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The use of gDNAs isolated from museum specimens for high throughput sequencing, especially targeted 
sequencing in the context of phylogenetics, is a common practice. Yet, little understanding has been focused on 
comparing the quality of DNA and results of sequencing museum DNAs. Dragonflies and damselflies are ubiqui-
tous in freshwater ecosystems and are commonly collected and preserved insects in museum collections hence 
their use in this study. However, the history of odonate preservation across time and museums has resulted 
in wide variability in the success of viable DNA extraction, necessitating an assessment of their usefulness in 
genetic studies. Using Anchored Hybrid Enrichment probes, we sequenced DNA from samples at 2 museums, 
48 from the American Museum of Natural History (AMNH) in NYC, USA and 46 from the Naturalis Biodiversity 
Center (RMNH) in Leiden, Netherlands ranging from global collection localities and across a 120-year time span. 
We recovered at least 4 loci out of an >1,000 locus probe set for all samples, with the average capture being ~385 
loci (539 loci on average when a clade of ambiguous taxa omitted). Neither specimen age nor size was a good 
predictor of locus capture, but recapture rates differed significantly between museums. Samples from the AMNH 
had lower overall locus capture than the RMNH, perhaps due to differences in specimen storage over time.

Key words: dragonflies, anchored hybrid enrichment, museum, phylogeny, quality

Introduction

The age of next generation sequencing (NGS) for phylogenomics 
has sparked a renaissance of museum science as, unlike for Sanger 
(dideoxy or capillary electrophoresis) sequencing methods, such 
specimens have been shown to amplify using NGS methods (e.g., 
Yeates et al. (2016)). Sanger amplification and sequencing methods 
perform better when DNA fragments are not short, but for older 
samples (>10 yr in age) and those that may have been degraded 
by preservation method (Hykin et al. 2015) or pest management 
(Espeland et al. 2010), long fragments are not common. By contrast, 

NGS methods best amplify short DNA fragments, which are 
common in older samples; these make insect museum collections 
potentially useful for such work. Collections based NGS research 
using insect specimens older than 10 yr are becoming more common 
(e.g., Coleoptera: Van Dam et al. 2017; Diptera: Buenaventura 
2021; Hemiptera: Dietrich et al. 2017; Lepidoptera: Mayer et al. 
2021).

However, the age of a sample can influence DNA yield and 
locus capture, as may preservation method and storage, as has been 
shown for terrestrial insects (e.g., Blaimer et al. 2016). It is also 
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unclear how successful sequencing would be for older specimens 
of aquatic insects, which are stored either in ethanol (seen often in 
collections of Ephemeroptera, Plecoptera and Hemiptera adults, 
Odonata, Ephemeroptera, and Plecoptera nymphs), dried after 
acetone submersion (most common for odonate adults), or pinned 
(seen commonly for Hemiptera adults but often also for older col-
lections of Ephemeroptera adults, and Plecoptera adults). For non-
holometabolous aquatic insects only one targeted enrichment study 
has been done (for Odonata by Bybee et al. (2021), but they used 
recently collected samples).

To address these issues, we sampled dragonflies and damsel-
flies collected between 1909 and 2001 and sequenced them for 
a modified version of Bybee et al. (2021) AHE Odonata probe 
set being used by authors. We then evaluated whether DNA yield, 
specimen age, specimen suborder (a proxy for size), and/or mu-
seum collection were good predictors of locus capture success and 
considered the usefulness of captured loci by attempting to re-
construct an established phylogenetic tree of Odonata. Existing 
work on Odonate phylogenetics, the large number of global col-
lections of the groups, and the various preservation methods that 
are commonly employed to preserve Odonate specimens make the 
group an optimal focal species to consider the usefulness of mu-
seum specimens.

Dragonflies and damselflies (Insecta:Odonata) comprise over 
~6,400 species categorized in 3 extant suborders: Anisoptera 
(dragonflies), Zygoptera (damselflies), and Anisozygoptera. Although 
Odonata systematics traditionally focused heavily on morphological 
characters for systematics, or relied on Sanger sequencing, recent 
genomic datasets have been critical for improved reconstruction of 
the evolutionary history of dragonflies and damselflies (Bybee et al. 
2021, Kohli et al. 2021, Suvorov et al. 2022). With the development 
of a 478 locus anchored hybrid enrichment probe set for Odonata 
(Bybee et al. 2021), vast amounts of data can now quickly be gath-
ered, allowing tests of hypotheses about the tempo and mode of 
dragonfly evolution, with far more dense taxon sampling. Sampling 
densely across the Odonata tree of life will require the use of mu-
seum specimens as some species are rare in nature or considered 
endangered.

Córdoba-Aguilar et al. (2023) reviewed odonate collections 
and databases globally, which vary in the number of specimens. 
Storage methods of odonates vary when one looks across time 
and across museums. Traditionally, odonates were pinned in 
drawers, or stored in paper envelopes after air drying upon col-
lection. Since the 1980s nearly all specimens are preserved with 
acetone, which fixes the color in the insect cuticle, and stored in 
envelopes. Acetone has been shown to preserve insect DNA and 
as such, acetoned specimens are routinely sequenced (e.g., sam-
ples sequenced by (Ware et al. (2007), Pilgrim and Von Dohlen 
(2008), Letsch et al. 2016), and Bybee et al. (2008) were from 
odonates treated with acetone). However, the ability to sequence 
specimens that were not preserved using acetone has been less 
often explored. Sampling historically collected museum samples 
of dragonflies and damselflies would allow an expansion of phylo-
genetic taxon sampling and allow the comparison of populations 
across space and time.

Materials and Methods

Taxon Sampling
Damselflies and dragonflies from the RMNH and AMNH were 
selected with an emphasis on having a breadth of sizes, families, and 
ages. We initially selected samples that ranged in age from 2001 (~20 

yr old) to 1909 (~112 yr old). Five specimens appeared to be quite 
old but had no collection date on the label: Neurocordulia obsoleta, 
Polythore gigantea, Chalcopteryx scintilans, Hadrothemis defecta, 
Sapho orichlaceadate; these were included in the phylogenetic ana-
lyses but omitted from our bivariate analyses. Briefly, we chose 
94 specimens in total; of these, 64 were Anisoptera and 30 were 
Zygoptera, from 48 AMNH and 46 RMNH (See Supplementary 
Table 1). All samples had been dried and were stored in glassine 
envelopes; it was unclear from the label data the method of preser-
vation but based on their coloration it seemed that most samples had 
not been treated with acetone for preservation.

DNA Extraction and Sequencing
A single leg was removed from each museum specimen using steril-
ized forceps and DNA was extracted using Qiagen 2011 Micro-prep 
kit protocols (Hilden Germany). DNA yield was quantified using a 
Qubit 4 Fluorometer. DNA extractions were sent to RAPID Genomics 
(Gainesville Florida) for library preparation and sequencing using 
Anchored Hybrid Enrichment probes detailed in Bybee et al. (2021). 
Florida State Center for Anchored Phylogenomics generated the 
AHE data for Bybee et al. (2021); here we used the sample methods 
as in Bybee et al. (2021). Total probes consisted of 1,306 loci, cap-
turing 405 AHE loci, and 209 functional loci (Bybee et al. 2021). The 
average loci size 207.1 bp, with an N50 of 208 bp.

AHE Assembly and Analysis
We trimmed adapters from raw reads for each sample with fastp 
(Tang and Wong 2001) and checked quality using multiQC. 
Following trimming, we followed the general methods outlined in 
Breinholt et al. (2018) to assemble and assign orthology to each tar-
geted capture locus. In brief, we assembled each locus individually 
using iterative baited assembly with SPAdes (Prjibelski et al. 2020). 
Following assembly, we screened each locus for orthology by first 
ensuring that the locus did not have BLAST hits to multiple places in 
the genome and, secondly, by ensuring best reciprocal hits between 
the reference and the query sequence.

Evaluation of Factors Impacting Capture Success
To analyze potential drivers of loci capture, we evaluated relation-
ships among various sample-related factors (sample age, sample size 
(for which we used suborder as a proxy by comparing Zygoptera, 
which tend to be smaller, and Anisoptera, which tend to be larger), 
and museum source (due to differences in preservation methods)), 
the amount of genetic material recovered (DNA qubit quantifica-
tion), and the number of loci captured. We focused our statistical 
analysis on the subset of data (n = 57) for which the collection 
periods overlapped for both museums (1923–1959).

We first used bivariate analysis to examine the direct relation-
ships among sample-related factors, DNA concentration, and the 
number of loci captured. Model assumptions were checked graph-
ically, and relationships were considered significant at the P < 0.05 
level (Zuur et al. 2009). Next, we considered the combined effects 
and interactions among all sample-related factors on DNA con-
centration and the number of loci captured using multiple regres-
sion. Models were evaluated using stepwise backwards selection, 
with terms dropped until all remaining terms were significant at 
the P < 0.05 level (Zuur et al. 2009). Finally, we used path ana-
lysis to determine if any sample-related factors had direct impacts 
on the number of loci captured or if the effects were fully medi-
ated through impacts on DNA concentration. Partially mediated 
and fully mediated models containing all possible links between 
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sample-related factors, DNA concentration, and number of loci 
captured were developed and compared to models that contained 
only museum and sample age or size as explanatory factors. Models 
were compared using AIC values since several models under con-
sideration were saturated. Nested models were also compared 
using likelihood-ratio tests.

We used the R package ggplot2 (Wickham et al. 2016) to plot 
the relationships among sample-related factors, DNA concentration, 
and locus capture. We used the lavaan (Rosseel 2012) and semPlot 
(Epskamp et al. 2017) packages to conduct path analysis on samples 
from 1923 to 1959.

Phylogenetic Analysis
We evaluated the ability of captured loci to reconstruct established 
phylogenetic trees for Odonata. We generated a multiple sequence 
alignment using the de novo sequences and the sequences from Bybee 
et al. (2021) by first aligning the probe regions for each locus using 
the MAFFT-linsi algorithm in MAFFT v.7.475 (Katoh and Standley 
2013). We then concatenated the alignment using FASconCAT v1.11 
(Kück and Meusemann 2010) and generated an optimal partitioning 
scheme using relaxed clustering with the model fixed to GTR+G for 
each subset in IQtree v.2.1.3 (Minh et al. 2020). We selected a model 
for each subset in the partitioning scheme using ModelFinder and 
estimated a maximum likelihood tree with 1,000 ultrafast bootstrap 
replicates in IQtree v.2.1.3 (Kalyaanamoorthy et al. 2017). Raw data 
(fastq files), data matrices, partition, and treefiles were uploaded to 
the dryad digital repository (doi:10.5061/dryad.kprr4xh8z).

Contamination Check
To further check for potential bacterial or fungal contamination, we 
blasted each locus for each of the taxa which appeared in a clade 
of uncertainty. Briefly, we used Geneious Prime 2019.2.3 (https://
www.geneious.com) with the program BlastN for each locus for 
each taxon and recorded the top Blast hits (see Supplementary Table 
S1). Because using BLAST to align sequences to the NCBI data-
base for identification has misassigned well supported scaffolds 
in Odonata genomes (Tolman et al. 2023), we also utilized taxon-
annotated GC-coverage plots to further check for contamination in 
the screened loci using BlobTools v1.1.1 (Laetsch and Blaxter 2017). 
We mapped all paired end reads reads against the final screened loci 
from each problem taxa sing bwa (Li and Durbin 2009), sorted the 
bam file with samtools v1.13 (Danecek et al. 2021) using the com-
mand samtools sort, and made a taxonomic assignment for each loci 
with megablast using the parameters: task megablast and -e-value 
1e-25. We calculated coverage using the blobtools function map2cov, 
created the blobtools database using the command blobdb, and gen-
erated the blobplot with the command blobtools plot.

Results

Capture Results
We captured between 4 and 1,049 loci across taxa in the dataset 
of de novo sequences. The concatenated alignment of probe regions 
with these data and Bybee et al. (2021) results in an alignment length 
of 575,468 bps with a total of 177,297 parsimony informative char-
acters. Targeted enrichment resulted in a minimum of 4 loci for 
Sinolestes edita and a maximum of 1,049 loci for Agyrthacantha 
dirupta (see Supplementary Table 1).

In total, of our de novo sequences, we had 11 Aeshnidae samples 
(61–107 yr old), 7 Gomphidae (58–110 yr old), 4 Chlorogomphidae 
(27–88 yr old), 1 Cordulegastridae (110 yr old), 6 Synthemistidae 

(35–90 yr old), 6 Corduliidae (26–85 yr old), 1 Macromiidae (90 
yr old), 27 Libellulidae (57–112 yr old), 2 Lestidae (73–88 yr 
old), 1 Argiolestidae (24 yr old), 2 Perilestidae (92–101 yr old), 7 
Platycnemidae (31–98 yr old), 1 Megapodagrionidae (110 yr old), 
2 Calopterygidae (unknown age – 104 yr old), 2 Polythoridae of 
unknown age, 4 Chlorocyphidae (32–91 yr old), 6 Euphaeidae (20–
84 yr old), and 2 Synlestidae (76–83 yr old). Of these, most fam-
ilies had on average ~200–500 loci captured, regardless of age (see 
Supplementary Table 1).

Evaluation of Factors Impacting Capture Success
Response variables (DNA concentration and number of loci re-
covered) were log-transformed to ensure models met assumptions. 
To account for zero measurements, the smallest respective value 
measured for each variable was added to each measurement prior to 
transformation. Analysis of bivariate relationships indicated no stat-
istical impacts of sample age (F1,55 = 0.069, P = 0.93) or size (F1,55 = 
0.393, P = 0.533) on Qubit quantification (Fig. 1A and B). However, 
sample origin did impact Qubit quantification (F1,55 = 40.485, P < 
0.01); more DNA was recovered in samples from the RMNH (Fig. 
1A). Similarly, age (F1,55 = 1.67, P = 0.20) and size (F1,55 = 1.008,  
P = 0.319) were not related to the number of loci recovered (Fig. 1C 
and D), but significantly more loci were recovered in samples from 
the RMNH (F1,55 = 25.592, P < 0.01) (Fig. 1C). There was also a sig-
nificant positive relationship between qubit quantification and loci 
recovery (F1,55 = 20.915, P < 0.01) (Fig. 1E and F), with concentra-
tion explaining approximately 19% in the number of loci recovered 
(adjusted R2 value from model on untransformed variables; from 
model on transformed variables, adjusted R2 = 26.2%). Multivariate 
analysis indicated interactions among sample-related factors did not 
impact the number of loci recovered, with the final selected model 
only retaining museum as an exploratory factor. However, regres-
sion revealed both museum and size impacted the amount of DNA 
recovered.

Path analysis indicated that the model that included direct links 
between museum and both DNA concentration and number of loci 
captured, in addition to direct links between DNA concentration 
and number of loci captured, led to the lowest observed AIC score 
by over 2 points, suggesting the model had substantial support com-
pared to other models (Burnham and Anderson 2002). Similarly, 
likelihood-ratio tests indicated the model containing direct impacts 
of museum on loci capture rates in addition to effects mediated 
though DNA concentration was a better fit for the data (χ2

1=26.81, 
P < 0.01) compared to model without the direct effects (fully medi-
ated model).

Resolution of Museum Samples in Phylogenetic 
Reconstruction
Using the AHE pipeline and sequences from these samples coupled 
with already existing sequences from Bybee et al. (2021), we were 
able to reconstruct the Odonata phylogeny using likelihood infer-
ence. The tree generated (Figure 2) largely supports already existing 
literature, most recently, Bybee et al. (2021). Among the anisopterans, 
Libellulidae is recovered as sister to Corduliidae, and together with 
Synthemistidae and Macromiidae, this grouping forms a monophyletic 
group (the superfamily Libelluloidea). We recover Cordulegastroidea, 
a grouping composed of Chlorogromphidae and Cordulegastridae, 
which as a superfamily is sister to Libelluloidea, recovering a mono-
phyletic Cavilabiata. In the suborder Zygoptera, we see a bifurcation 
with Coenagrionidae and Platycnemididae as sister groups. We recover 
Coenagrionoidea, including families Philosinidae, Rhipidolestidae, 
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Devadattidae, Pentaphlebiidae, Polythoridae, Lestoideidae, Euphae-
idae, Argiolestidae, Chlorocyphidae, and Calopterygidae.

We particularly draw attention to 25 samples which form a clade 
that is apparently united by a lack of data; these include all the taxa 
for which there were fewer than 70 loci sequenced, except for Anatya 
(6 loci) and Sinolestes edita (4 loci). These additional taxa are not 
received in this motley crew of a clade but are similarly presum-
ably misplaced in the topology. Additionally, Watanabeopetalia from 
Bybee et al. (2021) was recovered in Zygoptera, likely due to low 
locus overlap. A heat map over locus overlap (see Supplementary 
Figure S1) suggests that all of the 25 taxa in this problematic clade 
shared only 0–10% overlap with the loci for which it was sequenced, 
and the loci recovered for other taxa; in addition, Anatya and 
Sinolestes similarly had only 0–10% overlap of loci. The remaining 
taxon which was apparently misplaced in the topology is Idionyx 
carinata, which has 50% overlap among the 912 loci recovered, sug-
gesting this sequence is from a contaminated sample.

We reviewed the loci recovered for these ambiguously recovered 
samples. There are 58 loci for which no insect hits were recovered 
across these taxa; however, blasting to NCBI may not reveal much 

new information as the database does not have many Odonata gen-
omes within it. In general, the most common Blast results were for 
Odonata (Ischnura, Sympetrum), and Formicidae. Given the incred-
ibly small number of other AHE data for these probe regions on 
NCBI, and given the low number of Odonata genomes, we con-
sidered a Blast result of any species in Insecta to be unlikely contam-
ination; any BLAST result not to Insecta was considered a possible 
contaminant. Indeed, the misplaced taxa not in the ambiguous clade 
(i.e., Watanabeopetalia and Idionyx carinata) had 64 and 56 non-
Insecta BLAST results, respectively, which potentially affected their 
phylogenetic placement. However, the 25 taxa in the ambiguous 
clade taxa had only 100 non-insecta BLAST results across all loci. 
Genome level datasets (including Odonata) have been misclassified 
outside of arthropoda using BLAST (Tolman et al. 2023), so BLAST 
results for Odonata should be treated with caution. The blobplot did 
confirm that a number of the loci were not assigned as arthropoda, 
but there were few outliers when considering coverage and GC con-
tent (see Supplementary Figure S2). It is notable that the misplaced 
taxa had a lower average loci length, and loci N50 than the dataset 
as a whole (see Supplementary Table S2).

Fig. 1. Qubit DNA recovered, and age of specimen compared between museums (AMNH and RMNH) (A), and Odonata suborder (Anisozygopter and Zygoptera) 
(B). Number of loci recovered from AHE sequencing, and age of specimen compared between museums (C), and Odonata suborder (D). Number of loci 
recovered from AHE sequencing, and age of specimen compared between museums (E) and Odonata suborder (F). Shaded lines are linear regression trend 
lines, and the grey shading is the 95% confidence interval.
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Discussion

There are well over 1.5 million specimens of dragonflies and dam-
selflies held in museums across the United States, and when all nat-
ural history collections worldwide are considered the number of 

preserved Odonata is likely numbering in several million. Odonata 
collectors continue to add to collections in museums, but many spe-
cies remain rare and undersampled; the rate of collecting odonates 
has precipitously decreased, heightening the urgency of extracting 
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as much information from housed specimens as possible (Córdoba-
Aguilar et al. 2023). These samples are invaluable records of geo-
graphic ranges, phenotypic variation, and populations; here, we 
show that they are very useful molecular data collection as well.

However, most odonate specimens were not collected with the 
intention (or knowledge) of future genomic studies, resulting in 
varying methods of preservation. Most labels for older odonata 
specimens lack knowledge of post-mortem treatment, which could 
drastically alter DNA quality among or within taxa, and among spe-
cimens of similar or differing ages. Common treatments for odonate 
specimens include freezing, ethyl acetate, and arsenic for killing, 
and boiling water and phenol as relaxing agents before pinning. 
Common storage agents for insects include submersion in 90–95% 
ethanol or acetone, however dragonflies are stored within envelopes 
or pinned using such agents as facilitators for quick drying; the com-
parison of quick drying versus air-drying for extraction of viable 
genetic material is an area of little study (Nakahama et al. 2019). 
Furthermore, several factors including time, dehydration, environ-
mental exposure, and the presence of bacterial or fungal contamin-
ation, markedly affect the quality of DNA within museums, which is 
observed both within vertebrate and invertebrate taxa (Evans 2007, 
Zimmermann et al. 2008, Francis et al. 2010, Cárdenas and Moore 
2019). Finally, at certain museums, older odonate specimens have 
been exposed to naphthalene or methyl bromide, common pesticide 
agents; the effects of which on genetic material currently remain un-
known. All such factors from the moment of capture to the DNA 
extraction provide a spectrum of efficacy in acquiring robust genetic 
material for diversity studies.

The results of our study suggest that high numbers of loci may 
commonly be recovered from specimens, but that differences in 
storage procedures among museums may impact recovery rates. In 
general, we noted a positive correlation between the amount of re-
covered DNA and the number of loci recovered per sample. Increases 
in DNA yield have the potential to increase the chances of recovering 
loci due to the higher abundance of presumed viable DNA for 
sequencing. However, DNA concentration only explained 20% of 
the noted variation in loci recovered, suggesting Qubit values are 
not necessarily a strong indicator of the success of AHE. Specimens 
with low qubit values still yielded a high number of informative loci.

Path analysis indicated specimen source had both direct effects 
on loci capture and indirect effects mediated through DNA yield. 
We observed stark differences between Qubit readings and re-
covered loci between our museums. Specimens housed within the 
RMNH possessed higher average readings than the AMNH, both in 
Qubit (RMNH: 124ng, AMNH: 11ng), and recovered loci (RMNH: 
662bp, AMNH: 109bp), suggesting external factors pertaining to 
storage which differ between the RMNH and the AMNH. A litany 
of external factors pertaining to storage between both museums 
could produce differences in DNA quality and quantity including 
stability in climate conditions, or presence of pests and pathogens. 
Analysis of samples from more museums will be required to better 
understand these impacts.

We note that samples from AMNH seemed to be more susceptible 
to low recovery and low locus overlap. This included a number of 
samples (25) that formed their own clade, separated from both the 
main Zygoptera and the main Anisoptera clade. This grouping is most 
likely due to a lack of overlap among these taxa (all have only 0–10% 
overlap in loci), and generally low locus recovery (all had less than 70 
loci recovered). In general, a lack of data might be the reason for the 
lack of their resolution considering our mostly Insecta Blast results. 
Our results indicate that as a rule of thumb, taxa with 10% or less 
loci overlap deserve extra scrutiny when evaluating their placement 

in the topology. Idionyx carinatus was recovered in a problematic 
position in the tree despite having amplified over 900 loci with 50% 
overlap. We posit that this could be due to the presence of non-Insecta 
contaminants (e.g., bacteria, fungi, human, dog, etc.) for 64 of 912 re-
covered loci. A greater abundance of microbial activity could explain 
why less DNA and fewer loci were recovered from AMNH samples, 
in general. Museums will have variable storage quality, and humidity 
levels may influence microbial contamination. Further research must 
be done to determine the storage factors that influence the success of 
AHE sequencing, so reasonable expectations can be made for speci-
mens from museums around the world.

Surprisingly, we found no impact of specimen age or size on the 
number of loci recovered or DNA yield. Previous studies of verte-
brate and invertebrate taxa have found that older specimens possess 
fewer loci recovered (McCormack et al. 2016, Brewer et al. 2019, 
McGaughran 2020, Mayer et al. 2021). However, we produced the 
same result when we included taxa outside the overlapping age range 
of both museums (1909–2001). Our success in recovering loci from 
old samples is likely due to the short length of the target loci (average 
length < 210 bp). This success is unsurprising, as average read lengths 
near 70 have been recovered from the genomic DNA of large ver-
tebrates that were nearly 40,000 yr old (Palkopoulou et al. 2015). 
Overall, this suggests even older, smaller samples may prove useful in 
genetic studies.

Seeing the relative success of this method in DNA and loci re-
covery from museum specimens, another angle of interest worth 
highlighting is the aspect of accessibility and capacity building in 
regions with a dearth of resources. The 2 museums used in this study 
are in the global north—Europe and North America, which possess 
a wealth of resources to employ the best practices in the preserva-
tion of these specimens. Since the advent of more sustainable and 
capital-intensive methods, biological repositories in the global south 
have found themselves having some catching up to do. Further, 
many museums lack climate-controlled compactor style storage, 
using naphthalene to control pests, and storing insects in suboptimal 
temperatures (Gyanpriya Maharaj & Kehinde Kemabonta, personal 
communication), which prevents these specimens from being as 
useful for molecular work, only exacerbating current inequities from 
colonial legacies.

Dragonflies and damselflies are remarkable insects and their pos-
ition in the insect tree of life, as sister to the Neoptera, make them 
vital to our understanding of the evolution of Pterygota. To better 
study their evolution, museum collections are an invaluable resource 
that should be sampled to expand taxon sampling across space and 
time.
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