical threat
alleviation scenarios. We calculated a very conservative scenario by
converting negative SHAP values to 0, in this scenario threats no
longer have a negative contribution to environmental suitability (but
the underlying factor also does not contribute positively to environ-
mental suitability). Second, we converted negative SHAP values to the
mean positive SHAP values for each threat factor, which indicates a
positive recovery of threats to the average condition in unthreatened
regions for each threat factor. In addition to our SHAP adjustment, we
tested an approach to estimate shadow distributions where we adjust
the feature values in the environmental data directly and compare the
observed and expected distribution of suitability scores (see Supple-
mentary Fig. 6). This approach simulates improvements in environ-
mental states and makes new predictions given these improvements.
In this approach, we replaced environmental values of threat features

to be the 99th quantile if a high value represents an improved state
(such as higher connectivity) or 1st quantile in the inverse case, such as
lowermorphologicalmodification.We found theoutput fromthis non-
SHAP method to be very highly correlated to the SHAP method pre-
sented in the main manuscript for estimating shadow distributions
(median correlation across species = 0.88, IQR = 0.85–0.89; Supple-
mentary Fig. 6). For consistency, we present here only the first
described SHAP based shadow distributions described in Eq. 4, but
note that shadow distributions, like geographic ranges, are latent
properties, so perfect calculation is impossible and estimation meth-
ods are required.

(iii) Local relative contributions between contrasting locations. We
used SHAP values to identify the relative local contributions of each
variable to inform which environmental factors, at a management
scale, support or decrease environmental suitability for a species. We
apply these insights across our nine focal species in two contrasting
river systems: the sub-catchments comprising the main stems of the
upper Emme River (32.8 km2) and Sense River (35.1 km2). We chose
these catchments intentionally to potentially form contrasting case
studies, given our on-site knowledge. These rivers are qualitatively
similar in terms of abiotic environments (e.g., discharge, temperature,
and flow velocity). However, the upper Emme is heavily modified in
some sections for flood prevention and has downstream run-of-river
hydropower production since the late 1800s leading to historically low
connectivity. The Sense has a higher degree of connectivity with a
more natural and largely unmodified flow regime (Supplementary
Fig. 7). We calculated the mean SHAP values per river catchment per
species and compared these values between rivers and species.

The data to reproduce this work are available at https://doi.org/
10.6084/m9.figshare.2478722786, and the code associated with repro-
ducing the analysis and figures in this manuscript are available at
https://doi.org/10.5281/zenodo.1362664987.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data to reproduce this work are available at https://doi.org/10.
6084/m9.figshare.2478722786, which contains Supplementary Data
Files 1-3 aswell as scripts to reproduce our underlying SDMs and SHAP
analysis. Supplementary Data File 1 contains outputs of species dis-
tribution models and SHAP analysis for A. bipunctatus and underlying
data layers to reproduce Figs. 2, 4. Supplementary Data File 2 contains
outputs of SHAP analysis for all species in our analysis underlying data
layers to reproduce Figs. 3, 7. Supplementary Data File 3 contains
calculated shadow distributions and expected distributions, with
underlying SHAP analysis for all species, and all underlying data layers
to reproduce Figs. 5, 6.

Code availability
The code associated with reproducing the analysis and figures in this
manuscript are available at https://doi.org/10.5281/zenodo.1362664987

with the full code pipeline to fit SDMs also available at https://doi.org/
10.6084/m9.figshare.2478722786.
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