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• Background and Aims The Canary Islands have strong floristic affinities with the Mediterranean Basin. One
of the most characteristic and diverse vegetation belts of the archipelago is the thermophilous woodland (between
200 and 900 m.a.s.l.). This thermophilous plant community consists of many non-endemic species shared with the 
Mediterranean Floristic Region together with Canarian endemic species. Consequently, phytogeographic studies
have historically proposed the hypothesis of an origin of the Canarian thermophilous species following the es-
tablishment of the summer-dry mediterranean climate in the Mediterranean Basin around 2.8 million years ago.
• Methods Time-calibrated phylogenies for 39 plant groups including Canarian thermophilous species were primarily
analysed to infer colonization times. In particular, we used 26 previously published phylogenies together with 13 new time-
calibrated phylogenies (including newly generated plastid and nuclear DNA sequence data) to assess whether the time
interval between stem and crown ages of Canarian thermophilous lineages postdates 2.8 Ma. For lineages postdating this 
time threshold, we additionally conducted ancestral area reconstructions to infer the potential source area for colonization.
• Key Results A total of 43 Canarian thermophilous lineages were identified from 39 plant groups. Both medi-
terranean (16) and pre-mediterranean (9) plant lineages were found. However, we failed to determine the temporal 
origin for 18 lineages because a stem–crown time interval overlaps with the 2.8-Ma threshold. The spatial origin
of thermophilous lineages was also heterogeneous, including ancestral areas from the Mediterranean Basin (nine)
and other regions (six).
• Conclusions Our findings reveal an unexpectedly heterogeneous origin of the Canarian thermophilous species
in terms of colonization times and mainland source areas. A substantial proportion of the lineages arrived in the
Canaries before the summer-dry climate was established in the Mediterranean Basin. The complex temporal and
geographic origin of Canarian thermophilous species challenges the view of the Canary Islands (and Madeira) as
a subregion within the Mediterranean Floristic Region.

Key words: Thermophilous woodland, Canary Islands, Mediterranean Floristic Region, colonization times, stem 
age, crown age, ancestral area, extinction.

INTRODUCTION

Oceanic islands emerge lifeless from the seafloor and are 
usually separated from continents by wide stretches of sea, 
which means that all of their terrestrial plants have their origin 
in other landmasses. The Canary archipelago is formed by 
seven volcanic islands situated ~100 km off the Saharan coast 
(north-western Africa). Since their emergence (last 21 million 
years), plant lineages have colonized the islands from the main-
land, grouping together into six main vegetation belts: coastal 

vegetation, xerophytic shrubland, thermophilous woodland, 
laurel forest (laurisilva), pine woodland, and alpine legume 
scrub (del Arco and Rodríguez-Delgado, 2018). Interestingly, 
the origin of these floral elements is not well understood. 
Despite the proximity of the islands to the current Saharo-
Arabian Floristic Region (Takhtajan, 1986), only some elem-
ents of the coastal vegetation and xerophytic shrubland of the 
Canarian flora are linked to this region (Rivas-Martínez, 2009). 
Iconic tree species of the laurel forest have been traditionally 
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considered both subtropical in origin and surviving representa-
tives of a once more widely distributed Tertiary–Tethyan flora 
(Bramwell, 1976; Mai, 1995); a more heterogeneous origin has 
been lately suggested by Kondraskov et al. (2015). Irrespective 
of some floristic elements connecting the Canary Islands with 
floristic regions of the Sahara–Arabia, East/South Africa and 
America (Quézel, 1978; Grehan, 2016), most phytogeographers 
agree that the Canarian flora has a predominant connection with 
the Mediterranean Floristic Region (MFR).

Since the 18th century, phytogeographers have been dis-
cussing whether plants of the Canaries and other Macaronesian 
archipelagos of the Atlantic Ocean form an independent flor-
istic region or a subregion within the MFR (del Arco and 
Rodríguez-Delgado, 2018). On the one hand, high species 
endemicity (~35  %) and numerous floristic elements linked 
to several continental floras are considered strong argu-
ments to accept a high-level phytogeographic classification 
(Macaronesian Floristic Region; Engler, 1879; Sunding, 1979; 
Takhtajan, 1986; Bolòs, 1996). On the other hand, a high per-
centage of Mediterranean elements and lineages are in turn 
understood as a clear criterion to propose a lower-level phyto-
geographic classification (Canarian–Madeiran subregion of the 
MFR; Meusel, 1965; Lobin, 1982; Rivas-Martínez, 2009; del 
Arco and Rodríguez-Delgado, 2018). The Mediterranean ele-
ment is pervasive in the six vegetation belts of the Canaries 
in such a way that plant lineages exhibiting traits common in 
mediterranean climates or having their centres of diversity in 
the Mediterranean Basin are particularly abundant in the pine 
woodland and thermophilous woodland (Francisco-Ortega et 
al., 2002; Rivas-Martínez, 2009; White et al., 2020; Albaladejo 
et al., 2021). Indeed, the thermophilous vegetation is the plant 
community most associated with the MFR, including some ar-
boreal and shrubby communities named in Spanish after their 
dominant tree species: ‘sabinares’ (Juniperus turbinata subsp. 
canariensis), ‘almacigares’ (Pistacia atlantica), ‘lentiscales’ 
(Pistacia lentiscus) and ‘acebuchales’ (Olea europaea subsp. 
guanchica) (Fernández-Palacios et al., 2008; Nezadal and 
Welss, 2009). The last three tree species have sclerophyllous 
leaves with flexural stiffness and strength (Schimper, 1903; 
Read and Sanson, 2003), which characterize the vegetation of 
the MFR (Rundel et al., 2016; Vargas, 2020). All these sources 
of evidence suggest that the phytogeographic origin of Canarian 
plant lineages may be predominantly associated with the MFR. 
If so, the question remains as to whether phylogenetic relation-
ships and divergence times of a significant number of species 
from the thermophilous woodland can provide evidence of a 
temporal mediterranean origin, i.e. following the establishment 
of the mediterranean climate across the Mediterranean Basin 
(Carine et al., 2004; Fernández-Palacios et al., 2008; Vargas, 
2020).

The establishment of the mediterranean climate across 
southern Europe and northern Africa 2.8 million years ago 
(Ma) provides the opportunity to consider a relatively well-
defined temporal framework. This temporal threshold (2.8 Ma) 
is based on independent evidence from palaeoceanographic 
(Hernández-Molina et al., 2014), palaeoclimatic (Hernández-
Molina et al., 2014; Grant et al., 2022), palaeobotanical 
(Bocquet et al., 1978; Suc, 1984; Palmarev, 1989; Tzedakis, 
2007; Postigo et al., 2009; Jiménez- Moreno et al., 2010) and 
phylogenetic (Fiz-Palacios and Valcárcel, 2013 and references 

within it) information that supports a ‘sharp’ climatic event. 
In particular, the establishment of the mediterranean climate 
brought about a significant environmental change because of 
the concurrence of a drought period during the warm season. 
Interestingly, this threshold is close to the boundary between 
the Pliocene and Pleistocene (2.6  Ma), as recognized by the 
International Chronostratigraphic Chart (https://stratigraphy.
org/chart). Such a temporal threshold has been used in mul-
tiple studies to categorize Mediterranean floristic elements ac-
cording to their temporal origin (paleo-mediterranean versus 
neo-mediterranean; Herrera, 1992; Peñuelas et al., 2001; Verdú 
et al., 2003). In addition, it has been used to test specific hy-
potheses such as the timing of colonization of the Canary 
Islands by certain lineages (Vargas, 2007; Salvo et al., 2010), 
diversification rate shifts (Fiz-Palacios and Valcárcel, 2013) 
and karyotypic changes (Escudero et al., 2018) in combination 
with time-calibrated phylogenies.

The use of phylogenetic analyses based on DNA sequences 
to estimate the timing of evolutionary events has become a basic 
tool in biogeography (Sanmartín, 2014). Time can be meas-
ured in absolute units when the tree is calibrated with fossils, 
phylogeny-based secondary calibrations and/or biogeographic 
events (Forest, 2009; Ho and Phillips, 2009; see Hipsley and 
Müller, 2014 for alternative calibration approaches). In par-
ticular, relaxed-clock Bayesian methods can elucidate a pos-
terior distribution on the age of a node, taking into account the 
uncertainty associated with tree topology, branch length and 
calibrations (Drummond et al., 2006; Yang and Rannala, 2006). 
This method can be applied to a large number of plant groups, 
thus helping describe general patterns (e.g. Pokorny et al., 2015; 
Vargas et al., 2018). The time-calibrated phylogenies obtained 
from Bayesian relaxed-clock methods are also used as input 
for inferring the ancestral areas from which colonization may 
have occurred (e.g. Albaladejo et al., 2021). These ancestral 
area reconstruction analyses give new possibilities for quanti-
tative analysis in island biogeography (Lamm and Redelings, 
2009). Thus, applying time-calibrated phylogenetic approaches 
to investigate the divergence of Canarian lineages from their 
continental relatives may provide valuable insight into the very 
complex patterns of relationships between the Canary Islands 
and continental floras (Carine et al., 2004; Kondraskov et al., 
2015; Caujapé-Castells et al., 2017; Valente et al., 2017).

Palaeoclimatic, floristic and phytogeographic studies led us to 
examine the hypothesis of an origin of Canarian thermophilous 
species following the establishment of the mediterranean cli-
mate across the Mediterranean Basin 2.8 Ma. To test this hy-
pothesis, we firstly analysed the phylogenetic relationships of 
thermophilous Canarian lineages and their sister groups using 
improved phylogenetic datasets in terms of extended taxonomic 
and geographic sampling. Secondly, we evaluated whether an-
cestral thermophilous plant lineages had a temporal origin 
since the mediterranean climate became established around 
2.8 Ma (Suc et al., 2018), based on both newly generated and 
previously published time-calibrated phylogenies. Thirdly, we 
implemented ancestral area reconstruction analyses to assess 
whether colonization of thermophilous Canarian lineages had 
a potential source area for colonization in the Mediterranean 
Basin or another geographic area. In sum, we are quantifying 
the degree to which there is a spatio-temporal biogeographic 
link between the Canarian flora and the MFR.

https://stratigraphy.org/chart
https://stratigraphy.org/chart
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MATERIALS AND METHODS

Study area

The thermophilous woodland is a vegetation type character-
istic of the Canary Islands. It occurs between the xerophytic 
vegetation and the laurel forest on the windward slopes (~200–
500  m.a.s.l.) and between the xerophytic vegetation and the 
pine woodland on the leeward slopes (~300–900 m.a.s.l.) (del 
Arco et al., 2006; Fernández-Palacios et al., 2008). It has a 
mediterranean-type climate  with annual rainfall between 250 
and 450  mm, mostly occurring in winter, and with average 
temperature between 15 and 19  °C, depending on elevation. 
The thermophilous woodland is defined by some communi-
ties dominated by tree species also found in southern Europe 
and northern Africa (particularly Juniperus turbinata, Pistacia 
atlantica, Pistacia lentiscus, Olea europaea), which may be 
accompanied by endemic trees (Gymnosporia cassinoides, 
Dracaena draco, Phoenix canariensis, Sideroxylon canariense, 
Visnea mocanera). In addition, a high number of shrub and herb 
species characterize this vegetation belt (Fernández-Palacios et 
al., 2008). Unfortunately, this vegetation type is extremely rare 
in a pristine state because its trees have been eliminated by an-
thropogenic activity. Chronologically, African human groups 
colonized the seven islands, who mostly settled around 2000 
years ago, and a more severe deforestation has taken place 
since colonization by European groups (Fernández-Palacios 
et al., 2008). As a result, currently only 11 % of the original 
thermophilous woodland is estimated to remain (Fernández-
Palacios et al., 2008; Castilla-Beltrán et al., 2021).

Sampling strategy and DNA sequencing

In this study, stem and crown ages were inferred by extending 
DNA sequence datasets of 13 previously published phylogenies, 
which included a total of 16 thermophilous species (7 Canarian 
endemics, 5 Macaronesian endemics, 4 non-endemic natives) 
occurring in the Canary Islands. These previous datasets are 
heterogeneous and the published phylogenies share some of 
the following weak points: (1) low support for monophyletic 
groups including Canarian species; (2) poor sampling of po-
tential mainland sister groups (species/populations); (3) poor 
sampling of species or populations from the Canary Islands; (4) 
lack of divergence time estimates; and (5) need for technical im-
provement in terms of new methods or calibration points (Table 
1). Additionally, stem and crown ages for 26 plant groups with 
species occurring in the Canarian thermophilous vegetation belt 
were taken directly from the literature (Supplementary Data 
Table S1). A total of 39 thermophilous plant groups (i.e. genera, 
rarely family) were analysed.

To generate new data on divergence times for 16 thermophilous 
species, we first obtained 13 DNA sequence datasets from the 
most comprehensive phylogenetic studies at the genus level 
(occasionally at family level). Alignments were provided dir-
ectly by authors of the studies or obtained from the GenBank 
or TreeBase databases. GenBank accession numbers and geo-
graphic origin for all downloaded sequences are available in 
each publication referenced in Table 1. Second, we extended 
taxonomic and/or population sampling of these DNA sequence 
datasets to infer stem and crown nodes for the Canarian species 

or populations. The new samples were obtained from three 
sources: field trips, herbarium specimens, and colleagues who 
contributed with field samples (Supplementary Data Table S2). 
We tried to sample at least one individual per island where the 
taxon is present depending on available material and acces-
sibility of populations. We additionally sampled at least one 
individual from the most closely related species based on taxo-
nomic information when not available in the DNA sequence 
database. For non-endemic taxa, we also sampled individuals 
from at least two populations from nearby continental areas. 
Many plants of the Canary Islands have a Palaearctic origin 
(Sunding, 1979; Carine et al., 2004), and thus we focused our 
sampling on the archipelagos and mainland regions of Africa 
and Europe that are close to the Canary Islands, with particular 
effort being made for Mediterranean Iberia and north-western 
Africa (Valente et al., 2017). Overall, we newly generated 262 
DNA sequences from 104 samples of 33 taxa (16 representative 
thermophilous species and 17 close relatives) and 16 different 
DNA regions, which were included in the published DNA se-
quence datasets. Sample information for all specimens and 
GenBank accession numbers for all new DNA sequences are 
provided in Supplementary Data Table S2.

DNA was extracted from dried leaves using the Qiagen 
DNeasy Plant Mini Kit according to the manufacturer’s 
protocol. Sixteen different DNA regions were amplified and 
sequenced based on previously published studies for each plant 
group (Supplementary Data Table S2). In particular, we ana-
lysed two nuclear regions (ETS and ITS), one mitochondrial 
region (PHYC) and 13 plastid DNA regions (matK, psbA-trnH, 
psbB1-psbB2, rbcL, rpl16, rpl32-trnL, rps4, trnD-trnT, trnK, 
trnL-trnF, trnL-trnF, trnS-trnG, trnV). Primers and PCR cycles 
applied for each plant group are included in Supplementary 
Data Table S3. Amplified products were sequenced by standard 
Sanger sequencing at Macrogen Europe (www.macrogen.com). 
We used Geneious 2021.2.2 (https://www.geneious.com) to 
edit chromatograms, aligned sequences with the MUSCLE al-
gorithm (Edgar, 2004) and concatenated DNA regions (Table 
1). The resulting alignments were checked visually and cor-
rected where the algorithm failed to identify gaps.

Phylogenetic relationships

We applied Bayesian inference analysis to the 13 DNA se-
quence datasets to infer the phylogenetic relationships of plant 
groups with thermophilous species in the Canary Islands. The 
best-fitting substitution model for each partition (DNA re-
gion) was selected using the Akaike information criterion im-
plemented in jModelTest v.0.1.1 (Posada, 2008). We did not 
test the congruence between nuclear and plastid matrices be-
cause this was already analysed in the previous phylogenetic 
studies. Thus, we used the phylogenetic dataset (single or com-
bined DNA matrix) that provided the highest phylogenetic 
resolution in those studies (Table 1, Supplementary Data Figs 
S1–S13). MrBayes v.3.2.6 (Ronquist et al., 2012) was used in 
all cases on XSEDE via the CIPRES Science Gateway (http://
www.phylo.org/) with two simultaneous runs, each with four 
parallel Markov chains (three hot and one cold), and sampled 
every 10 000 trees to obtain a total of 10 million generations. 
The first 25 % of trees of each run were discarded (burn-in) 
and 50 % majority-rule consensus trees were constructed. An 
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additional approach using maximum likelihood was imple-
mented in RAxML to obtain an alternative estimate of phylo-
genetic relationships and support values (Supplementary Data 
Methods S1).

Divergence times

To estimate divergence times of stem and crown nodes for 
plant groups with thermophilous species in the Canary Islands, 

we generated 13 new time-calibrated phylogenies using the 
Bayesian uncorrelated log-normal relaxed clock model in 
BEAST 1.84 (Drummond and Rambaut, 2007). We used the 
same substitution models already applied for the phylogenetic 
reconstructions. For each analysis, we ran two independent 
chains of 100 million generations with a birth–death tree prior, 
which accounts for both speciation and extinction (Gernhard, 
2008). All molecular dating analyses in BEAST were per-
formed using the computer cluster Trueno (CSIC, Madrid, 

Table 1. List of the 16 Canarian thermophilous plant species for which colonization times were newly inferred for this study. Taxonomic 
rank, DNA regions and bibliographic references of the DNA sequence datasets used are indicated, as well as the calibrated approach and 
the bibliographic reference on which the strategy for calculating divergence times is based on. The last column indicates the reasons why 
the original datasets had to be improved, namely: (1) low support for monophyletic groups formed by Canarian species; (2) poor sam-
pling of potential mainland sister groups (species/populations); (3) poor sampling of species or populations from the Canary Islands; 
(4) lack of divergence time estimates; and (5) need for technical improvement in terms of new methods or new calibration points. DNA
regions marked in bold indicate the regions for which we have provided new sequences in this study (more details on the samples included 

by genus and species in Supplementary Data Table S2)

Canarian 
thermophilous 
species 

Plant group 
analysed 

DNA regions from published 
phylogenies 

Reference for 
published DNA 
sequence dataset 

Calibration 
approach 

Reference for 
calibration points 

Reasons 
for dataset 
improvement 

Asparagus 
scoparius*

Genus Asparagus 
(Asparagaceae)

PHYC, trnH-psbA, trnD-T, ndhF Norup et al., 
2015

Secondary 
calibration 
(Fig. S14)

Chen et al., 2013 1, 3, 4

Asparagus 
umbellatus*

Bosea 
yervamora**

Family 
Amaranthaceae

matK Di Vincenzo et 
al., 2017

Fossil and secondary 
calibration 
(Fig. S15)

Di Vincenzo et al., 
2017

2, 3

Bryonia 
verrucosa**

Genus Bryonia 
(Cucurbitaceae)

ITS, LFY, trnL, trnL-trnF, psbA-
trnH, trnH2, trnR-atpA

Volz and Renner, 
2008

Secondary 
calibration 
(Fig. S16)

Schaefer et al., 
2009

5

Chrysojasminum 
odoratissimum*

Genus 
Chrysojasminum 
(Oleaceae)

ITS, matK, trnL-F and trnH-psbA Jeyarani et al., 
2018

Secondary 
calibration 
(Fig. S17)

Vargas et al., 2014 2, 3, 4

Dracunculus 
canariensis*

Genus Arum 
(Araceae)

trnL, trnF, matK, trnK, rbcL, 
rps16

Mansion et al., 
2008

Fossil and secondary 
calibration 
(Fig. S18)

Mansion et al., 
2008; Nauheimer 
et al., 2012

3, 5

Ephedra fragilis Genus Ephedra 
(Ephedraceae)

26S, 18S, ITS, atpB, rbcL, 
matK, rps4, psbA-trnH, trnL, 
trnL–trnF

Ickert-Bond et 
al., 2009

Fossil calibration 
(Fig. S19)

Ickert-Bond et al., 
2009

2, 3

Gymnosporia 
cryptopetala**

Genus 
Gymnosporia 
(Celastraceae)

ITS Oberprieler et al., 
2017

Secondary 
calibration 
(Fig. S20)

Davis et al., 2005 3, 5

Gymnosporia 
cassinoides**

Juniperus 
turbinata subsp. 
canariensis

Genus Juniperus 
(Cupressaceae)

ITS, matK, rbcL, trnL-trnF, rps4, 
trnS-trnG, trnD-trnT, trnV, 
petB-petD and psbB1-psbB2

Mao et al., 2010 Fossil calibration 
(Fig. S21)

Mao et al., 2010 2, 3

Heberdenia 
excelsa*

Genus Myrsine 
(Primulaceae)

ITS, ETS Appelhans et al., 
2020

Secondary 
calibration 
(Fig. S22)

Rose et al., 2018 3, 4

Pistacia atlantica Genus Pistacia 
(Anacardiaceae)

ITS, ETS Xie et al., 2014 Secondary 
calibration 
(Fig. S23)

Xie et al., 2014 2, 3

Pistacia lentiscus

Rhamnus 
crenulata**

Genus Rhamnus 
(Rhamnaceae)

ITS, trnL-trnF Bolmgren and 
Oxelman, 2004

Secondary 
calibration 
(Fig. S24)

Onstein et al., 2015 2, 3

Sideroxylon 
canariense**

Genus Sideroxylon 
(Sapotaceae)

ITS, trnH-psbA Stride et al., 2014 Fossil calibration 
(Fig. S25)

Stride et al., 2014 3

Thesium 
retamoides**

Genus Thesium 
(Santalaceae)

ITS, matK, rpl32-trnL, trnL-trnF Zhigila et al., 
2020

Secondary 
calibration 
(Fig. S26)

Moore et al., 2010 3, 4

*Macaronesian endemics; **Canarian endemics. Species with no asterisks are non-endemic natives.
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Spain). We assessed convergence of chains and appropriate 
burn-ins with Tracer v.1.7.1 (Rambaut et al., 2018), combined 
runs using LogCombiner, and produced maximum clade cred-
ibility (MCC) trees with mean node heights in Tree Annotator.

Calibration points used to estimate divergence times were 
based on the fossil record and published secondary calibra-
tion points, depending on data availability for each plant group 
(Supplementary Data Figs S14–S26). When reliable fossils 
were available, a lognormal prior on age estimates was used, 
since this distribution better represents the stratigraphic uncer-
tainty associated with the fossil record (Ho and Phillips, 2009). 
The offset of the lognormal distribution was set to the upper 
bound of the stratigraphic period where the fossil was found. 
In the absence of reliable fossils, only secondary calibration 
points taken from original papers were implemented to the cor-
responding deep nodes (Table 1). Secondary calibration points 
were obtained from fossil-calibrated phylogenies of higher 
taxonomic ranks, which included samples of our study groups 
(e.g. typically the family to which the genus belongs), and were 
assigned normal distribution priors (Ho and Phillips, 2009) in 
the BEAST analysis including the mean and the 95 % highest 
posterior density (HPD) interval from those studies. A sum-
mary of time constraints used for each DNA dataset and their 
provenance can be found in Supplementary Data Figs S14–S26.

Colonization times: crown and stem ages

Colonizations of the Canary Islands by a lineage have taken 
place at a time between the stem age and the crown age of the 
lineage (Fig. 1; Swenson et al., 2014; García-Verdugo et al., 
2019a). The stem age, representing the time of divergence 
between the island lineage and the mainland sister lineage, 
is more commonly used as an indicator of colonization time 
(Fig. 1A; see examples in Keeley and Funk, 2011; Spalik et al., 
2014; Kondraskov et al., 2015; Grover et al., 2017; Schüßler 
et al., 2019). However, the stem age tends to overestimate col-
onization time as a result of extinction or incomplete sampling 
of closely related mainland lineages (Fig. 1B; Mairal et al., 
2015; Pillon and Buerki, 2017). Alternatively, recent studies 
have used the crown age, which corresponds to the onset of the 
divergence from the most recent common ancestor of the lin-
eage within the archipelago, and thus a minimum time for the 
colonization from the mainland (Fig. 1A; Pokorny et al., 2015; 
García-Verdugo et al., 2019a). However, the crown age may 
provide an underestimate of colonization time, due to extinc-
tion of island lineages or poor sampling of the archipelago (Fig. 
1C; see examples of Canarian lineages potentially affected by 
extinction in Sanmartín et al., 2008; and García-Verdugo et al., 
2019b). Therefore, the crown age represents the minimum age 
(lower bound) at which colonization of the archipelago from 
the mainland could have occurred, whereas the stem age repre-
sents the maximum age (upper bound) of that event.

To address our working hypothesis, we compared both stem 
and crown ages with the 2.8-Ma threshold, which marks the es-
tablishment of the mediterranean climate (Suc, 1984). By con-
sidering the stem node as the upper limit and the crown node 
as the lower limit of colonization time, our approach accounts 
for the potential impact of lineage extinction and incomplete 
sampling on colonization time estimates. Based on estimates 
of stem and crown ages (mean and 95 % HPD intervals) from 

26 previously published and 13 newly generated phylogenies, 
we classified 43 Canarian thermophilous lineages into three 
categories: (1) mediterranean lineages, when stem and thus 
crown ages postdated the 2.8-Ma threshold (i.e. both the 
stem and the crown node are mediterranean in time); (2) pre-
mediterranean lineages, when crown and thus stem ages pre-
dated the 2.8-Ma threshold (i.e. both the stem and the crown 
ages are pre-mediterranean); and (3) undetermined lineages, 
for those groups with stem ages falling any time before this 
threshold (pre-mediterranean stem ages) and crown ages after-
wards (mediterranean crown ages) (Fig. 2).

In the context of this hypothesis, the term ‘mediterranean’ re-
fers to a window of colonization of the Canary Islands after the 
establishment of the mediterranean climate (temporal origin) in 
the Mediterranean Basin. This does not necessarily imply that 
the lineages colonized the thermophilous belt directly from the 
Mediterranean Basin. Indeed, the closest mainland taxa for a 
few of the Canarian lineages are not from the Mediterranean 
Basin according to the literature (Supplementary Data Table 
S1). Although both temporal and spatial origins would have 
ideally to be fulfilled for a lineage to be considered ‘mediter-
ranean’, we first classify taxa according to temporal origin ra-
ther than geographic origin to address our working hypothesis 
because the temporal framework allows us to integrate stem 
age and crown age estimates together and thus partially cir-
cumvent the impact of poor sampling, low phylogenetic reso-
lution, extinction and fluctuant limits of the MFR over time (see 
Discussion section).

Nodes could not be unambiguously designated as mediter-
ranean or pre-mediterranean when their 95  % HPD intervals 
spanned the 2.8-Ma threshold (Fig. 2). For these nodes, a 
complementary approach was taken (Fig. 3). Marginal prob-
ability distributions of divergence times for such nodes were 
extracted from 100 000 trees using TreeStat v.1.8.4 (Rambaut 
and Drummond, 2016). Then, we used the percentage of oc-
currence of node ages before or after the 2.8-Ma threshold, fol-
lowing the approach of Vargas et al. (2014). In other words, a 
node was considered mediterranean when the majority of the 
marginal probability distribution of the node age postdated the 
establishment of the mediterranean climate (2.8  Ma), and as 
pre-mediterranean when the majority of the marginal prob-
ability distribution of the node age predated such a threshold 
(Fig. 3). We chose a 50  % threshold to include the majority 
of probability distributions (Vargas et al., 2014). For the previ-
ously published time-calibrated phylogenies we took a different 
approach, in which the mediterranean or pre-mediterranean 
status of nodes was estimated based on mean values of node 
ages given by the authors.

In some cases, low phylogenetic resolution and the tree top-
ology hinder estimation of stem and crown ages. For instance, 
this can happen when the posterior probability (PP) of nodes 
is low (<0.90), or when multiple representatives of Canarian 
lineages are placed at distant positions in the tree with low 
support. These reconstructions make it difficult to distinguish 
between incomplete lineage sorting and multiple colonization 
events. In such cases, a most inclusive approach was taken, 
in which we considered the time estimate of the most recent 
common ancestor (TMRCA) of island and mainland lineages 
to be an upper bound. Since this TMRCA is equivalent to the 
stem age (when relationships are resolved), it also represents 
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Estimates of colonization times on oceanic islands:
stem vs. crown ages

A

B

C

Stem age overestimation

Crown age underestimation

(I) Inferred stem age from
current phylogeny

(II) Stem age considering extinction or
incomplete sampling in mainland

(I) Inferred crown age from
current phylogeny

(II) Crown age considering extinction or
incomplete sampling in archipelago

Crown

Stem

Mainland lineages

Insular lineages

Atlantic ocean NW Africa

Fig. 1. Two approaches typically used to infer colonization times on oceanic island: stem (solid circles) and crown (open circles) ages. Brown lines represent lin-
eages with mainland distribution while green lines represent lineages with insular distribution. Dashed lines represent extinct or unsampled lineages. (A) Graphical 
representation of stem and crown ages of a hypothetical island lineage (modified from García-Verdugo et al., 2019a). (B) Impact of considering extinction or 
incomplete taxon sampling of the mainland ancestor on stem age estimates. (C) Impact of considering extinction or incomplete taxon sampling of the archipelago 

ancestor on crown age estimates.
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the maximum age at which the lineage may have colonized the 
archipelago (Valente et al., 2017).

Ancestral area reconstructions

To reconstruct the ancestral distribution range of the lineages 
with thermophilous species in the Canary Islands (both endemics 
and non-endemic natives), we employed a model-based max-
imum likelihood approach for ancestral area optimization: the  

dispersal–extinction–cladogenesis (DEC) model implemented 
in the BioGeoBEARS R package (Matzke, 2013). For the 
sake of brevity and addressing our working hypothesis, bio-
geographic reconstructions were conducted using only three 
geographic areas (A = Mediterranean Basin, B = Macaronesia, 
C = other regions), allowing ancestors to be present in a max-
imum of three areas. We set symmetrical dispersal between 
areas, and constant dispersal rates through time. The analyses 
were run using the MCC tree of the 13 newly inferred time-
calibrated phylogenies (see Materials and methods, Divergence 
times) after pruning tips in multi-sampled species in order to 
represent each species with a single terminal branch. We esti-
mated whether colonization occurred from the Mediterranean 
Basin (A, AB, AC, ABC) or from other geographic areas (C, 
BC) by considering the most likely ancestral distribution range 
recovered for the stem node of the Canarian lineages (or for 
the TMRCA when the PP of stem nodes was <0.90). As a re-
sult, we interpreted that any ancestral range shared by the 
Mediterranean Basin and the Canary Islands indicates an origin 
from the Mediterranean Basin.

RESULTS

Newly inferred phylogenetic relationships

Our phylogenetic reconstructions based on Bayesian Inference 
using MrBayes (Supplementary Data Figs S1–S13) and max-
imum likelihood using RAxML (results not shown) are in ac-
cordance with previously published phylogenies regarding 
the topological relationships for the thermophilous species 
occurring in the Canary Islands. However, the phylogenetic 
support obtained for temporal divergence using BEAST was 
higher in most cases (Supplementary Data Figs S14–S26). 
For this reason, we selected the phylogenetic trees obtained in 
BEAST to describe the phylogenetic relationships and the stat-
istical support values of the nodes.

Most of the thermophilous plants analysed formed well-
supported monophyletic species (Figs 4–6, Supplementary 
Data Table S1). However, we could not confirm the monophyly 
of Canarian populations of non-endemic species (i.e. Ephedra 
fragilis, Juniperus turbinata, Pistacia atlantica, Pistacia 
lentiscus) as well as the endemics Asparagus umbellatus and 
Thesium retamoides (Figs 4A–E, 5C and 6D, Supplementary 
Data Table S1). Similarly, sister-group relationships had high 
statistical support (>0.90 PP), except for the non-endemic spe-
cies and for the Macaronesian endemic species Dracunculus 
canariensis (Figs 4A–E and 6F, Supplementary Data Table S1).

The following phylogenetic relationships within the 
Canarian groups or between the Canarian species and con-
tinental sister groups were documented for the first time: 
(1) placement of Asparagus scoparius within the clade of
Asparagus nesiotes and Asparagus plocamoides, and place-
ment of Asparagus umbellatus within the clade of Asparagus
fallax and Asparagus arborescens; (2) close relationship of
the two Canarian species of Gymnosporia (G. cassinoides and
G. cryptopetala, which are sisters to the Madeira endemic G.
dryandrii); (3) Chrysojasminum odoratissimum, sister to the
mainland clade of Chrysojasminum parkeri, Chrysojasminum
humile, Chrysojasminum bignoniaceum and Chrysojasminum

(Stem < 2.8 Ma)

Mainland lineage

Insular lineage

Stem < 2.8 Ma

Crown < 2.8 Ma

Mainland lineage

Insular lineage

Stem > 2.8 Ma

Crown > 2.8 Ma

12 10 8 6
Million years

4 2 0

(1) Mediterranean lineages

(Crown > 2.8 Ma)

12 10 8 6
Million years

4 2 0

(2) Pre-mediterranean lineages

Mainland lineage

Insular lineage

Stem > 2.8 Ma

Crown < 2.8 Ma

(Stem > 2.8, Crown < 2.8 Ma)

12 10 8 6
Million years

4 2 0

(3) Undetermined lineages

Fig. 2. Classification of lineages according to divergence times for the Canarian 
thermophilous plant community, following the methodology proposed in this 
paper. (1) Mediterranean lineages when stem and thus crown ages postdate the 
2.8-Ma threshold; (2) pre-mediterranean lineages when crown and thus stem 
ages predate the 2.8-Ma threshold; and (3) undetermined lineages for those 
groups with stem ages before and crown ages after this temporal threshold. 
For these cases, 95 % posterior credibility intervals (blue bars) do not span the 
2.8-Ma threshold, and therefore nodes can be unambiguously designated as 

mediterranean or pre-mediterranean.
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fruticans; and (4) the two Canarian species of Thesium (Thesium 
retamoides and Thesium subsucculentum) sister to the main-
land Thesium mauritanicum (Figs 4–6).

As a result of our phylogenetic reconstructions, 16 inde-
pendent Canary Island colonization events were inferred for 
the 13 plant groups with thermophilous species analysed: ten 
genera with a single colonization and two with more than one 
colonization (three of Pistacia and two of Asparagus) (Figs 
4–6, Supplementary Data Table S4). In addition, some lin-
eages displayed cladogenesis in the Canary Islands, including 
species from other vegetation zones: Asparagus lineage I (A. 
umbellatus in the thermophilous woodland, A. arborescens in 
the xerophytic shrubland and A. fallax in the laurel forest), 
Asparagus lineage II (A. scoparius in the thermophilous wood-
land, A. nesiotes in xerophytic shrubland and A. plocamoides 
in the pine forest), Gymnosporia (G. cassinoides and G. 
cryptopetala in the thermophilous woodland) and Thesium (T. 
retamoides in thermophilous woodland and T. subsucculentum 
in the xerophytic shrubland) (Figs 4–6). For these cases (i.e. 
lineages that diversified in different vegetation zones of the 
Canary Islands), stem and crown ages considered to categorize 
lineages as mediterranean or pre-mediterranean were those 
corresponding to the entire Canarian or Macaronesian lineage 
(including thermophilous and non-thermophilous species).

Colonization times

The estimated mean crown ages of the 16 Canarian lin-
eages newly analysed in this study ranged from 1.07 Ma within 

Heberdenia excels to 7.99 Ma within Sideroxylon canariense, 
while mean stem ages ranged from 1.15  Ma for Pistacia 
atlantica to 37.73  Ma for Sideroxylon canariense (Figs 4–6, 
Supplementary Data Figs S14–S26, Supplementary Data Table 
S4). These age ranges include five cases in which the TMRCA 
had to be used: Asparagus lineage II, Ephedra fragilis, 
Juniperus turbinata subsp. canariensis, Pistacia atlantica and 
Pistacia lentiscus lineage II. Considering the complete list of 
43 lineages (including those with previously published time-
calibrated phylogenies), we identified 16 mediterranean lin-
eages, nine pre-mediterranean lineages and 18 undetermined 
lineages (Table 2, Supplementary Data Table S1).

Mediterranean lineages (stem ages <2.8 Ma). The newly gen-
erated phylogenies allowed identification of five thermophilous 
plant lineages as mediterranean with respect to their coloniza-
tion times, as their stem ages postdated the 2.8-Ma threshold: 
Asparagus lineage I, Asparagus lineage II, Ephedra fragilis, 
Pistacia atlantica and Pistacia lentiscus lineage II (Fig. 4). 
Most stem ages accumulated a marginal posterior distribu-
tion clearly after the 2.8-Ma threshold, so they were assigned 
as mediterranean with high statistical support (Supplementary 
Data Table S4). The highest uncertainty was estimated for the 
stem node of Asparagus lineage II, in which only 61 % of the 
stem age distribution fell in the last 2.8 Ma. Additional studies 
taken from the literature provided 11 more plant lineages as 
mediterranean. As a result, a total of 16 of the 43 thermophilous 
lineages display a clear-cut mediterranean origin [from 
youngest to oldest stem ages (Ma) (Fig. 7): Globularia lineage 
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Fig. 3. Assignment of mediterranean versus pre- mediterranean nodes when the 95 % posterior credibility interval (blue bars) spans the 2.8-Ma threshold: (1) 
mediterranean nodes, when most of the posterior distribution of trees (>50 %) provide node ages younger than 2.8 Ma; and (2) pre-mediterranean nodes, when 

most of the trees (>50 %) provide node ages older than 2.8 Ma.
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(0.30), Smilax aspera (0.30), Cistus monspeliensis (0.50), 
Brachypodium arbuscula (0.80), Erysimum lineage (0.80), 
Pistacia atlantica (1.15, Fig. 4C), Ephedra fragilis (1.29, 
Fig. 4E), Convolvulus lineage II (1.50), Asparagus lineage II 
(1.60, Fig. 4B), Solanum lineage (1.70), Helianthemum sect. 
Helianthemum (1.82), Argyranthemum lineage (2.20), Olea 
europaea subsp. guanchica (2.60), Malva canariensis (2.78) 
and Asparagus lineage I (2.80, Fig. 4A)]. Although the stem 
age estimates of Asparagus lineage I clearly overlaps the medi-
terranean threshold, >60  % of the stem age distribution and 
96 % of crown age distribution fell within the mediterranean 
climate period.

Pre-mediterranean lineages (crown ages >2.8  Ma). The 
newly generated phylogenies allowed identification of three of 
the 16 thermophilous plant lineages as pre-mediterranean, as 
their crown ages predated the 2.8-Ma threshold: Sideroxylon 
canariense, Chrysojasminum odoratissimum and Thesium 
lineage (Fig. 5). Crown ages for C. odoratissimum and S. 
canariense accumulated a marginal posterior distribution clearly 
before 2.8  Ma, so they were assigned as pre-mediterranean 

with high statistical support (Supplementary Data Table S4). 
The highest uncertainty was estimated for the crown node of 
the Thesium lineage, in which only 69 % of the age distribu-
tion predated 2.8  Ma. Previously published studies revealed 
six additional pre-mediterranean lineages. As a result, nine of 
the 43 thermophilous lineages displayed a pre-mediterranean 
origin [from youngest to oldest crown ages (Ma) (Fig. 8): 
Sideritis lineage (3.30), Echium lineage (3.70), Thesium lin-
eage (3.86), Chrysojasminum odoratissimum (4.79), Euphorbia 
sect. Aphyllis subsect. Macaronesicae (6.92), Sideroxylon 
canariense (7.99), Ruta lineage (8.10), Crambe lineage (8.20) 
and Sonchus lineage (8.50)].

Undetermined lineages (stem ages >2.8  Ma, crown ages 
<2.8 Ma). The temporal origin of eight of the 16 thermophilous 
lineages were undetermined because their stem ages predated 
and their crown ages postdated the 2.8-Ma threshold: Bosea 
yervamora, Bryonia verrucosa, Dracunculus canariensis, 
Gymnosporia lineage, Heberdenia excelsa, Juniperus 
turbinata subsp. canariensis, Pistacia lentiscus lineage I and 
Rhamnus crenulata (Fig. 6). Most of their stem and crown ages 

Asparagus lineage I

Pistacia atlantica

Ephedra fragilis

Asparagus humilis E Africa

Pistacia vera W Asia

Pistacia atlantica USA II cult.

Pistacia atlantica Morocco (Souss Massa) *

Pistacia atlantica Israel cult.

Pistacia atlantica USA cult.

Ephedra milleri S Arabia

E. altissima N Africa

E. aphylla NE Africa + E Med

E. alata N Africa + E Med

E. fragilis Spain (Navarra) *

E. fragilis La Palma (Airport) *

E. fragilis Gran Canaria (Ex Horto) *

E. fragilis Tenerife (Lomo Basta) *

E. fragilis Tenerife (Icod) *

A. umbellatus Gran Canaria (Bco. Laurel) *

Pistacia atlantica Gran Canaria (Agaete) *

Pistacia atlantica Tenerife (Los Silos) *

Pistacia atlantica La Palma (Galga) *

Pistacia atlantica La Palma (ExHorto) *

Pistacia atlantica Lanzarote *

A. umbellatus Gran Canaria
A. umbellatus La Palma (EI Paso) *

Pistacia atlantica La Palma (Puntallana) *

A. umbellatus La Palma (Barandas) *
A. umbellatus Tenerife (Tacoronte) *
A. fallax Tenerife (Taganana) *
A. umbellatus Gomera (Taguluche) *

A. arborescens Tenerife
A. arborescens Tenerife (Adernos) *
A. arborescens Lanzarote (Arrieta) *

A. arborescens Gran Canaria

Asparagus fractiflexus S Africa

Pistacia aethiopica E Africa

P. lentiscus Tenerife (Santa Úrsula II) *

P. lentiscus Tenerife (Matanza) *

P. lentiscus Gran Canaria ( Bandama) *

P. lentiscus Spain (Cordoba) *

A. denudatus S + SE Africa

P. lentiscus USA cult.

P. lentiscus Israel cult.

P. lentiscus Tenerife (Anaga) *

P. lentiscus Fuerteventura (Esquinzo) *

P. lentiscus Morocco (Antiatlas) *

A. altissimus NW Africa
A. plocamoides Gran Canaria

P. lentiscus Tenerife (Santa Úrsula I) *

A. plocamoides Gran Canaria (lngenio) *
A. scoparius Tenerife (Adernos) *
A. scoparius La Palma (Ermita de las Nieves) *
A. scoparius La Palma (Cerro) *
A. scoparius Madeira (Faja dos Padres.) *

A. nesiotes subsp. purpuriensis
A. nesiotes Lanzarote (Orzola) *
A. acutifolius circum-Mediterranean

A. plocamoides Tenerife (Tamadaya) *

Stem:
2.84 (1.39-4.19)

A

C

E

B

D

Crown:
1.78 (0.62-2.70)

TRMCA:
1.15 (0.24-2.43)

C

AC

TMRCA:
1.29 (0.25-2.78)

18 16 14 12 10
Million years

M
ac

ar
on

es
ia

S
W

 A
si

a 
+

 S
 M

ed
ite

r.
 +

M
ac

ar
on

es
ia

W
 M

ed
 +

M
ac

ar
on

es
ia

M
ed

ite
r.

 +
 M

ac
ar

on
es

ia

M
ed

ite
rr

an
ea

n 
+

 M
ac

ar
on

es
ia

8 6 4 2 0

18 16 14 12 10
Million years

8 6 4 2 0

18 16 14 12 10
Million years

8 6 4 2 0

BC

Asparagus lineage II

Pistacia lentiscus

TMRCA:
1.65 (0.72-2.38)

Lineage II: TRMCA
1.76 (0.49-3.37)

Lineage I: Crown
1.15 (0.00-1.43)

Lineage I: Stem
3.96 (1.52-6.71)

18 16 14 12 10
Million years

8 6 4 2 0

18 16 14 12 10
Million years

Statistical support values

Vegetation types
Mainland

Canarian thermophilous

Canarian xerophytic shrubland

Canarian laurel forest

Canarian pine forest

PP > 0.90, BS > 70
PP > 0.90, BS < 70
PP < 0.90, BS > 70

8 6 4 2 0

AB

ABC

Fig. 4. The five thermophilous lineages of mediterranean origin (stem and therefore crown ages postdate 2.8 Ma) and related Canarian and mainland species from 
the 13 time-calibrated phylogenies inferred in this study using BEAST. Mean stem and crown ages and 95 % posterior credibility intervals (blue bars and values 
in brackets) are indicated. Divergence times of the most recent common ancestor (marked as TMRCA) are also indicated for those groups in which stem and 
crown nodes showed low phylogenetic support [PP < 0.90, bootstrap (BS) support value <70]. Circles at the nodes represent phylogenetic relationships with high 
posterior Bayesian probability (PP) and/or BS support values (see Statistical support values legend). Colour of plant names indicates vegetation type. Asterisks 
represent new samples included in the present study. The letters close to the stem node or TMRCA of the Canarian lineages represent the ancestral ranges inferred 
for that node by the ancestral area reconstruction analysis and correspond to the following geographic areas: A, Mediterranean Basin; B, Macaronesia; C, other 

regions (several letters imply ranges that include multiple areas).
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accumulated a marginal posterior distribution clearly before and 
after 2.8 Ma. The highest uncertainty was recorded in the crown 
node of D. canariensis, in which only 60 % of the trees fell 
within the last 2.8-Ma time period (Supplementary Data Table 
S4). Previously published studies also revealed ten undeter-
mined lineages. In total, the following 18 lineages were clas-
sified as undetermined (Figs 7 and 8): Gonospermum lineage 
(mean stem 3.10  Ma; mean crown unknown), Gymnosporia 
lineage (mean stem 3.78 Ma; mean crown 1.27 Ma; Fig. 6E), 
Artemisia lineage (mean stem 3.84; mean crown unknown), 
Rhamnus crenulata (mean stem 3.88; mean crown 1.71; Fig. 
6B), Pistacia lentistus lineage I (mean stem 3.96; mean crown 
1.15; Fig. 4D), Heberdenia excelsa (mean stem 3.98; mean 
crown 1.07; Fig. 6G), Juniperus turbinata subsp. canariensis 
(mean stem 4.91, mean crown unknown; Fig. 6D), Bryonia 
verrucosa (mean stem 5.19; mean crown 1.74; Fig. 6C), Bosea 

yervamora (mean stem 5.69; mean crown 1.64; Fig. 6A), 
Rubia fruticosa (mean stem 6.69; mean crown 2.10), Navaea 
phoenicea (mean stem 6.77; mean crown unknown), Anagyris 
latifolia (mean stem 8.20; mean crown 1.90), Cheirolophus 
lineage (mean stem 8.50; mean crown 1.70), Hypericum 
canariense (mean stem 10.80; mean crown 1.90), Dracaena 
lineage (mean stem 11.80; mean crown 2.30), Dracunculus 
canariensis (mean stem 12.10; mean crown 2.76), Dioscorea 
edulis (mean stem 13.48; mean crown unknown), and Visnea 
mocanera (mean stem 27.00; mean crown 2.50).

Ancestral area reconstructions

Biogeographic analyses supported nine lineages with stem 
node ranges including the Mediterranean Basin (i.e. Asparagus 
lineage II, Bosea yervamora, Bryonia verrucosa, Dracunculus 
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Fig. 5. The three pre-mediterranean lineages (i.e. crown and thus stem ages predate 2.8 Ma) and related Canarian and mainland species from the 13 time-calibrated 
phylogenies inferred in this study using BEAST. Mean stem and crown ages and 95 % posterior credibility intervals (blue bars and values in brackets) are indicated 
next to the corresponding nodes. The circles at the nodes represent phylogenetic relationships with high posterior Bayesian probability (PP) and/or bootstrap (BS) 
support values (see Statistical support values legend). Colour of plant names indicates vegetation type. Asterisks represent new samples included in the present 
study. The letters close to the stem node of the Canarian lineages represent the ancestral ranges inferred for that node by the ancestral area reconstruction analysis 
and correspond to the following geographic areas: A, Mediterranean Basin; B, Macaronesia; C, other regions (several letters imply ranges that include multiple 

areas).
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canariensis, Ephedra fragilis, Juniperus turbinata, Pistacia 
lentiscus, Rhamnus crenulata and Thesium lineage) and six lin-
eages with stem node ranges not including the Mediterranean 
Basin (i.e. Asparagus lineage I, Chrysojasminum odoratissimum, 
Gymnosporia lineage, Heberdenia excelsa, Pistacia atlantica 
and Sideroxylon canariense) (Figs 4–6, Supplementary Data 
Figs S27–S39, Supplementary Data Table S5). No corres-
pondence between the temporal origin of the lineages (medi-
terranean versus pre-mediterranean) and the ancestral ranges 
(including versus excluding the Mediterranean Basin) was de-
tected in three plant lineages (i.e. Asparagus lineage I, Pistacia 
atlantica, Thesium lineage).

DISCUSSION

The thermophilous woodland is considered a relatively re-
cent ecosystem, originated after the establishment of the 
Mediterranean climate in the mediterranean Basin (2.8  Ma; 
Fernández-Palacios et al., 2008; Rivas-Martínez, 2009; del 
Arco and Rodríguez-Delgado, 2018). In this study, we pro-
vide new divergence time estimates (i.e. stem and crown ages) 
based on time-calibrated phylogenies for 16 species repre-
sentative of the thermophilous Canarian vegetation, which 
we analysed together with previously published results from 
an additional 27 thermophilous plant lineages (Figs 7 and 8). 
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Fig. 6. The seven undetermined lineages (stem ages predating and crown ages postdating 2.8 Ma) and related Canarian and mainland species for the 13 time-
calibrated phylogenies inferred in this study using BEAST (with the exception of Pistacia lentistus lineage I, which for simplification is included in Fig. 4D). 
Mean stem and crown ages and 95 % posterior credibility intervals (blue bars and values in brackets) are indicated next to the corresponding nodes. Divergence 
times of the most recent common ancestor (marked as TMRCA) are indicated for those groups in which stem and crown nodes showed low phylogenetic support 
[PP < 0.90, bootstrap (BS) support value <70]. The circles at the nodes represent phylogenetic relationships with high posterior Bayesian probability (PP) and/or 
BS support values (see Statistical support values legend). Colour of plant names indicates vegetation type. Asterisks represent new samples included in the present 
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analysis and correspond to the following geographic areas: A, Mediterranean Basin; B, Macaronesia; C, other regions (several letters imply ranges that include 

multiple areas).
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In island biogeography, colonization times are more precisely 
considered to have taken place some time between the stem 
and crown ages of the island lineage (Swenson et al., 2014; 
García-Verdugo et al., 2019a). Based on this phylogenetic prin-
ciple, our study suggests that the Canarian thermophilous plant 
community is composed of lineages with a temporal origin 
both predating (pre-mediterranean) and postdating (mediterra-
nean) the 2.8-Ma threshold considered for the establishment of 
the mediterranean climate (Figs 7 and 8; Table 2). In addition, 
biogeographic reconstruction analyses showed that 6 of the 16 
colonization events here inferred may have occurred by con-
tinental ancestors not distributed in the Mediterranean Basin 
(Figs 4–6). Taking all these results together, the thermophilous 
vegetation appears to be a complex assemblage of species with 
a heterogeneous origin in terms of colonization times and geo-
graphic origins.

Pre-mediterranean and mediterranean elements in the 
thermophilous plant community

As predicted by the hypothesis of a mediterranean tem-
poral origin for the Canarian thermophilous species, a 

considerable number of lineages (16) are estimated to 
have colonized the archipelago after the establishment of 
the mediterranean climate (2.8  Ma). Data from meteoro-
logical stations (https://www.acanmet.org/) between 200 
and 600 m.a.s.l. and climatic variables used for species dis-
tribution modelling of thermophilous plants (Coello et al., 
2021) indicate that current conditions in the Mediterranean 
Basin are similar to those of the thermophilous vegetation 
belt in the Canaries (Rivas-Martínez, 2009). Since the late 
Pliocene (2.8  Ma), a progressive summer aridification of 
southern Europe and northern Africa may have produced 
wider distribution of the mediterranean climatic condi-
tions that may have facilitated dispersal from the MFR to 
other areas. There is thus a higher likelihood of dispersal 
and colonization to neighbouring territories such as the 
Canarian archipelago since then (Meusel, 1965; Sunding, 
1979). That is why trees with one of the most character-
istic Mediterranean-type syndromes (sclerophylly, a trait 
displayed in leaves) may have found ideal conditions in the 
Canaries in the last 2.8 million years (Axelrod, 1975; Verdú 
et al., 2003; Rundel et al., 2016; Vargas et al., 2018). Our 
results partly support this prediction for the sclerophyllous 
Olea europaea, Pistacia atlantica and Pistacia lentiscus 
lineage II, but provide undetermined results for the scler-
ophyllous Rhamnus crenulata and Pistacia lentiscus lineage 
I. Alternatively, some other tree species (e.g. Gymnosporia
spp., Heberdenia excelsa, Sideroxylon canariense, Visnea
mocanera) with leathery leaves and thick cuticles (typic-
ally observed in sclerophyllous species) did not display evi-
dence for an origin postdating 2.8 Ma, which did not help
support a mediterranean temporal origin for all the trees
characterizing the thermophilous vegetation belt.

The relatively old stem and crown ages inferred for some 
plant lineages clearly indicate a pre-mediterranean origin for 
a considerable number of the thermophilous species (9 of 43 
lineages). Indeed, the following plants appear to have already 
been present in the Canary Islands before the establishment 
of the mediterranean climate: Sideritis lineage, Echium lin-
eage, Thesium lineage, Chrysojasminum odoratissimum, 
Euphorbia sect. Aphyllis subsect. Macaronesicae, 
Sideroxylon canariense, Ruta lineage, Crambe lineage and 
Sonchus lineage (Fig. 7, Table 2). Three non-mutually ex-
clusive hypotheses can be put forward to explain the pres-
ence of pre-mediterranean lineages in the current Canarian 
thermophilous plant community: (1) a direct colonization 
from the mainland to a pre-existent thermophilous vegeta-
tion in pre-mediterranean times; (2) an indirect colonization 
from other Canarian vegetation types followed by a more 
recent speciation in the thermophilous vegetation; and (3) a 
direct colonization into non-thermophilous Canarian vege-
tation and in situ adaptation to more recently established 
thermophilous conditions. The first hypothesis is supported 
by the fossil record. In particular, fossils of sclerophyl-
lous leaves related to Miocene relicts have been found on 
the island of Gran Canaria (Anderson et al., 2009). These 
macrofossils, moreover, share characteristics with certain 
representative species of the present-day thermophilous scrub 
vegetation (e.g. Cistus, Gymnosporia, Euphorbia). However, 
detailed anatomical investigation of fossil material is re-
quired for correct phylogenetic placement (Anderson et al., 

Table 2. List of mediterranean, pre-mediterranean and undeter-
mined lineages (i.e. colonization events) based on the position of 
stem and crown ages with respect to the 2.8-million-year threshold 
(i.e. establishment of the mediterranean climate) of the complete 

list of 43 lineages

Mediterranean Pre-mediterranean Undetermined 

Argyranthemum lineage Chrysojasminum 
odoratissimum

Anagyris latifolia

Asparagus lineage I Crambe lineage Artemisia lineage

Asparagus lineage II Echium lineage Bosea yervamora

Brachypodium arbuscula Euphorbia sect. Aphyllis Bryonia verrucosa

Cistus monspeliensis Ruta lineage Cheirolophus 
lineage

Convolvulus lineage II Sideritis lineage Dioscorea edulis

Ephedra fragilis Sideroxylon canariense Dracaena lineage

Erysimum lineage Sonchus lineage Dracunculus 
canariensis

Globularia lineage Thesium lineage Gonospermum 
lineage

Helianthemum lineage Gymnosporia 
lineage

Malva canariensis Hypericum 
canariense

Olea europaea subsp. 
guanchica

Juniperus turbinata 
subsp. canariensis

Pistacia atlantica Heberdenia excelsa

Pistacia lentiscus lineage II Navaea phoenicea

Smilax aspera Pistacia lentiscus 
lineage I

Solanum lineage Rhamnus crenulata

Rubia fruticosa

Visnea mocanera

https://www.acanmet.org/
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2009). Molecular phylogenetic reconstructions and the fossil 
record are congruent with a Canarian palaeo-flora adapted to 
semi-arid conditions, scattered over dry slopes and canyons 
(barrancos) in the Canary Islands during pre-mediterranean 
times. This would be followed by geographic expansion 
of the species when the climate became more favourable. 
Indeed, an evolutionary process in which lineages adapted 
to pre-mediterranean conditions in relatively small, xeric 
pockets became dominant when mediterranean-like condi-
tions were expanded has already been proposed for plants of 
the Mediterranean Basin (Barrón et al., 2010; Vargas et al., 
2018). The second and third hypotheses are congruent with a 
pattern of high differentiation into species in different vege-
tation belts and ecological shifts into thermophilous condi-
tions. This includes some speciation events associated with 
colonization of the thermophilous woodland, as documented 
in most of the evolutionary radiations of Canarian plants (e.g. 
Sideritis lineage, Echium lineage, Euphorbia sect. Aphyllis 
subsect. Macaronesicae, Crambe lineage, Sonchus lineage; 
see Supplementary Data Table S1). In any case, these three 
evolutionary processes could have been operating to ultim-
ately merge into this particularly rich flora.

Impact of extinction on the inferred temporal origin of the 
thermophilous lineages

The time of origin (mediterranean versus pre-mediterranean) 
of 25 out of 43 thermophilous lineages was successfully as-
signed using the approach proposed in this study, whereas 18 of 
them remained undetermined due to long temporal gaps between 
stem and crown ages spanning the 2.8-Ma threshold. These 
gaps entail a high uncertainty for the inference of colonization 
times (Cano et al., 2018; García-Verdugo et al., 2019a). The 
most striking case among those analysed herein is Dracunculus 
canariensis, for which the difference between stem and crown 
ages was around 10 million years. An extreme case obtained 
from the literature is Visnea mocanera, which shows a differ-
ence between stem and crown ages of 25 million years. Long 
stem-to-crown intervals have been previously found for other 
Macaronesian groups (e.g. Cicer, Campylanthus), an observa-
tion related to high extinction rates according to recent studies 
(Antonelli and Sanmartín, 2011; Nagalingum et al., 2011; 
Pokorny et al., 2015).

High extinction rates in mainland ancestral lineages as a re-
sult of abrupt climatic and geological changes (e.g. formation 
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of the Sahara desert, Pleistocene climatic oscillations) has been 
the most commonly accepted explanation for the temporal gaps 
between stem and crown ages of Macaronesian lineages (Thiv 
et al., 2010; Kondraskov et al., 2015). Indeed, the Rand flora 
(i.e. lineages that exhibit a Canarian–eastern African disjunc-
tion) is primarily explained by widespread extinction of cen-
tral–western Africa lineages rather than long-distance dispersal 
(Mairal et al., 2015; Pokorny et al., 2015). The extinction 
of lineages across the mainland may have been more pro-
nounced in Canarian lineages of older temporal origin (i.e. pre-
mediterranean and undetermined). Potential extinction coupled 
with the spatial uncertainty of the geographic boundaries of the 
MFR in the past (Suc, 1984; Suc et al., 2018) makes the recon-
struction of ancestral areas a suboptimal approach to evaluating 
the mediterranean origin of the Canarian thermophilous spe-
cies, and their results thus should be taken with caution.

García-Verdugo et al. (2019a) proposed that crown ages may 
be a more suitable measurement for the time of island coloniza-
tion than stem ages based on the idea that stem ages are subject 
to higher temporal and spatial uncertainty as a result of main-
land extinction. However, the analysis of crown ages suffers 
from the same problem of extinction and under-sampling, thus 
biasing the results to more recent times. The effect of island ex-
tinction in crown age estimates may be particularly pronounced 
in the thermophilous woodland because of multiple causes: (1) 
erosion and subsidence of flat, oldest islands (Fuerteventura, 
Lanzarote), which may previously have harboured large areas 
with this vegetation type (Fernández-Palacios et al., 2008; 
Martín Osorio et al., 2011); (2) geological dynamics (eruptions, 
earthquakes, mega-landslides) (Carracedo et al., 2001; García-
Olivares et al., 2017); and most importantly (3) human land 

use and destruction of original vegetation (only 11 % currently 
preserved) between 200 and 600 m.a.s.l. (Fernández-Palacios 
et al., 2008; Castilla-Beltrán et al., 2021). This extreme reduc-
tion of populations, continuing even in our lifetimes, makes 
thermophilous vegetation the most threatened ecosystem in the 
Canary Islands (Castilla-Beltrán et al., 2021). This is illustrated 
by the few remaining individuals of non-endemic species in 
the thermophilous vegetation belt (Pistacia lentiscus, Ephedra 
fragilis), many critically endangered species (e.g. Anagyris 
latifolia, Crambe scoparia, Cheirolophus duranii, Dracaena 
tamaranae, Echium handiense, Gymnosporia cryptopetala, 
Helianthemum gonzalezferreri, Helianthemum bramwelliorum, 
Solanum lidii, Solanum vespertilio subsp. vespertilio, Thesium 
retamoides, Thesium canariense) and even several species con-
sidered already extinct (e.g. Helianthemum aguloi, Thesium 
psilotocladum) (Moreno, 2010).

Conclusions

The approach proposed here, in which stem and crown ages 
are evaluated together with respect to a clear-cut threshold 
(2.8  Ma for the establishment of the mediterranean climate), 
helps test the hypotheses of temporal origins of evolutionary 
events even in scenarios with dramatic lineage extinction. In par-
ticular, our results provide strong evidence for a heterogeneous 
temporal origin of the thermophilous woodland in the Canary 
Islands, which harbours elements of both recent (mediterra-
nean) and ancient Tethyan–Tertiary (pre-mediterranean) origins 
(Table 2). In addition, several of these colonization events do 
not show ancestral areas in the Mediterranean Basin, even in 
some lineages postdating the establishment of the mediterranean 
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Fig. 8. Twenty-eight crown ages of Canarian thermophilous plant lineages (i.e. including more than one sample from the Canaries) of the 43 shown in Fig. 7. 
Results from the new time-calibrated phylogenies obtained in this study are indicated with plant names in bold, while results from previously published time-
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climate (e.g. Asparagus lineage I) (Figs 4–6). This suggests a 
sequential history of species colonization and assemblage in 
the current thermophilous plant community of the Canaries, 
including a previously underestimated pre-mediterranean 
origin. A similar pattern has been identified for the laurel forest 
and xerophytic shrubland (Kondraskov et al., 2015; Sun et al., 
2016; Salvo et al., 2010). Given that the thermophilous vege-
tation contains the highest number of lineages previously con-
sidered of Mediterranean origin (Rivas-Martínez, 2009; del 
Arco and Rodríguez-Delgado, 2018; but see Bolòs, 1996), we 
hypothesize that the other five main vegetation belts contain 
an even lower number of Mediterranean-like lineages (Vargas, 
2020). If this hypothesis was confirmed, the long-lasting view of 
Macaronesia as a subregion within the MFR would be seriously 
challenged. Different temporal and geographic origins resulted 
in a great deal of diversity of the Canarian flora in general, and 
the thermophilous plant community in particular. Interestingly, 
this is the most threatened Canarian vegetation belt (Fernández-
Palacios et al., 2008; del Arco and Rodríguez-Delgado, 2018). 
The endangered status of a few relictual patches requires urgent 
prioritization for conservation and restoration at the regional, 
national and international levels.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.oup.
com/aob and consist of the following. Figures S1–S13: majority 
rule consensus trees of the 13 plant groups analysed in this study 
resulting from applying Bayesian inference in MrBayes and using 
previously published phylogenetic datasets in combination with 
newly generated sequences. Figures S14–S26: time-calibrated 
phylogenies of the 13 plant groups analysed in this study obtained 
in BEAST using previously published phylogenetic datasets in 
combination with newly generated sequences. Figures S27–S39: 
biogeographic reconstructions of ancestral ranges of the 13 plant 
groups analysed in this study resulting from applying dispersal–
extinction–cladogenesis analyses using the BioGeoBEARS R 
package. Table S1: information extracted from the literature 
and obtained in this study for the 43 plant lineages, including 
thermophilous species from the Canary Islands (Macaronesia), 
for hypothesis testing. Table S2: studied taxa and their corres-
ponding collection code, voucher information, island, locality, 
collection date, collector’s name, DNA-sequenced regions and 
GenBank accession numbers. Table S3: primers and PCR cycles 
used for sequencing DNA regions of the 13 plant groups analysed 
in this study. Table S4: detailed information on the 16 lineages 
with thermophilous species recovered by BEAST analyses of the 
13 plant groups of this study. Table S5: results of the ancestral 
area reconstruction under the dispersal–extinction–cladogenesis 
analyses performed on the 13 newly generated time-calibrated 
phylogenies including thermophilous species in the Canary 
Islands analysed in this study. Methods S1: details of the max-
imum likelihood phylogenetic analyses performed in this study.
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