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A B S T R A C T   

The Lower-Upper Pleistocene sedimentary record of the Baklan Basin, a long-lived continental half-graben basin in 
SW Turkey, is characterized by shallow lacustrine and palustrine deposits. The paleoenvironmental changes recorded 
in the basin succession allow for a multiproxy approach in reconstructing the paleoclimatic, paleoecological, and 
paleobiogeographical evolution of southwestern Anatolia during the Early-Late Pleistocene. Based on sedimento
logical, paleontological, and geochemical data, three main types of depositional intervals have been identified, 
corresponding to different phases of a lake expansion cycle: The first interval is characterized by the perennial 
shallow lake environment (PSL deposits), which represents the very early stage of the Early Expansion System Tract 
(VEEST). This suggests a very early stage of lake transgression in arid climate conditions. The second interval is 
represented by the palustrine carbonate lake center environment (PLC deposits), which corresponds to the late stage 
of the Early Expansion System Tract (LEEST). This indicates a late early stage of lake transgression in semiarid to 
subhumid climates. The third interval is marked by the palustrine lake margin environment (PLM deposits), which 
represents the Late Expansion System Tract (LEST) under humid conditions. 

The Lower-Upper Pleistocene successions of the Baklan Basin provide an excellent example of lacustrine and 
palustrine deposition in a laterally extensive, low-gradient, shallow lake system in the semi-isolated Pontocaspian 
freshwater to slightly brackish water (oligohaline-low mesohaline) long-lived lake. The presence of Pontocaspian 
ostracod and mollusc faunas in the studied successions indicates that the largest major Caspian transgression around 
2.6 millon years ago extended to SW Anatolia. The studied successions represent a rich archive of landscape, climate, 
and biotic development in the eastern Paratethys region during the Early-Late Pleistocene. The biogeographic 
signature of fossil faunas (mammals, ostracods, molluscs, and fishes) and floras (Characeae) is predominantly 
modern Palearctic and Holarctic, with a minor amount of endemic Pontocaspian elements. This study presents the 
Pleistocene Pontocaspian species of the Anatolian lakes that may have served as refugia for the Palearctic taxa during 
adverse time intervals. Consequently, this study shows that Lower-Upper Pleistocene lacustrine to palustrine sedi
mentation in the Baklan Basin has been controlled by the combination of tectonics, climate changes, and the largest 
major Caspian Sea transgression. The findings of this study could be used to evaluate the impact of similar allocyclic 
factors on the sedimentological, hydrological, and geochemical development of other intermontane lake basins.  
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1. Introduction 

During the Neogene-Quaternary, the Paratethys region, which in
cludes the Black Sea, Azov Sea, Caspian Sea, and Lake Aral, experienced 
significant changes in their paleogeography and paleoclimate (e.g., 
Krijgsman et al., 2019). The Caspian Sea and Black Sea underwent major 
fluctuations in their sea/lake levels since the Pliocene, potentially 
influenced by tectonics and glacio-eustatic sea level changes, and hy
drological and climatic changes triggered by glacial-interglacial cycles. 
These changes may have led to intermittent periods of connectivity 
between the Caspian Sea, Black Sea, and Aegean Sea basins (e.g., 
Badertscher et al., 2011; Yanina, 2014; Krijgsman et al., 2019). 

During the latest Pliocene-earliest Pleistocene, a major transgression 
occurred in the Caspian Sea region, resulting in the establishment of 
connectivity between the Caspian Sea, Black Sea, and Aegean Sea 
(Krijgsman et al., 2019). This facilitated the migration of various fauna, 
such as fishes, molluscs, and ostracods, from the Caspian Sea to the Black 
Sea and eventually to the Aegean Sea. As a result, the Black Sea, Caspian 
Sea, and Lake Aral had high biodiversity of Pontocaspian fauna. The 
Pontocaspian fauna evolved in the past two million years and adapted to 
the unusual salinity regimes in these lakes and seas (Nevesskaya et al., 
2005). Although the Pontocaspian biota developed around the Caspian 
Sea, the Black Sea, and the Marmara Sea basins (e.g., Nevesskaja et al., 
2001; Yanina, 2014), satellite areas such as the Balkans and Anatolia 
may have played a role in their evolution as well (Büyükmeriç and 
Wesselingh, 2018). Some fossil and modern Pontocaspian taxa have 
been recorded in southwestern Anatolian lake systems (Alçiçek et al., 
2007, 2015; Wesselingh et al., 2008; Wesselingh and Alçiçek, 2010; 
Rausch et al., 2019, 2020; Lazarev, 2020a, 2020b; Wilke et al., 2007; 
Glöer and Girod, 2013). The Pontocaspian ostracod and mollusc fauna 
have been documented in the Pliocene-Pleistocene Lake Denizli (Taner, 
1974a, 1974b, 1975; Alçiçek et al., 2007, 2015; Wesselingh et al., 2008) 
in southwestern Anatolia, Late Pleistocene Lake Karapınar (Büyükmeriç 
and Wesselingh, 2018) in central Anatolia, and Late Pleistocene Lake 
İznik (İslamoğlu, 2009) and Lake İzmit (Büyükmeriç et al., 2016) in 
northwestern Anatolia. 

Extensive literature has been devoted to the Miocene to Pleistocene 
paleogeographic development of the Western Paratethys (Alpine), the 
Central Paratethys (Carpathian, Balkan), and the northern parts of the 
Eastern Paratethys (Crimean-Caucasian). However, studies regarding 
paleogeographical reconstructions of the southern part of the Eastern 
Paratethyan lakes, including Anatolia, are still very scarce (Alçiçek 
et al., 2007, 2015; Wesselingh et al., 2008; Wesselingh and Alçiçek, 
2010; Rausch et al., 2019, 2020; Lazarev, 2020a, 2020b). The spatial 
and temporal evolution of the Paratethys region during the Neogene- 
Quaternary is still poorly constrained in Anatolia. 

In this study, we report Pontocaspian ostracod and mollusc fauna in 
the Baklan Basin in southwestern Anatolia. This new record has the 
potential to help us understand the role of satellite regions in the evo
lution of Pontocaspian biota. The lacustrine-palustrine deposits con
taining endemic Pontocaspian biota of the Baklan Basin provide notable 
continental records of paleoclimatic, paleobiogeographical and paleo
ecological conditions for this period in the Eastern Paratethys region. 
This succession allows us to understand the southern boundary of the 
Paratethys, the location of the gateways, and the time when the region 
served as a refugium for the Pontocaspian fauna during the Early-Late 
Pleistocene. Therefore, this study aims to (i) reconstruct the paleo
environmental, paleohydrological, and paleoclimatic evolution of the 
Lower-Upper Pleistocene succession by using mineralogical, sedimen
tological, geochemical, and paleontological data, (ii) describe the 
drivers of faunal evolution, and (iii) synthesize regional conclusions 
about paleogeographical, paleoclimatic, paleoecological, paleobiogeo
graphical, and tectonic events. This study as a whole contributes to a 
better understanding of the Early-Late Pleistocene paleogeographic 
history of the eastern Paratethys region. 

2. Geological setting and basin stratigraphy 

The Western Anatolian domain is characterized by intra-continental 
extensional tectonics (Ten Veen et al., 2009). Its southern part is 
distinguished by the Western Taurides which constitutes the eastern 
extension of the Alpine orogeny and are subdivided into thre structural 
units of Beydağları autochthon, Lycian and Antalya nappes, and were 
attributed to diverse orogenic stages on a regional scale and represent 
the closure of the Neotethyan oceanic domains during the 
Mesozoic-early Cenozoic (Fig. 1B; Özgül and Arpat, 1973; Bernoulli 
et al., 1974; Collins and Robertson, 1998; Nemec et al., 2018).  The late 
Cenozoic Neotectonic deformation in SW Anatolia (Fig. 1B) caused the 
formation of an array of NE-trending extensional grabens hosted by the 
Paleozoic–Mesozoic metamorphic bedrock of the Menderes Massif and 
the Mesozoic Lycian allochthonous units (Ten Veen et al., 2009; Alçiçek 
and Ten Veen, 2008). These grabens were filled by Neogene to Qua
ternary alluvial fan, fluvial, lacustrine, and fluvio–lacustrine deposits 
(Alçiçek et al., 2019). The Baklan Basin is an arcuate graben (Fig. 2) with 
a Neogene–Quaternary basin-fill that is the subject of this study. The 
regional geological maps, including the Baklan Basin, were first charted 
by Konak et al. (1986) at a scale of 1:25000 scale, and its rock units were 
described in a lithostratigraphic context. Sun (1990) compiled the 
regional geological map at a scale of 1:100000 scale and described the 
basin-fill units as the Denizli Group. Sözbilir (1997) followed a similar 
nomenclature and locally subdivided the units into the Belevi Group 
consisting of terrestrial deposits that unconformably overlie marine 
Oligocene deposits. Later, Konak and Şenel (2002) and Konak (2002) 
compiled the regional geological map at a scale of 1:500000 scale. The 
fossil materials from the lower basin-fill succession (Mahmutgazi lo
cality, mammal unit MN11-12, Fig. 3) have been studied by Sickenberg 
and Tobien (1971), Luttig and Steffens (1976), and Rutte and 
Becker-Platen (1980), with recent paleontological work done by Pick
ford (2016) and Geraards (2017). The mollusc assemblages from the 
upper part the succession was presented by Wesselingh and Alçiçek 
(2010). 

Alçiçek et al. (2013) conducted the first attempt to explain the tec
tonic development of the Baklan Basin in its regional geodynamic 
context. The detailed kinematic documentation revealed that basin 
subsidence was initiated by the initial transfer motion of the Dinar Fault 
Zone, which orthogonally bounds the basin to the northeast. The SW- 
NE–trending Baklan Basin, approximately 60 km long and 20 km wide, 
rests on the Paleozoic metamorphic rocks of the Menderes Massif, the 
Mesozoic carbonates and ophiolites of the Lycian Nappes, and the 
Eocene-Oligocene siliciclastic rocks (Fig. 3). The basin is bordered by the 
Çivril Fault to the northwest and the Baklan Fault to the southeast 
(Fig. 2). The basin’s sedimentary fill reaches a thickness of up to 350 m 
and consists of alluvial fan to fluvial deposits (Upper Miocene) and 
lacustrine deposits (Upper Miocene–Upper Pleistocene). The lacustrine 
deposits are subdivided into two stages: the first lacustrine stage (Lower- 
Upper Pliocene) and the second lacustrine stage (Lower-Upper Pleisto
cene) (Fig. 3). This study is focused on the second lacustrine stage, which 
includes the lacustrine-palustrine successions (Fig. 3). The age of studied 
succession has been determined based on the presence of MNQ1-Q2 
micromammal fauna (the gerbiline Meriones sp. and the arvicoline 
Microtus sp., Biharian-Toringian). 

3. Material and methods 

The studied Lower-Upper Pleistocene outcrops are located between 
Aşağıseyit and Gelinören villages in the northern part of the Baklan 
Basin (Fig. 2). Three sections in the study area were logged and compiled 
in Fig. 4. Analytical methods are presented below. 

The macroscopic facies analysis was supplemented by the observa
tion of 30 thin sections of collected samples. The studied deposits were 
divided into fourteen sedimentary facies, which have been further 
grouped into three facies associations. The Dunham classification system 

H. Alçiçek et al.                                                                                                                                                                                                                                 



Palaeogeography, Palaeoclimatology, Palaeoecology 626 (2023) 111649

3

(Dunham, 1962) was used for descriptive carbonate terminologies. 
The mineral composition of 65 powdered samples was determined by 

X-ray diffraction (XRD) at a laboratory of Hacettepe University 
(Turkey). The powder X-ray diffraction patterns of the samples were 
recorded on a Rigaku D/Max 2200 PC diffractometer using CuKa radi
ation (k = 1.542A◦). The semi-quantitative ratios were determined from 
the powder diffractogram using an external standard method developed 

by Gündoğdu (1982) and Temel and Gündoğdu (1996). Clay-fraction 
analysis was performed on 12 powdered dolomitic limestone, 
mudstone and marlstone samples. Clay mineralogy of the <2 μm grain- 
size fraction was also determined by X-ray diffraction. Samples were 
pre-treated with 0.2 N HCl to remove carbonates. After centrifuging and 
microhomogenisation, the <2 μm fraction was separated by gravity 
settling on glass slides. Selected samples were examined in three forms: 

Fig. 1. (A) Tectonic map of the eastern Mediterranean showing major tectonic structures (after Bozkurt, 2003; Alçiçek et al., 2013; Kaymakçı et al., 2018; Nissen 
et al., 2022), DTFZ: Dinar Transfer Fault Zone, ATFZ: Acıpayam Transfer Fault Zone; (B) Geological map of SW Anatolia showing the main tectonic and sedimentary 
units (based on Şenel, 1997). 
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as an oriented clay sample (untreated), as an ethyleneglycol-treated clay 
sample, and as an oriented clay sample heated to 500 ◦C for 2 h (oven- 
dried). The external standard method of Gündoğdu (1982) was used as a 
guide for quantitative estimates of the mineral composition. The per
centage evaluations were based on peak heights, corrected for mineral 
crystallinity. 

Samples for stable isotope analyses were collected by drilling 
micritic carbonate textures and obtaining approximately 3 mg of 
powdered sediment. Samples with diagenetic alteration were discarded, 
and only dense micritic areas were drilled for δ18O and δ13C isotope 
analysis. For mixed carbonate samples, both calcite and dolomite were 
analyzed if the lesser mineral constituted at least 10% of the total car
bonate. Otherwise, only the dominant mineral (calcite or dolomite) was 
analyzed. For δ18O and δ13C analysis, approximately 3 mg of powder of 
the carbonate samples (dolomitic limestones and dolostones) were 
extracted from polished slabs of samples under a stereomicroscope 
(Leica S8APO) with a micro-drill. Additionally, approximately 3 mg of 
powder of marlstone and mudstone samples was also drilled from the 
fresh surface using a microdrill under the stereomicroscope. These 
samples were analyzed at the Stable Isotope Ratio Facility for Environ
mental Research (SIRFER), University of Utah (USA), using a Thermo 
Fisher Scientific GasBench II with a PAL autosampler, coupled to a 
ConFlow IV interface and a MAT 253 mass spectrometer (Thermo Fisher 
Scientific) to obtain their δ18O and δ13C isotopic compositions. The 
samples were reacted with 10 droplets of phosphoric acid (H3PO4) (kept 

at 50 ◦C) to produce CO2 gas. The results are reported using standard 
delta notation (δ18O and δ13C) with respect to Vienna Pee Dee Belemnite 
(VPDB). Carrara marble and LSVEC were used as primary reference 
materials, and Marble-Std was used as secondary reference material to 
cross-check the final values. Internal reference materials were calibrated 
against international standards NBS-18 and NBS-19. The oxygen frac
tionation factor was calculated using the alpha value proposed by Swart 
et al. (1991). Analytical errors for δ18O and δ13C are smaller than 
±0.05‰ and ± 0.02‰, respectively. The δ18O and δ13C values of 72 
mollusc specimens were analyzed at Vrije Universiteit (The 
Netherlands), following procedures outlined in Vonhof et al. (1998). 
About 0.5 mg of the powdered shell was dissolved in orthophosphoric 
acid at 50 ◦C. The evolved CO2 was purified and run off-line on a Fin
nigan Mat 251 mass spectrometer. The δ18O and δ13C compositions are 
reported in ‰ notation with respect to the V-PDB standard, using NBS- 
19 as a primary reference. Analytical precision of an internal standard 
was ±0.10 and ± 0.06‰ (1σ) for δ18O and δ13C, respectively, for the 
measuring period. 

Micromammals were collected from ten levels through wet- 
screening (mesh 0.7 mm) of approximately 10 kg of fossiliferous sedi
ments. All molars were picked out and photographed using a Leica 
S8APO measuring microscope with associated software. About 2 kg of 
sediments from each level were washed through sieves using diluted 
hydrogen peroxide for disintegration, to determine mollusc, ostracod, 
fish and chara fossils. Ostracod specimens were collected from twenty 

Fig. 2. Geological map of the Baklan Basin (revised and complied after Konak, 2002; Konak and Şenel, 2002; Şenel, 2002; Turan, 2002; Alçiçek et al., 2013).  
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levels and picked out of the residuals under a stereozoom microscope 
(Leica S8APO) for SEM (JEOL, JSM-6610LV) studies. Molluscs were 
collected from eighteen levels and sieved from sediment samples (mesh 
1 mm). Mollusc shells were identified to the lowest possible taxon and 
counted following the methods outlined in van de Velde et al. (2019). 
Ecological information on the living counterparts of the encountered 
mollusc species was obtained from Gittenberger et al. (1998), Glöer 
(2002), and Welter-Schultes (2012). Data on Pontocaspian taxa are 
retrieved from Wesselingh et al. (2019) and Gogaladze et al. (2021). Fish 
fossils were collected from thirteen levels and photographed using a 
Nikon 1200C digital camera mounted on a Zeiss Discovery V8 stereo
microscope. Between five and nine photographs with varying focal 
points were taken of each view, and the focus was stacked into a single 
image using Adobe Photoshop imaging software. Chara samples were 
collected from nine levels and photographed using an Olympus BX51 
microscope equipped with an Olympus DP71 camera. 

4. Results 

4.1. Studied sections 

To better define the stratigraphy of the Lower-Upper Pleistocene 
deposits on the northern margin of the Baklan Basin, three significant 
locations have been selected (Figs. 2 and 4A-C). The studied succession 
is divided into three sections: 

The Aşağıseyit-1 section is the lower part of the succession and is 
located 1.5 km northeast of Aşağıseyit village (38◦03′56′′N, 29◦29′07′′E) 
(Figs. 2 and 3). This section is up to 20 m thick and extends laterally over 
tens of meters. These deposits, which are found at +808 m a.s.l., mainly 

consist of dolomitic limestone, dolostone, mudstone, and marlstone al
ternations (Figs. 4A and 5A). 

The Aşağıseyit−2 section is the middle part of the succession and 
conformably overlies the Aşağıseyit-1 section (Figs. 3 and 5A). It is also 
located in the approximately 200 m northeast of Aşağıseyit-1 section 
and 1.7 km northeast of Aşağıseyit village (38◦03′57′′N, 29◦29′16′′E) 
(Fig. 2). This section is up to 14 m thick and extends laterally over tens of 
meters (Fig. 5A). The section is located at a higher altitude of +821 m a. 
s.l. and is mainly composed of dolomitic limestone, dolostone, siltstone, 
and mudstone alternations (Fig. 4B). 

The Gelinören section is the upper part of the succession and located 
250 m north of Gelinören village (38◦05′41′′N, 29◦31′40′′E) (Figs. 2 and 
3). It is up to 25 m thick (Fig. 4C) and extends laterally over tens of 
meters (Fig. 5B). This section is located at the same altitude (+817 m a.s. 
l.) as the Aşağıseyit sections. It is composed of dolomitic limestone, 
limestone, siltstone-sandstone, mudstone, and marlstone alternations. 

4.2. Facies associations and depositional environments 

Three facies associations are recognized in the studied succession 
and are subdivided based on systematic differences in lithology, texture, 
sediment constituents, sedimentary structures, characteristic styles of 
stratification, and fossils. The main sedimentological features and 
associated biota of the fourteen depositional facies identified in the 
study area are summarized in Table 1. 

4.2.1. Perennial shallow lake facies association (PSL) 
This association constitutes the lower part of the studied succession 

(Fig. 3) and is particularly well developed in the basin`s northern part 
(Fig. 2). It comprises six facies: ostracodal packstone (facies PSL1), 
mudstone (facies PSL2), peloidal-brecciated-nodular wackestone (facies 
PSL3), ostracodal-molluscan wackestone (facies PSL4), organic-rich 
mudstone (facies PSL5), and laminated marlstone (facies PSL6) 
(Table 1). These deposits can reach a thickness of up to 20 m (Aşağıseyit- 
1 section, Fig. 4A) and extend laterally for tens of meters (Fig. 5A). 

Facies PSL1: Ostracodal packstone is present in the lower and middle 
parts of the Aşağıseyit-1 section (Fig. 4A). It is beige to yellow, porous, 
and well-cemented (Fig. 5C). The facies consists of massive (non-lami
nated) tabular beds that are approximately 20–100 cm thick and alter
nate with laminated marlstone (facies PSL6). The textural characteristics 
of this facies are packstones with a homogeneous micritic matrix, diffuse 
ostracods, siliciclastic grains, iron-oxide stained voids, and circum
granular cracks (cc) (Fig. 6A-6B). The ostracod shell cavities may be 
open or filled with microsparite, while circumgranular cracks and voids 
are typically filled with sparite. 

Facies PSL2: Mudstone occurs in the middle part of the Aşağıseyit-1 
section (Fig. 4A). This facies is beige to yellow, porous, and well- 
cemented. It contains planar cracks and voids filled with microsparite. 
The facies consists of massive (non-laminated) tabular beds that are 
approximately 10–30 cm thick and alternate with laminated marlstone 
(facies PSL6). The facies is primarily composed of structureless layers 
(Fig. 5C) of homogeneous, micritic limestones that lack any fossils or 
intraclasts (Fig. 6C-6D). 

Facies PSL3: Peloidal-brecciated-nodular wackestone is located in the 
upper part of the Aşağıseyit-1 section (Fig. 4A). It is beige to light yellow 
color, porous, and well-cemented (Fig. 5E). This facies is a texturally 
wackestone, with a homogeneous micritic matrix, circumgranular 
cracks, and micritic nodules, iron-oxide stained voids. It is heavily 
cracked and partly or completely filled with microsparite or sparite 
cement (Fig. 6F). Circumgranular cracks are common and filled with 
microsparite and micritic fragments (Fig. 6E) or locally stained by iron 
oxide (Fig. 6F). This facies is 20–40 cm thick and alternates with lami
nated marlstone (facies PSL6). 

Facies PSL4: Ostracodal-molluscan wackestone occurs in the uppermost 
part of the Aşağıseyit-1 section (Fig. 4A). It is beige to yellow, porous, 
and well-cemented (Fig. 5D). It forms tabular beds up to 50 m thick and 

Fig. 3. Stratigraphy of the Late Miocene-Pleistocene succession in the Baklan 
Basin (Studied logs are shown in solid lines) (based on Göktaş et al., 1989; 
Şenel, 1997; Alçiçek et al., 2013; Alçiçek et al., 2019). 
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Fig. 4. Measured sedimentological sections of the studied succession: (A) Aşağıseyit-1, (B) Aşağıseyit-2, (C) Gelinören.  
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alternates with laminated marlstone (facies PSL6). This facies is a 
texturally wackestone, composed of a micritic texture containing 
abundant ostracods with a minor amount of molluscs and microsparite- 
filled voids (Fig. 6E-6F). 

Facies PSL5: Organic-rich mudstone is present in the middle and upper 
parts of the Aşağıseyit-1 section (Fig. 4A). It is dark brown to gray and 
forms tabular to slightly lenticular beds that are 10–30 cm thick 
(Fig. 5E). It is parallel–laminated and rarely massive. This facies 

alternates with laminated marlstone (PSL6). It contains ostracods [Fig. 7 
(9–10), (17–20)] and molluscs (Table 1). 

Facies PSL6: Laminated marlstone is found in all parts of the 
Aşağıseyit-1 section (Fig. 4A). This is a light-green to gray in color and 
forms tabular to slightly lenticular beds that are 20–40 m thick (Fig. 5E). 
It is parallel-laminated, rarely massive, and is intercalated with facies 
PSL1, PSL2, PSL3, PSL4 and, PSL5. This facies includes ostracods [Fig. 7 
(9–10), (17–20);] and molluscs (Table 1). 

Fig. 5. (A) Outcrop photographs of 
Aşağıseyit-1 and -2 sections (perennial 
shallow lake, PSL and palustrine lake 
centre, PLC facies associations, 
respectively); (B) Outcrop photograph 
of Gelinören section (palustrine lake 
margin facies association, PLM); (C) 
Alternations of ostracodal packstone 
(PSL1), mudstone (PSL2) and lami
nated mudstone (PSL6) of the PSL 
deposits; (D) Ostracodal-molluscan 
wackestone (PSL4) beds of the PSL 
deposits; (E) Alternations of peloidal- 
brecciated-nodular wackestone 
(PSL3), organic-rich mudstone (PSL5) 
and laminated marlstone (PSL6) of the 
PSL deposits; (F) Alternations of 
peloidal-brecciated-nodular wacke
stone (PLC1), calcareous siltstone 
(PLC2) and laminated marlstone 
(PLC3) of the PLC facies association; 
(G) Alternations of ostracodal- 
intraclastic packstone (PLM1), 
molluscan-ostracodal packstone 
(PLM2), organic-rich mudstone 
(PLM3) and laminated marlstone 
(PLM5) of the PLM deposits.   
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Interpretation – Dolomitic limestone-dolostone–marlstone–mudstone 
alternations of the PSL association are thought to be the deposits of low- 
gradient, shallow lacustrine setting. The prevalence of carbonates 
(facies PSL1 to PSL4) with mudstone-wackestone-packestone textures 
suggests sedimentation in shallow lakes with fluctuating water level 
(Alonso-Zarza and Wright, 2010). The lack of subaerial exposure fea
tures indicates that facies PSL1, PSL2, and PSL4 are fully subaqueous 

lacustrine in origin. However, pedogenic features such as brecciation, 
nodularization, cracking of the facies PSL3 imply that marginal lake 
areas were frequently subaerially exposed (Freytet and Plaziat, 1982). 
Brecciated carbonate facies (PSL3) indicate short-term subaerial expo
sure, and thus, they developed by weak pedogenic processes (Alonso- 
Zarza and Wright, 2010). Such carbonates are thought to result from 
desiccation-related processes of original lacustrine wackestone. Facies 

Table 1 
Summary of the facies, facies associations, and fossil contents in the studied successions of the Baklan Basin.  

Facies association Facies Fossil content 

Palustrine 
lake margin 
(PLM) 
(Gelinören section) 

Facies PLM1: 
Ostracodal-intraclastic packstone 
Facies PLM2: 
Molluscan-ostracodal packstone-grainstone 
Facies PLM3: 
Organic-rich mudstone 
Facies PLM4: 
Laminated siltstone-sandstone 
Facies PLM5: 
Laminated marlstone 

Ostracods 
Candona (Caspiolla) fastigata 
Ilyocypris sp. 1 
Ilyocypris sp. 3 
Ilyocypris cf. monstrifica 
Cyprideis cf. pontica 
Amnicythere cf. olivia 
Candona ex. gr. neglecta 

Molluscs 
Laevicaspia ?lincta 
Monodacna imrei 
Kirelia carinata 
?Bythinella sp. 
Bithynia pseudemmericia 
Bithynia sp. (opercula) 
Valvata cristata 
Valvata piscinalis 
Lymnaea cf. stagnalis 
Stagnicola palustris 
Radix sp. 
Planorbarius corneus 
Planorbis ?carinatus 
Gyraulus cf. acronicus 
Armiger crista 
Corbicula aff. fluminalis 
Corbicula aff. fluminea 
Sphaerium rivicola 
Sphaerium corneum s.l. 
Sphaerium sp. 
Pisidium amnicum 
Pisidium clessini 
Pisidium s.l. sp. 
Euglesa nitida 
Euglesa subtruncata 
Euglesa henslowana 
Euglesa ponderosa 
Odhneripisidium tenuilineatum 
Odhneripisidium moitessierianum 
Unionoidea sp. indet. 
Dreissena polymorpha s.l. 

Fishes 
Teleostei 
Cyprinoidei 
Characeae 
Chara cf. hispida 
Chara sp. 1 
Chara sp. 2 
Chara sp. 3 
Nitellopsis (Tectochara) meriani 
Micromammals 
Microtus sp. 
Meriones sp. 
Murinae indet. 

Palustrine lake center 
(PLC) 
(Aşağıseyit-2 section) 

Facies PLC1: 
Peloidal-brecciated-nodular wackestone 
Facies PLC2: 
Calcareous siltstone 
Facies PLC3: 
Laminated marlstone 

Ostracods 
Candona weltneri 
Heterocypris salina 
Ilyocypris sp. 2 
Cyprideis cf. mehesi 
Tyrrhenocythere sp. 
Limnocythere aff. inopinata 
Candona decimai 
Candona ex. gr. neglecta 

Molluscs 
Theodoxus bukowskii 
Monodacna imrei 
Valvata piscinalis 
Lymnaea cf. stagnalis 
Radix sp. 
Planorbarius corneus 
Planorbis ?carinatus 
Gyraulus cf. acronicus 
Armiger crista 
Segmentina aff. nitida 
Corbicula aff. fluminea 
Pisidium amnicum 
Pisidium clessini 
Pisidium s.l. sp. 
Euglesa nitida 
Euglesa subtruncata 
Euglesa henslowana 
Odhneripisidium tenuilineatum 
Unionoidea sp. indet. 
Dreissena polymorpha s.l. 

Characeae 
Chara cf. hispida 
Chara cf. vulgaris 
Molluscs 
Laevicaspia ?lincta 
Bithynia pseudemmericia 
Bithynia sp. (opercula) 
Valvata cristata 

Perennial shallow lake 
(PSL) 
(Aşağıseyit-1 section) 

Facies PSL1: 
Ostracodal packstone 
Facies PSL2: 
Mudstone 
Facies PSL3: 
Peloidal-brecciated-nodular wackestone 
Facies PSL4: 
Ostracodal-molluscan wackestone 
Facies PSL5: 
Organic-rich mudstone 
Facies PSL6: 
Laminated marlstone 

Ostracods 
Cypris cf. pubera 
Prionocypris zenkeri 

Molluscs 
Bithynia pseudemmericia 
Valvata cristata 
Planorbarius corneus 
Planorbis cf. carinatus 
Gyraulus ?acronicus  
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PSL5 represents muddy suspension fallout deposition in the low-energy 
proximal lacustrine settings, while facies PSL6 reflects mixed terrige
nous and carbonate sedimentation in the deeper lacustrine zones. 

4.2.2. Palustrine lake center facies association (PLC) 
The PLC facies association occurs in the middle part of the studied 

succession (Fig. 3) (Aşağıseyit-2 section, Fig. 4B). These deposits are 
particularly well exposed in the northern part of the basin (Fig. 2). It is 

Fig. 6. Microphotographs of shallow lake facies association (PSL): (A-B) ostracodal packstone (PSL1) including ostracods (os), siliciclastic grains (sg), iron-oxide 
stained (io) voids (v), and circumgranular cracks (cc); (C-D) mudstone (PSL2) containing planar cracks (cc) and voids (v); (E-F) peloidal-brecciated-nodular 
wackestone (PSL3) including circumgranular cracks (cc), nodules (n), and iron-oxide (io) stained voids (v); (G-H) ostracodal-molluscan wackestone (PSL4) con
taining ostracods (os), molluscs (ms), and voids (v). 
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Fig. 7. Ostracods of the perennial shallow lake (PSL, GE samples), palustrine lake center (PLC, AS samples) and palustrine lake margin (PLM, GEK samples) deposits: 
(1–4) Candona weltneri; 1 = Lf, i, 1.22/0.69, AS.9; 2 = 1, e; 3 = Rf, e, 1.13/0.61, AS.9; 4 = Rf, i, 1.25/0.70, AS.9; (5–8) Candona (Caspiolla) fastigata; 5 = Lm, i, 0.75/ 
0.40, GEK.5; 6 = 5, e; 7 = R, e, 0.74/0.40, GEK.5; 8 = 7, e; (9–10) Cypris cf. pubera; 9 = R, e, 2.21/1.33, GE.5; 10 = 9, i; (11) Ilyocypris sp. 1; 11 = L, i, GEK.3, detail of 
posteroventral margin; (12) Ilyocypris sp. 3; 12 = L, i, GEK.9, detail of posteroventral margin; (13–16) Heterocypris salina; 13 = L, i, 1.20/0.81, AS.5; 14 = 13, e; 15 =
R, e, 1.29/0.79, AS.5; 16 = 15, i; (17–20) Prionocypris zenkeri; 17 = L, i, 1.58/0.92, GE.5; 18 = 17, e; 19 = R, e, 1.60/0.92, GE.5; 20 = 19, i; (21–24) Ilyocypris cf. 
monstrifica; 21 = L, i, 0.75/0.44, GEK.3; 22 = 21, e; 23 = R, e, 0.74/0.42, GEK.3; 24 = 23, i; (25–28) Ilyocypris sp. 1; 25 = L, i, 1.14/0.61, GEK.3; 26 = 25, e; 27 = R, e, 
1.08/0.57, GEK.3; 28 = 27, i; (29–32) Ilyocypris sp. 2; 29 = L, i, 0.97/0.58, AS.5; 30 = 29, e; 31 = R, e, 0.99/0.51, AS.5; 32 = 31, i; (33–36) Ilyocypris sp. 3; 33 = L, i, 
0.81/0.45, GEK.3; 34 = 33, e; 35 = R, e, 0.84/0.47, GEK.9; 36 = 35, i. (abbreviations: L = left valve, R = right valve; f = female, m = male; e = lateral view extern, i 
= lateral view intern; measurements in mm (e.g., 0.89/0.49 = 0.89 mm length, 0.49 mm height); scale bar for each row = 0.2 mm). 
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predominantly composed of peloidal-brecciated-nodular wackestone 
(facies PLC1), calcareous siltstone (facies PLC2), and laminated marl
stone (facies PLC3) alternations (Table 1). This association is up to 14 m 
thick and extends laterally for tens of meters (Fig. 5A). The association 
passes upward into the palustrine lake margin facies association (PLM). 

Facies PLC1: Peloidal-brecciated-nodular wackestone is found in the 
upper part of the Aşağıseyit-2 section (Fig. 4B). This facies is beige to 
yellow in color and forms compact, tabular beds up to 100 cm thick 
(Fig. 5F). It consists of wackestones with rounded micritic nodules 
(0.2–0.5 mm in diameter), ostracods, siliciclastic grains, iron-oxide 
stained irregular cracks and voids, and circumgranular cracks 
(Fig. 8A-8D). Irregular and circumgranular cracks and voids are com
mon in open or partially filled areas with microsparite/sparite cement or 
iron oxide (Fig. 8A-8D). This facies is intercalated with facies PLC2 and 
PLC3. 

Facies PLC2: Calcareous siltstone is present in all levels of the 
Aşağıseyit-2 section (Fig. 4B). It is beige to yellow in color (Fig. 5F) and 
composed of quartz grains with a minor amount of feldspar. It displays 
planar parallel lamination and the beds are up to 5 cm thick, alternating 
with facies PLC1 and PLC3. 

Facies PLC3: Laminated marlstone occurs in all parts of the Aşağıseyit- 
2 section (Fig. 4B). It is beige to light-gray in color and forms in tabular 
to slightly lenticular beds 50–200 cm thick (Fig. 5F). This facies is 
parallel-laminated, occasionally massive, and includes circumgranular 
cracks, plant detritus, and root casts (0.5–2.0 cm in length). These de
posits are rich in ostracods [Fig. 7 (1–4, 13–16, 29–32) and Fig. 9 (1–4, 
9–12, 17–40)], molluscs [Fig. 10 (a, c, j, l-n)], and Characeae [Fig. 11 (a- 
c)] (Table 1). The facies is intercalated with facies PLC1 and PLC2. 

Interpretation – Dolomitic limestone-dolostone-marlstone-siltstone 
alternations of the PLC association are interpreted as palustrine de
posits. The predominance of PLC1 carbonates with wackestone textures 
indicates palustrine sedimentation in shallow lakes with fluctuating 
water levels (Alonso-Zarza, 2003; Alonso-Zarza and Wright, 2010). 
Pedogenic features of the facies PLC1 and PLC3 (i.e., brecciation, nod
ularization, and cracking) reflect that the lake areas were often sub
aerially exposed, favoring palustrine deposits (Freytet and Plaziat, 
1982). The presence of well preserved Characeae gyrogonites in the 
PLC3 deposits also supports a deposition formed under low-energy 
conditions at the margin of a shallow lake (usually depths of less than 

10 m) (Anadón et al., 2000; Lettéron et al., 2018). Facies PLC2 indicate 
the contribution of terrigenous fine-grained deposits by sheetfloods in 
the marginal lake areas, whereas facies PLC3 is interpreted as settling 
out of carbonate and fine-grained terrigenous deposits during the rela
tively high lake level intervals. 

4.2.3. Palustrine lake margin facies association (PLM) 
These deposits form the upper part of the studied succession (Gel

inören section, Fig. 4C) and are well exposed in the basin’s northern part 
(Fig. 2). This assemblage conformably overlies the PLC facies association 
and consists of alternating ostracodal-intraclastic packstone (facies 
PLM1), molluscan-ostracodal packstone-grainstone (facies PLM2), 
organic-rich mudstone (facies PLM3), laminated siltstone-sandstone 
(facies PLM4), and laminated marlstone (facies PLM5) (Table 1). 
These deposits are up to 25 m thick and extend laterally over tens of 
meters (Fig. 5B). 

Facies PLM1: Ostracodal-intraclastic packstone occurs in the lower part 
of the Gelinören section (Fig. 4C). This facies is beige to yellow in color 
and forms compact, tabular beds up to 50 cm thick (Fig. 5F). This facies 
is a texturally packestone, with a homogeneous micritic matrix, con
taining ostracods, siliciclastic grains, irregular and circumgranular 
cracks, and iron-oxide stained voids (Fig. 12A-C). The planar and cir
cumgranular cracks are locally filled with microsparite and iron-oxide. 
This facies is up to 50 cm thick and alternated with facies PLM3, 
PLM4, and PLM5. 

Facies PLM2: Molluscan-ostracodal packstone-grainstone is found in the 
uppermost part of the Gelinören section (Fig. 4C). It is texturally 
packestone-grainstone, with a homogeneous micritic-microsparitic ma
trix, charophyte stems, molluscs, ostracods, pellets, oncoids, voids, sil
iciclastic grains, intraclast fragments, and iron-oxide stained voids 
(Fig. 12D-F). This facies is up to 100 cm thick and alternated with facies 
PLM5. 

Facies PLM3: Organic-rich mudstone occurs in all parts of the Gel
inören section (Fig. 4C). This facies is dark brown to gray and forms 
tabular to slightly lenticular beds that are 15–30 cm thick (Fig. 5G). It is 
parallel–laminated and rarely massive. This facies includes decimeter- to 
centimeter-scale mudcracks, macrophytic detritus, and elongated 
micrite casts (1–5 cm in length). The mollusc-bearing layers contain 
three micromammals (Meriones sp., Murinae indet., and the arvicoline 

Fig. 8. Microphotographs of palustrine lake centre facies association (PLC): (A-D) Peloidal-brecciated-nodular wackestone (PLC1) including iron-oxide (io) stained 
irregular cracks (ic) and voids (v), micritic nodules (n), circumgranular cracks (cc), ostracods (os), and siliciclastic grains (sg). 
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Fig. 9. Ostracods of the palustrine lake center (PLC, AS samples) and palustrine lake margin (PLM, GEK samples) deposits: (1–4) Cyprideis cf. mehesi; 1 = Lf, i, 0.89/ 
0.49, AS.3; 2 = 1, e; 3 = Rf, e, 0.87/0.47, AS.3; 4 = 3, i; (5–8) Cyprideis cf. pontica; 5 = Lf, i, 0.87/0.53, GEK.7; 6 = 5, e; 7 = Rf, e, 0.86/0.49, GEK.7; 8 = 7, i; (9–12) 
Tyrrhenocythere sp.; 9 = Lf, i, 0.86/0.54, AS.2; 10 = 9, e; 11 = Rm, e, 1.02/0.57, AS.2; 12 = 11, i; (13–16) Amnicythere cf. olivia; 13 = L, i, 0.58/0.33, GEK.9; 14 = 13, 
e; 15 = R, e, 0.56/0.31, GEK.9; 16 = 15, i; (17–24) Limnocythere aff. inopinata; 17 = Lm, i, 0.67/0.34, AS.5; 18 = 17, e; 19 = Rm, e, 0.69/0.36, AS.5; 20 = 19, i; 21 =
Lf, i, 0.61/0.34, AS.5; 22 = 21, e; 23 = Rf, e, 0.64/0.39, AS.5; 24 = 23, i; (25–32) Candona decimai; 25 = Lm, i, 1.60/0.89, AS.5; 26 = 25, e; 27 = Rm, e, 1.50/0.83, 
AS.5; 28 = 27, i; 29 = Lf, i, 1.38/0.67, AS.5; 30 = 29, e; 31 = Rf, e, 1.37/0.67, AS.5; 32 = 31, i; (33–40) Candona ex. gr. neglecta; 33 = Lm, i, 1.38/0.82, AS.5; 34 = 33, 
e; 35 = Rm, e, 1.31/0.74, AS.5; 36 = 35, i; 37 = Lf, i, 1.39/0.74, GEK.4.1; 38 = 37, e; 39 = Rf, e, 1.37/0.70, GEK.4.1; 40 = 39, i Abbrev: see Fig. 7. 

H. Alçiçek et al.                                                                                                                                                                                                                                 



Palaeogeography, Palaeoclimatology, Palaeoecology 626 (2023) 111649

13

Microtus sp.; Table 1). 
Facies PLM4: Laminated siltstone-sandstone is also found in all parts of 

the Gelinören section (Fig. 4C). It is beige to yellow, fine- to medium- 
grained, and well-sorted, forming beds that are 15–25 cm thick. The 
beds are composed of siliciclastic grains and exhibit planar parallel 
lamination that is locally disrupted by vertical and horizontal tubes 
about 2 mm wide and 3 cm long. The tubes are generally filled with 
micrite or microspar. This facies alternates with facies PLM1, PLM2, and 
PLM5. 

Facies PLM5: Laminated marlstone occurs in all parts of the Gelinören 
section (Fig. 4C). This facies is light to dark greenish-gray in color and 
constitute in tabular or lenticular beds that are 10–50 cm thick. This 
facies is parallel-laminated and only locally massive. It contains mud
cracks, plant detritus, and root casts (0.5–2.0 cm long). These deposits 
are very rich in ostracods [Fig. 7 (5–8, 11–12, 21–28, 33–36) and Fig. 9 
(5–8, 13–16)], molluscs [Fig. 10 (b, d-i, k, o-p) and Fig. 13 (a-r)], 
Characeae [Fig. 11 (b, d-g)], and fishes [Fig. 14 (a-k)] (Table 1). This 
facies is intercalated with facies PLM1, PLM2, and PLM4. 

Interpretation – Dolomitic limestone-dolostone–marlstone–siltstone- 
sandstone-mudstone alternations of the PLM association are thought to 
be the deposits of marginal areas of palustrine setting. The predomi
nance of packstone textures PLM1 and PLM2 carbonates is typically 
characteristic of low-energy, palustrine lake conditions (Alonso-Zarza 
et al., 2011). Pedogenic features, such as brecciation and cracking, 
suggest periodic episodes of subaerial exposure in the palustrine settings 
(Alonso-Zarza, 2003). Facies PLM3 reflects a low-energy environment 
dominated by muddy suspension fallout, whereas facies PLM4 is inter
preted as the supply of terrigenous fine-grained deposits by sheetfloods 
or very gently incised channels in terminal zones in the marginal lake 
zones. Facies PLM5 reflects the deposition of transitional siliciclastic/ 
carbonate mudflats in the marginal areas. The presence of well pre
served Characeae gyrogonites in the PLM2 and PLM5 facies indicates 
shallow water depths (< 10 m) with low-energy conditions, favoring the 
growth of the green algae (Anadón et al., 2000; Lettéron et al., 2017). 

Fig. 10. Molluscs of the palustrine lake center (PLC, 
AS samples) and palustrine lake margin (PLM, GEK 
samples) deposits: (a) RGM.1310373. Theodoxus 
bukowskii. Collected from surface of badland, 550 m N 
of Aşağıseyit village, 38◦03′56′′N, 29◦28′51′′E. W 6.8 
mm. (b) RGM.1310363. Kirelia carinata. GEK5. H 1.3 
mm. (c) RGM.1310366. Laevicaspia ?lincta. AS2. H5.8 
mm. (d) RGM. 1310357. Bithynia pseudemmericia. 
GE4.1, GEK6. H 13 mm. (e) RGM.1310358. Bithynia 
sp. operculum. GEK6. L 4.2 mm. (f) RGM.1310372. 
Valvata cristata. GEK6. W 2.4 mm. (g) RGM.1310364. 
Valvata piscinalis. GEK5. W 5.8 mm. (h) 
RGM.1310362. Lymnaea cf. stagnalis. GEK5. H 14 mm. 
(i) RGM.1310355. Stagnicola palustris. GEK5. H 33 
mm. (j) RGM.1310369. Radix sp. AS2. H 10.5 mm. (k) 
RGM.1310361. Planorbarius corneus. GEK5. W 12.5 
mm. (l) RGM.1310365. Planorbis cf. carinatus. AS2. W 
9 mm. (m) RGM.1310368. Gyraulus cf. acronicus. AS2. 
W 5.7 mm. (n) RGM.1310367. Gyraulus ?acronicus. 
AS2. W 4.7 mm. (o) RGM.1310371. Armiger crista. 
GEK1. W 1.8 mm. (p) RGM.1310370. Segmentina aff. 
nitida. GEK6. W 1.7 mm.   
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4.3. Mineralogy and stable isotope geochemistry 

The mineralogy and stable isotopic composition of lacustrine car
bonates and fossil molluscs have been widely used to reconstruct pale
osalinity and paleotemperature of lake waters, making them a powerful 
tool for paleolimnological studies (e.g., Leng and Marshall, 2004). The 
mineralogical and δ18O and δ13C isotope compositions of carbonate 
samples from three stratigraphic associations in the studied successions 
are listed in Table 2 and shown in Fig. 15A-15B. 

XRD analyses indicate that the lower PSL deposits consist of 23% 
dolomite and 8% calcite with a rich admixture of siliciclastic minerals 
(42% clay minerals, 12% mica, 9% aragonite, 3% quartz, 3% feldspar). 
Carbonate samples of these deposits show mostly positive δ18O values 
(+0.28 to +4.08‰, mean = +2.76‰ for calcite and +1.70 to +4.09‰, 
mean = +2.89‰ for dolomite). The δ13C values are negative and slightly 
variable (−4.60 to −1.67‰, mean = −3.19‰ for calcite and  −3.10 to 
−1.03‰, mean = −2.35‰ for dolomite) (Table 2; Fig. 15A). The stable 
isotope values of molluscs of the PSL deposits exhibit similar δ18O values 
(+0.88 to +4.10‰, mean = +2.70‰) and δ13C values (−3.37 to 
+0.94‰, mean = −1.70‰) (Table 3; Fig. 15B). 

The middle PLM deposits include 19% dolomite and 13% calcite and 
siliciclastic minerals (40% clay minerals, 13% mica, 6% aragonite, 5% 
feldspar, 4% quartz). Carbonate deposits of these deposits exhibit posi
tive to slightly negative δ18O values (−2.03 to +3.87‰, mean =

+1.22‰ for calcite and −1.35 to +3.92‰, mean = +1.37‰ for 

Fig. 11. Characeae of the palustrine lake center (PLC, AS samples) and palus
trine lake margin (PLM, GEK samples) deposits. (a–b) Chara cf. hispida, (a) G 
(AS.9), above LV, below AV, (b) O (GEK.7), LV. (c) Chara cf. vulgaris, G (AS.9), 
above LV, below AV. (d) Chara sp. 1, G (GEK.4), LV. (e) Chara sp. 2., G (GEK.4), 
LV. (f) Chara sp. 3, (GEK.3) G, LV. (g) Nitellopsis (Tectochara) meriani, (GEK.3) 
G, above LV, below AV. Abbrev.: Gyrogonite (G), oospore (O), lateral view (LV), 
apical view (AV). 

Fig. 12. Microphotographs of palustrine lake margin facies association (PLM) (A-C) Ostracodal-intraclastic packstone (PLM1) contaning ostracods (os), siliciclastic 
grains (sg), irregular (ic) and circumgranular cracks (cc), and iron-oxide (io) stained voids (v); (D-F) Molluscan-ostracodal packstone-grainstone (PLM2) including 
charophytes (ch), molluscs (ms), ostracods (os), pellets (pl), oncoids (oc), voids (v), siliciclastic grains (sg), intraclast fragments (if), and iron-oxide (io) stained 
voids (v). 
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dolomite). The δ13C values are negative and slightly variable (−5.31 to 
−0.81‰, mean = −3.74‰ for calcite and −5.71 to −3.84‰, mean =
−4.74‰ for dolomite) (Table 2; Fig. 15A). The stable isotope values of 
molluscs of the PLC deposits show similar δ18O values (−1.20 to 
+4.37‰, mean = −1.82‰) and δ13C values (−8.19 to +0.92‰, mean =
−4.53‰) (Table 3; Fig. 15B). 

The upper PLM deposits are composed of 24% calcite and 9% dolo
mite with a significant amount of siliciclastic minerals (43% clay min
erals, 10% mica, 6% aragonite, 5% quartz, 3% feldspar). Carbonate 
samples of these deposits have negative δ18O values (−6.20 to −0.67‰, 
mean = −3.03‰ for calcite and −5.55 to −0.20‰, mean = −2.78‰ for 
dolomite) and negative δ13C values (−8.45 to −0.75‰, mean = −3.97‰ 
and −6.44 to −0.87‰, mean = −3.11‰ for dolomite) (Table 2; 
Fig. 15A). The stable isotope values of molluscs of the PLM deposits also 
show broad variations (δ18O values from −6.31 to +5.49‰, mean =

−0.27‰ and δ13C values from −9.13 to +2.80‰, mean = −4.83‰; 
Table 3; Fig. 15B). 

Interpretation – The high δ18O values of the PSL and PLC carbonates 
indicate evaporative enrichment of δ18O in the lake water, while the low 
δ18O values in the lower part of the PLM deposits suggest a flux of 
isotopically light, 18O-depleted meteoric water (Leng and Marshall, 
2004). The negative δ13C values in all deposits imply the input of 
isotopically light CO2 resulting from biological processes related to the 
pond vegetation or organic matter decay (Talbot and Kelts, 1990; Leng 
and Marshall, 2004). 

5. Discussion 

5.1. Paleoecology and paleobiogeography 

5.1.1. Micromammals 
The palustrine marginal lake deposits (PLM) of the Gelinören section 

(Fig. 4C) contain the micromammal fauna Microtus sp., Meriones sp., and 
Murinae indet. (Table 1). This fauna comprises open-steppe genera, 

Fig. 13. Molluscs of the palustrine lake margin de
posits (PLM, GEK samples): (a) PAUT.GEK2 Mono
dacna imrei (paratype). GEK2. W 22 mm. (b) RGM. 
1310356. Dreissena polymorpha s.l. GEK5. L 33 mm. 
(c) RGM.1310360. Corbicula aff. fluminalis. GEK1. W 
16.5 mm. (d) RGM.1310359. Corbicula aff. fluminea. 
GEK5. W 20.5 mm. (e) RGM.1310341. Sphaerium 
rivicolum. GEK5. W 17 mm. (f) RGM.1310342. 
Sphaerium corneum. GEK5. W 7.3 mm. (g) 
RGM.131043. Pisidium amnicum. GEK5. W. 7.5 mm. 
(h) RGM.131044. Pisidium amnicum. GEK5. W. 7.5 
mm. (i) RGM.1310353. Pisidium cf. clessini. GEK13. W 
6.2 mm. (j) RGM.1310354. Pisidium cf. clessini. 
GEK13. W. 5.3 mm. (k) RGM.1310347. Euglesa nitida. 
GEK5. W 2.4 mm. (l) RGM.1310348. Euglesa nitida. 
GEK5. W 2.4 mm. (m) RGM.1310345. Euglesa sub
truncata. GEK5. W 3.2 mm. (n) RGM.1310346. Euglesa 
henslowana. GEK5. W 3.3. mm. (o) RGM.1310352. 
Euglesa henslowana. GEK13. W 6.2 mm. (p) 
RGM.1310351. Euglesa ponderosa. GEK4.2. W. 3.3 
mm. (q) RGM. 1310350. Odhneripisidium ten
uilineatum. GEK5. W 1.4 mm. (r) RGM.1310349. 
Odhneripisidium moitessierianum. GEK4.1. W 1.8 mm.   
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including extant Palearctic forms (Table 4). Wesselingh and Alçiçek 
(2010) previously reported the presence of Pseudomeriones tchaltaensis in 
the Gelinören section. However, re-examination of the specimen iden
tified as Pseudomeriones tchaltaensis revealed that it was actually a very 
hypsodont M2 of a gerbil that cannot be attributed to Pseudomeriones. 
Therefore, Pseudomeriones tchaltaensis is now reclassified as Meriones sp. 
The genera Microtus and Meriones are both extant in Anatolia and have 
been found together in the Pleistocene localities in Greece (Kuss and 
Storch, 1978) and western Turkey (Storch, 1988). The presence of 
Microtus suggests that the Gelinören section is much younger than pre
viously assumed by Wesselingh and Alçiçek (2010) and is therefore of 
Middle-Late Pleistocene age (Biharian-Toringian, MNQ1-Q2; Fig. 3). 

5.1.2. Ostracods 
Three samples from the perennial shallow lake deposits (PSL asso

ciation, Aşağıseyit-1 section, Fig. 4A), six samples from the palustrine 
lake center deposits (PLC association, Aşağıseyit-2 section, Fig. 4B), and 
twelve samples from the palustrine lake margin deposits (PLM associa
tion, Gelinören section, Fig. 4C) were investigated for their ostracod 
content and yielded a total of 16 species (Figs. 7 and 9; Table 1) Most 
ostracod valves are well preserved, and species are usually represented 
by both adult and juvenile stages. 

The three samples from the perennial shallow lake deposits (Table 1) 
yielded a poor ostracod fauna (3 taxa, 31 valves) indicative of a shallow 
freshwater environment, such as a lake or slow-flowing stream. Among 
the recovered ostracod species of the palustrine lake center and 

palustrine lake margin deposits (Table 1), Cyprideis spp., Tyrrhenocythere 
sp., Amnicythere cf. olivia (Livental, 1938), and Candona (Caspiolla) fas
tigata (Freels, 1980) are commonly found in brackish (mainly oligo– to 
mesohaline) waters. Presumed freshwater dwellers that tolerate oligo−/ 
mesohaline conditions are represented by: Limnocythere aff. inopinata 
(Baird, 1843), Candona decimai (Freels, 1980), Candona ex. gr. neglecta 
(Sars, 1887), Cypris cf. pubera (Müller, 1776), Heterocypris salina (Brady, 
1868), and Ilyocypris spp. Typical freshwater ostracods are Candona 
weltneri (Hartwig, 1899) and Prionocypris zenkeri (Chyzer and Toth, 
1858). The latter avoids limnic settings, and some occurrences of this 
taxon in the PLC and PLM sections may be the result of transportation by 
nearby rivers. Paleosalinity estimations are based on these autecological 
assumptions (for more details, see SI.1 for further information) (Fig. 16). 

Paleobiogeographic considerations based on the current state of 
taxonomy (several taxa are left in open nomenclature) are problematic. 
However, C. weltneri, C. pubera, H. salina and P. zenkeri, which are 
widespread in the Holarctic today, have very early (possibly first) re
cords in the Late Miocene of Anatolia (Freels, 1980; Meisch, 2000; 
Matzke-Karasz and Witt, 2005; Tunoğlu et al., 2012; Kayseri-Özer et al., 
2017). Candona neglecta, also a present-day Holarctic taxon, was already 
common in Europe and the Anatolian peninsula during the Late Miocene 
and Pliocene (Meisch, 2000; Beker et al., 2008). Candona decimai occurs 
in Late Miocene-Pliocene times in northern Bulgaria, the Greek main
land and Aegean, as well as in Asia Minor (Matzke-Karasz and Witt, 
2005). C. cf. mehesi, C. cf. pontica, and C. (C.) fastigata are possibly 
endemic in the Late Miocene–Pliocene basins of Anatolia but might be of 

Fig. 14. Fish teeth from the palustrine lake margin (PLM, GEK samples) deposits. (a–c) Morphotype A, from locality GEK 7, Teleostei indeterminate in a, lateral, b, 
posterior and c, anterior views. (d–f) Morphotype B, from locality GEK 2, Cyprinoidei, in d, posterolateral, e. lateral, and f. posterior views. (g–i) Morphotype B, from 
locality GEK 7, Cyprinoidei, in g, h, right and left lateral views, and i, posterior view. (j–k) Morphotype C, from locality GEK 5, Cyprinoidei, in two views. 
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Paratethyan ancestry (e.g., Bassiouni, 1979; Dykan, 2016). Tyr
rhenocythere and Amnicythere are supposed to be (Central) Paratethyan, 
of Middle and early Late Miocene origin, colonizing the Mediterranean 
and Ponto–Caspian region during the latest Miocene (e.g., Griffiths 

et al., 2002; Gliozzi et al., 2005; Pipík, 2007; Namiotko et al., 2012). 
In summary, the Baklan ostracod fauna is composed of: i) widely 

distributed “freshwater” taxa (C. ex gr. neglecta, C. weltneri, C. cf. pubera, 
H. salina, P. zenkeri, L. aff. inopinata, Ilyocypris spp.), and ii) “brackish” 

Table 2 
Mineral composition and oxygen and carbon isotope values of various carbonate facies in the studied successions.  

Facies association Facies Sample no Mineralogy Calcite Dolomite 

Carbonates Siliciclastic components δ18O 
(‰ 
VPDB) 

δ13C 
(‰ 
VPDB) 

δ18O 
(‰ 
VPDB) 

δ13C 
(‰ 
VPDB) 

Palustrine 
lake 
margin 
(PLM) 
(Gelinören section) 

PLM2: 
Molluscan- 
ostracodal 
packstone- 
grainstone 

GEK.1.1B 
GEK.1.1A2 
GEK.1.1A1 
GEK.1.2B 
GEK.1.2A 

Cal Clay>Mica>Q>Fel −2,89 
−4,15 
−6,20 
−4,33 
−4,54 

−5,31 
−5,37 
−7,20 
−4,49 
−4,61 

- 
- 

−5,55 
- 
- 

- 
- 

−6,44 
- 
- 

PLM3: Organic mudstone GEK.2 Cal Clay>Mica>Fel =Q −5,44 −4,44 - - 
PLM5: 
Laminated 
marlstone 

GEK.3 
GEK.4 
GEK.5 
GEK.6 
GEK.7 
GEK.8 
GEK.9 

Cal 
Cal>Dol 
Cal 
Cal 
Cal 
Cal>Dol 
Cal 

Clay>Mica>Q>Fel 
Clay>Mica>Q>Fel 
Clay>Mica>Fel >Q 
Clay>Mica>Fel >Q 
Clay>Mica>Fel >Q 
Clay>Mica>Q>Fel 
Clay>Mica>Q>Fel 

−2,37 
−1,34 
−2,14 
−2,53 
−3,73 
−1,45 
−2,33 

−2,21 
−0,75 
−1,06 
−1,04 
−1,55 
−3,74 
−2,53 

−2,66 
- 

−1,62 
- 

−2,55 
- 

−2,02 

−2,14 
- 

−0,87 
- 

−1,28 
- 

−3,77 
PLM3: Organic mudstone GEK.10 Cal Clay>Mica>Fel =Q −5,90 −8,45 - - 
PLM1: Ostracodal−intraclastic packstone GEK.11.2 

GEK.11.1 
Cal>Dol Clay>Mica>Fel >Q −1,30 

−0,67 
−4,48 
−4,97 

- 
−0,20 

- 
−3,00 

PLM3: Organic mudstone GEK.12 Cal>Dol Clay>Mica>Fel >Q −1,18 −3,37 - - 
PLM1: 
Ostracodal−intraclastic 
packstone 

GEK.13.2 
GEK.13.1 

Cal>Dol Clay>Mica>Q>Fel −2,04 
−1,77 

−5,05 
−4,74 

- 
−3,20 

- 
−3,68 

GEK.14.2 
GEK.14.1 

Cal Clay>Mica>Fel >Q −3,78 
−3,50 

−3,86 
−4,05 

- 
−4,41 

- 
−3,68 

Palustrine lake center 
(PLC) 
(Aşağıseyit−2 
section) 

PLC1: Peloidal- 
nodular- 
brecciated 
wackestone 

AS.1.4 
AS.1.3 
AS.1.2 
AS.1.1 

Dol>Cal Clay>Mica>Q>Fel 3,68 
3,87 
2,89 
2,66 

−4,42 
−4,48 
−4,29 
−4,31 

- 
3,92 

- 
3,12 

- 
−5,53 

- 
−5,71 

PLC3: 
Laminated 
marlstone 

AS.1 Dol>Cal Clay>Mica>Fel >Q −0,81 −3,70 −1,35 −3,58 
AS.2 Cal>Dol Clay>Mica>Fel >Q −0,90 −2,08 - - 
AS.3 Cal>Dol Clay>Mica>Q>Fel −2,03 −2,18 - - 
AS.4 
AS.4.1 

Dol Clay>Mica>Q>Fel −0,45 
1,90 

−5,31 
−4,58 

−0,72 
- 

−5,07 
- 

AS.5.3 
AS.5.2 
AS.5.1 

Cal>Dol Clay>Mica>Q>Fel −1,34 
−1,40 
−0,32 

−2,63 
−2,37 
−2,58 

0,52 
- 
- 

−4,57 
- 
- 

AS.5 Cal>Dol Clay>Mica>Fel >Q −0,47 −3,84 −0,33 −3,84 
AS.6 
AS.6.1 

Cal>Dol Clay>Mica>Q>Fel −1,85 
2,53 

−0,81 
−4,41 

1,54 
- 

−4,59 
- 

PLC1: Peloidal- 
nodular- 
brecciated 
wackestone 

AS.7.4 
AS.7.3 
AS.7.2 
AS.7.1 

Dol Clay>Mica>Q=Fel 2,99 
3,15 
3,32 
2,75 

−4,38 
−4,44 
−4,37 
−4,29 

3,58 
- 

1,38 
- 

−5,21 
- 

−4,46 
- 

PLC3: 
Laminated 
marlstone 

AS.8 
AS.9 

Cal>Dol 
Cal>Dol 

Clay>Mica>Fel >Q 
Clay>Mica>Fel >Q 

3,47 
2,01 

−4,08 
−5,03 

2,01 
- 

−4,80 
- 

AS.10 Cal>Dol Clay>Mica>Q>Fel −2,89 −5,31 - - 
Perennial shallow 

lake 
(PSL) 
(Aşağıseyit−1 
section) 

PSL4: Ostracodal− molluscan wackestone GE.1.2 
GE.1.1 

Dol>Cal Clay>Mica>Fel>Q 1,57 
1,63 

−2,84 
−3,05 

2,17 
1,70 

−2,85 
−2,87 

PSL3: Peloidal−brecciated−nodular 
wackestone 

GE.2.2 
GE.2.1 

Dol>Cal Clay>Mica=Ara>Q>Fel 2,60 
2,38 

−4,24 
−4,25 

- 
3,41 

- 
−1,08 

PSL6: Laminated marlstone GE.3 
GE.4 

Dol>Cal 
Dol>Cal 

Clay>Mica>Fel=Q 
Clay>Mica>Ara>Fel>Q 

0,28 
0,90 

−4,60 
−4,00 

2,48 
2,63 

−2,80 
−2,03 

PSL1: Ostracodal packstone GE.5.2 
GE.5.1 

Cal>Dol Clay>Mica=Ara>Fel>Q 3,40 
3,71 

−1,83 
−1,67 

2,83 −2,81 

PSL6: Laminated marlstone GE.6 Cal>Dol Clay>Mica>Ara>Q>Fel 3,60 −3,19 - - 
PSL2: 
Mudstone 

GE.7.2 
GE.7.1 

Dol Clay>Mica>Q 4,08 
3,92 

−2,85 
−3,07 

2,95 
2,61 

−3,08 
−3,09 

PSL6: Laminated marlstone GE.8 Dol>Cal Clay>Mica>Q>Fel 2,73 −3,00 3,33 −1,03 
PSL5: Organic mudstone GE.9 Dol>Cal Clay>Mica>Q>Fel 1,19 −3,44 3,64 −1,48 
PSL2: 
Mudstone 

GE.10.2 
GE.10.1 

Cal>Dol Clay>Mica>Ara>Q=Fel 4,06 
3,99 

−2,74 
−2,65 

2,19 −3,02 

PSL6: 
Laminated 
marlstone 

GE.11 
GE.12 
GE.13 

Dol>Cal 
Dol>Cal 
Cal>Dol 

Clay>Mica>Fel >Q 
Clay>Mica>Q>Fel 
Clay>Mica>Ara>Fel >Q 

3,32 
3,17 
3,53 

−3,01 
−3,11 
−2,95 

3,60 
- 

−2,45 
- 

PSL1: Ostracodal packstone GE.14.2 
GE.14.1 

Dol Clay>Mica>Fel =Q 3,85 
4,02 

−2,82 
−2,97 

- 
4,09 

- 
−1,55 

PSL6: Laminated marlstone GE.15 
GE.16 

Dol Clay>Mica>Fel =Q 1,16 
1,60 

−3,90 
−3,95 

3,16 
2,60 

−1,95 
−3,10  
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water species with relationships to the Paratethyan realm (C. cf. mehesi, 
C. cf. pontica, Tyrrhenocythere sp., Amnicythere cf. olivia, C. decimai, C. 
(C.) fastigata). Freshwater taxa are dominated by modern Palearctic and 
Holartic forms, whereas brackish water taxa are dominated by fossil 
Palearctic with minor modern Palearctic forms (Table 4). 

5.1.3. Molluscs 
Three samples from the perennial shallow lake deposits (PSL asso

ciation, Aşağıseyit-1 section, Fig. 4A), six samples from the palustrine 
lake center deposits (PLC association, Aşağıseyit-2 section, Fig. 4B), and 
eight samples from the palustrine lake margin deposits (PLM associa
tion, Gelinören section, Fig. 4C) were studied for their mollusc content 
and identified a total of 32 unique species [Figs. 10 and 13; Table 1 and 
5; the opercula of the unidentified bithynid might belong to Bithynia 

pseudemmericia (Schütt, 1964)]. 
The mollusc fauna is dominated by Valvata piscinalis (Müller, 1774) 

in the Aşağıseyit-2 and Gelinören sections. Other common groups 
include planorbid and lymnaeid gastropods and dreissenid, sphaeriid, 
and cyrenid bivalves. The vast majority of species represents clear, 
slightly moving, vegetated freshwater. Two species [Laevicaspia ?lincta 
(Milaschewitsch, 1908) and Monodacna imrei (Wesselingh and Alçiçek, 
2010)] are representatives of the so-called Pontocaspian fauna group 
that occupies coastal freshwater to lower mesohaline settings. Bithynia 
pseudemmericia and Corbicula species are generally considered to be 
intolerant to severe frost. Hence, the mollusc fauna from Baklan repre
sents a Palearctic, shallow vegetated, slow-moving freshwater commu
nity with some freshwater to low mesohaline Pontocaspian elements in 
the Black Sea-Caspian Sea region. 
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isotope values of selected species (data in Table 4). Monodacna imrei (inset, data in Fig. 13) has dissimilar δ13C values. 
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The Baklan mollusc fauna contains many widespread Palearctic 
freshwater species, together with two Pontocaspian species (Table 4). 
The Pleistocene Pontocaspian species have been reported from other 
Anatolian lakes that may have served as refugia for these taxa (Büyük
meriç and Wesselingh, 2018). It is well possible that Anatolian lakes, 
such as Lake Baklan, also offered a refuge for Palearctic taxa during 
adverse time intervals in the Pleistocene. The identity of several taxa 
will require further, in-depth study that may deliver insights into more 
specific biogeographic affinities. We are uncertain as to the attribution 
of Gyraulus cf. acronicus (Férussac, 1807), as multiple resembling 
Gyraulus species are known from the region that we find difficult to 
differentiate. The exact identity of several other pulmonated species can 
only be established with more fully preserved specimens. The two 
Corbicula species resemble in outline modern C. fluminalis and 
C. fluminea (Müller, 1774), but the Baklan material contains coarse 
commarginal ribs near the umbo that are lacking in the modern species. 
Resolving such taxonomic matters is beyond the scope of this paper, but 
may provide additional insights into the evolution and biogeography of 
these faunas. 

The age of the Baklan mollusc fauna has been revised here from 
Lower Pliocene to Lower-Upper Pleistocene. A direct comparison with 
Neogene faunas from nearby Denizli Basin is hampered by stratigraphic 
age differences and uncertainties in the latter basin. However, an Early 
Pleistocene fauna from lacustrine shore deposits in the vicinity of trav
ertine terraces recently reported by Rausch et al. (2019) from the 
western Denizli Basin contains an unidentified Monodacna that may be 
conspecific with Monodacna imrei (Rausch et al., 2019). However, the 
remainder of the fauna is very different implying that both basins were 
separated at the time. 

5.1.4. Fishes 
Fish remains (Fig. 14) from the palustrine lake margin deposits 

(PLM, Gelinören section, Fig. 4C), predominantly teeth, as well as 
several vertebral centra and otoliths, were recovered from numerous 
sites. The most identifiable remains are pharyngeal teeth from cyprinoid 
fishes (this group is equivalent to the Cyprinidae of older literature, but 
is here regarded as a suborder following Tan and Armbruster, 2018). 
Assigning these teeth to a specific taxon is hampered by a lack of 
documentation of the diversity of morphologies exhibited in the 
pharyngeal teeth of many extant cyprinoids. Although the morphology 
of pharyngeal teeth is likely to be at least partly representative of phy
logeny, there may also be a relationship with diet, and tooth form may 
vary with growth (Nakajima, 2018). Because of the possibility of 
convergent morphologies, and the lack of information on extant forms, 
the Baklan fossil teeth are not definitively assigned to species or genera, 
but instead referred to as morphotypes. One of the morphotypes is only 
identified as Teleostei because it is not comparable to any cyprinoid 
pharyngeal teeth figured in the literature or available in comparative 
collections. It is possible these belong instead to a non-cyprinoid fish. 

Most of the identifiable fish material is assigned to the ostariophysan 
suborder Cyprinoidei. Cyprinoid fishes are restricted to fresh waters and 
are found throughout the Northern Hemisphere as well as having 
reached Africa by the Miocene (e.g., Stewart and Murray, 2017) 
(Table 4). A good diversity of cyprinoid species is present in Anatolia 
today. 

The pharyngeal teeth from the Baklan Basin are most similar to those 
of Leucisus, Capoeta, Scardinius and Phoxinus, as well as possibly Alburnus 
and Danio. Of these genera, Danio is not currently found in Turkey (Çiçek 
et al., 2015), indicating this identification is less likely. 

Table 3 
Oxygen and carbon isotope values of various mollusc species in the studied successions.  

Facies 
assoc. 

Sample 
no 

Mollusc species δ18O 
(‰VPDB) 

δ13C 
(‰VPDB) 

Sample 
no 

Mollusc species δ18O 
(‰VPDB) 

δ13C 
(‰VPDB) 

Palustrine lake 
margin 
(PLM) 
(Gelinören section) 

GEK1.1 
GEK1.1 
GEK1.2 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.2 
GEK1.2 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.1 
GEK1.2 
GEK1.2 
GEK1.2 
GEK1.2 

Bythinia pseudoemmericia 
Bythinia pseudoemmericia 
Bythinia pseudoemmericia 
Dreissena sp. 
Gyraulus indet. 
Gyraulus indet. 
Gyraulus indet. 
Gyraulus indet. 
Lymnaea cf. stagnalis 
Lymnaea cf. stagnalis 
Monodacna imrei 
Monodacna imrei 
Monodacna imrei 
Planorbis cf. carinatus 
Planorbis cf. carinatus 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 

1.18 
0.81 
1.93 
3.20 
3.81 
−0.10 
5.49 
1.24 
0.00 
−0.09 
−1.05 
0.58 
0.83 
−0.07 
−0.79 
0.89 
2.62 
2.75 
1.83 
0.98 
−2.16 
−1.31 
−1.34 
−0.39 

−4.73 
−2.53 
−5.04 
−3.03 
−7.11 
−6.71 
−4.67 
−9.67 
−7.36 
−7.62 
0.29 
1.30 
1.53 
−6.80 
−3.53 
−4.73 
−6.02 
−7.39 
−6.20 
−3.83 
−3.97 
−4.98 
−3.82 
−3.69 

GEK2 
GEK2 
GEK4 
GEK4 
GEK4 
GEK4 
GEK4 
GEK4 
GEK4 
GEK5 
GEK5 
GEK5 
GEK5 
GEK5 
GEK5 
GEK5 
GEK5 
GEK6 
GEK6 
GEK6 
GEK6 
GEK6 
GEK6 
GEK7 

Valvata piscinalis 
Valvata piscinalis 
Monodacna imrei 
Monodacna imrei 
Gyraulus indet. 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Bythinia pseudoemmericia 
Bythinia pseudoemmericia 
Gyraulus indet. 
Gyraulus indet. 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Bythinia pseudoemmericia 
Gyraulus indet. 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 

−0.45 
0.53 
0.23 
0.00 
−1.41 
−6.31 
−0.99 
2.45 
1.38 
−2.59 
2.14 
4.13 
−3.35 
1.11 
−3.88 
−6.18 
−4.41 
−3.38 
1.42 
−2.42 
−3.75 
1.30 
−6.03 
−3.39 

−4.79 
−4.30 
2.80 
2.36 
−3.27 
−3.33 
−4.49 
−4.45 
−5.25 
−6.55 
−4.26 
−8.07 
−7.56 
−3.17 
−5.25 
−5.66 
−8.36 
−4.16 
−6.18 
−9.13 
−8.37 
−5.12 
−9.02 
−5.85 

Palustrine lake 
center 
(PLC) 
(Aşağıseyit−2 section) 

AS1 
AS2 
AS2 
AS2 
AS2 
AS2 
AS2 
AS2 

Valvata piscinalis 
Dreissena sp. 
Dreissena sp. 
Dreissena sp. 
Gyraulus indet. 
Gyraulus indet. 
Monodacna imrei 
Valvata piscinalis 

1.95 
−0.72 
1.20 
2.12 
2.68 
4.37 
−0.97 
4.00 

−5.25 
−2.03 
−1.54 
−3.95 
−6.72 
−2.68 
0.92 
−5.83 

AS2 
AS2 
AS2 
AS6 
AS6 
AS6 
AS6 

Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 
Valvata piscinalis 

1.14 
3.55 
−1.20 
2.30 
2.86 
1.15 
2.80 

−6.35 
−3.51 
−8.19 
−5.65 
−7.03 
−2.34 
−7.85 

Perennial shallow 
lake 
(PSL) 
(Aşağıseyit−1 section) 

GE4.1 
GE4.1 
GE4.1 
GE9 
GE9 

Bythinia pseudoemmericia 
Bythinia pseudoemmericia 
Bythinia pseudoemmericia 
Bythinia pseudoemmericia 
Bythinia pseudoemmericia 

0.88 
3.10 
2.50 
2.70 
1.90 

−0.06 
−1.76 
−3.37 
−3.20 
−2.50 

GE9 
GE13 
GE13 
GE13 

Valvata piscinalis 
Valvata piscinalis 
Planorbis cf. carinatus 
Planorbis cf. carinatus 

1.88 
4.10 
3.50 
3.70 

0.94 
−0.76 
−2.37 
−2.20  
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Because the fish teeth recovered from the Baklan Basin cannot be 
precisely identified, they cannot be used for robust paleoecological or 
paleobiogeographic reconstructions. The most that can be said about the 
fish remains is that those identified as cyprinoids indicate a freshwater 
environment. The marginal lake environment of the Gelinören locality 
agrees with the habitat expected for these fish. One of the morphotypes 
of pharyngeal teeth (possibly corresponding to Scardinius or Leuciscus) is 
found in more localities than the other forms. This indicates that the 
fishes from which these teeth came might be more generalist than the 
other species, and able to inhabit a wider variety of habitats (see SI.2 for 
further information). 

Most of the fish remains were found in marginal lake deposits, with a 
few remains coming from shallow lake and pond sediments. The lack of 
fish remains in the fluvial deposits is likely a result of their small size and 
relative fragility, as these water bodies should have been hospitable to 
the same fishes found in the lake deposits. Therefore, the lack of fish in 
some facies may be caused by preservational bias, not a true absence. On 
the other hand, fish are lacking or have a decreased diversity in the 
localities that are thought to have rising salinity based on the ostracods; 
in these cases, the absence of freshwater cyprinoids is likely a true 
absence caused by their intolerance to oligohaline waters. 

5.1.5. Characeae 
Of the investigated sections, nine samples yielded Characeae re

mains, three samples from the palustrine lake center (PLC, Aşağıseyit-2 
section, Fig. 4B) and six samples from the palustrine lake margin (PLM, 
Gelinören section, Fig. 4C) were studied for their Characeae remains. 
Seven types could be distinguished, four of which were assigned to three 
species (Fig. 11). The Pliocene and Pleistocene Characeae gyrogonites 
and oospores extant species. Chara cf. hispida with 64% (Fig. 11a-b), C. 
cf. vulgaris with 13% (Fig. 11c), and Nitellopsis (Tectochara) meriani (Al. 
Braun ex Unger, 1852) with 19.5% (Fig. 11g) Only isolated and frag
mented specimens of Chara sp. 1, C. sp. 2, and C. sp. 3 (Figs. 11d-f) were 
encountered. Extant members of the three identified species are found in 
freshwater but are tolerant of weakly brackish conditions with neutral to 
weakly alkaline pH (7–8.5) and grow in shallow, clear, slow-flowing, or 
standing waterbodies (see SI.3 for further information). The presence of 
weakly or not fully calcified oogonia of Chara cf. hispida is either a sign 
of immaturity, the ripening process was interrupted, or of greater water 
depth; in extant Chara hispida, oogonia only fully mature to gyrogonites 
in shallow waters (Soulié-Märsche and García, 2015). All taxa are 
dominated by modern Palearctic and Holarctic forms (Table 4). 

Table 4 
Biogeographic zones of the dominant and minor species of the studied succession flora and fauna.  

Fauna and flora 
(Facies associations) 

Biogeographic zones 

Dominant species Minor species 

Micromammals 
Palustrine lake margin (PLM) 

Steppe and meadows 
(100%) 

Modern Palearctic: 
Meriones sp. 
Modern Holarctic: 
Microtus sp. 

- 

Ostracods 
Perennial shallow lake (PSL) 
Palustrine lake center (PLC) 
Palustrine lake margin (PLM) 

Aquatic 
(freshwater) 
(72%) 

Modern Palearctic and Holarctic: 
Candona ex gr. neglecta 
Heterocypris salina 
Candona decimai 
Ilyocypris spp. 
Prionocypris zenkeri 
Limnocythere aff. inopinata 

Modern Palearctic and Holarctic: 
Candona weltneri 
Cypris cf. pubera 

Aquatic 
(brackish water) 
(28%) 

Fossil Palearctic (endemic): 
Cyprideis cf. pontica 
Candona (Caspiolla) fastigata 
Cyprideis cf. mehesi 

Modern Palearctic: 
Tyrrhenocythere sp. 
Amnicythere cf. olivia 

Molluscs 
Perennial shallow lake (PSL) 
Palustrine lake center (PLC) 
Palustrine lake margin (PLM) 

Aquatic 
(freshwater) 
(95%) 

Modern Palearctic and Holarctic: 
Bithynia pseudemmericia 
Bithynia sp. (opercula) 
Valvata cristata 
Valvata piscinalis 
Lymnaea cf. stagnalis 
Radix sp. 
Gyraulus cf. acronicus 
Armiger crista 
Corbicula aff. fluminea 
Corbicula aff. fluminalis 
Dreissena polymorpha s.l. 

Modern Palearctic (endemic): 
Kirelia cf. carinata 
Modern Palearctic 
Segmentina cf. nitida 
Euglesa henslowana 
Euglesa nitida 
Euglesa ponderosa 
Euglesa subtruncata 
Odhneripisidium moitessierianum 
Odhneripisidium tenuilineatum 
Pisidium amnicum 
Pisidium clessini 
Pisidium s.l. sp. 
Planorbarius corneus 
Planorbis ?carinatus 
Sphaerium corneum s.l. 
Sphaerium rivicola 
Sphaerium sp. 
Stagnicola palustris 
Unionoidea sp. indet. 
?Bythinella sp. 

Aquatic (brackish water) 
(5%) 

Modern Palearctic (endemic, relict Neogene): 
Laevicaspia ?lincta 
Monodacna imrei 

Modern Palearctic (endemic, relict Neogene): 
Theodoxus bukowskii 

Characeae 
Palustrine lake center (PLC) 
Palustrine lake margin (PLM) 

Aquatic (100%) 
(freshwater and brackish) 

Modern Palearctic and Holarctic: 
Chara cf. hispida 
Chara cf. vulgaris 
Nitellopsis (Tectochara) meriani 

Chara sp. 1, 2, 3 

Fishes 
Palustrine lake margin (PLM) 

Aquatic (100%) 
(freshwater) 

Modern Palearctic and Holarctic: 
Teleostei 
Cyprinoidei 

-  
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Table 5 
Mollusc data from the studied sections (GE samples from Aşağıseyit-1 section; AS samples from Aşağıseyit-2 section; GEK samples from Gelinören section).  

Taxon Authorship GEK1.1 GEK1.2 GEK2 GEK3 GEK4 GEK5 GEK6 GEK7 GEK13 AS1 AS2 AS5 AS6 AS8 AS9 GE4.1 GE9 GE13 #spec. 

Theodoxus bukowskii (Oppenheim, 1919) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
Kirelia carinata Radoman, 1973 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2 
Laevicaspia ?lincta (Milaschewitsch, 1908) 1 16 14 3 37 13 2 0 0 4 31 0 0 0 0 0 0 0 121 
?Bythinella sp.  0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 5 
Bithynia pseudemmericia Schütt, 1964 1 9 4 0 10 65 32 0 0 3 3 0 0 0 0 0 10 0 137 
Bithynia sp. (opercula)  0 12 0 0 0 5 9 0 0 0 4 0 0 0 1 0 0 0 31 
Valvata cristata Müller, 1774 3 11 2 5 10 21 21 2 0 4 1 0 0 0 0 11 15 19 125 
Valvata piscinalis (Müller, 1774) 27 95 52 22 152 750 295 14 0 33 320 0 83 1 0 0 0 0 1844 
Lymnaea cf. stagnalis (Linnaeus, 1758) 1 0 0 0 3 9 4 0 0 0 6 0 0 0 0 0 0 0 23 
Stagnicola palustris (Müller, 1774) 0 1 0 0 0 4 6 0 0 0 0 0 0 0 0 0 0 0 11 
Radix sp.  0 3 2 0 1 1 0 0 0 0 19 0 1 0 0 0 0 0 27 
Planorbarius corneus (Linnaeus, 1758) 0 0 0 0 1 1 1 0 0 5 2 0 0 0 0 0 10 16 36 
Planorbis ?carinatus (Müller, 1774) 0 0 0 1 4 8 2 0 0 0 0 0 0 0 1 10 5 13 44 
Gyraulus cf. acronicus (Férussac, 1807) 8 22 11 4 51 54 21 2 0 2 56 2 0 0 0 15 25 32 305 
Armiger crista (Linnaeus, 1758) 2 11 0 0 5 0 0 0 0 1 8 0 1 0 0 0 0 0 28 
Segmentina aff. nitida (Müller, 1774) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
Monodacna imrei Wesselingh and Alçiçek, 

2010 
2 2 2 0 5 0 0 0 0 0 14 0 0 0 0 0 0 0 25 

Corbicula aff. fluminalis (Müller, 1774) 2 0 4 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 18 
Corbicula aff. fluminea (Müller, 1774) 1 0 5 4 18 29 5 0 0 0 1 0 0 0 0 0 0 0 63 
Sphaerium rivicola (Lamarck, 1818) 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 
Sphaerium corneum s.l. (Linnaeus, 1758) 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 6 
Sphaerium sp.  0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
Pisidium amnicum (Müller, 1774) 0 0 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 5 
Pisidium clessini Neumayr and Paul, 1875 0 0 0 0 0 0 0 0 15 0 1 0 0 0 0 0 0 0 16 
Pisidium s.l. sp.  0 0 0 0 0 0 1 0 0 0 0 2 0 0 1 0 0 0 4 
Euglesa nitida (Jenyns, 1832) 0 0 0 0 2 4 1 0 0 1 0 0 0 0 0 0 0 0 8 
Euglesa subtruncata (Malm, 1855) 2 0 0 0 1 4 0 0 0 0 1 0 1 0 0 0 0 0 9 
Euglesa henslowana (Sheppard, 1825) 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 4 
Euglesa ponderosa (Stelfox, 1918) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Odhneripisidium tenuilineatum (Stelfox, 1918) 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 3 
Odhneripisidium 

moitessierianum 
(Paladilhe, 1866) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Unionoidea sp. indet.  0 0 0 0 0 1 0 0 0 0 0 4 1 0 0 0 0 0 6 
Dreissena polymorpha s.l. (Pallas, 1771) 0 2 1 1 0 8 0 0 0 0 27 0 0 0 0 0 0 0 39   

50 184 98 45 310 997 404 18 15 53 496 9 88 1 3 36 65 80 2952  
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Fig. 16. A summary of the Early-Late Pleistocene depositional history of the Baklan Basin, including sedimentological, paleontological and geochemical data and their paleoenvironmental interpretation.  
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5.2. Depositional model and facies stacking pattern: paleohydrological 
and paleoclimatic implications 

The approximately 60 m thick, the Lower-Upper Pleistocene suc
cession of the Baklan Basin consists of an overall carbonate-dominated 
sequence predominantly composed of Palearctic freshwater fauna with 
a contribution of brackish water (oligohaline to low mesohaline) Pon
tocaspian fauna (Fig. 16; Table 4). Sedimentological and paleontological 
data indicate that the Lower-Upper Pleistocene lacustrine-palustrine 
system in the Baklan Basin developed in a low-gradient ‘ramp’-type 
margins environment as described by Platt and Wright (1991). Well- 
documented modern and fossil examples of the low-gradient ‘ramp’- 
type margins environment have been reported in various sequences all 
over the world, including the Late Pliocene sequences of the Çal Basin 
(southwestern Turkey; Alçiçek and Alçiçek, 2014), the Cretaceous- 
Tertiary sequences in southern France (Freytet and Plaziat, 1982), the 
Middle Miocene sequences of the Ebro Basin, Spain (Vázquez-Urbez 
et al., 2013; the Miocene-Pliocene sequences of the Calama Basin, Chile 
(de Wet et al., 2015), the Late Eocene sequences of Hampshire Basin, 
England (Armenteros et al., 1997), the Miocene sequences of the Teruel 
Basin, Spain (Alonso-Zarza and Calvo, 2000), and the Eocene-Oligocene 
sequences of the Alès–Saint-Chaptes–Issirac basins in southeastern 
France (Lettéron et al., 2017, 2018, 2022). 

Such lakes occur favorably in low-relief topography, as exemplified 
in the Lower-Upper Pleistocene Baklan paleolake, which developed 
during periods of the decreased subsidence rates coupled with a car
bonate source area. The lake sedimentation has been controlled by a 
combination of tectonic, climate, and source rock factors. The formation 
of shallow lacustrine-palustrine carbonates depends on the relationship 
between the subsidence rate and sediment+water supply in depositional 
basins (Alonso-Zarza, 2003). The progressive reduction of tectonic ac
tivity along basin margins or topographic changes resulting from basin 
infilling can lead to low-relief areas that eventually receive carbonate 
sediments from carbonate source areas (Platt and Wright, 1991; Alonso- 
Zarza and Wright, 2010). The vertical and lateral relationships and 
paleoenvironmental interpretations of the facies and facies associations, 
faunal and floral assemblages, diagenetic features, and stable isotope 
compositions of the studied successions allow the reconstruction of the 
lake evolution in response to tectonic and climatic factors, correspond
ing to three depositional intervals of the Lower-Upper Pleistocene 
Baklan paleolake system (Figs. 16 and 17). These depositional intervals 
correspond to different stages of the lake expansion system tract, ac
cording to the classification of Li et al. (2019). 

5.2.1. Interval I: Early Pleistocene (Gelasian) lake 
The first interval is marked by the deposition of perennial shallow 

lake deposits (PSL facies association, Aşağıseyit-1 section, Fig. 4A) in the 
lower part of the Early Expansion System Tract (VEEST), representing 
the very early stage of the lake transgression in the Baklan Basin 
(Fig. 17A). The PSL deposits are particularly well developed in the ba
sin`s northern part (Fig. 2). 

The remarkable lateral continuity of the PSL deposits (Fig. 5A) sug
gests low-gradient “ramp” type margins where deposition frequently 
occurred in semiarid or arid climatic conditions (Platt and Wright, 
1991). The predominance of mudstone to wackestone textures supports 
that the deposition of PSL1 to PSL4 carbonates took place under low- 
energy conditions (Alonso-Zarza et al., 2011). Early diagenetic modifi
cations of the PSL3 carbonates, leading to brecciation, nodularization, 
and planar and circumgranular desiccation cracking (Fig. 5B-5C and 5E- 
5F) occurred under evaporative conditions when the lake gradually 
lowered and the carbonates became exposed in the marginal zones 
(Freytet and Plaziat, 1982; Alonso-Zarza, 2003). The formation of the 
PSL carbonates reflects calcium- and magnesium-rich, alkaline waters. 
Calcium and magnesium ions would have been supplied from upland 
drainage of carbonate bedrock. These aerobic lake conditions are sug
gested by diverse biotal assemblage (ostracods; (Fig. 7 (9–10) and 

(17–20) and molluscs (Table 1). 
The PSL carbonates and molluscs exhibit a relatively narrow range of 

positive δ18O values (Table 2 and 3; Fig. 15A-15B), suggesting evapo
rative enrichment of 18O in the lake water (Leng and Marshall, 2004). 
Lake water became enriched in 18O through evaporation, indicating arid 
climate conditions. Similar conditions have also been documented in the 
neighboring Çameli Basin (Fig. 1B, van den Hoek Ostende et al., 2015; 
Jiménez-Moreno et al., 2015), Acıgöl Basin (Fig. 1B, Demory et al., 
2020; Andrieu-Ponel et al., 2021), and Karacasu Basin (Fig. 1B, Alçiçek 
and Jiménez-Moreno, 2013). The freshwater ostracod and mollusc taxa 
and positive δ18O values indicate that the deposition of PSL occurred in 
freshwater, shallow water settings. The mean δ18O values of the calcite 
(+0.28 to +4.08‰, mean = +2.76‰) and dolomite (+1.70 to +4.09‰, 
mean = +2.89‰) (Fig. 15A; Table 2) are quite similar and indicate that 
calcite and dolomite precipitated in similar conditions. Positive, good 
δ18O/δ13C correlations (r-values of +0.67 for calcite and +0.71 for 
dolomite) in the PLC unit indicate a hydrologically closed lake. Such 
lakes are sensitive to changes in precipitation/evaporation ratios (P/E) 
and evolve under low P/E ratios (Talbot, 1990; Lamb et al., 2002). Such 
a covariant trend is indicative of periods with negative precip
itation/evaporation balance (enrichment in 13CDIC and 18Owater). In this 
stage, lake level was controlled by negative precipitation/evaporation 
balance (P < E) and active subsidence due to a normal fault located on 
the basin’s northern margin (Fig. 2). The PLC succession is interpreted as 
an underfilled lake, characterized by the rates of accommodation 
exceeding the rates of sediment+water supply (Figs. 16 and 17A; Bohacs 
et al., 2000). The PSL deposits include limited ostracod and mollusc 
faunas compared to the PLC and PLM deposits due to the fact that hy
drologically closed lakes are isolated and stressful environments. 

5.2.2. Interval II: Early Pleistocene (Calabrian) lake 
During this second interval, the palustrine lake centre deposits (PLC 

facies association, Aşağıseyit-2 section, Fig. 4B) formed in the upper part 
of the Early Expansion System Tract (LEEST), indicating continued lake 
expansion (Fig. 17B). The PLC deposits conformably overlie the PSL 
deposits (Fig. 5A) and pass upward into the palustrine lake margin facies 
association (PLM). These deposits are particularly well exposed in the 
northern part of the basin (Fig. 2). 

The progressive reduction of tectonic activity along basin margins or 
topographic changes resulting from basin infilling caused low-relief 
areas, leading to the widespread deposition of carbonate deposits (PLC 
facies association) in a palustrine lake-dominated setting. The pedogenic 
features of the peloidal-nodular-brecciated wackestone (facies PLC1) 
and marlstone (facies PLC3) (brecciation, planar and circumgranular 
cracks, and root traces) indicate the low-gradient ‘ramp’ type margins- 
low energy (Platt and Wright, 1991) dominated by micritic carbonates 
(facies PLC1). These features formed under evaporative conditions 
(semiarid climate) when the lake level gradually decreased and car
bonate sediments were exposed (Alonso-Zarza et al., 2011). 

The PLC deposits and molluscs show a relatively narrow range of 
δ18O values and slightly lower δ18O values than those of the PSL deposits 
(Table 2 and 3; Fig. 15A-15B), indicating evaporative enrichment of 18O 
in lake water and semiarid-subhumid conditions. The mean δ18O values 
of the calcite (−2.03 to +3.87‰, mean = +1.22‰) and dolomite (−1.35 
to +3.92‰, mean = +1.37‰) (Fig. 15A; Table 2) are very similar and 
reflect that calcite and dolomite occurred in similar conditions. The PLC 
lake reflects a hydrologically semi-closed lake, confirmed by a good 
δ18O/δ13C correlation (r-values of −0.74 for calcite and −0.79 for 
dolomite). These conditions indicate that precipitation and evaporation 
are in balance (P = E) and that there are low rates of tectonic subsidence 
due to a normal fault located on the basin’s northern margin (Fig. 2). 
The negative covariance indicates concomitant enrichment in 18O and 
12C, reflecting a decrease in freshwater input, and evaporative effects 
generate an enrichment of 18O and organic productivity that can lead to 
12C enrichment (Li and Ku, 1997). 

The abundant supply of dissolved calcium and magnesium in the 
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Fig. 17. The evolution of the Baklan paleolake in response to climatic and tectonic factors during the Early-Late Pleistocene.  
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Fig. 18. Paleogeographic maps showing the extension of the largest Caspian transgression during the latest Pliocene-Pleistocene in the Pontocaspian region and 
southwestern Anatolia: (A) Latest Pliocene-earliest Pleistocene (~2.6 Ma), (B) Early Pleistocene (~2–1 Ma), (C) Middle-Late Pleistocene (~0.8–0.1 Ma). Arrows 
indicate the water flow direction in the gateway regions. Modified from Krijgsman et al. (2019). 
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influx waters, originating from the Mesozoic carbonates in the source 
area, led to the predominance of dolomitic limestones and dolostones 
under low evaporative conditions. This is confirmed by the decreasing 
upward trend in δ18O values of the PLC carbonates, which indicates a 
transition from an arid to a semiarid-subhumid climate (Figs. 16 and 
17A-17B). Similar climatic conditions have also been reported in the 
neighboring Çal Basin (Alçiçek et al., 2012). The vertical distribution of 
mollusc and ostracod fauna in the PLC deposits also supports this trend. 
The freshwater to oligohaline water-tolerant ostracod taxa [Fig. 7 (1–4), 
(13–16), (29–32) and Fig. 9 (1-4) (9–12), (17-40)] and mollusc taxa 
[Fig. 10 (a, c, j, l-n)] of the PLC association (Table 1) indicate a fresh
water to slightly brackish water (oligohaline-low mesohaline) lake 
setting. Ostracod associations in samples AS.9–AS.5 from the 
Aşağıseyit-2 section point to freshwater setting (Fig. 16). Up–section 
(sample AS.3), the occurrence of Cyprideis suggests an increase in 
salinity towards oligohaline waters. In sample AS.2, Cyprideis cf. pontica 
becomes the dominant taxon, accompanied by the brackish water spe
cies Tyrrhenocythere sp., A. cf. olivia, and C. (C.) fastigata. This may 
indicate low mesohaline conditions were reached in this sample. 

The PLC succession represents a balanced-fill lake (Fig. 17) proposed 
by Bohacs et al. (2000). Such lake basins occur when the rates of sed
iment+water supply and potential accommodation are roughly in bal
ance over the time span of sequence development. In these conditions, 
water inflows are occasionally insufficient to periodically fill accom
modation space, but they are not always in equilibrium with outflows, 
resulting in common climatically-driven lake level fluctuations, as seen 
in the PLC lake. Since the hydrologically open lakes host relatively 
diverse and abundant fauna, the PLC deposits are rich in ostracod and 
mollusc faunas compared to the PSL deposits. 

In the second interval, the PLC lake level was predominantly 
controlled by the balance between precipitation and evaporation (P =
E). The lake level may have also been governed by neighboring lakes, 
such as Denizli and Acıgöl. The connections between the Baklan and 
Denizli basins were established due to the presence of Pontocaspian 
mollusc species (Theodoxus bukowski and Laevicaspia ?lincta) and 
ostracod genera (Cyprideis, Tyrrhenocythere sp., Amnicythere, and Can
dona) in both the PLC deposits of the Baklan Basin and lacustrine de
posits of the Denizli Basin located in the west of the Baklan Basin 
(Figs. 1B and 2). This indicates that these brackish water mollusc and 
ostracod species may have entered from the Denizli Basin to the Baklan 
Basin (Fig. 17B). During this time, a connection was also established 
between the Baklan and Acıgöl basins due to the presence of Monodacna 
in the Acıgöl Basin (F.P. Wesselingh, pers. obs.) (Fig. 17B). An increase 
in precipitation and a decrease in subsidence caused the relative rise of 
the lake level compared to the first lake interval, resulting in the 
establishment of a connection between Lake Baklan, Lake Denizli and 
Lake Acıgöl. Many studies reported that western and central Anatolian 
lakes united to constitute a single mega-lake (known as the Pisidic Lake) 
during the Pliocene and Pleistocene (Spratt and Forbes, 1847; Becker- 
Platen, 1970; Bering, 1971; Luttig and Steffens, 1976). 

5.2.3. Interval III: Middle-Late Pleistocene (Ionian-Tarantian) lake 
In the third interval, the palustrine lake center deposits (PLC) passed 

upwards into the palustrine lake margin (PLM) deposits of the upper 
part of the studied succession (Gelinören section, Fig. 4C). The overlying 
progradational wedge of PLM deposits developed during the Late 
Expansion System Tract (LEST) associated with humid conditions 
(Fig. 17C), as supported by negative δ18O values throughout the section 
(Fig. 16). 

The predominance of packstone to grainstone textures of the facies 
PLM1 and facies PLM2 indicates that the deposition of PLM deposits 
occurred in a low-energy, low-gradient ‘ramp’ type margin environment 
(Platt and Wright, 1991; Alonso-Zarza et al., 2011). Pedogenic features 
(i.e., brecciation, nodularization, cracking, and coated grains) suggest 
that littoral lake areas were subaerially exposed due to seasonal fluc
tuations (Freytet and Plaziat, 1982; Alonso-Zarza, 2003). Fossiliferous 

marlstone–siltstone–sandstone–mudstone alternations formed in this 
palustrine setting (Fig. 17). The PLM carbonates and molluscs exhibit 
negative δ18O and δ13C values (Table 2 and 3; Fig. 15A-15B). The low 
δ18O values in this unit suggest that isotopically light, 18O-depleted 
meteoric water entered into the area (Leng and Marshall, 2004). The 
negative δ13C values indicate that the isotopically light CO2 entered the 
system through biological processes related to pond vegetation or decay 
of organic matter (Talbot and Kelts, 1990; Leng and Marshall, 2004). 
The mean δ18O values of the calcite (−6.20 to −0.67‰, mean =

−3.03‰) and dolomite (−5.55 to −0.20‰, mean = −2.78‰) (Fig. 15A; 
Table 2) are quite similar and imply that calcite and dolomite precipi
tated in similar conditions. The PLM carbonates and mollusc fauna do 
not exhibit a clear trend (correlation r-values +0.52 for calcite and 
+0.62 of dolomite; Fig. 15A-15B), indicating a hydrologically open lake 
with a positive precipitation/evaporation balance (P > E ratios), leading 
to a depletion in 13CDIC and 18Owater (Talbot, 1990; Lamb et al., 2002). 
This lake was predominantly diluted by meteoric water input with low 
δ18O and δ13C values. This is supported by intolerant to elevated salin
ities to most mollusc species, such as the sphaeriid clams and planorbid 
gastropods. However, Monodacna imrei stands out with strongly elevated 
δ13C values than those other species (Fig. 15B). Strongly elevated δ13C 
values point to prolonged water residence times (Vonhof et al., 1998), 
and the specific isotope signature may suggest that Monodacna did not 
live exactly coeval with, but instead within adjacent biotopes of the 
other species. 

The PLM succession is interpreted as an overfilled lake (Figs. 16 and 
17), as suggested by Bohacs et al. (2000). This lake-basin type occurs 
when the rate of sediment+water supply exceeds potential accommo
dation. These conditions usually take place when P/E ratio is relatively 
high or rates of tectonic subsidence are relatively low (Bohacs et al., 
2000). The resulting lake hydrology is predominantly open, as in the 
PLM deposits, indicating that the lake level was controlled by a positive 
precipitation/evaporation balance (P > E) (Fig. 17C). It is thought that 
the connections between Baklan, Denizli and Acıgöl basins continued 
due to the presence of Pontocaspian mollusc species and ostracod spe
cies. A strong increase in precipitation promoted the establishment of 
connections with further southwestern Anatolian lakes (Eğirdir and 
Beyşehir lakes, Wilke et al., 2007; Glöer and Girod, 2013) and central 
Anatolian lakes (Lake Karapınar, Konya Basin; Büyükmeriç and Wesse
lingh, 2018). These interbasinal connections may have formed during 
the outflow periods. In particular, the presence of bivalve genus Mono
dacna in the PLM deposits may have entered Lake Karapınar during the 
outflow periods in the Late Pleistocene. 

The upward decreasing trend in δ18O values of this succession 
(Fig. 16) reflects humid conditions throughout the section, supported by 
mollusc and ostracod distributions. The freshwater to low mesohaline 
ostracod taxa (Fig. 7 (5–8), (11−12), (21-28), (33–36) and Fig. 9 (5–8), 
(13–16)) and mollusc taxa (Fig. 10 (b, d-i, k, o-p) and Fig. 13 (a-r)) 
(Table 1) in this section indicate freshwater to low mesohaline lake 
conditions. In the Gelinören section, the ostracod fauna (samples 
GEK.15, GEK.14, and GEK.12) is formed by Cyprideis cf. pontica, L. aff. 
inopinata, C. ex gr. neglecta and Ilyocypris spp., indicating shallow, oli
gohaline waters (Fig. 16). Above (GEK.10–GEK.7) the abundance of C. 
cf. pontica and C. (C.) fastigata successively increases and rare brackish 
water taxa (Tyrrhenocythere sp. and A. cf. olivia) appear. The faunal 
change points to a gradual rise in salinity, which peaks in sample GEK.7 
with supposedly low mesohaline conditions. Afterwards (samples 
GEK.6–GEK.2), salinity drops back to oligohaline waters. 

5.3. Regional significance of the Baklan Basin 

The Pontocaspian region comprises a series of basins (Fig. 18; 
including the Black Sea, Azov Sea, and Caspian Sea basins) that repre
sent remnants of the Eastern Paratethys, with their own specific biota 
and paleogeographic evolution (e.g., Rögl, 1999; Yanina, 2014; Krijgs
man et al., 2019). During the Eocene-Oligocene transition, a southern 
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Mediterranean Sea was formed at the western end of the Tethys, while 
an intercontinental Paratethys Sea emerged to the north of the Alpine 
tectonic belt (Rögl, 1999). At this time, several continental microplates, 
such as the Aegean–Anatolian region, developed in this area. The 
Aegean-Western Anatolian region separated the Mediterranean and the 
Eastern Paratethys at that time. The Aegean-Anatolian microplate rep
resents a semi-continuous crossroads between Europe, Africa, and Asia, 
facilitating continental faunal migration (Rögl, 1999). This region also 
hosted aquatic corridors with the Mediterranean and Paratethys during 
episodic connections (Neubauer et al., 2015; Krijgsman et al., 2019). 

In the Pontocaspian region, significant regional paleoenvironmental 
and paleobiogeographic developments occurred during the Pleistocene 
(e.g., Yanina, 2014; Krijgsman et al., 2019). Since the onset of the 
Northern Hemisphere Glaciation about 2.6 million years ago, the global 
climate has been dominated by glacial–interglacial variations (e.g., 
Lisiecki and Raymo, 2007). During the Pleistocene, several significant 
transgressive–regressive cycles resulted in recurrent connections be
tween the Black Sea and Caspian basins, accompanied by dramatic 
changes in lake size, salinity, and biotic assemblages (Neubauer et al., 
2015). 

During the latest Pliocene-earliest Pleistocene (around 2.6 million 
years ago), the largest Caspian transgression occurred, with shores 
extending well into the middle Volga and southern Urals to the north, as 
well as the Azov Sea in the west and the Aral Sea in the east (Krijgsman 
et al., 2019; Fig. 18A). This transgression led to the establishment of 
connectivity between the Caspian Sea, Black Sea, and Aegean Sea, 
enabling various fauna such as fishes, molluscs, and ostracods to migrate 
from the Caspian Sea to the Black Sea and eventually to the Aegean Sea. 
The biota of the Pontocaspian region comprises a high diversity of taxa 
that have evolved in the brackish habitats of the Caspian Sea-Black Sea- 
Aral Sea region and surrounding rivers over the past few million years. 

The Caspian Sea Basin has been a series of lakes with varying levels 
of salinity, ranging from anomalohaline to freshwater since the Late 
Miocene (late Messinian; Popov et al., 2006). This extended period 
allowed for the development of a diverse and highly endemic Ponto
caspian biota, especially since the Early Pleistocene (Neubauer et al., 
2018). Fossil evidence indicates a close relationship between the 
northern Aegean and the Eastern Paratethys from the Tortonian on
wards (Popov and Nevesskaya, 2000). Wide-ranging Pontocaspian spe
cies (fishes, molluscs, crustaceans, dinoflagellates, and diatoms) are 
found in the northern Black Sea, the Caspian Sea, and the former Lake 
Aral, and have evolved to adapt to the unusual salinity regimes in these 
lakes and seas in the past two million years (Nevesskaya et al., 2005). 
The Pontocaspian biota’s development mostly occurred around the 
Caspian Sea, Black Sea, and Marmara Sea basins (e.g., Nevesskaja et al., 
2001; İslamoğlu, 2009; Yanina, 2014), but satellite areas such as the 
Balkans and Anatolia may have played a role in their evolution as well. 
Some fossil and modern Pontocaspian genera are found in the western 
and central Anatolian lake systems (Wesselingh et al., 2008; Wesselingh 
and Alçiçek, 2010; Alçiçek et al., 2015; Büyükmeriç and Wesselingh, 
2018) and northeastern Marmara Sea Basin (İslamoğlu, 2009; Büyük
meriç et al., 2016; Taviani et al., 2014). 

During the Late Pliocene-Pleistocene, the Aegean-Anatolian region 
experienced regional extension, leading to the formation of a complex 
basin configuration. During this period, southwestern Anatolia was 
located between the Eastern Paratethys in the north and the Mediter
ranean basins in the south (Fig. 18A-18C). This region is a hotspot for 
continental aquatic biodiversity, featuring Graeco-Anatolian and Pon
tocaspian faunal elements (Wesselingh et al., 2008; Wilke et al., 2010; 
Büyükmeriç and Wesselingh, 2018; Rausch et al., 2019, 2020). In 
southwestern Anatolian region, the Denizli Basin contains the Pliocene- 
Pleistocene successions, which hosted endemic Pontocaspian faunas 
(Nebert, 1958; Taner, 1974a, 1974b, 1975; Alçiçek et al., 2015; Rausch 
et al., 2019, 2020; Lazarev, 2020a, 2020b). Meanwhile, the Baklan Basin 
includes the Lower-Upper Pleistocene succession comprising similar 
endemic Pontocaspian ostracod and mollusc faunas. This suggests that 

the largest Caspian transgression extended to the Denizli Basin (Fig. 17A 
and 18A) during the latest Pliocene-earliest Pleistocene transgression 
(ca. 2.6 Ma) and then arrived in the Baklan Basin (lake interval II; 
Fig. 17B and 18B) during the Early-Late Pleistocene. This means that 
there was interbasinal connectivity between the Denizli and Baklan 
basins in southwestern Anatolia during the Early-Middle Pleistocene 
(Fig. 17B). The Pontocaspian mollusc species (Theodoxus bukowski and 
Laevicaspia ?lincta) and ostracod species (Cyprideis, Tyrrhenocythere, 
Amnicythere, Candona) initially entered to the Denizli Basin during the 
latest Pliocene-earliest Pleistocene transgression (Gelasian) (ca. 2.6 Ma) 
(Fig. 17A; Alçiçek et al., 2015; Rausch et al., 2019, 2020) and subse
quently migrated to the Baklan Basin during the Early Pleistocene 
(Calabrian; ca. 1.8 Ma) (Fig. 17B). During the Calabrian, there was also 
interbasinal connectivity between the Baklan and Acıgöl basins because 
of the presence of Monodacna species in both basins (Fig. 17B and 18B). 
At this time, Monodacna species may have migrated from the Baklan 
Basin to the Acıgöl Basin (Fig. 17B). Meanwhile, the absence of Mono
dacna in the Denizli Basin suggests that the Monodacna species of the 
Baklan Basin may have arrived through another gateway. 

The Middle-Late Pleistocene (Ionian-Tarantian) conditions (lake in
terval III) show similarities to the Calabrian conditions (lake interval II) 
due to the presence of Pontocaspian brackish water ostracod and 
mollusc species in the PLM deposits (Table 4) of the Baklan Basin 
(Fig. 17C). During this time, interbasinal connectivity was established 
between the Baklan, Denizli, Acıgöl, Eğirdir, and Beyşehir lake basins in 
southwestern Anatolia and the Konya Basin (Lake Karapınar; Büyük
meriç and Wesselingh, 2018) in central Anatolia (Fig. 18C). The Upper 
Pleistocene Pontocaspian brackish water fauna has been also recorded in 
Lake İznik (İslamoğlu, 2009), Lake İzmit (Büyükmeriç et al., 2016) and 
Lake Gemlik (Taviani et al., 2014) in the eastern Marmara Sea Basin 
(Fig. 18C), indicating marine connections between the Mediterranean 
and Black Sea basins during the Late Pleistocene (130–71 ka). These 
findings suggest a closer biogeographic relationship with contempora
neous Black Sea faunas than with Mediterranean faunas (Büyükmeriç 
et al., 2016). In the western of Marmara Sea Basin, the presence of 
Middle-Upper Pleistocene fauna from the Çanakkale-Dardanelles region 
(Fig. 18C), which includes both Pontocaspian and Mediterranean 
faunas, indicates the significant role of gateway tectonics in the con
nectivity history between the Black Sea and Mediterranean region 
(Büyükmeriç et al., 2018; Alçiçek et al., 2023). The fossil and modern 
freshwater and brackish water faunas are well known from other west
ern and central Anatolian basins, most of which are dominated by 
freshwater taxa. These include the Çameli Basin (Alçiçek et al., 2017), 
the Burdur-Salda Basin, (H. Alçiçek, pers. obs.), the Burdur Basin (Yıl
dırım, 1999; Kebabçı and Yıldırım, 2010); the Beyşehir-Eğirdir Basin 
(Wilke et al., 2007; Glöer and Girod, 2013), and the Konya Basin (Kar
abıyıkoğlu et al., 1999). 

Consequently, the presence of Pontocaspian fauna in the Baklan 
Basin and other Anatolian lake basins, such as Denizli and Karapınar, 
can be explained by the establishment of interbasinal connectivity be
tween the Paratethys via the Aegean region to the lake basins during 
highstands. This allowed faunal migration via possible intra-west 
Anatolian gateways. The Aegean migration corridor enabled Pontocas
pian faunas, such as molluscs and ostracods, to colonize the Baklan Basin 
and the adjacent Denizli Basin (Wesselingh et al., 2008; Alçiçek et al., 
2015; Rausch et al., 2019, 2020; Lazarev, 2020a, 2020b). This indicates 
that the region was once a connected paleobay of the Paratethys, and the 
influence of the Paratethys extended further south than previously 
believed (Freels, 1980; Wesselingh et al., 2008; Wesselingh and Alçiçek, 
2010; Rausch et al., 2019, 2020). Further studies in southwestern 
Anatolia will enhance our understanding of the southern boundary of 
the Paratethys, the location of the gateways, and when the region served 
as a refugium for the Pontocaspian fauna. 
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6. Conclusions 

The stratigraphic, sedimentological, and paleontological analyses, 
and stable isotopic data from the Lower-Upper Pleistocene sedimentary 
record in the northern sector of the Baklan Basin have enabled the 
investigation of the paleoenvironmental, paleoclimatic, paleoecological, 
and paleobiogeographical evolution of its Quaternary fill stage. 

The studied successions serve as an excellent example of lacustrine 
and palustrine deposition in a laterally extensive, low-gradient, shallow 
lake system in the semi-isolated Pontocaspian freshwater to slightly 
brackish water (oligohaline-low mesohaline) long-lived lake. 

Three major types of depositional environments have been identi
fied: freshwater perennial shallow lake (PSL deposits), and freshwater to 
low mesohaline palustrine carbonate lake center (PLC deposits) and 
palustrine lake margin (PLM deposits) depositional environments. These 
environments correspond to the different intervals of the lake expansion 
cycle: (i) During the lake interval I, the perennial shallow lake envi
ronment represents the very early stage of Early Expansion System Tract 
(VEEST), indicating a stage of the very early lake transgression in arid 
conditions in the basin; (ii) During the lake interval II, the palustrine 
carbonate lake center environment corresponds to the late stage of the 
Early Expansion System Tract (LEEST), suggesting a stage of the late 
early lake transgression in semiarid to subhumid climates; and (iii) 
During the lake interval III, the palustrine lake margin environment 
reflects the Late Expansion System Tract (LEST) under humid 
conditions. 

During the Early-Late Pleistocene, the Baklan Basin hosted a wide 
variety of landscape mosaics represented by the Palearctic taxa, domi
nanted by an open-steppe ecosystem. The study area and surroundings 
still hosts a rich and varied biota with cosmopolitan, regional, and local 
endemic Pontocaspian taxa. The mammal fauna of the PLM deposits still 
inhabits the area today. The ostracod and mollusc faunas of the PSL, 
PLC, and PLM deposits are predominantly composed of modern 
Palearctic-Holarctic species with minor fossil (endemic) species. The fish 
fauna of the PLM deposits is most similar to modern Palearctic forms. 
This study shows that Lake Baklan represents a refuge for Palearctic taxa 
during adverse time intervals during the Early-Late Pleistocene, as well 
as in other Anatolian lakes (e.g., Denizli, Karapınar). 

This study demonstrates that lacustrine-palustrine deposits in inter
montane basins serve as excellent records of paleohydrology and pale
oclimate. Therefore, detailed stratigraphic, sedimentological, and 
geochemical analyses are important to interpreting drainage patterns, 
lake hydrology, and depositional evolution in response to tectonism and 
climate. These results highlight the importance of considering allocyclic 
factors when interpreting other lake systems, as well as inferring the 
causes of the occurrence and evolution of open- and closed-lake basins. 
As a result, this study shows the combined influence of tectonics, climate 
changes, and the largest major Caspian Sea transgression on the evolu
tion of the final fill stage of the Baklan Basin. 
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Saraç, G., Hakyemez, Y., Göktaş, F., Murray, A., Wesselingh, F.P., Jimenez- 
Moreno, G., Büyükmeriç, Y., Bouchal, J.M., Demirel, F.A., Kaya, T.T., Halaçlar, K., 
Bilgin, M., van den Hoek Ostende, L.W., 2019. Reconciling the stratigraphy and 
sedimentation history of the Lycian orogen-top basins, SW Anatolia. 
Palaeobiodiversity and Palaeoenvironments 99, 551–570. 

Alçiçek, M.C., Ten Veen, J.H., 2008. The late Early Miocene Acipayam piggy-back basin: 
refining the last stages of Lycian nappe emplacement in SW Turkey. Sediment. Geol. 
208, 101–113. 
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Daudebard de Férussac. Nouvelle édition augmentée d’une synonymie des espèces 
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catalogue d’espèces observées en divers lieux de la France, par J. Daudebard fils pp. 
j-xvj [= 1–16], 1–142. Paris.  

Freels, D., 1980. Limnische Ostrakoden aus Jungtertiär und Quartär der Türkei. Geol. 
Jahrbuch B 39, 3–169. 

Freytet, P., Plaziat, J.C., 1982. Continental carbonate sedimentation and pedogenesis- 
Late Cretaceous and Early Tertiary of Southern France. Contrib. Sedimentol. 12, 213 
pp.  

Geraards, D., 2017. Late Miocene large mammals from Mahmutgazi, Denizli province, 
Western Turkey. Neues Jahrbuch Geol. Paläontol. Abhandlungen 284 (3), 241–245. 
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İslamoğlu, Y., 2009. Middle Pleistocene bivalves of the İznik lake basin (Eastern 
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Nemec, W., Alçiçek, M.C., Özaksoy, V., 2018. Sedimentation in a foreland basin within 
synorogenic orocline: Palaeogene of the Isparta Bend, Taurides, SW Turkey. Basin 
Res. 30, 650–670. 

Neubauer, T.A., Harzhauser, M., Kroh, A., Georgopoulou, E., Mandic, O., 2015. 
A gastropod-based biogeographic scheme for the European Neogene freshwater 
systems. Earth Sci. Rev. 143, 98–116. 

Neubauer, T.A., van de Velde, S., Yanina, T., Wesselingh, F.P., 2018. A late Pleistocene 
gastropod fauna from the northern Caspian Sea with implications for Pontocaspian 
gastropod taxonomy. Zookeys 770, 43–103. 

Nevesskaja, L.A., Paramonova, N.P., Popov, S.V., 2001. History of the Lymnocardiinae 
(Bivalvia, Cardiidae). Paleontol. J. 35, 147–217. 

Nevesskaya, L.A., Goncharova, I.A., Iljiana, L.B., 2005. Types of Neogene Marine and 
Non-marine basins exemplified by the Eastern Paratethys. Paleontol. J. 39, 227–235. 

Nissen, E., Cambaz, M.D., Gaudreau, E., Howell, A., Karasözen, E., Savidge, E., 2022. 
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(Kahraman Maraş) Coal Basin of Turkey. Geol. Carpath. 63 (2), 165–174. 

Turan, N., 2002. Geological map of Turkey in 1/500.000 scale: Ankara sheet. Publ. 
Miner. Res. Explor. Direct. Ankara, Turkey.. 

Unger, F., 1852. Iconographia plantarum fossilium. In: Denkschriften Akademie der 
Wissenschaften, Mathematisch-Naturwissenchaftliche Klasse, Wien, 4, pp. 73–118. 

van den Hoek Ostende, L.W., Diepeveen, F., Tesakov., A.S., Saraç, G., Mayhew, D., 
Alçiçek, M.C., 2015. On the brink: micromammals from the latest Villanyian from 
Bıçakçı (Anatolia). Geol. J. 50, 30–245. 
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