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Abstract
The time-honored paradigm in the theory of virulence evolution assumes a positive relation between infectivity and harmfulness. However, the
etiology of respiratory diseases yields a negative relation, with diseases of the lower respiratory tract being less infective and more harmful.
We explore the evolutionary consequences in a simple model incorporating cross-immunity between disease strains that diminishes with their
distance in the respiratory tract, assuming that docking rate follows the match between the local mix of cell surface types and the pathogen’s
surface and cross-immunity the similarity of the pathogens’ surfaces. The assumed relation between fitness components causes virulent strains
infecting the lower airways to evolve to milder more transmissible variants. Limited cross-immunity, generally, causes a readiness to diversify
that increases with host population density. In respiratory diseases that diversity will be highest in the upper respiratory tract. More tentatively,
emerging respiratory diseases are likely to start low and virulent, to evolve up, and become milder. Our results extend to a panoply of realistic
generalizations of the disease’s ecology to including additional epitope axes. These extensions allow us to apply our results quantitatively to
elucidate the differences in diversification between rhino- and coronavirus caused common colds.
Keywords: respiratory tract infection, cross-immunity, trade-off, virulence evolution, disease diversity, emerging diseases, COVID-19

Introduction
It has long been acknowledged that pathogen virulence
(broadly defined as infection-caused damage to the host)
should evolve in response to selection pressures brought about
by the disease’s ecology. The earlier common wisdom that
avirulence should be the inevitable outcome of pathogen
evolution gave way in the 1980s to the so-called trade-off
hypothesis, that is, the idea that pathogen transmissibility
and virulence are coupled, with increased transmission being
linked to an increase in virulence (Alizon et al., 2009; Ander-
son & May, 1982). In the wake of this hypothesis, com-
bined with the assumption (usually left implicit) of full cross-
immunity between pathogen strains, theoretical explorations
of virulence evolution flourished, giving novel insights into
how, for instance, co- and super-infections, multiple trans-
mission modes, host heterogeneity, density-dependent mor-
tality and spatial structure shape pathogen evolution (see
Lion & Metz, 2018 for references). Here, we attempt to
broaden this tradition by concentrating on alternatives to
the two aforementioned assumptions: cross-immunities that
increase with the similarity between pathogen strains and vir-
ulence that decreases with an increase in transmission, with all
these parameters being smooth functions of some underlying
quantitative traits.

The specific biological systems motivating our delibera-
tions and used for their illustration are respiratory diseases.
For didactical reasons, we first formulate a simple core
model, taking the respiratory depth on which a disease strain
specializes as the main trait underlying the between-hosts
part of a pathogen’s life-history and with the similarity of
strains decreasing with their distance in the respiratory tract.
We explore the evolutionary consequences of the interplay
between location-dependent infectiousness, host mortality,
recovery rates and limited cross-immunity in two stages: first,
a detailed analysis of the monomorphic case up to the poten-
tial onset of diversification followed by numerical analyses
of the polymorphic dynamics (note that polymorphisms here
should be interpreted as long-term polymorphisms, not the
evolutionarily ephemeral transient polymorphisms that occur
in the course of directional selection). Next, we consider a
variety of more complex scenarios in order to establish to
which extent the results from the core model extend to real-
istic generalizations of the disease’s ecology and to including
additional trait axes co-determining the fitness of pathogen
strains. Among other things, we find that, when more trait
axes are brought into play, our main conclusions from the
core model even go through in the extreme case that cross-
immunity fails to wane along the respiratory depth axis. As an
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application, we estimate the life-history parameters for rhino-
and corona-virus caused common colds to find first that the
observed patterns of diversification in these two groups can-
not be understood unless the viruses under consideration have
a very different ratio of the tendency to diversify caused by the
partial cross-immunity between strains and the counteracting
stabilizing tendency coming from the pressure to maximize
their capacity for within-host multiplication, and then provide
a possible explanation for this difference in terms of the differ-
ent morphologies of rhino- and coronaviruses. We round off
by considering what our approach adds to earlier explorations
of the dynamical effects of limited cross-immunity, why the
host density (through a term R0 – 1) appears in the thresh-
old criterion for diversification while the standard resource
competition models of the ecological literature have a diver-
sification threshold that is independent of resource availabil-
ity, discuss the pathogen-oriented view on the standard host-
centered mathematical approach to disease dynamics, con-
sider how our simplifying assumptionsmight limit the reach of
our conclusions (almost not, provided one reads them appro-
priately), and discuss how our conclusions accord with what
befell to COVID-19 as the latest arrival among our respiratory
diseases.

On trade-off assumptions and respiratory
diseases
The classical assumption of infectivity increasing with viru-
lence is valid in, for example, leaf diseases (where both quan-
tities increase with infected leaf area) and more generally in
host–pathogen systems where virulence and infectivity are
both determined solely by per-host pathogen load. For organ-
isms where the disease unfolds mainly internally, the latter
assumption appears to have been implicitly based on seeing
the host’s body as well-mixed (cf. Acevedo et al., 2019). How-
ever, many animal bodies are heavily compartmentalized, and
mechanistically both virulence and infectivity are to a con-
siderable extent determined by how the pathogens distribute
themselves over those compartments (cf. de Jong & Janss,
2002). Respiratory diseases are an example where the clas-
sical trade-off assumption is flouted since diseases making
their home lower down the respiratory tract are less infectious
and more harmful. The latter derives from clinical experience
and mechanistic considerations: tissues lower down the res-
piratory tract are less resilient to damage by the pathogen
as well as the elicited immune reaction, while the resulting
debris is not cleared away as effectively as higher up and
then forms a breeding ground for secondary bacterial pneu-
monias. Moreover, higher up, like elsewhere in the contact
zones of the body with the outside world, the innate immune
system is better prepared for action. For corroboration of the
inferred overall effect on the level of the host individual see,
for example, Erkkola et al. (2020); Feldman et al. (2015);
Lee et al. (2012); and Monto and Cavalarro (1971). On the
infectivity side, infectious particles produced higher up have
a better chance of getting to a next host, and once there face
fewer obstacles. For an individual level corroboration of the
implied trade-off see, for example, Reperant et al. (2012).
Furthermore, we expect the specialization of diseases on dif-
ferent parts of the respiratory tract to be caused by the sur-
face proteins of the pathogen matching a position-dependent
mix of receptors, thus potentially diminishing cross-immunity
between differently specialized types.

Ecological dynamics
Prologue: the classical SIR model
The starting point for our considerations is the classical SIR
model for the dynamics of a single pathogen strain in a homo-
geneous host population with a constant influx of susceptibles
(the latter on the time-honoured assumption that the host
population density is mainly determined by other ecological
factors; cf. Anderson & May, 1982, text after Equation (12)),

dS
dt

= B – (𝛿𝛿 𝛿 𝛿𝛿I)S

dI
dt

= (𝛿𝛿S – 𝛿𝛿 – 𝛼𝛼 – 𝛾𝛾)I

dR
dt

= 𝛾𝛾I – 𝛿𝛿R. (1)

In this model, the host population is divided into three classes,
namely, susceptible, infected (and infectious), and recovered
(and immune), occurring in densities S, I, and R, respectively.
The host population has a fixed birth rate B and all new-
borns are susceptible. Infection occurs via mass-action kinet-
ics with transmission rate constant 𝛿𝛿. Individual hosts have
a baseline mortality rate 𝛿𝛿, with infected hosts suffering an
additional mortality rate 𝛼𝛼 (in the theoretical literature cus-
tomarily called virulence). Infected hosts recover at rate 𝛾𝛾,
upon which they are immune to further infections. Although
this model may be considered badly oversimplified, it has the
considerable advantage that, with the additional assumption
that the immunity extends to all other variants of the disease
(an assumption that in the wake of Anderson and May (1982)
usually is left implicit), it has only three parameters that may
be considered as potentially under evolutionary control. Not
only that, any mutants that may arise will invade and take
over if and only if they have a larger value of the average
lifetime infectivity

Q = 𝛿𝛿
𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾 , (2)

and evolution thus in the end produces a disease variant that
has the maximal feasible value of Q. The latter incidentally
corresponds with the largest possible value of

R0 = QN0, where N0 =
B
𝛿𝛿 . (3)

Here,N0 is the equilibrium density of an uninfected host pop-
ulation and R0 is defined, whatever the disease life-history (cf.
Appendix D), as the expected number of infections caused by
freshly infected individuals present in negligible numbers in an
otherwise infection-free community (Diekmann et al., 1990;
Lion & Metz, 2018).

Limited cross-immunity between strains
Without the assumption of full cross-immunity, we must
account for the possibility that evolution, or invasions by
strains coming from different hosts, may cause more than one
disease strain to co-circulate (like the plethora of rhino-virus
serotypes, see van Regenmortel et al., 2000, pp. 666–667).
Therefore, we extend the basic SIR model by assuming an
arbitrary number of co-circulating disease strains. We denote
the set of currently co-circulating strains as 𝒩𝒩 = 𝒩1,𝒩 , n}.
In order to keep the model parameter-sparse and numeri-
cally manageable, we furthermore assume, in accordance with
Andreasen et al. (1997), that the life cycles of the host and
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disease are as simple as possible and that the birth rate into
the host population is constant, that immunity only affects
the hosts’ susceptibilities, is independent of the order of infec-
tions and does not wane (but see “More complex ecological
scenarios” below). The latter two assumptions together imply
that the immune status of a host individual corresponds to
the set P ⊆ 𝒩𝒩 of all strains in the population from which that
individual has recovered sometime in the past.

For P ⊆ 𝒩𝒩, we denote by SP the density of uninfected
hosts with immune status P (for n = 1 compartments S∅
and S𝒩𝒩 correspond, respectively, to S and R of the standard
SIR model). Let Ii,P denotes the density of hosts infected by
strain i ∈ 𝒩𝒩 and with immune status P ⊆ 𝒩𝒩\𝒩i}. We assume
that, at any point in time, any infected individual belongs to
exactly one of such infection classes, that is, we (1) neglect
the possibility of multiply infected hosts (on the supposition
that infectious periods are very short relative to the time scale
of endemic population turnover1.) and (2) assume that recov-Fn 1
ery from a strain confers complete immunity to that particular
strain.

With this notation, the force of infection of strain i, as
experienced by ∅- (i.e., never infected) susceptibles, becomes

𝜆𝜆i ∶= 𝛿𝛿i ∑
P⊆𝒩𝒩𝒩𝒩i}

Ii,P. (4)

For uninfected individuals with infection history P, cross-
immunity reduces susceptibility to further infections accord-
ing to the relative infection probabilities

𝜃𝜃i,P = the probability that a susceptible with immune status P

becomes infected following an encounter with an

i-infected host, relative to the probability that a ∅–

susceptible would have become infected.

We have 𝜃𝜃i,∅ = 1. Furthermore, our assumption that recov-
ery from a strain renders the host completely immune to that
particular strain requires

1. If i ∈ P then 𝜃𝜃i,P = 0.

Additional natural restrictions on 𝜃𝜃 are:

2. If i ∈ 𝒩𝒩\P then 0 < 𝜃𝜃i,P < 1. That is, recovery from
strains in P provides some (but never full) immunity to
novel strains.

3. 𝜃𝜃i,P∪𝒩j} ≤ 𝜃𝜃i,P. That is, a richer infection history can only
enhance immunity.

We can then describe the dynamics of n co-circulating
disease strains by way of

dS∅
dt

= B – (𝛿𝛿 𝛿
n

∑
i=1

𝜆𝜆i)S∅

dSP
dt

= ∑
i∈P

𝛾𝛾iIi,P𝒩𝒩i} – (𝛿𝛿 𝛿
n

∑
i=1

𝜆𝜆i𝜃𝜃i,P)SP for P ⊆ 𝒩𝒩,P ≠ ∅

dIi,P
dt

= 𝜆𝜆i𝜃𝜃i,PSP – (𝛿𝛿 𝛿 𝛼𝛼i 𝛿 𝛾𝛾i)Ii,P for i ∈ 𝒩𝒩,P ⊆ 𝒩𝒩 𝒩 𝒩i}.
(5)

1 Even when such is not the case, medical experience tells that superin-
fections with related diseases tend to be rare, probably due to the quick
activation of the less-specific innate immune system by the current infection
(I. van der Sar, personal communication)

The model represented by Equations (5) and (4) gen-
eralizes that in Andreasen et al. (1997) by allowing for
strain-dependent recovery rates 𝛾𝛾i and the addition of strain-
dependent disease-induced mortalities 𝛼𝛼i.

Evolution
Biological assumptions
For evolutionary considerations, we shall distinguish disease
strains by the values of a trait vector X or Y in the case of
a mutant. We denote by Xi the trait vector of strain i and
assume 𝛼𝛼, 𝛿𝛿, and 𝛾𝛾 to be smooth functions of Xi, for example,
𝛼𝛼i = 𝛼𝛼(Xi). We, furthermore, assume that immunity can be
represented by a smooth function 𝜑𝜑 such that

𝜃𝜃i,P =∏
j∈P

(1 – 𝜑𝜑(Xi|Xj)), (6)

with 𝜑𝜑(X|X) = 1 and 0 ≤ 𝜑𝜑(Y|X) < 1 for Y ≠ X

(for “|” read “given a history of infections including”), which
may be interpreted as the result of a freshly transferred inoc-
ulant having to pass a number of independent stochastic bar-
riers, set up by each type of infection experienced in the past.

In our concrete application, we shall first assume that the
trait is a scalar x ∈ [0, 1] corresponding with depth in the
respiratory tract with x = 0 at the lower end (Figure 1A); x
may be thought of as the mode of the depths over which the
pathogen thrives. Here, depth should not be interpreted liter-
ally, but seen as a transform of that depth through local elon-
gation or shrinking to make the physiological and chemical
conditions everywhere change at roughly the same rate. For
the basic demographic parameters of the disease we assume:

• 𝛼𝛼(x) decreases with x (infections of the lower parts of the
respiratory tract cause higher mortality than those of the
upper part),

• 𝛾𝛾(x) increases with x (recovery from lower respiratory
tract infections is more difficult)

• 𝛿𝛿(x) increases with x (strains residing in upper parts of
the respiratory tract are more easily transmitted), except
that near the tip of the nose 𝛿𝛿 has to decrease again as
the pathogen there runs out of habitable space. Thus 𝛿𝛿
attains a maximal value close to x = 1.

• For each x, 𝜑𝜑(y|x) decreases with |y – x|,

see Figure 1B–D. The decrease of 𝛿𝛿 for x close to 1 has the
same effect of guaranteeing the existence of an internal evo-
lutionarily singular point (like an evolutionarily steady strat-
egy (ESS) or a branching point) as the classical trade-off
between the disease’s demographic parameters, but emerges
on a deeper mechanistic level. The final assumption reflects
the supposition that the specialization of strains on different
parts of the respiratory tract is caused by the surface pro-
teins of the pathogen matching a position dependent mix of
receptors, with the difference in surface proteins of differently
specialized types diminishing their cross-immunity. However,
as we shall discuss in subsection “Additional immune diver-
sity,” our main conclusions generally remain valid even when
this assumption is relaxed.

Where for the numerical illustrations we have to become
more specific, we use

• 𝛼𝛼(x) = 𝛼𝛼0(1 – 𝛼𝛼1xk) for some positive 𝛼𝛼0, 𝛼𝛼1, and k,
• 𝛾𝛾(x) = 𝛾𝛾0xl for some positive 𝛾𝛾0 and l,
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Figure 1. (A) Strains are characterized by a scalar variable x representing infection location, with x = 0 and x = 1 representing the lower and upper end of
the respiratory tract, respectively. Panel (B) depicts the graph of y↦ 𝜑𝜑𝜑y|x) for c = 2 (dotted), c = 10 (dashed) and c = 100 (full). Panels (C) and (D) depict
the trade-offs and the expected lifetime infectivity: virulence 𝛼𝛼𝜑x) (dashed), recovery rate 𝛾𝛾𝜑x) (dotted), transmission rate 𝛽𝛽𝜑x) (full black), andQ𝜑x) (red)
with 𝛼𝛼0 = 𝛼𝛼1 = 𝛾𝛾0 = 𝛿𝛿 = 1, 𝛽𝛽0 = 0.5 and (C) k = l = m = 2, n = 12 and (D) k = l = 0.5,m = 5, n = 15.

• 𝛿𝛿(x) = 𝛿𝛿0(xm – xn) for some positive 𝛿𝛿0 and 0 < m < n,
• 𝜑𝜑(y|x) = e–c/2𝜑y–x)

2
for some positive c,

as simple calculation recipes producing shapes in accord with
our qualitative assumptions.

Evolution in monomorphic pathogen populations
With only one strain circulating, the system Equation (5) with
Equation (4) becomes

dS∅
dt

= B – (𝛿𝛿 𝛿 𝜆𝜆1)S∅, 𝜆𝜆1 ∶= 𝛿𝛿1I1,∅,

dS𝒩1}
dt

= 𝛾𝛾1I1,∅ – 𝛿𝛿S𝒩1},

dI1,∅
dt

= 𝜆𝜆1S∅ – (𝛿𝛿 𝛿 𝛼𝛼1 𝛿 𝛾𝛾1)I1,∅. (7)

That is, we get back the SIR model Equation (1) in more
elaborate notation (with S∅ = S and S𝒩1} = R).

Following the adaptive dynamics rulebook (e.g., Brännström
et al., 2013; Diekmann, 2004; Geritz et al., 1998; Metz,
2012), we first calculate the equilibria of Equation (7) to deter-
mine the invasion fitness of new mutants. If we assume for the
moment that the force of infection 𝜆𝜆1 is known, we can express
the equilibrium densities as

S̃∅(𝜆𝜆1)=
B

𝛿𝛿𝛿𝜆𝜆1
, ̃I1,∅(𝜆𝜆1)=

𝜆𝜆1S̃∅(𝜆𝜆1)
𝛿𝛿𝛿𝛼𝛼1𝛿𝛾𝛾1

, S̃𝒩1}(𝜆𝜆1)=
𝛾𝛾1 ̃I1,∅(𝜆𝜆1)

𝛿𝛿 . (8)

Substituting the expression for ̃I1,∅(𝜆𝜆1) in the definition of 𝜆𝜆1
in Equation (7) gives a scalar equation for ̂𝜆𝜆1

̂𝜆𝜆1 =
𝛿𝛿1 ̂𝜆𝜆1B

(𝛿𝛿 𝛿 𝛼𝛼1 𝛿 𝛾𝛾1)(𝛿𝛿 𝛿 ̂𝜆𝜆1)
,

and so

̂𝜆𝜆1 = 0 or ̂𝜆𝜆1 =
𝛿𝛿1B

𝛿𝛿 𝛿 𝛼𝛼1 𝛿 𝛾𝛾1
– 𝛿𝛿 = 𝛿𝛿(R0,1 – 1). (9)

In the latter case,

Ŝ∅ = N0
R0,1

= Q–1
1 , ̂I1,∅ =

𝛿𝛿(R0,1 – 1)Q–1
1

𝛿𝛿 𝛿 𝛼𝛼1 𝛿 𝛾𝛾1
= 𝛿𝛿(R0,1 – 1)

𝛿𝛿1
,

Ŝ𝒩1} =
𝛾𝛾1(R0,1 – 1)

𝛿𝛿1
. (10)

For evolutionary considerations, it is crucial that the equi-
librium values of the epidemiological state variables depend
on the traits that are currently present. We shall, therefore,
make that dependence explicit in the following part of the
argument. Moreover, since in the case of only one circulat-
ing strain, the index gives no additional information, we shall
in the remainder of this subsection write X instead of X1.

From the model specification, or with rather more effort
from Equations (4) and (5), it can be seen that the initial
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growth rate, in this context called invasion fitness, of a new
mutant Y given an X resident environment, is given by

s(Y|X) = 𝛿𝛿(Y)(Ŝ∅(X)𝛿(1–𝜑𝜑(Y|X))Ŝ𝒩1}(X))–(𝛿𝛿𝛿𝛼𝛼(Y)𝛿𝛾𝛾(Y)).
(11)

To calculate internal evolutionarily singular strategies,X∗, we
have to set the derivative of s for Y at Y = X (customarily
called selection gradient, a measure for the local strength of
directional selection) equal to 0.

𝜕𝜕s(Y|X)
𝜕𝜕Y = 𝛿𝛿′(Y)(Ŝ∅(X) 𝛿 (1 – 𝜑𝜑(Y|X))Ŝ𝒩1}(X))

– 𝛿𝛿(Y)𝜑𝜑′1(Y|X)Ŝ𝒩1}(X) – 𝛼𝛼′(Y) – 𝛾𝛾′(Y) (12)

where 𝛿𝛿′ ∶= d𝛿𝛿/dY = (𝜕𝜕𝛿𝛿/𝜕𝜕y1,𝒩 , 𝜕𝜕𝛿𝛿/𝜕𝜕yk), and so on and
𝜑𝜑′1(Y|X) ∶= 𝜕𝜕𝜑𝜑(Y|X)/𝜕𝜕Y. On setting Y = X, the selection
gradient can be simplified by using that 𝜑𝜑(X|X) = 1 and
𝜑𝜑′1(X|X) = 0 (this follows from properties 1 and 2),

G(X) ∶= 𝜕𝜕s(Y|X)
𝜕𝜕Y

|||Y=X
= 𝛿𝛿′(X)Ŝ∅(X) – 𝛼𝛼′(X) – 𝛾𝛾′(X). (13)

Now we have only one argument left we can hide it to remove
clutter. By rewriting G as

G = (𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾)(𝛿𝛿
′

𝛿𝛿 –
𝛼𝛼′ 𝛿 𝛾𝛾′
𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾) (14)

we get

G = (𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾)(ln(Q))′, (15)

with Q the average lifetime infectivity (of the resident strain
X) as in Equation (2). The biological conclusion is that for
monomorphic gradual evolution X converges to a maximizer
X∗ of Q, just as in the classical SIR model. However, X∗

need no longer be a local maximizer of the invasion fitness,
since the latter now is co-determined by the cross-immunities.
Hence, near X∗ invasion need not imply substitution, which
opens the possibility for the evolutionary trajectory to become
polymorphic.

Here, we only derive the branching criterion for scalar
traits, deferring the higher-dimensional trait spaces of the
Section “Additional immune diversity” to Appendix A. A
convergence stable evolutionarily singular strategy x∗ is an
ESS when 𝜕𝜕2s(y|x)/𝜕𝜕y2||y=x=x∗ < 0 (i.e., x∗ maximizes s(⋅|x)
and, therefore, locally selection is stabilizing) and a branching
point when 𝜕𝜕2s(y|x)/𝜕𝜕y2||y=x=x∗ > 0 (i.e., x∗ minimizes s(⋅|x)
and, therefore, locally selection is disruptive) (Geritz et al.,
1998; Metz et al., 1996). Using the same conditions on 𝜑𝜑 as
before, gives,

at x = x∗ ∶ 𝜕𝜕2s(y|x)
𝜕𝜕y2

|||y=x
= 𝛿𝛿′′Ŝ∅ –𝛼𝛼′′ – 𝛾𝛾′′ –𝛿𝛿𝜑𝜑′′11Ŝ𝒩1}. (16)

Hence, x∗ is a branching point when (with all parameter
functions evaluated at x∗)

𝛿𝛿′′Ŝ∅ – 𝛼𝛼′′ – 𝛾𝛾′′ > 𝛿𝛿𝜑𝜑′′11Ŝ𝒩1}, (17)

which can be rewritten as

(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾)( ln(Q))′′ > 𝛾𝛾(QN0 – 1)𝜑𝜑′′11, (18)

or, expressed in dimensionless parameter groups,

𝛾𝛾
𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾(QN0 – 1) 𝜑𝜑′′11

[ln(Q)]′′
> 1. (19)

(see Supplementary Material SI1). The advantage of inequal-
ity Equation (18) is that it directly extends (as shown in
Appendix A) to the case with additional epitope axes, to be
discussed later on. Inequality Equation (19), on the other
hand, has the advantage that its terms allow a biological
interpretation, which may help to guesstimate their values
in concrete instances: the first of the three terms on its left
is the host’s probability of surviving an infection; the sec-
ond term equals the maximum feasible value of R0 – 1; the
third term is the strength of disruptive selection caused by lim-
ited cross-immunity relative to that of the stabilizing selection
coming from how effective the disease is in reaching new host
individuals, all three at the maximizer of R0.

The overall conclusion is that the currently dominant respi-
ratory disease strain will keep increasing its R0 on the evo-
lutionary time scale, thereby evolving into strains residing
higher and higher up in the respiratory tract until the strains
start running out of habitable space close to the tip of the nose
(neglecting the unlikely case of a disease that starts its career
even closer to the tip and increases its habitable space till it
likewise gets close to the maximal R0). Any selectively driven
diversification will only start in the neighborhood of the high-
est feasible value of R0, and is facilitated by larger host den-
sities. The less extensive the cross-immunity, the larger |𝜑𝜑′′11|
and the stronger this effect. We shall further on demonstrate
the first, better empirically accessible, of these two effects in a
series of numerical examples.

Polymorphic populations
For polymorphic populations, we no longer have explicit
expressions for endemic equilibria. So we have to use numeri-
cal methods. The straightforward approach relies on running
the system in Equation (5) for sufficiently long so as to guar-
antee satisfactory convergence to the resident equilibrium and
then use the equilibrium values to derive a mutant’s fitness.
However, with increasing number of strains, the system size
increases rapidly. Indeed, for n co-circulating strains, the sys-
tem in Equation (5) has a whopping 2n–1(n𝛿2) equations! We
thus propose an alternative method that relies on rewriting
the 2n–1(n 𝛿 2) equilibrium equations as a fixed point prob-
lem with n equations for the equilibrium forces of infection.
We argue that the obtained map (which we name the force-of-
infection map) yields an evolutionarily equivalent system thus
providing us with a more manageable alternative to studying
polymorphic evolution. Furthermore, such a reformulation
allows us to highlight deeper connections with ecological com-
petition models. But first, we present the results of numerical
investigations and their biological implications.

Numerical examples
Numerical examples depicted in Figure 2 show how the effect
of N0 on disease diversification extends to the polymorphic
realm. The depicted evolutionary trajectories come from sim-
ulations of the evolutionary dynamics using the procedure
described in Appendix B, starting with a single strain infect-
ing the lower end of the respiratory tract. From there the
strain evolves toward the depth x∗ maximizing the life-time
infectivity Q. At low host density (Panel A) x∗ is an ESS
and, therefore, the evolutionary end point. In accordance with
Equation (18), at higher host densities (Panel B) x∗ becomes a
branching point, leading to dimorphic pathogen populations.
Panel C, moreover, shows that still larger host densities lead to
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Figure 2. Simulated evolutionary trees for N0 = 102 (A), N0 = 103 (B), and N0 = 105 (C). The parameters are 𝛼𝛼0 = 𝛼𝛼1 = 𝛾𝛾0 = 𝛿𝛿 = 1, 𝛽𝛽0 = 0.5, c = 2,
k = 2, l = 2,m = 2, n = 12.

further branching and correspondingly richer strain diversity,
harbored by the upper parts of the respiratory tract.

Figure 3 graphically represents the selection patterns under-
lying these phenomena. Panels A–C (called Pairwise Invasabil-
ity Plots or PIPs in adaptive dynamics lingo) show how selec-
tion onmutants (on the vertical axis) changes with the resident
trait (horizontal axis) by showing the sign of a mutant’s fit-
ness in dependence on its own trait and that of the resident.
The evolutionarily singular trait value x∗, indicated with a
black dot, occurs where the second fitness zero contour, sep-
arating the positive and negative signs, crosses the diagonal
(which itself is also a zero contour). Going from Panel A–C,
it can be seen how increasing the host density makes selec-
tion at the singular trait value turn disruptive (in Panel A,
the fitness just above and below the dot is negative and in
panels B and C, it is positive). Panels D–F (called TEPs by
adaptive dynamics adepts) depict in the form of arrows the
fitnesses of mutants with small effect for the case where there
are two different residents. An upward arrow means that an
upwardmutant of the resident depicted on the vertical axis has
positive fitness, while a downward arrow indicates the same
for downward mutants. A right-pointing arrow means that
an upward mutant of the resident depicted on the horizontal
axis has positive fitness, whereas a left-pointing arrow indi-
cates the same for downward mutants. The colored curves
are so-called evolutionary isoclines, separating the regions
with arrows in the different slant classes, while the white
region characterizes pairs of strains that can coexist since,
according to the PIPs in Panels A–C, each can invade into the
other.

Up to tri- and tetra-morphisms, the patterns seen in Figure 2
can be inferred from the TEPs. To this end, consider a thought
experiment in which one of the two lines of descent is forbid-
den to mutate, making its trait value, say x1, a fixed param-
eter. This way the isocline for the other trait x2 in the TEP
gets an alternative interpretation as the (set of) loci where for
fixed x1, the evolution of x2 would change direction, that is
(the locus of), the singular points of those (monomorphic)

evolutions in dependence on the value of the parameter x1.
These singular points may or may not be branching prone. In
the former case, the local piece of isocline around that point
connects to a region of trimorphisms in trait space tripled.
A positive branching proneness is indicated in Figure 3 by
representing the corresponding pieces of the isoclines inter-
rupted.When amutation lets the evolutionary trajectory jump
into that region of trimorphisms, it may not stay there for
long as evolution of the other, unbranched, line of descent
may quickly lead the evolutionary trajectory again out of the
trimorphisms. However, close to where the isoclines inter-
sect, the movement of that other line slows down so far that
branching really may take off, thus linking the occurrence
of additional branching to places where a branching prone
isocline intersects the other isocline. If at their intersection
both isoclines are branching prone, the corresponding lines of
descent usually branch shortly after each other. Figure 3D–F
shows that in our particular case, in addition, evolution start-
ing from a monomorphism has almost no chance to get close
to a branching prone part of the isoclines except close to their
intersection.

The force-of-infection map and its connection to ecological
competition models
Here, we briefly describe how the 2n–1(n𝛿2) equilibrium equa-
tions of (5) can be rewritten as a fixed point problem with n
equations for the equilibrium forces of infection and argue
that the obtained force-of-infection map yields an evolution-
arily equivalent system. We only give a heuristically argued
description of the method, while deferring rigorous proofs to
a companion paper geared to a mathematical audience Boldin
& Metz (manuscript in preparation).

We use the strategy for calculating the equilibria exempli-
fied in “Evolution in monomorphic pathogen populations”
to reduce the 2n–1(n 𝛿 2) equilibrium equations of (5) to n
equations for the equilibrium forces of infection ̂𝜆𝜆i. Figure 4
shows for n = 2, the order in which for given (𝜆𝜆1, 𝜆𝜆2), one
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Figure 3. Pairwise invasibility plots and trait evolution plots (TEPs) forN0 = 102 (A,D),N0 = 103 (B,E), andN0 = 105 (C,F). In the pairwise invasibility plots
(PIPs) in Panels A, B, and C, the white and black represent the regions where the invasion fitness is positive and negative, respectively. The black dot on
the diagonal of the PIP depicts the monomorphic singularity. In the TEPs in Panels D, E, and F, the white region corresponds to the area where the two
residents can mutually invade each other. The blue and the red line depict the 1-, 2- isocline, respectively (parts of the isoclines where further branching
is imminent are depicted with a dashed curve). The parameters are 𝛼𝛼0 = 𝛼𝛼1 = 𝛾𝛾0 = 𝛿𝛿 = 1, 𝛽𝛽0 = 0.5, c = 2, k = 2, l = 2,m = 2, n = 12.

Figure 4. The scheme for calculating the epidemic equilibrium for given forces of infection in the case of two co-circulating strains.

can successively calculate the equilibrium values ̃Ii,P, S̃P of
Equation (5) in an easy manner. The resulting expressions are
linear inN0 due to the fact that prescribing the 𝜆𝜆i makes Equa-
tion (5) linear. Let Λ = (𝜆𝜆1,𝒩 , 𝜆𝜆n)T be the vector of forces
of infection. Then, in the last step, where we substitute the
expressions for the ̃Ii,P in the definition of 𝜆𝜆i (i = 1,𝒩 , n), we
end up with an equation of the form

Λ̂ = F(Λ̂). (20)

Hence, Λ̂ is a fixed point of F (which we call the force-of infec-
tion map). Supplementary Material SI2 shows F for the case
n = 2. It is also possible to find an explicit expression for gen-
eral n. However, for numerical work, it is just as practical to
write a recursive procedure for calculating the value of F(Λ)
for given Λ.

A simple means for solving Equation (20) derives from the
observation that it also is the equilibrium equation of the
recurrence

Λt+1 = F(Λt), (21)

so that we could calculate Λ̂ as Λ∞ = limt→∞ Λt, where
in the numerical procedure we replace Λ∞ by Λt for some
suitably large t. A closer look at F, moreover, shows that
this recurrence allows an alternative interpretation as the
representation of an ecological competition model (in the
phenomenological sense that for each species increasing its
density leads to a decrease of the per capita growth ratios of
the other species). A direct calculation shows that this compe-
tition model mimics its parent epidemic model in that, as long
as both have only point attractors, the signs of its invasion
fitness in dependence on (Y|𝒩X1,𝒩 ,Xn}) match those of its
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parent (where the invasion fitness for an unstructured discrete-
time model is defined as the logarithm of the invasion repro-
duction ratio), corroborating the intuition that the evolution-
ary diversification resulting from limited cross-immunity is
caused by apparent competition (Holt & Bonsall, 2017).

So far we only for the cases n = 1, 2 have a rigorous
proof that the interior of the state space of Equation (21)
has a unique attractor, which is either an interior or a bound-
ary equilibrium. However, our extensive numerical work for
n > 2 has not brought to light any cases of untoward behav-
ior of either the original model or the recurrence. (Neither can
the examples of oscillatory behavior described in Andreasen
et al. (1997) and Lin et al. (1999) occur for the trait depen-
dence assumed in our models.) The upshot is that, in the
case that both models have only point equilibria for their
community dynamical attractors, the evolutionarily steady
coalitions of both models coincide, as do their domains of
evolutionary attraction (if we specify the stochastic structure
of the individual-based model associated with the recurrence
Equation (21) by assuming the individual offspring distri-
butions to be geometric, to accord with those of the par-
ent model, as described in Appendix B). We express these
relations by saying that the two models are evolutionarily
equivalent.

More complex ecological scenarios
For didactical purposes, we started with the simplest possi-
ble model describing the dynamics of multiple strains with
limited cross-immunity. Here, we discuss how the conclusions
of previous section carry over to various generalizations.

Additional immune diversity
Of course, the assumption that the degree of cross-
immunity between strains depends only on the difference
in their preferred depth in the respiratory tract is a gross
oversimplification. In this section, we explain why we
expect that the results of the previous sections will only be

strengthenedwhen there are additional factors co-determining
cross-immunity. For the sake of the argument, we shall repre-
sent these factors by just a single scalar that we draw orthogo-
nal to the depth axis. As it seems reasonable to assume that the
additional factors are not there just for their influence on the
immune reaction, but arise as a side effect of other physiologi-
cal functions and thus have also other, more straightforward,
fitness effects, we scale that axis such that strains with the
highest fitness are located centrally. (This in order to make the
respiratory-depth axis attract evolutionarily while making the
fitness landscape locally flat in directions away from this axis,
thus creating a perspective that puts the trait specific for respi-
ratory diseases center stage in our mathematics.) Again for the
sake of the argument, we assume that these other factors and
depth interact roughly multiplicatively in determining Q and
thereby R0. (This in accordance with our intuition about the
qualitative picture of the variation of R0 shown in Figure 5;
see Supplementary Material SI3.)

From a fuller perspective, the single variable “respiratory
depth” should be seen as coming from a restriction of our
attention to the principal dimension in a multivariate numer-
ical representation of a space of characteristics of the disease
agent that can act as predictors for its ecological roles. The
present section should thus be seen as restoring the remaining
dimensions.

The conclusions that can be drawn from that fuller picture
are graphically represented in Figure 5. Since the numerical
examples tell that the increase of the readiness to diversify
with R0 also extends to the polymorphic case, we feel justified
to draw in the hypothetical results of this diversifying pro-
cess in the form of the locations of strains present after a fair
period of evolution. The experience with other multivariate
competition models (e.g., Zhang et al., 2023) is that even
though the eventual evolutionary end result might be more
regular, simulations tend to lead to a lot of turmoil in which
a larger number of roughly competitively matched strains
keep dancing around, slowly filling up the accessible areas of
the trait space in patterns suggestive of how one expects a

Figure 5. Stylized representation of how the interplay between respiratory tract position, x1, and additional factors, x2, is expected to determine how
strain diversity depends on the respiratory tract position. Width of the discs symbolizes the relative population sizes of the strains.
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potential evolutionary end result to look, but far more irregu-
lar. This is because in higher dimensions, the greater freedom
of movement makes the effects of stochasticity of the muta-
tional process more pronounced, while the remnants thereof
disappear with the contraction of the probability cloud during
the approach to an attracting Evolutionarily Steady Coalition.
Figure 5 shows how we envision such an end result. Figure 5
should make clear that, in line with the extension of the diver-
sification criterion Equation (18) to higher-dimensional trait
spaces derived in Appendix A, the diversification along any
additional axes can be expected to be higher near the nose
than in the recesses of the lungs.

The above arguments also allow dropping the assumption
that cross-immunity decreases with distance along the respi-
ratory depth axis, and still to get all the qualitative predic-
tions put forward till now (for a proof see the last part of
Appendix A).

Waning immunity and other generalizations
The assumption that the disease’s influence on the host pop-
ulation dynamics can be neglected, makes that our conclu-
sions qualitatively extend to cases with density dependent
encounter rates: If we replace 𝛿𝛿 with 𝛿𝛿g(N), where N denotes
the total host population density, g(0) = 1 and g(N) decreases
sufficiently slowly that Ng(N) increases, then our epidemic
differential equations only change by having everywhere 𝛿𝛿
replaced by 𝛿𝛿g(N), for which we, by assumption, may sub-
stitute 𝛿𝛿g(N0). Hence, R0 becomesQg(N0)N0, instead of just
QN0, with similar changes (N0 → g(N0)N0) occurring every-
where else (see Supplementary Material SI4). So the readiness
to diversify is still modulated by R0 – 1, but with R0 propor-
tional to N0g(N0). (Note that our assumptions about g rule
out the trendy extreme assumption of frequency-dependent
transmission, g(N) = N–1, which we do not see as a great
loss since we cannot believe effective encounter rates to be the
same in the remote countryside, small villages, or densely built
up cities (with comparable scenarios for other host species).)

In our model formulation, we have so far assumed that
cross-immunity affects only susceptibility. In models with
cross-immunity affecting both susceptibility and infectivity,
the two occur as a product in the expressions for the
monomorphic invasion fitnesses (Supplementary Material
SI5). Hence, for such models, all our evolutionary conclusions
about monomorphic disease evolution, including those about
the initiation of diversification, stay intact. Unfortunately, this
quantitative evolutionary equivalence of the twomodel classes
does not extend to the polymorphic realm. However, we have
no reason to suppose that the two model classes may show
any qualitatively different behavior either. In fact, we show
in Supplementary Material SI5 that in diseases that last short
relative to the lifetime of their hosts, the change in the fitness
landscapes relative to our core model amounts to adding or
subtracting a small amount of the order of the ratio of the
disease duration and the host lifetime, 𝛿𝛿/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾).

On instigation of the reviewers we, in SupplementaryMate-
rial SI6, analyze the evolutionary effects of an effect of immu-
nity on virulence. We only considered the monomorphic case.
Notwithstanding the heavier mathematics needed to reach
them, the results are surprisingly simple. The only effect is
that the criterion for diversification has to be adapted in
that the factor 𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾, that is, the inverse of the average
disease duration at the evolutionarily singular strategy has to
be replaced by the inverse of the average disease duration in

immune hosts (infected by a mutant close to the ESS, so that
immune residents still have a small chance to get infected).
(Note that, as phrased, this result also holds true for our core
model, except that the average disease durations of mutant-
infected immune and nonimmune hosts are equal, so that
mathematically we may express the result in terms of either.)

We also have assumed the simplest possible life cycle of
the disease, that is, with only one, Markovian, disease state,
infected as well as infective. However, since we only deal
with population equilibria, our main results extend seamlessly
to more general scenarios where the within-individual dis-
ease progression is independent of the population state (c.f.
Appendix C; see e.g., Diekmann et al., 2003; Heesterbeek &
Metz, 1993; Metz & de Kovel, 2013.) This point is especially
relevant in applications where we should estimate the rele-
vant ecological parameters. Moreover, by the results in Metz
(1978), this result even extends to structured host popula-
tions, provided all host classes experience the same forces of
infection 𝜆𝜆i (so that the epidemic does not change the com-
position of the susceptible population) while Trapman et al.
(2016) show that the effect of fine scale differences in contact
structure is generally small.

The extensions discussed above are those for which we were
able to devise hard proofs. The fact that our results extend
over so many different variations of the basic model structure
suggests that those results also extend, at least approximately,
to even more variations on the deliberately simplified scenario
that we focused on for a start. However, there are also excep-
tions, the main one being when immunity wanes rather than
keeps up for ever. This adds additional terms to the epidemi-
ological differential equations (5) to account for the transfer
of hosts from the different immune classes to classes with one
of the elements of P removed (cf. Appendix C and Supple-
mentary Material SI7). This so far precluded proving that F
in the analog of Equation (21) can be reinterpreted as repre-
senting a discrete-time competition model. However, the inva-
sion fitness for the monomorphic case can still be explicitly
expressed, leading to

𝛿𝛿/𝜀𝜀
𝛿𝛿/𝜀𝜀 𝛿 (𝛿𝛿 𝛿 𝛼𝛼)/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾)

𝛾𝛾
𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾 (R0 – 1) 𝜑𝜑′′

( ln(Q))′′
> 1,

(22)
with 𝜀𝜀 the rate of immunity loss, as criterion for the occur-
rence of selectively driven diversification. Here, 𝛿𝛿/𝜀𝜀 equals the
average immune period relative to the average lifetime of the
host, and (𝛿𝛿 𝛿 𝛼𝛼)/(𝛿𝛿 𝛿 𝛼𝛼𝛿 𝛾𝛾) the probability of dying when ill.

Application to rhino- and coronaviruses
Although the preceding formulas had the form of quantitative
expressions, we used them only for conceptual elucidation and
reaching qualitative conclusions. With Equation (22) in place,
we can explore the possibilities for becoming more quantita-
tive. To this end, we focus on the common colds caused by
rhinoviruses, mainly since, although we have not been able to
find tailored parameter estimates (Appendix D discusses tools
and Appendix E data), we can combine what estimates there
are with common experience to arrive at fair guesstimates of at
least their order ofmagnitude. The 209 tentative species of rhi-
novirus mentioned in van Regenmortel et al. (2000) no doubt
also owe their existence to a worldwide spatial structure, with
only the coexistence on a more local scale governed by the
mechanism put forward above. Yet, on local scales, there
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definitely is a good amount of diversity as well: Monto et al.
(1987) found over a five-year period in Tecumseh, Michigan,
52 of the then known 89 rhinovirus serotypes. The lore of the
50s was that colds either conferred no immunity or it waned
very fast, such in contradiction to the observation that while
snotty noses were ubiquitous in Kindergarten their incidence
became considerably less toward the end of secondary school
(for modern numbers see Heikkinen & Järvinen, 2003). The
explanation, already proposed by Andrewes (1950), is that
there exists a large number of co-circulating viruses all con-
ferring at least some longer lasting immunity, but little or
no cross-immunity. The first and only phenomenological level
measurements of immunity conferred by rhinoviruses were
done by Jackson and co-workers, in particular, Jackson and
Dowling (1959) and Jackson et al. (1962), who found no
cross-immunity between the tested strains, and an immunity
that rose over the first year after recovery and then started to
decrease again. Finally, although it takes two or three days
before the symptoms start, virus shedding starts already after
one day, peaks on the second and third day, to end one to two
weeks later together with the ceasing of the symptoms (Lor-
ber, 1996; Thompson et al., 2013). In Appendix E, we end up
with the estimate for the equivalent average duration of the
immune period 𝜀𝜀–1 ≈ 3 years. This makes the first two terms
on the left of Inequality Equation (22) both approximately
equal to one (since the chance of not surviving a common cold,
(𝛿𝛿 𝛿 𝛼𝛼)/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾), is far smaller than 𝛿𝛿/𝜀𝜀 ≈ 𝜀0–1/3–1 ≈ 0.04).
Next, consider the one but last term in Equation (22). Given
the large number of coexisting rhinoviruses each of them need
not have a large prevalence. Starting from a rough lifetime
average of 4 colds per person per year, of which 40% caused
by rhinoviruses and some 50 circulating strains, the use of
Formula (E1) got us R0 ≈ 1.1, which in view of the humon-
gous observed diversity requires the last term to be a good deal
larger than one. That is, the disruptive selection caused by the
downward curvature 𝜑𝜑′′ of the resident-elicited immunity to
close by mutants should far outstrip the stabilizing selection
coming from the downward curvature ( ln(Q))′′ at the top of
Q. (For more detail see Supplementary Material SI9.) In the
following paragraphs, we argue that it follows from all data
together that the term 𝜑𝜑′′/( ln(Q))′′ should be very different
in rhino and corona viruses and give an explanation for that
difference in the terms of their morphology.

It should be noted here that that last number should not be
interpreted as referring to the changes of immunity and life-
time infectivity in the direction of the respiratory axis. By the
results in Appendix A, for higher-dimensional epitope spaces,
the direction with the largest value of 𝜑𝜑′′/( ln(Q))′′ is the one

that counts. This suggests that |𝜑𝜑′′| ≫ |( ln(Q))′′| along at
least one, and probably more directions in the space of addi-
tional epitope axes. The inequality should then be interpreted
as the change of the cross-immunity away from 1 being far
larger than the detrimental effect that this change may have
on the virus’ ability to spread due to its lesser reproductive
efficiency within its hosts, an observation corroborated by
the seeming lack of cross-immunity of the various rhinovirus
strains observed by Jackson and Dowling (1959).

For coronavirus-caused common colds the data are far
worse, but if we try to do the same exercise, all parameters
come out in the same order of magnitude except for R0
where, with only four co-occurring species (recently increased
to five, see, e.g., Cui et al. (2002)),we find R0 ≳ 2.5. (The

reason for the ≳ instead of an ≈ is that the partial cross-
immunity between the serotypes decreases the frequency of
corona caused colds below the value for independently infect-
ing ones.) So given the fact that coronaviruses so far show
little diversification, and that the new SARS-CoV-2 has dra-
matically shown that this cannot be due to their slow speed
of evolution, they should have a dramatically lower value of
𝜑𝜑′′/( ln(Q))′′ than we surmised for rhinoviruses. The molecu-
lar data even point at separate animal origins of the corona-
caused common colds (Forni et al., 2017), implying that there
has been no cross-immunity driven diversification at all.2 This Fn 2
would agree with the anecdotal evidence that the various coro-
naviruses afflicting humans might still have non-negligible
cross-immunity.

The question remains how this difference in diversifica-
tion potential between the two kinds of viruses relates to
their different operations as a consequence of their different
structures: where corona viruses do their initial interfacing
with the within-host environment through their spike pro-
teins, anchored in a lipid bilayer envelope encasing their pro-
tein capsid, the “naked” rhinoviruses do this through their
capsid-proteins VP1, VP2, and VP3, that cause their anti-
genic diversity, while a canyon in VP1 attaches to the cell
surface receptors of their hosts (Jacobs et al., 2013). The
latter suggests a mutational decoupling of the docking abil-
ities and the interactions with the hosts’ adaptive immunity,
causing many directions in epitope space where |( ln(Q))′′| is
very small while |𝜑𝜑′′| is not, making 𝜑𝜑′′/( ln(Q))′′ large. (For a
more elaborated version of this argument see Supplementary
Material SI9.)

Discussion
Connections to older models
We begin the discussion by briefly pointing to earlier mod-
eling efforts on cross-immunity between co-circulating dis-
ease strains, only mentioning the references that started up a
particular research tradition. Previous modeling efforts have
investigated the population dynamical patterns engendered by
relatively few strains (typically up to four) (Andreasen et al.,
1997; Bhattacharyya et al., 2015; Lin et al., 1999) consid-
ered a single evolutionary step (Restif & Grenfell, 2006), or
studied long-term evolutionary dynamics assuming a discrete
linear strain space and the simpler case of polarized immu-
nity in which partial cross-immunity renders some of the hosts
totally immune (Gog & Grenfell, 2002) (the practical advan-
tage of the latter assumption being that the dimensionality of
the multi-strain model increases linearly with the number of
circulating strains, rather than exponentially, but at the cost
of only allowing directional immune escape without diversifi-
cation). Here, we study immune-driven pathogen evolution in
the context of a more general multi-strain model with partial
cross-immunity coming from individual hosts’ infection his-
tories, while linking the similarity-induced strength of cross-
immunity and the strain-specific epidemiological parameters
by means of underlying continuous quantitative traits. The
latter assumption is crucial as it gives access to the geometric
structures of the fitness landscapes that underlie our general

2 Although ultimately correct, there is still a tiny technical gap in this
argument which is plugged in Supplementary Material SI8.
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conclusions (albeit only technically in that those conclusions
should extend to cases where a discrete epitope space can be
embedded in ℝn for some n in a manner that accords with the
other assumptions of the model). The only other paper so far
following this strategy is Best andHoyle (2013), with as differ-
ences that we base our assumptions in concrete biology, and
for this reason also look into the effect of higher-dimensional
epitope spaces, and that our assumption that the influence of
the disease on the host birth rate is so small that it for all prac-
tical purposes can be neglected led us to more and stronger
biological conclusions. (Note that while a few percent addi-
tional mortality caused by a novel human disease is perceived
as unacceptably large, this has a non-negligible influence on
evolutionary predictions only in the special case that its influ-
ence on Q differs manifestly among disease strains.) Like
ours, all these models stayed on the phenotypic level. A model
exploring the underlying genetic level is Koelle et al. (2006).
There, evolution goes in fits and starts, where the fits corre-
spond to the oozing out in a subset of genetic states that are
phenotypically roughly equivalent as measured by their eco-
logical effects, and the starts to what we in our phenotypically
oriented language call substitution events.

Where does the factor R0–1 come from?
The first two conclusions from our model are that highly vir-
ulent strains infecting the lower airways are bound to evolve
toward the nose thereby becoming more benign, and that the
upper airways are expected to be infected by a richer diversity
of pathogen strains than the lower parts of the respiratory
tract. This first conclusion is a result of the assumed nega-
tive, instead of the usually assumed positive, relation between
infectivity and virulence, coming from mechanistic consid-
erations and in accord with clinical experience. The second
conclusion comes from the similarity of the effect of limited
cross-immunity to ecological competition. We fleshed out this
intuition by establishing the evolutionary equivalence of our
epidemic model and a discrete-time competition model. In
this model, the usual branching criterion in the form of an
inequality in terms of the curvature of the carrying capacity at
its maximum and the curvature of the competition effect for
near-equal competitors turns out to be modulated by R0 – 1
leading to a dependence of the condition for first branching
on N0, with branching becoming easier for higher N0. The
natural conjecture that this effect extends to any subsequent
branching as well was corroborated by our numerical studies
dealing with the further diversification in preferred respiratory
depth. Finally, the extension of the monomorphic branching
condition to higher-dimensional trait spaces worked out in
Appendix A indicates that branching in other directions in
epitope space, not directly related to respiratory depth, will
be similarly promoted and will thus also be more common
close to the nose where R0 is highest. Mechanistically, readi-
ness to diversify can be regarded as selection for escaping
from mutual cross-immunity, with the factor R0 – 1 deriving
from the fact that in the endemic situation a higher R0 – 1
entails a higher density of partially immune individuals, and
therewith an increasing advantage for mutants able to infect
them (as seen by tracing the term QN0 – 1 in Equation (18)
back to Ŝ𝒩1} in Equation (17) and Equation (10)). Seen from
a resource competition perspective, the two pathogen strains
can mutually invade and undergo disruptive selection since
in addition to a common resource they exploit alternative
resources, and do so better when they differ more, in the form

of immune individuals produced by the other strain at a rate
proportional to its density, with the latter proportional to its
R0 – 1. For the initiation of that branching, we focus on the
close neighborhood of the prospective branching point, so
that to first order of approximation these R0 – 1s equal the
R0 – 1 at that point.

Continuing in this vein, we speculate that an extension of
the principle that a higher host density leads to higher dis-
ease diversity may also be behind the shift from one to two
co-circulating influenza strains from 1997 onwards (see Earn
et al., 2002).

What about within-host evolution?
In the wake of Anderson and May (1982), we have followed
the by now established tradition that treats disease evolution
fully on the level of diseased hosts. In reality, we, of course, are
dealing with the evolution of a structured meta-population of
pathogen individuals. This meta-population differs from the
usual structured meta-populations in ecology in that we disre-
gard the possibility of secondary immigrants into a patch (cf.
Metz & Gyllenberg, 2001) on the supposition that these are
both rare and their establishment is prevented by the action
of the innate immune system elicited by the initial infection.
This is also the context in which we should view the recent
attention in the media to within-host evolution of SARS-CoV-
2, in particular, in immunocompromised patients: What in
our between host picture we refer to as a mutation is actu-
ally the presence of a mutant, arisen within the producer of
an infective droplet, containing a sample from the pathogen
population harbored by it. An invading mutant is, moreover,
supposed to take over the new host from among the vari-
ety, if any, of genotypes in the droplet. (This should not be
taken literally. This assumption is only supposed to lead to
a fair approximation at the level of the evolutionary predic-
tions. Moreover, it may well be less contrived than it seems,
given the large chance effects and concomitant genetic drift
during the initial stages of the infection process (an indica-
tion is that after experimental intranasal infections with a
dose way above that in an aerosol droplet, Jackson et al.
(1958) found that out of 872 volunteers only less than 40%
caught a cold).) From this perspective, within-host evolution is
accounted for by the phenomenological host level, as opposed
to pathogen level, mutation probability. For the respiratory
diseases we consider, the disease duration is, moreover, so
short that we expect (except perhaps in immunocompromised
hosts) the within-host evolution to be relatively simple, pro-
ducing on the between-host level only a relatively negligible
“gene drive.” (Note, moreover, that in respiratory pathogens
this “gene drive” and the between-host selection will act in
line in causing an upward evolution since mutants adapted
to a higher position will also be overrepresented in an infec-
tive droplet.) Although for immunocompromised hosts that
“gene drive” generally will be larger, we believe that even with
present day medical attitudes such hosts are sufficiently rare
that their contribution can safely be neglected when dealing
with the longer between-individual time scales considered in
this paper.

To where do our conclusions reach?
The prediction about the increase of the tendency for diversifi-
cation with the host density, although inspired by the analysis
of the evolution of respiratory diseases, should apply to just
any diversification caused by limited cross-immunity. This
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increase is linear for mass-action-style infections and starts to
saturate when behavioral limitations on the hosts’ encounter
rate start to dominate. The result even extends beyond the
restriction of small disease caused mortality if we interpret
“host density” as the density realized in the endemic situa-
tion, although with the proviso that the host density then is no
longer determined by the host on its own but by the dynamics
of host and disease together, and thus co-depends on which
disease traits maximize Q (Supplementary Material SI4).

The large generality above contrasts starkly with the strict-
ness with which the term “respiratory diseases” should be
interpreted, to wit, diseases living in and affecting only the
respiratory system. It is for such diseases that the mechanis-
tic arguments apply that lead to the trade-off underlying our
evolutionary deductions. COVID-19, for example, does not
fully fall into this category since it also has effects outside
the respiratory tract, i.a., in the form of cytokine storms and
thrombocytopenia. (See Crespi (2020) for evolutionary expla-
nations of these effects in terms of differences between the
life histories and consequent defence mechanisms of bats and
humans.) We hypothesize though that the latter effect also has
to do with immune disregulation (in the form of an autoim-
mune reaction affecting part of the clotting cascade) and that
both effects occur only in a genetically delimited segment of
the host population, so that without medical interventions,
the theoretical considerations would still apply in the longer
run, after selection has reduced these subgroups to a negligi-
ble proportion of the population. Another scenario with the
same result is that those side effects only occur when the dis-
ease is first contracted later in life, which is bound to happen
far more rarely in the expected endemic than in its present
epidemic stage.

Generalizing from the COVID-19 example, we reiterate the
general biological rule that specific cases are always more
complex than can be accounted for in any remotely tractable
overarching model. We, therefore, saw our model predictions
primarily as theoretically emerging expectations about com-
parative trends, rather than as telling what will happen in spe-
cific concrete instances, and this paper primarily as an attempt
to create an overarching picture for immune-driven disease
diversification and thus provide a reference point for the study
of specific cases.

Implications for emerging respiratory diseases
To conclude, we put forward an additional, more tentative,
message that stems from the connection between epidemic
models and competition models. The experience with com-
petition models is that evolutionary simulations after an ini-
tial spate of diversification around the maximum carrying
capacity subsequently start to fill up the inhabitable part of
the trait space, but do so ever more slowly. The reason is
that the changing fitness landscape remains “anchored” at
zero where there are residents. More residents make for more
zeros, and thus flatter fitness landscapes, smaller fitness gra-
dients and slower evolution. (As residents by definition stay
around on an evolutionarily relevant time-scale, their trait
package should have invasion fitness - that is, longer term
average per capita rate of growth or decline - zero.) In higher-
dimensional trait spaces, the slowing down is less, but where
it comes to the filling up of the outer reaches of the inhabitable
trait space is replaced by a turmoil in which a largish number
of roughly competitively matched strains dance around while
the boundary of the swarm through branching slowly expands

toward the outer reaches of the inhabitable trait space. This
makes us expect that it will take relatively long for the deeper
reaches of the lungs to become colonized by strains evolv-
ing back from higher up, thus leaving those reaches open to
invaders from outside. This then leads to the expectation that
emerging respiratory diseases more often than not will have
low R0 and high virulence.

A cautionary note is that in the earlier introduced high-
dimensional trait space spanned by the respiratory depth axis
along with additional axes affecting other aspects of its func-
tioning (with some of them as side effect eliciting an immune
reaction), a new entrant in the game more often than not ini-
tially will engage in a climb toward the fitness ridge located
at the respiratory depth axis. Think, for example, of a virus
coming equipped with tricks for coping with its former host,
which still can considerably improve its manipulative activ-
ity inside the cells of its new one. That additional movement
through trait space generally will not be without side effects
(see Metz, 2011, subsection 3.1 for one reason why the latter
are almost bound to occur). Therefore, the simple story told
above will, in general, be, as COVID-19 has amply shown,
only a gross summary of a more extensive one that is studded
with less predictable detail depending on as yet unknown facts
about the within-host part of the ecology of the pathogen.

As a final note, we point to the fact that the Omicron vari-
ant(s) of SARS-CoV-2 behaves exactly in line with our tenta-
tive predictions: it lives higher up in the respiratory tract and
is less virulent, more infective and only partially immune to
the earlier lower-living strains, see, for example, Bentley et al.
(2021); McMahan et al. (2022); Meng et al. (2021); and Pea-
cock et al. (2022). We are, of course, aware that this is only
one data point and that there may exist also other mecha-
nisms causing the same combination of properties. Yet, it is
gratifying to see that both its position in the respiratory tract
relative to that of the older strains and their replacement fits
in well with our adaptive dynamics inspired predictions.3 A Fn 3
technical objection might be that at the time, the COVID-19
epidemic had not yet relaxed to the endemic state, contrary to
what is assumed in adaptive dynamics, and for that matter ESS
reasoning. However, the prediction of an upward movement
together with a decrease in virulence is, as is often the case,
quite robust against deviations from the model details. In this
case, because it essentially follows from the mechanistically
derived trade-off, where virulence largely hitchhikes with the
increase in infectivity as the main determinant of the selection
gradient, independent of the details of the selection process.
That we yet approached this problem through the simplified
framework of adaptive dynamics is because the latter has the
advantage of providing a coherent accessible picture of the
associated complex of evolutionary phenomena (which only
in the end motivated us to dive into the attendant concrete
details).

Code availability
Numerical analysis was performed with Wolfram Mathemat-
ica 12. Computer codes are available at https://github.com/
bboldin/evolution-respiratory-diseases.

3 These predictions were actually made long before COVID-19 invaded
the human population (with a first public appearance in a conference poster
in 2012), and appear in print only now due to a long meandering route
toward finally reaching the press.
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Appendix A. The extension of the
monomorphic branching criterion to
higher-dimensional trait spaces
For higher-dimensional epitope spaces, the first change to
Equation (18) is that the second derivatives have to be inter-
preted as Hessian matrices. In addition, the inequality sign
should be interpreted as indicating that the left-hand side
minus the right-hand side has at least one positive eigenvalue.

In the following, we use that [ln(Q)]′′ and 𝜑𝜑′′11 are symmetric
matrices, that symmetric matrices, generically to be called A
and B, are negative (positive) definite if and only if XTAX <
(>) 0 for all X ≠ 0, that XT(A 𝛿 B)X = XTAX 𝛿 XTBX
and that the highest and lowest eigenvalues of such matri-
ces are equal to, respectively, the maximum and minimum of
𝒩XTAX ; XTX = 1}.

Since [ln(Q)]′′ is negative definite, at R0 = QN0 = 1, the
difference between the right-hand and the left-hand side in
Equation (18) has only negative eigenvalues, and since 𝜑𝜑′′11 also
is negative definite, increasing R0 increases the eigenvalues,
eventually making them all positive.

Note that, in general, branching in higher-dimensional trait
spaces is a more complicated affair thanmay be expected from
the one-dimensional case. In particular invadability of the sin-
gular point does not imply, as in the monomorphic case, that
there exist nearby dimorphisms, or if such dimorphisms do
exist, it may be that the diverging branches evolve out of the
regionwhere they can coexist in trait-space squared so that the
evolutionary trajectory falls back to monomorphism again,
and so on for ever (see Geritz et al., 2016), a phenomenon
dubbed “trapping” by Zhang et al. (2023). Luckily, for the
present model, we can exclude the occurrence of such trap-
ping by falling back on a theorem from the same manuscript
(see Supplementary Material SI10). One further result from
Geritz et al. (2016) is that even in cases where diversifica-
tion can initially start in more directions, as is the case when
there is more than one positive eigenvalue, usually only the
direction that goes with the largest eigenvalue remains. Sim-
ulations with discrete-time Lotka-Volterra models, which in
Durinx et al. (2008) are proven close to evolutionarily singular
points to be evolutionarily universal, in addition, it indicates
that any higher-order branches in the case of a single positive
eigenvalue occur in the direction of their parent branch,

but otherwise do so transversally (personal communication
Mattias Siljestam).

In the extreme case that the distance along the respiratory
axis does not affect cross-immunity, the assumed multiplica-
tivity of the fitness components coming from the (ecology
modulated effect of) respiratory depth and from the (ecology-
independent acting) additional epitope axes, makes that diver-
sification will start orthogonal to this axis, but only after R0
has become sufficiently large. Thereafter, all branches will
eventually move on to the respiratory height maximizing R0,
which we by extrapolation of the earlier discovered regu-
larities expect also to be the height supporting the largest
diversity.

Appendix B. Simulating the adaptive
dynamics
In the usual mutation-limitation approximation of adaptive
dynamics, new mutants come one at a time in a Poisson pro-
cess with a local rate that, after scaling out the system size and
the mutation probability per infection event, at time t equals

B̂+ =
n

∑
i=1

B̂i, where B̂i = ̂𝜆𝜆iŜ+i , ̂𝜆𝜆i = 𝛿𝛿i ∑
P⊆𝒩𝒩𝒩𝒩i}

̂Ii,P,

Ŝ+i = ∑
P⊆𝒩𝒩𝒩𝒩i}

𝜃𝜃i,PŜP (B1)

where the quantities in Equation (B1) have to be calculated for
the strains present at time 𝜏𝜏(t)𝛿, where 𝜏𝜏(t) is the time of the
last mutant invasion before t. This means that after a mutation
event, we can produce the waiting time till the next muta-
tion by sampling from a standard exponential distribution
and dividing the result by B̂+. The probability that the new
mutation happens in strain i is then B̂i/B̂+. The mutant trait
is generated by adding a small random number, distributed
symmetrically around 0, to the trait value of its parent pop-
ulation. (Of course, close to 0 or 1 this distribution has to
be adapted to keep the mutant between these numbers.) The
next point is that as a result of it arriving singly the mutant
may by chance fail to invade. To calculate its invasion prob-
ability, we observe that our assumption that immunity only
affects the probability of infection makes that the mutant pop-
ulation initially grows according to a linear birth and death
process, with per capita birth rate b = 𝛿𝛿(Y)∑P⊆𝒩𝒩 𝜃𝜃(Y|𝒩Xj; j ∈
P})ŜP(X1,𝒩 ,Xn) and per capita death rate d = 𝛿𝛿𝛿𝛼𝛼(Y)𝛿𝛾𝛾(Y).
Hence, its probability to make it to the deterministic realm is
1 – d/b = (b – d)/b = s/b = s/(d 𝛿 s), where s is the inva-
sion fitness of Y. If the mutant fails to invade, we just repeat
the previous steps till a mutant comes that does. When this
has happened, we have found our next 𝜏𝜏(t) and we use Equa-
tion (21) starting from the old equilibrium values with a small
admixture ofXn+1 = Ymutants to generate the corresponding
population composition.

If we are only interested in the ESCs, we can, of course,
replace all the population composition depended exponential
random variables by a single constant, and if Equation (21)
has only a single attractor, we can also replace the invasion
probability by 1. (We conjecture that Equation (21) has at
most a single internal attractor. However, when there is no
internal attractor, there could be more than one boundary
attractor, in which case the order of invasions and hence the
probabilistic nature of the invasion process might matter for
the evolutionary end result.)
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Appendix C. Waning immunity
Here, we compare the basic model with the waning immunity
model. When immunity wanes at a rate 𝜀𝜀, the single-strain
disease dynamics follows

dS∅
dt

= B 𝛿 𝜀𝜀S𝒩1} – (𝛿𝛿 𝛿 𝛿𝛿I𝒩1})S∅
dI𝒩1}
dt

= (𝛿𝛿S∅ – 𝛼𝛼 – 𝛾𝛾 – 𝛿𝛿)I𝒩1} (C1)

dS𝒩1}
dt

= 𝛾𝛾I𝒩1} – (𝛿𝛿 𝛿 𝜀𝜀)S𝒩1}.

Note that this type of immunity decay at the population level,
although seemingly coming from individuals randomly fully
loosing their immunity in one go, while till that time it stays
constant, can also come from a purely within-host exponential
decay (see Appendix D, cf. Diekmann et al., 2020a,b).

At the non-trivial equilibrium

Ŝ∅ = Q–1

Ŝ𝒩1} =
𝛿𝛿/𝜀𝜀

(𝛿𝛿/𝜀𝜀 𝛿 (𝛼𝛼 𝛿 𝛿𝛿)/(𝛼𝛼 𝛿 𝛾𝛾 𝛿 𝛿𝛿))
𝛾𝛾
𝛿𝛿 (R0 – 1) (C2)

̂I𝒩1} =
𝛿𝛿/𝜀𝜀

(𝛿𝛿/𝜀𝜀 𝛿 (𝛼𝛼 𝛿 𝛿𝛿)/(𝛼𝛼 𝛿 𝛾𝛾 𝛿 𝛿𝛿))
𝛿𝛿 𝛿 𝜀𝜀
𝛿𝛿 (R0 – 1).

The invasion fitness is

s(Y|X) = 𝛿𝛿(Y)(Ŝ∅(X)𝛿(1–𝜑𝜑(Y|X))Ŝ𝒩1}(X))–(𝛿𝛿𝛿𝛼𝛼(Y)𝛿𝛾𝛾(Y)).

At Y = X we have

G(X) = 𝛿𝛿′(X)Ŝ∅(X) – 𝛼𝛼′(X) – 𝛾𝛾′(X).

The selection gradient is independent of 𝜀𝜀 and hence as before

G = (𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾)( ln(Q))′.

So the story for the monomorphic evolutionary dynamics up
to reaching the evolutionarily singular point is exactly the
same as in the case of permanent immunity. However, things
start to change when we consider the diversification tendency.
At X = X∗

𝜕𝜕2s(Y|X)
𝜕𝜕Y2

||
Y=X

= 𝛿𝛿′′Ŝ∅ – 𝛼𝛼′′ – 𝛾𝛾′′ – 𝛿𝛿𝜑𝜑′′11Ŝ𝒩1}.

Once again using (𝛿𝛿 𝛿𝛼𝛼𝛿𝛾𝛾)( ln(Q))′′ = Q–1𝛿𝛿′′ –𝛼𝛼′′ – 𝛾𝛾′′ gives
that X∗ is a branching point if

𝛿𝛿/𝜀𝜀
𝛿𝛿/𝜀𝜀 𝛿 (𝛿𝛿 𝛿 𝛼𝛼)/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾)

𝛾𝛾
𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾 (R0 – 1) 𝜑𝜑′′

( ln(Q))′′
> 1,

(C3)
an expression similar to that for the case of permanent immu-
nity, except that in the latter case 𝜀𝜀 = 0. More, in particular,
the dependence of the readiness to diversify depends in the
same manner on R0 – 1, only the pre-factor differs.

Appendix D. Parameter estimation
For the quantitative fitting of any eco-evolutionary model,
one also needs properties, and, therefore, parameter values,
of organisms that could exist in principle but are not actually
around. Although in the best imaginable world such parame-
ters should be obtainable from mechanistic insights, for mod-
els for disease evolution this is still far from being a practi-
cal option. However, luckily we can do a little better if we

focus on the branching criterion. There we need the disease
parameters primarily for the disease strain that maximizesQ.
Moreover, although this strain may not be present at this par-
ticular moment, the evolutionary trajectory will, in general,
linger for some while in its neighborhood, and when branch-
ing takes place mainly along the additional epitope axes the
kinetic parameters of our simplest model may be expected to
change little with further evolution. If, in addition, the esti-
mated kinetic parameters lie in a region where most of the
parameter groups that occur in Formula (C3) depend only lit-
tle on the precise values of the constituting parameters we are
in business. This last property was actually the main reason
for choosing the common cold as an example.

Another point is that most diseases are more complicated at
the individual level than the simple Markov chain model that
we have adopted for convenience. However, often such more
complicated processes can where the equilibria are concerned
be mimicked by simple Markov chain models, provided we
chose for their parameters appropriately chosen statistics of
the processes that they should mimic. Below we first discuss
the estimation of the parameters of simple Markov chains,
followed by a discussion of the statistics that in more compli-
cated cases can be used for arriving at evolutionarily equiv-
alent simple Markov chains. The concrete application to
rhino- and corona-virus caused common colds can be found
in Appendix E.

Many of the rate parameters of the differential equa-
tion model correspond to the parameters of a continuous
time Markov chain model for the infected individuals. These
parameters can thus be estimated from clinical data, accord-
ing to the usual procedures for such models, by the following
moment (and also maximum likelihood) estimators: the rate
of leaving a Markovian state equals the inverse of the mean
holding time, while the transition rates between states equal
the leaving rate times the probabilities of those transitions.
(For details like estimates of variances and covariances of the
estimators see, e.g., the appendix of Dienske et al. (1980):
reprinted in Metz (1981), downloadable at http://webarchive.
iiasa.ac.at/Research/ADN/Metz1Book.html.) If we use the
same estimator for semi-Markov chain models, that is, models
for which the holding times are not exponentially distributed,
while semi-state transitions happen in the same manner as
in ordinary Markov chains, then the mean fraction of the
time spent in each semi-state is the same as calculated for an
ordinary Markov chain parameterized with the same statis-
tics. This applies to (semi-)Markov chains allowing stationary
states as well as to defective (semi-)Markov chains that are
“born” at a given stationary rate, like the different disease
semi-states in the endemic equilibrium of an infectious disease.

Things become a little more complicated when we want to
consider properties like infectivity and (partial) immunity. If
the average infectivity is not constant but depends on the age
in a disease semi-state, we can just calculate the average total
infectivity, while in that semi-state (i.e., the average area under
the infectivity curve), multiply that with the rate at which
that semi-state is “born” and add over all semi-states. This
then gives the equilibrium value of 𝜆𝜆i. To get at the equiva-
lent of 𝛿𝛿, we should divide the total infectivity per individual
by the mean duration of the period between infection and
the end of the illness, that is, the start of the period where
we want to consider the host as being recovered (or dead,
in any case noninfective). However, unfortunately infectiv-
ity as defined is not strictly an individual level quantity, since
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it is only proportional to the rate of production of infective
particles, or the rate of virus shedding, which are the individ-
ual level quantities. To get infectivity from these, they have
to be multiplied with the probability that a shed inoculum
reaches a new host times the probability that a fully suscepti-
ble host would then get infected by it. However, neither does
infectivity appear separately in Formula (C3), but only as a
component of R0, which can be estimated in many different
manners as described by, for example, Anderson and May
(1992), Britton and Scalia Tomba (2019), and Diekmann et al.
(2013), and in the elusive [ln(Q)]′′, of which we only discuss
its relation to 𝜑𝜑′′.

In the case of waning immunity, it is rarely so that immunity
wanes in a Markovian manner, that is, abruptly changes from
1 to 0 in a random manner with a fixed rate constant, as we
seemingly assumed in Appendix C. Rather, the immunity sta-
tus of a single individual changes in a continuous fashion tak-
ing values between zero and one.We shall assume here that the
immunity can be decomposed as 𝜑𝜑(Y|X)𝜓𝜓(𝜏𝜏), where 𝜑𝜑(Y|X) is
the specificity to a challenge Y of the antibodies elicited by X,
satisfying the same restrictions as in the Markovian case, and
𝜓𝜓(𝜏𝜏) is the immune strength in dependence of the time since
recovery, caused by the changing size of the antibody carrying
cell population. Only when 𝜓𝜓(𝜏𝜏) decays exponentially starting
from 1 the differential equations in Appendix C still describe
the population immunity in the sense that in themonomorphic
case partially immune individuals with immune strength 𝜓𝜓(𝜏𝜏)
can be attributed to S𝒩1} for a fraction 𝜓𝜓(𝜏𝜏) and for a fraction
1 –𝜓𝜓(𝜏𝜏) to S∅, with similar but more complicated expressions
in the polymorphic case. If immunity does not decay in this
manner this allocation rule no longer leads to the traditional
differential equations, but still applies in the community equi-
librium with 𝜓𝜓(𝜏𝜏) replaced by 𝜀𝜀–1 = ∫∞

0 𝜓𝜓(𝜏𝜏)d𝜏𝜏. The reason
is that only the probabilities that newly received Y inocula
infect randomly chosen hosts that once were infected with X,
matter both for the calculation of the equilibrium and for the
invasion of new mutants. (This on the assumption that For-
mula (6) holds good; when the immunity due to more than
one previous infection is determined differently, the previous
argument only applies to the monomorphic case.)

For the invasion dynamics of new mutants the simple time
averaging argument used for the equilibria suffices only for the
determination of the rate at which they can infect, but this is
not enough for the calculation of the initial growth rate of the
mutant population. For that purpose, we also need the rela-
tion s ≈ ln(Ri)/T, where Ri is the equivalent of R0 but now for
an invader in the environment created by the currently circu-
lating strains, and T is the mean waiting time since infection to
producing a daughter infection, where without changing the
order of the approximation we may substitute the value for
the “parent” of the mutant. This mean waiting time equals
the mean latent period plus the mean of the normalized infec-
tion kernel g. Since g equals the normalized curve of infective
particle shedding, this is again a fully individual level quantity.
(For the estimation of T from epidemic as opposed to experi-
mental data see Britton & Scalia Tomba , 2019; Scalia Tomba
et al., 2010.) In Appendix B of Durinx et al. (2008), it is shown
that we can use this approximate expression even for calcu-
lating the second derivatives of s near an evolutionary singu-
larity. Now define the quantities 𝛼𝛼, 𝛿𝛿, 𝛾𝛾, 𝛿𝛿, and Q for semi-
Markov individual behavior in the same manner as before.
Then Ri = Q(Y)(Ŝ∅(X) 𝛿 (1 – 𝜑𝜑(Y|X))Ŝ𝒩1}(X)) just as before.
Not only that, if we take first and second derivatives of s(Y)

for Y, we get exactly the same expressions as we did for the
simple differential equation model. So the branching criterion
Equation (22) is also valid in this more general case.

Appendix E. Common colds
Lets first again consider condition (C3),

𝛿𝛿/𝜀𝜀
𝛿𝛿/𝜀𝜀 𝛿 (𝛿𝛿 𝛿 𝛼𝛼)/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾)

𝛾𝛾
𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾 (R0 – 1) 𝜑𝜑′′

( ln(Q))′′
> 1,

to see on which parameters we should concentrate. The terms
𝛾𝛾/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾) and (𝛿𝛿 𝛿 𝛼𝛼)/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾) can be interpreted as
the probabilities to survive and to die respectively during a
cold. We all know from experience that the latter probability
is very small, say less than 0.01%, making 𝛾𝛾/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾) ≈ 1.
To see what the effect of (𝛿𝛿 𝛿 𝛼𝛼)/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾) is on the first
term of Equation (22) we have to find an estimate of 𝛿𝛿/𝜀𝜀. For
𝛿𝛿, we may without erring too much substitute 𝛿𝛿 ≈ 1/𝜀0. For
the estimation of 𝜀𝜀, we had to go back to the experiments
in Jackson et al. (1962) as later data sets only give immune
titers, not immunity. Jackson et al. (1962) could not yet put
a name to the virus they used as initial infection as well as
later challenges. The reason for believing that this common
cold was caused by a rhinovirus are threefold. Firstly, com-
mon colds are most often caused by rhinoviruses (30–40%)
with corona viruses as second (10–20%) (Lorber, 1996). Sec-
ondly, the shape of the antibody response against corona in
Callow et al. (1990) differs greatly from the shape seen in
Jackson et al. (1962), whereas, thirdly, the shape of the anti-
body response against a rhinovirus shown in Barclay et al.
(1989) grossly agrees. The area under the curve in Figure 4
of Jackson et al. (1962) amounts to ca 0.86 immunity years.
However, that curve ends after two years at an immunity of
ca 0.16. Linearly extrapolating the curve from there would
amount to about 0.14 additional immunity years, but this is
only a lower bound, neglecting the suggested upward curva-
ture of the curve. The age dependence of the frequency of
rhinovirus infections in the population even suggests that this
lower bound is far from sharp. So we guesstimate the immu-
nity years conferred by a rhinovirus infection at around 3.
(Of course, different rhinovirus strains could induce very dif-
ferent immunity time courses. However, the total of the data
in Callow et al. (1990) and Jackson et al. (1962) suggests the
different values of 𝜀𝜀 to be at least in the same ballpark.)

To estimate R0 –1, we use that the number of new infection
per year equals the number of ill hosts divided by the aver-
age duration of the illness, ̂I𝒩1}(𝛿𝛿 𝛿𝛼𝛼𝛿𝛾𝛾). Dividing this by the
density of hosts gives (see Appendix C)

(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾) ̂I𝒩1}
N0

= 𝛿𝛿/𝜀𝜀
𝛿𝛿/𝜀𝜀 𝛿 (𝛿𝛿 𝛿 𝛼𝛼)/(𝛿𝛿 𝛿 𝛼𝛼 𝛿 𝛾𝛾) (𝛿𝛿 𝛿 𝜀𝜀)(1 – R–1

0 )

≈ 𝜀𝜀(1 – R–1
0 ). (E1)

Let our lifetime average of common colds per year be 4, of
which only 40% are caused by rhino viruses of which there
circulate, say, 50 fully compatible ones, then for a single strain
the number of infections per year per head is ca 0.03. This then
gives R0 ≈ 1.1.

For corona caused colds the data are less complete. The
best data on immunity, by Callow et al. (1990), are in the
form of log geometric mean concentrations (over volunteers)
of specific antibodies, not of frequencies in previously infected
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relative to uninfected volunteers of staving of a new chal-
lenge, which would be the appropriate estimate of the 𝜓𝜓 from
Appendix D. To obtain at least some numbers we assumed 𝜓𝜓
to be proportional to the concentration of serum specific IgG
(for coronavirus 229E) reported in Callow et al. (1990) with a
maximum of 0.8. This then gave 0.25 as an initial estimate for
𝜀𝜀–1. However, in the second half of the considered period, the
immunity seemed to wane slower than that of the rhinoviruses
considered by Jackson et al. (1962), which would in the end
bring our estimate for 𝜀𝜀 in the ballpark of our earlier estimate
for rhinoviruses. Moreover, we have to account for the fact
that there appears to be some cross-immunity between corona
strains, lowering their incidence. As we have too little data on
that cross-immunity, we decided to go for an inequality only.
With 20% of the cases and only four serotypes this then gives
R0 ≳ 2.5.
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