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Abstract

Our understanding of bird song, a model system for animal communication and the neurobi-

ology of learning, depends critically on making reliable, validated comparisons between the

complex multidimensional syllables that are used in songs. However, most assessments of

song similarity are based on human inspection of spectrograms, or computational methods

developed from human intuitions. Using a novel automated operant conditioning system, we

collected a large corpus of zebra finches’ (Taeniopygia guttata) decisions about song sylla-

ble similarity. We use this dataset to compare and externally validate similarity algorithms in

widely-used publicly available software (Raven, Sound Analysis Pro, Luscinia). Although

these methods all perform better than chance, they do not closely emulate the avian assess-

ments. We then introduce a novel deep learning method that can produce perceptual simi-

larity judgements trained on such avian decisions. We find that this new method

outperforms the established methods in accuracy and more closely approaches the avian

assessments. Inconsistent (hence ambiguous) decisions are a common occurrence in ani-

mal behavioural data; we show that a modification of the deep learning training that accom-

modates these leads to the strongest performance. We argue this approach is the best way

to validate methods to compare song similarity, that our dataset can be used to validate

novel methods, and that the general approach can easily be extended to other species.

Author summary

How do birds hear the differences between their songs? This fascinating question carries

implications, since the study of bird song, a model system for the neurobiology of learning

and animal communication, depends critically on our ability to assess the similarity of

songs. Traditionally, researchers compare sounds by human assessment, or use computa-

tional methods based on human intuitions about similarity. However, neither approach is

connected to birds’ own perception of sound similarity. Here, using a novel automated
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operant conditioning system, we recorded many thousands of acoustic judgments of simi-

larity from zebra finches, and used this perceptual decision data for the first time to train a

deep learning system. The trained system outperforms other computational methods for

the task of making the same judgments as birds. This algorithm to compare song similar-

ity, together with the potential of extending the general approach to other species, places

the study of bird song on a firmer footing.

Introduction

Bird song is an important model system for several related fields: the neurobiology of learning,

animal communication, sexual selection and cultural evolution [1–3]. Similarities in develop-

ment, neurobiology and neurogenomics have further led song to become a model system for

understanding human speech [3, 4]. Its importance largely results from the fact that songbirds

memorise songs they hear from adult conspecifics during a sensitive phase early in life, and

then produce imitations of these songs [1], but this flexibility also leads to bird song being an

unusually variable animal signal.

All these fields of bird song research depend on reliable comparisons of song recordings.

This task is not straightforward because bird songs, like many acoustic signals, are very high

dimensional—with many potential spectral features varying dynamically through the course of

each song unit. In fact, when animals themselves compare two vocal signals, they must subjec-

tively integrate numerous differences in frequency and timing. This leads to the realisation

that the comparison methods we use need to be validated against animals’ own perception:

there is no comparison method that can be objectively “correct” [4, 5].

The first studies comparing bird song were performed by comparing songs by ear or tran-

scribing songs into onomatopoetic descriptions [6]. The invention of the sonograph revolu-

tionized the study of animal communication [7], making it possible to produce a visual

representation of the time-frequency structure of the songs on the basis of which spectrograms

of songs can be compared visually: human visual assessment of spectrographic similarity

(HVA). To assess similarity more repeatably, Clark et al. [8] proposed spectrographic cross-

correlation (SPCC) as a computational measure of similarity. Two spectrograms are superim-

posed and then shifted temporally to find the peak correlation coefficient, which is used as a

measure of similarity between the sounds. A recent implementation of this method can be

found in software such as Raven Pro [9]. SPCC relies heavily on the spectrographic representa-

tion of the signal, for example being intolerant of often minor differences in the relative dura-

tion of spectral components. An alternative approach is to extract contours of acoustic features

that are believed to be perceptually relevant, and then to align the contours of two signals and

integrate the differences between them in these features. Sound Analysis Pro (SAP) is a widely

used tool that employs this approach, measuring several features (e.g. Wiener entropy, spectral

continuity, pitch and frequency modulation), that can be tuned to the study species [10]. SAP

allows for timing differences by linearly warping time by up to 30%. Another software package,

Luscinia [11], also uses multiple acoustic features to generate a dissimilarity measure, but uses

dynamic time warping (DTW) to align features. DTW allows non-linear warping of time to

find the optimal alignment of features. SAP and Luscinia both require decisions about which

acoustic features to use and how to weight them.

Recently, data-driven methods have been proposed for the analysis of song similarity based

on machine learning [12–14]. While not yet widely used in bird song research, such methods

reduce the dependence on engineering good features, by using spectrograms or waveforms
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directly as input. Deep learning can achieve impressive accuracy on various tasks, but this nei-

ther implies nor demands that their recognition strategies are similar to those of animals [15].

All comparison methods make assumptions about what constitutes similarity in acoustic sig-

nals. This is true even in the case of unsupervised deep learning, which (like principal compo-

nents analysis before it) derives a representation automatically from unlabelled data: in such a

case, assumptions about similarity emerge implicitly from the choice of training data as well as

the neural net structure.

The most fundamental problem facing all comparison methods is how their assumptions

are validated [5]. The design of the algorithms relies on the intuition of the scientists, although

particular decisions can be justified on the basis of perceptual research. But, typically, they

have only been validated by comparison with the previous “gold standard”, HVA. However,

HVA is based on human, not avian, perception, in the visual, rather than auditory domain, of

a spectrographic representation of a sound, which differs in known ways from how sounds are

perceived (e.g. the linear rather than logarithmic scaling of frequency [16]).

To overcome these problems, in the present work we have: 1) developed a novel method to

test zebra finches for their perception of sound similarity and deployed it to collect a large

data-set of avian sound assessments, 2) developed a novel algorithm to train a deep neural net-

work to assess song similarity, and 3) validated this algorithm as well as current conventional

methods of measuring song similarity on basis of the birds’ assessments. By using an auto-

mated operant feeder in combination with radio-frequency identification (RFID) technology

we were able to individually train and test group-living zebra finches continuously, enabling

us to collect over 900,000 responses to stimuli. Such response data typically involve some

amount of inconsistent or unclear responses, so we further adapted our algorithm to train

using both the unambiguous and the ambiguous operant response data. Although here we

tested birds for their assessments of similarity in zebra finch syllables, this method can be

applied to measure similarity between arbitrary new song unit recordings. Unlike previous

methods, this algorithm is not validated by HVA, but by a measure of the birds’ own percep-

tions of sound similarity. Here we found that the algorithm we developed on the basis of the

birds’ assessments outperformed all widely used methods.

Materials and methods

Assessments of song similarity

Ethics statement. Animal procedures were approved by the UK Home Office and con-

ducted under UK Home Office Procedures Project License P3B2BBD6B.

Birds. We experimentally tested group-living zebra finches for their perception of sound

similarity using a novel operant conditioning system. Experiments were performed using 26

domesticated zebra finches from an outbred colony at Queen Mary University of London. All

birds used in the experiment were hatched in the population between December 2015 and

May 2018 and reared in a flock in a large free-flight room. The birds were fitted with a RFID

(radio frequency identification) tag leg band (Eccel Technology Ltd., Leicester, UK) in addi-

tion to the standard metal leg ring and a colour band. Throughout the experiment all birds

were kept at a 12.00:12.00 light:dark schedule (lights on at 7:00 GMT), in two separate aviary

rooms (one room with two aviaries of approx. 100x200x200cm and one room with two aviaries

of approx. 200x200x200cm). Each experimental aviary held 4–6 individuals in both single-sex

and mixed groups. The birds received water ad libitum, and a commercial tropical seed mix-

ture from the operant feeders. Each aviary was outfitted with 2 operant feeders. Birds could

feed ad libitum for a half hour after lights on, and a half hour before lights off. Operant feeders

were operational from 7:30 to 18:30, which meant that the birds had to interact with the feeder
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to gain access to the food. Every day the performance of each bird and its number of successful

visits was monitored. Birds that did not interact with the apparatus or were consistently unsuc-

cessful were removed from the experiment. This occurred in two cases: one bird did not inter-

act with the device, and one bird developed an unrelated health problem during the

experiment. Additionally, birds were weighed before the experiment started and after 2 train-

ing cycles to check for excessive changes in weight.

Operant device. We used two different operant feeder designs (see Fig 1a for a schematic

image of design 1, and S1 Fig for a photo of the operant feeder). Each feeder device consisted

of a PIT tag detection system, a motor-activated feeding tube, two capacitive touch perches

registering responses, speaker system, a Raspberry Pi 3B+ and a Hall effect sensor. In design 1

all electronics are integrated in a weatherproof electronics box, whereas in design 2 these com-

ponents are integrated in drainpipe elements. Additionally, in design 2 the stimuli are played

through two speakers, whereas in design 1 there is only one speaker. Other than the external

casing and the number of speakers the devices work identically. The Raspberry Pi computer

receives information from the PIT tag system and the response perches, and on the basis of

this input controls the speaker output and the running of the motor activating the reward

mechanism. A PIT antenna was positioned at 20cm from the feeding tube, which registered

the bird passing through. On opposite sides of the feeding tube two aluminium response

perches were placed, which registered the presence of a bird on the perch through a capacitive

touch sensor. The feeding mechanism consisted of a PVC outer tube with an opening on both

the left and the right side, and inside this tube a transparent acrylic inner tube with only one

Fig 1. Schematic image of operant feeder and overview of the bird training scheme. (A) Schematic image of operant feeder design

1. (B) Bird training scheme with the different training steps. During pre-training birds were habituated to the device, and learned

how to operate the device to obtain a food reward. After pre-training finished, they proceeded with their first testing cycle. Each

testing cycle (step 4a—5) consisted of a training period in which the birds were trained with new sets of stimuli (step 4a-4c), followed

by a testing period (step 5) during which each bird is still presented with the same set of 8 training stimuli, but now interspersed by

10–15% probes. Once a sufficient number of probes had been collected, the testing period, and with it the current cycle, was finished.

The birds subsequently started a new cycle by starting training with a new stimulus set (step 4a).

https://doi.org/10.1371/journal.pcbi.1012329.g001
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opening. This inner tube held all the seeds used as a reward. By turning the inner tube so that

the opening lined up with the opening in the outer tube, birds were able to access the seeds in

the inner tube. To prevent misalignment of the inner tube a Hall effect sensor was built in

together with a magnet attached to the inner tube, to check the position of the inner tube after

each reward, and to readjust when needed.

Sound stimuli. Sound stimuli used were 887 syllables extracted from zebra finch song

recordings [17]. These song recordings were made in a different population from the focal

population to avoid any potential confounding effects in case of recognition of singer identity.

All songs were recorded at 48kHz and divided into separate syllables, which were high pass fil-

tered (100Hz), normalised and a 20ms fade in and out was added. When a stimulus was played

it was repeated 4 times in quick succession with a 20ms interstimulus interval.

Test paradigm. We tested group-living captive zebra finches for their perception of

sound similarity using an operant feeder with a 2 alternative forced choice (2AFC) paradigm:

forced-choice ‘AXB’ judgments (Fig 1A). In short, this meant that we trained birds to discrimi-

nate between two sound stimuli, ‘A’ and ‘B’ and associate each of them with one of the choice

perches. Once the birds were accurate in their responses to these training stimuli we intro-

duced 10–15% probe stimuli ‘X’, which in terms of similarity lies somewhere in between the

two sets of training stimuli, for them to assess for their perception of similarity. When a bird

was presented with a probe stimulus we expected it to respond by choosing the perch of the

training stimulus that it perceived to be most similar to the presented probe. We infer that the

choice made in response to the AXB (probe-stimulus) triplet represents a perception of cate-

gorical similarity. A trial was started by a bird passing through the PIT antenna and registering

its identity on basis of the PIT tag. Depending on the identity of the bird, the software selected

a stimulus sound to be played through the speaker(s) on the top of the device. Each stimulus

sound is either a training stimulus, and thus associated with a ‘correct’ side of the device, left

or right, or is a probe sound. Responses to training sounds were rewarded only when the bird

responded by hopping onto the perch associated with that side. In case of an incorrect

response, a short fragment of white noise was played and the feeder remained closed. All

responses to probe sounds were rewarded by the inner feeding tube opening, through which

the birds had access to the seeds for 2 seconds. For a more detailed description of the steps

involved in pre-training, training and probe presentation see below and Fig 1B. Since training

and testing were done in a group setting birds could learn from, or scrounge from others’

actions. Scrounging occurred either by displacing the original bird to claim the reward after a

successful operation of the device, or by hopping on a choice perch after the focal bird trig-

gered sound playback. Although this may have increased noise in our data, testing in a group

setting made it possible to train and test continuously for months, without the welfare consid-

erations that come with testing in social isolation.

Selection of stimuli. Using the DTW in Luscinia sound software [11] we compared all

syllables with each other and extracted dissimilarity measures for each combination of sylla-

bles. Based on these dissimilarity measures, we subsequently constructed a matrix with, for

each syllable, a ranking of all other syllables ranging from the most similar to the least similar

syllable. From all syllables a random syllable was chosen as the first training stimulus, stimulus

‘A’, and a second training stimulus, stimulus ‘B’, was selected to be ranked between 50 and 150

similar to the first training stimulus. For each stimulus A and B, their 7 most similar syllables

were selected as additional stimuli. Probe stimuli were selected to be ranked between 20 and

200 of both training stimuli (see S2 Fig).

Pre-training. Step 1—Habituation to the feeder: Feeder opening moves from left to right

side, every 30 minutes. Birds can feed ad libitum from the feeder. Step 2—Birds have to go

through the antenna, which triggers a playback of a stimulus. After the playback the feeder
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immediately opens to the side of the feeder associated with the sound. The feeder remains

open for 8 seconds during which the bird can feed. Step 3—The time delay to open after play-

back is increased. When a bird hops onto a choice perch within the time delay period it

receives either a correct (stimulus is repeated and the feeder opens immediately) or an incor-

rect response (playback of 3s white noise, and an added time delay of 30s before the next trial

can be initiated). If the bird does not make a choice within the time delay period the feeder

opens automatically after the time delay. Step-by-step the time delay period is increased to

encourage the birds to make a choice, rather than to wait for the feeder to open automatically.

At the same time, the reward time of the automatic opening is reduced from 8 seconds to 3 sec-

onds, whereas the choice-reward time is kept at 8 seconds.

Training. Step 4a—The time delay to open automatically is removed and from this phase

onward the feeder does not open automatically anymore: the birds have to make a correct

choice to receive a food reward and the the choice-reward time is reduced to 2 seconds. Similar

to the previous phase an incorrect response by the bird is followed by a playback of 3s white

noise, and an added time delay of 30s before the next trial can be initiated. In this training

phase each bird is trained with its own set of stimuli: one stimulus is rewarded on the left side,

and the other stimulus is rewarded on the right side. Step 4b—When on average the group

makes 70% accurate decision we increased the number of stimuli on each side to 4. These sti-

muli are selected to be the original stimuli plus the 3 syllables most similar to each of the origi-

nal stimuli. Cycle accuracy was calculated as the proportion of correct responses among all of a

bird’s responses to the training stimuli over the total of a cycle’s test period. Step 4c—When on

average the group makes 70% accurate decision we increased to 8 stimuli on each side (original

stimulus and the 7 most similar stimuli).

Probe testing. Step 5—After the group reaches on average 70% accurate decisions with 8

stimuli on each side we added 10–15% probes. The responses to probe sounds are always

rewarded. For each probe testing period, we aimed to collect approximately 1000 probe deci-

sions in total (all birds together). After reaching this number the current cycle was finished

and the birds would start a new cycle by starting training with a new stimulus set (Fig 1B).

Deep learning embeddings

We next built a deep learning model that can learn from the birds’ judgements about similarity

of sounds and use it to create a perceptual space that can mirror birds’ perception. This percep-

tual space is a learnt vector representation of data referred to as an embedding space and can

be used for classification, verification and other similarity-based tasks [14, 18, 19].

Our deep learning approach follows that of [20], but is adapted specifically to animal beha-

vioural data, which can, due to the limited accuracy and consistency of measured animal judg-

ments, contain a high proportion of uncertain data points. We define ambiguous data points

to mean those for which, even after general data quality filtering, we do not have a consensus

in the birds’ decisions for a given stimulus.

In common with [21], our method is distinct from most deep learning embedding methods

(including triplet-based methods) in that no semantic “classification” labels are used. It is also

distinct from purely unsupervised methods which are guided only by the signal variation in

the dataset, and thus have no necessary link to perceptual or communicative relevance [13].

In order to infer a data-driven similarity algorithm from our probe responses, it was

required to fit a highly non-linear function to the data, where the algorithm input is the audio

data (transformed to power mel spectrograms), and the fit is conditioned on the responses to

our probes. Deep learning has made great advances in creating learnt embeddings by methods
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such as triplet networks which rely on distance metrics rather than classification as the training

objective [22–25].

Triplet networks are trained on triplets of data points consisting of an anchor, a positive

sample, and a negative sample. Through the training procedure an embedding space is learnt

so that the anchor and the positive samples are featured close to each other, while at the same

time the anchor and negative samples are separated as much as possible. However, most previ-

ous successes in representation learning are driven by datasets with explicit class labels, which

are used to provide a strong signal of semantic distance even for triplet networks [26]. In other

words, the distance metric is often derived from an underlying measure of classification cor-

rectness, rather than general similarity.

Our operant AXB experiments were designed so a probe X can correspond to a triplet

anchor. Based on the A/B decision a bird made for that probe, all training stimuli rewarded on

the selected side correspond to positive exemplars for that anchor, while all training stimuli

rewarded on the opposite side correspond to negative exemplars in the triplet. This makes it

possible for us to create a dataset of triplets out of the decisions made by the zebra finches in

order to train a triplet network to learn an embedding space for the recordings used in the

experiment. We are able to then project new stimuli into this learnt embedding space to mea-

sure their similarity to the training stimuli. This is done without any use of labels or class

knowledge for the stimuli. The goal is for the learnt embedding space to make the same A/B

decisions as birds would make for the recordings.

Network architecture. An overview of the deep learning model architecture for process-

ing a single stimulus is depicted in S3 Fig. We compute the log-scaled power mel spectrogram

from the zebra finch recordings, of 150 mel bands and 170 time frames, and use it as input to

our model. The selection of log mel spectrogram as input was based on prior work which

found these useful for deep learning applied to birdsong data [20](cf. [27] for a comparison

between different sound representations of zebra finch vocalisations). The parameters for the

Mel spectrogram computation are set as follows: the length of fast Fourier transform (FFT)

window equals 2048, the number of samples between successive frames is set to 128 with win-

dow length 512. The architecture of our model consists of a shared convolutional part followed

by two parallel parts of attention pooling and max pooling, the predictions of which are com-

bined at the last layers and projected to an embedding space of d dimensions (see [20] for

more information).

For our triplet model, the anchor, positive and negative examples are each passed separately

through the network depicted in S3 Fig, to estimate the coordinates of each stimulus in the

perceptual embedding space. The distances between these coordinates are then used as input

to the triplet loss function, described next, which will be used to update the weights of the

network.

We reiterate that, in common with [21], our method is distinct from most deep learning

embedding methods (including triplet-based methods) in that no semantic “classification”

labels are used. Our algorithm training is driven by the data coming from two-alternative simi-

larity decisions, using both the ambiguous and unambiguous behavioural data.

Metric learning with triplet loss. Let f ðxÞ 2 Rd represent an embedding that maps a

sample x (an audio clip) into a d-dimensional space. Often f(x) is normalised to have unit

length for training stability [28]. We want to ensure that an anchor sample xa is closer to posi-

tive samples xp that are more perceptually similar to it than negative samples xn without having

any information about the class of each sample. We define the distance between any two points

xi and xj as Dij. In our experiments, this distance denotes the Euclidean distance. For dataset of
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where [�]+ is standard hinge loss and δ is a non-negative margin hyper-parameter. The larger

the margin, the further the negative example should be from the anchor in the embedding

space [19, 25, 26].

Unambiguous triplet setting. In order to build a perceptual space that reflects zebra finch

perception, we require a set of easily distinguishable signals to avoid perceptual ambiguity.

Bird decisions for sound similarity can contain a lot of noise; this can be due to the cycle accu-

racy of the individual, scrounging interactions or the consistency of probe decisions caused by

perceptual ambiguity of sounds. In triplet learning it can be important to create a dataset with-

out any ambiguity in it, and in our experiments we try to limit this noise from the above

sources as much as possible.

In order to reduce decision noise and make our dataset unambiguous we perform the fol-

lowing pre-processing steps on the bird decision data:

• Discard individual’s decisions if cycle accuracy for them is less than 65% on the training sti-

muli. (We use training stimuli to estimate this, since we cannot calculate it from the probes:

we do not make any assumptions about their positive/negative association with the training

stimuli.)

• Discard decisions if there were any technical issues with the device for that day.

• Discard inconsistent probe decisions: a consistent probe decision is one where a bird made

at least two decisions for a particular probe during a cycle, and of those decisions, the bird

chose the same side in > 70% of the decisions.

This unambiguous dataset of decisions is constituted of 2,099 triplets. In total 547 probe syl-

lables were used as an anchor for these triplets and each triplet was assessed on average

4.326 ± 2.51 times (mean ± sd). We split these into training and evaluation sets of 1,239 and

860 triplets, respectively. The training triplets are used as input to our deep learning model in

order for it to learn a space that can satisfy the triplet metric of Eq 1. The evaluation set only

consists of triplets acquired from birds with an accuracy of 77% and higher to make it as

unambiguous as possible and to properly evaluate the performance of our model.

Ambiguous triplet setting. In [21] a method is introduced to learn perceptual embed-

dings for haptic signals, gathered from human participants. Similarly to our data, theirs was

based on two-alternative decisions about texture similarity between triplets of items. Their

model is trained on both unambiguous and ambiguous triplets and they show an improvement

over training only on unambiguous data.

To make use of the ambiguous data points for training our model, we collected bird deci-

sions that had an inconsistency in side selection. Decisions with 50% to 70% side consistency

were chosen from individuals with cycle accuracy of 65% and higher to produce a dataset of

“ambiguous” triplets. This ambiguous dataset of decisions totals 1,073 triplets. We split these

into training and evaluation sets of 668 and 405 triplets, respectively. Unlike common triplet-

based learning approaches which tend to ignore these types of triplets as uninformative, our

approach treats both triplet types (ambiguous and unambiguous) as informative, based on the

work in [21]. Deep learning benefits from diverse training data. The key intuition is that an

ambiguous triplet is not bad data, but is inherently informative: the embedding should arrange

points such that ambiguous triplets should not have an unambiguous embedding distance.
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Depending on whether a triplet is ambiguous or unambiguous, a different condition needs

to be satisfied. For an unambiguous triplet xa, xp, xn: D2
an � D2

ap � d; on the other hand for an

ambiguous triplet xa, xp, xn: D2
an � D2

ap ¼ 0, where Dij is the Euclidean distance between any

two points xi and xj and δ is a non-negative margin hyper-parameter. These conditions are

defined as:

pu ¼ D2
an � D2

ap � d ð2Þ

pa ¼ D2
an � D2

ap ð3Þ

In order to facilitate training with both ambiguous and unambiguous triplets, for a triplet

T ¼ fxia; x
i
p; x

i
ng

N
i¼1

we adjust the loss function of Eq 1 to:

LðT Þ ¼
XN

i¼1

½uð1 � exppuÞ þ ð1 � uÞð1 � exp�jpa jÞ�
þ

ð4Þ

where [�]+ is standard hinge loss and u 2 [0, 1] denotes if a triplet is ambiguous (u = 0) or

unambiguous (u = 1). This loss differs slightly from that of [21], and in pilot studies was found

to be more stable for training.

In some of our machine learning tests we use only the unambiguous decisions; we also test

the use of ambiguous and unambiguous data together. Furthermore, we explore models that

use triplets created by Luscinia after tuning the algorithms parameters using the birds’ deci-

sions (we call these Luscinia-U triplets, as explained in the following section). In either case the

training data are treated as a single training dataset, to train the network by backpropagation

using the Adam optimiser, following standard practice in deep learning.

Evaluating deep learning. To explore the sensitivity of our deep learning method to

hyperparameter settings, we evaluated its performance at different dimensionalities of embed-

ding space, and different ways of using bird decisions and Luscinia-U decisions in training

(Table 1). To evaluate whether an algorithm can produce similarity measures compatible with

the birds’ judgments recorded in the operant devices, we measured the degree to which each

algorithm produced the same triplet decision as did the birds. We focussed our evaluation on a

held-out set of unambiguous sounds. Due to the inherent variability of behavioural decision

data, the gold standard is not 100% but is an accuracy rate matching that of the birds. This rate

cannot be measured directly since the ground truth is unknown for the test probes; we esti-

mated it from their cycle accuracy as estimated maximum attainable accuracy (cycle accuracy).

Table 1. Table of attributes for all learnt embedding space through our deep learning model.

Emb-U Emb-LU Emb-LUA Emb-Pre Emb-PreUA Emb-PreLUA

pre-trained (Pre) - - - X X X

Luscinia triplets (L) - X X - - X

unambiguous bird decisions (U) X X X - X X

ambiguous bird decisions (A) - - X - X X

In the table, pre-trained (Pre) refers to models that used Luscinia-U triplets to pre-train with and initialise the weights of the deep learning model; Luscinia triplets (L)
refers to models that used Luscinia-U triplets for training (104457 triplets); unambiguous bird decisions (U) refers to models that used the triplet decisions created by the

bird judgements through our operant experiments (2099 triplets: 1,239 training and 860 evaluation); ambiguous bird decisions (A) refers to models that used the triplet

decisions created by the bird judgements through our operant experiments (1073 triplets: 668 training and 405 evaluation). Note that some models used more than one

source of triplets to train.

https://doi.org/10.1371/journal.pcbi.1012329.t001
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Cycle accuracy was calculated as the proportion of correct responses among all responses to

training stimuli during the test phases. We also calculated an upper bound based on the birds’

within- and between-bird agreement on the test probes, calculated as the percentage of deci-

sions that agree with the majority decision for a given triplet, averaged over all triplets for

which there was more than one decision recorded. This is an optimistic upper bound since it

relies on a consistency assumption (namely, that each bird’s majority decision is the correct

decision for a AXB triplet). We refer to it as the estimated maximum attainable accuracy (con-
sistency assumption).

Luscinia parameter tuning

Separately, we used the bird decisions (from the unambiguous triplets) to tune the parameters

of the Luscinia software [11]. We refer to this tuned software as Luscinia-U.

Luscinia uses dynamic time warping (DTW) to align syllables, based on the trajectories of

several acoustic features [11]. In this case, these features were: fundamental frequency, peak

frequency and mean frequency (log-transformed), fundamental and peak frequency change

(the arcsin transform of the slope of these features on the spectrogram), normalized funda-

mental frequency (where the syllable-wide mean of fundamental frequency is subtracted from

the fundamental frequency), Wiener entropy and harmonicity (measures of spectral complex-

ity), and vibrato amplitude (a measure of sinusoidal signal in the fundamental frequency).

Finally, time itself is included as a feature in order to penalize time warping. When two sylla-

bles are compared using this DTW process, a Euclidean distance is calculated over each of

these features for each point in one syllable compared with each point in the other syllable. A

dynamic algorithm then searches for an efficient alignment between the two syllables using

these distances, and an overall dissimilarity is then calculated by averaging dissimilarities over

the alignment.

A key challenge is to decide how to weight the sound features relative to each other. We

developed a data-driven approach that used the same unambiguous triplets that we used to

train neural networks. For each triplet in the dataset, we calculated the likelihood that the

DTW algorithm would make the same choice as the birds, by calculating the dissimilarity

between probe and the two training stimuli as: Xp = (DprobeA − DprobeB)/(DprobeA + DprobeB).

With this dissimilarity Xp we integrated log-likelihoods over the entire training dataset:

1=ð1 þ eð4XpÞÞ, and used a Metropolis-Hastings acceptance rule, to update or keep the weights

used in the DTW algorithm. We used flat priors across potential parameter values. This Monte

Carlo Markov Chain approach found DTW weightings that would maximise likelihood. The

MCMC chain was initiated with equal weightings for each feature. We ran it for 10,000 itera-

tions, and discarded the first 1,000 iterations. New parameter values were sampled from a log-

Gaussian distribution with standard deviation 0.1. In each generation, parameters were nor-

malized to sum to 1. We then estimated the mean parameter weightings from the last 9,000

generations of the MCMC and used those in a DTW analysis to measure the dissimilarity

between each pair of syllables in the dataset. This dissimilarity matrix was then used for further

analysis and comparison of different methods. The weightings of acoustic features before and

after training are shown in S1 Table.

We evaluated Luscinia-U directly, but we also experimented with using triplet decisions

from that system as additional training data for deep learning, to supplement the bird deci-

sions dataset. For this, we used the tuned Luscinia-U to generate additional AXB triplet deci-

sions. These were then used as additional data, either to pre-train the deep learning network or

simply pooled with the natural bird decisions during the main training phase. For this we
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filtered the Luscinia-U triplets down to only the coarse-level (‘easy’) distinctions using a mini-

mum distance threshold, to minimise the risk of contradicting birds’ judgments.

Other software

We compared the performance of our deep learning methods with current software used for

similarity measures: Raven Pro [9], Sound Analysis Pro [10] and Luscinia [11] (with and with-

out tuning). For each software package, we extracted the (dis)similarity matrix of the evalua-

tion set and used this to determine their AXB decisions. From this we calculated their accuracy

at predicting bird AXB decisions.

Acoustic features used by the algorithm

It is hypothetically possible that our trained deep learning algorithm would rely entirely on

just one or a few basic underlying acoustic features, such as fundamental frequency or fre-

quency change. To test this, we carried out MRM (Multiple Regression on Distance Matrices)

[29] analyses to understand which acoustic features best predicted the 64-dimension embed-

ding of our algorithm. Since this embedding was trained on birds’ perceptual judgements, this

analysis also indirectly reflects birds’ perceptual weightings of different features.

We computed a Euclidean distance matrix between all syllables in our data-set, based on

their embedding in 64-dimensional space. We then extracted summary statistics (mean, maxi-

mum, minimum, start and end) for each of five acoustic features (fundamental frequency,

peak frequency, fundamental frequency change, Wiener entropy, harmonicity) plus syllable

length. Syllable length and fundamental and peak frequency were log-transformed. We then

scaled each of the 26 measures by subtracting their mean and dividing by their standard

deviation.

Since we expected that our comparison method is highly multidimensional, we first exam-

ined the importance of all 25 summary statistics (5 for each of the 5 acoustic features), and syl-

lable length. We ran an MRM analysis (permutations = 10,000) to explore how these 26

predictor matrices predicted syllable dissimilarity according to our trained algorithm (Emb-

LUA).

Subsequently, to get a better understanding of which overall features the birds pay attention

to, we calculated, for each acoustic feature, one dissimilarity matrix that combined the 5 sum-

mary statistics, using the distance function in the R package ecodist (version 2.0.10) [30]. We

then ran an MRM analysis (permutations = 10,000) to explore how these 6 predictor matrices

predicted syllable dissimilarity according to our trained algorithm.

Finally, we examined to what part of the syllable the birds pay attention to by calculating

distance matrices for the mean, start and end summary statistics, and ran a third MRM

analysis.

Results

Training and test outcomes

Using RFID technology we were able to continuously train and test each bird individually

within its home cage and social group, enabling us to collect sound assessments over long time

periods and on a much larger scale than conventional operant experiments. We trained 23

birds in 4 aviaries with in total 99 sets of stimuli. Each stimulus set was used once to train one

bird. Over a period of 11 months we presented the birds with 1,116,214 trials, for which we

received 927,158 responses (totals include all trials in the training phases step 4a-4c, and the

testing phase step 5). Of these trials, 25,999 trials were probe trials from which we collected
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22,048 sound assessments from the birds of in total 753 probe syllables. In total, birds assessed

the same probe on average 3.93 ± 2.53 times (mean ± sd). For each bird and each testing

period, we calculated a cycle accuracy, which is the overall accuracy in its responses to the

training stimuli during a specific test period. Out of 99 stimulus sets, for 59 sets the birds

reached a cycle accuracy of 65% or higher (mean accuracy of birds performing > 65% ±
sd = 73.9% ± 5.5%).

To assess whether birds made the choices we expected, we compared the birds’ assessments

of similarity with assessments made by Luscinia. Dissimilarities between probe and stimuli,

according to the Luscinia DTW algorithm, generally predicted zebra finch choices of perches

(Fig 2). See also S4 Fig for example spectrograms of a stimulus pair and 4 probes that were

assessed by the bird, along with the bird’s classification of the probes.

Deep learning

To explore the sensitivity of our deep learning method to hyperparameter settings, we evalu-

ated its performance at different dimensionalities of embedding space (S5 Fig), and different

ways of using bird decisions and Luscinia-U decisions in training (Table 1 and Fig 3). Good

performance was obtained with embeddings of 16 dimensions or more, peaking at 64 dimen-

sions (S5 Fig).

We evaluated our algorithms by measuring the degree to which each algorithm produced

the same triplet decisions as birds. We found that the deep learning performance is improved

by our interventions, especially Emb-LUA—which used the unambiguous and ambiguous

triplets as well as the additional Luscinia-U triplets—but not by pre-training (Fig 3). Using a

mix of Luscinia-U decisions made on triplets of sounds along with perceptual decisions from

the birds provided the best result.

Fig 2. Dissimilarities between probe and stimuli, according to Luscinia, generally predicted zebra finch choices of

perches. The x-axis plots (RDProbeLeft − RDProbeRight)/(RDProbeLeft + RDProbeRight) where RDProbeLeft is the rank distance of

the probe to the left training stimulus and RDProbeRight is the rank distance of the probe to the right training stimulus.

The y-axis shows the log-odds of zebra finches choosing the right perch, adjusting for the side bias of the entire data-

set (l.o.=0.584). Trials were binned into 20 equally sized groups based on the relative Luscinia probe distance.

https://doi.org/10.1371/journal.pcbi.1012329.g002
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We furthermore investigated the similarities between all models by projecting them in a

2-D space by using multidimensional scaling (MDS) [31] (Fig 4). This analysis does not use

acoustic data but only the AXB predictions/decisions as input to MDS: the MDS distance

between two algorithms should reflect the number of times they disagree. In this visualisation,

algorithms are closer together if they produce similar decisions, irrespective of whether those

decisions are right or wrong. It illustrates that all three pre-trained deep learning models

remain very similar, and indeed very similar to Luscinia-U, the source of their pre-training,

whereas our Emb-LUA model produces a different pattern of judgments.

Other software

When comparing the performance of our deep learning model with current software used for

similarity measures—Raven Pro [9], Sound Analysis Pro [10] and Luscinia [11] (with and

without tuning)—we found that deep learning Emb-LU trained using standard unambiguous

triplets along with Luscinia-U triplets was unable to outperform these specialist tools (Fig 5).

However, our deep learning model Emb-LUA trained on both unambiguous and ambiguous

triplets along with Luscinia-U triplets can learn an embedding space that can reflect the birds’

perceptual judgements better than any current software publicly available. Comparison

between Emb-LU and Emb-LUA leads us to conclude that even AXB triplets that yield incon-

sistent side decisions can provide useful information about perceived sound similarity, which

helps to constrain the optimisation search space for deep learning. The difference in accuracy

between the two best performing models, Emb-LUA and Luscinia-U, is 2.9 percentage points.

We added all software methods to the MDS (multidimensional scaling) defined 2-D space that

enables the comparison of model output (Fig 4).

When comparing software methods, we found that Sound Analysis Pro would yield similar-

ities of precisely zero for some comparisons (in the case of high dissimilarity). In triplets where

the Sound Analysis Pro analysis yielded a zero value for the comparison between the probe

Fig 3. Deep learning performance is improved by our interventions, but not by pre-training. Accuracy

performance of the different variants of our deep learning model, each model being described in Table 1. Error bars

show 95% confidence intervals (bootstrap estimate). The upper lines indicate two different ways to estimate the

maximum accuracy attainable in principle; 100% is not attainable since birds’ choices are not always consistent for the

same stimulus set. An accuracy of 50% represents chance level.

https://doi.org/10.1371/journal.pcbi.1012329.g003
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and both training syllables of the triplet, we assume the three syllables to be so dissimilar to

each other that no similarity judgement can be computed from Sound Analysis Pro; this was

the case for 103 triplets. To inspect whether these highly dissimilar triplets led to an unfair pen-

alty for some systems, we repeated our evaluation with those 103 triplets excluded (S6 Fig).

This did lead to improved performance of Sound Analysis Pro, though the overall pattern of

Fig 4. Different algorithms differ from birds’ judgements of similarity in different ways. 2-D multidimensional

scaling (MDS) projection of the similarity between different algorithms based on their predictions. BIRDS is the

ground truth provided by the bird decisions. Current software methods: SAP (Sound Analysis Pro). Raven, Lusc
(Luscinia), Lusc-U represents the Luscinia software with tuned Luscinia parameters. Deep learning embedding models:

Emb-* are as described in Table 1.

https://doi.org/10.1371/journal.pcbi.1012329.g004

Fig 5. Accuracy of computational methods at predicting bird AXB decisions, evaluated on the evaluation set.

Details are the same as in Fig 3.

https://doi.org/10.1371/journal.pcbi.1012329.g005
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outcomes remained similar, with our Emb-LUA model maintaining the best performance

over all other systems.

Acoustic features used by the algorithm

We carried out 3 different MRM analyses to understand which acoustic features and summary

statistics best predicted the 64-dimension embedding of our algorithm (Emb-LUA). For the

first model examining all 26 measures, the standardised regression coefficients suggested par-

ticularly strong effects for the mean, minimum, maximum and start of the fundamental fre-

quency, and weaker effects for several summary statistics of harmonicity, peak frequency,

Wiener entropy as well as syllable length (Fig 6 and for full model results S2 Table). This analy-

sis, which accounted for 68% of overall dissimilarity between syllable embeddings, suggested a

wide range of predictor feature/statistic pairs—13 of them were significant and 8 of them had a

standardised regression coefficient of >0.01, with the strongest predictor, mean fundamental

frequency, scoring 0.078.

For the second analysis, where all measures are grouped by the 5 acoustic features plus sylla-

ble length, the standardised regression coefficients suggested particularly strong effects for fun-

damental frequency, syllable length and, to a lesser extent, harmonicity and peak frequency

(S7A Fig). The model as a whole predicted 63% of variation in embedding scores. Finally,

when grouping variables by summary statistic, we found that Start, End and Mean all pre-

dicted, with similar normalised regression coefficients, the embedding significantly, suggesting

that the birds pay attention to all parts of the syllable. The model predicted 37% of the variation

in embedding scores (S7B Fig).

These results support the claim that our comparison method makes use of highly multidi-

mensional attributes of birdsong, and, indirectly, that song perception by birds might do too.

Fig 6. Outcome of MRM analysis, comparing the Emb-LUA embedding with summary statistics of 5 song features

and syllable length as measured in Luscinia. Figure only shows the standardised regression coefficients for the

significant features, for the full model table see S2 Table.

https://doi.org/10.1371/journal.pcbi.1012329.g006
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Discussion

Making reliable comparisons of song recordings is essential for the field of bird song research.

However, so far most comparison methods use HVA for validation, rather than the birds’ per-

ception itself. We compiled a large corpus of zebra finches’ perceptual decisions of syllable

similarities, which allowed us to validate existing methods, and also to train a deep neural net-

work to assess song similarity.

Training and testing birds in a group setting allowed us to collect a dataset with over 22,000

probe assessments; to our knowledge no similar dataset has been generated and its size allows

training of deep learning algorithms as we demonstrate. The social context of training, com-

bined with relying on behavioural rather than neural responses potentially adds additional

sources of noise compared with other approaches (e.g. [32]). While in our experiments some

birds reached accuracy levels of over 80%, some other birds’ performance remained consis-

tently low in accuracy. One reason for these differences in accuracy may be that the group set-

ting allowed some birds to scrounge others’ rewards [33], or to interfere with other

individuals’ trials. In future experiments our method could be refined by adding an extra

RFID antenna to the choice perches to limit choice registration to only the bird that started the

trial. But even in social isolation, however, similar operant conditioning designs do not lead to

birds approaching 100% accuracy: birds continue to frequently explore unrewarded options

(e.g. [34]). These sources of error are substantially higher than when human observers are

asked to generate perceptual training data-sets.

The birds’ choices in operant tests were, however, much more similar to computational

methods than expected by chance. This suggests that overall the birds make decisions that

correspond to acoustic characteristics, rather than, for instance, choosing randomly or

always the same side. The differences between computational assessments and the birds’

decisions are difficult to interpret: we might expect that it can be explained partly by the

noise in the data due to the birds’ behavioural variation in responses, and partly by differ-

ences between the algorithm and birds’ underlying perception. Taking into account, (1) our

large sample size, (2) our inclusion only of birds that performed to a reasonably high level on

training choices, and (3) evidence of agreement between trials when making the same choice

on probes, we have made the assumption that a higher agreement between birds’ choices and

computational judgement reflects a greater similarity between bird perception and the

algorithm.

To train the birds to discriminate beyond two training syllable exemplars, we needed to

ensure that they would generalise their decisions to other syllables too. To achieve this we

trained the birds with two sets of 8 very similar syllables (rather than just two exemplar sylla-

bles). But this methodological choice created a potential conundrum: we had to make assess-

ments of similarity between these 8 similar syllables using an existing method—in this case,

Luscinia. Potentially, this might have influenced how birds learned: providing information

about what was regarded as similar or not. At an extreme, training the birds might be the same

as training them about the algorithm used to pick the training stimuli. Our protocol, however,

involved selecting the 7 most similar syllables to an exemplar, with the rationale that the two

categories of training stimuli would be very clearly separable and non-overlapping, no matter

what the comparison method. We checked the similarity rankings of these training sets

between Luscinia, Raven (SPCC) and Sound Analysis Pro (S8 Fig), and in all cases the two

training sets are very clearly separate, showing a higher similarity for the within-set syllables,

than the between-set syllables. Therefore, we believe that the structure of our stimulus catego-

ries (for this part of the experiment) is providing minimal information to the birds about the

nature of similarity.
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Using a mix of Luscinia-U decisions made on triplets of sounds along with perceptual deci-

sions from the birds provided the best correspondence to bird decisions (Fig 3). We noticed

that a pre-training phase using Luscinia-U triplet decisions led to worse performance. This

finding is in contrast to much recent work in deep learning that makes heavy use of pre-train-

ing, especially when target datasets are small [35, 36]. It can be attributed to the fact that the

pre-trained space (driven by Luscinia’s similarity algorithm) is not appropriate, because it

initialises the model such that its fine judgments follow Luscinia rather than bird judgments.

Our alternative successful approach is to use both data sources simultaneously in the main

training phase of deep learning.

Zebra finch syllables are complex and variable. Within syllables, they vary from millisecond

to millisecond in acoustic features including pitch, harmonicity and peak frequency (see S4

Fig for examples). When zebra finches are faced with a task of comparing two syllables, such as

in our experiment or in their natural behaviour, they must integrate these differences. Our ML

algorithm was trained on these decisions and it is therefore not surprising that the simple sum-

mary statistics of these features, such as means, only partially capture its embedding, together

accounting for only 68% of variation. Moreover the relative contributions of the different song

features are similar to the parameter weight settings that resulted from tuning Luscinia with

the birds’ decisions (S1 Table) in that fundamental frequency was found to be the most infor-

mative single feature. Although this wasn’t the primary goal of our study, these two sources of

data also provide an indication of how birds integrate different perceptual features when

assessing songs. It appears that mean fundamental frequency plays a particularly important

role to zebra finches and that other temporal aspects of the pitch trajectory are, perhaps sur-

prisingly, less critical. Nevertheless our results suggest that our comparison method, and per-

haps the perception of birds is highly multidimensional.

The two algorithms that we trained with birds’ judgments (Luscinia-U and our new

machine learning algorithm Emb-LUA) outperformed other methods of song comparison on

our testing data-set. This supports the idea that data-informed methods of comparison may be

more reliable than ones that rely solely on human intuition. Of the remaining algorithms that

we tested, the untrained version of Luscinia’s dynamic time warping algorithm outperformed

Sound Analysis Pro and the implementation of SPCC in Raven. Aspects of our study system

and task may go some way to explaining these differences. Zebra finch song is highly spectrally

complex compared to many birds’ song. SPCC was originally employed on swamp sparrow

song, where all spectral energy is concentrated at one frequency at any one time point, and it

would seem logical that it might be harder to interpret spectrographic overlap in more com-

plex scenarios. The algorithm used by Sound Analysis Pro was similarly designed for a particu-

lar task: to assess similarity between shared song syllables—i.e. pairs of syllables that share

some degree of similarity. It was not designed to measure similarity between all pairs of notes,

and beyond a certain level of dissimilarity, a floor of 0 is reached. This directly impacted its

performance in our test: when removing affected triplets, its performance did not exceed that

of Luscinia and our machine learning algorithm, but the three were relatively close in their

performance. Most research on zebra finch song over the last two decades has used Sound

Analysis Pro and our results would suggest that for tasks involving the assessment of the preci-

sion of song learning among relatively similar groups of syllables, these analyses have a reason-

able degree of validity.

Although the algorithm we introduced here outperforms other commonly used methods

and presents a major step forward in the measurement of song similarity, some care has to be

taken. In this experiment we have presented birds with single song syllables. Although these

isolated syllables, rather than full song, may have sounded less natural to the birds, and also

limited the possibilities of measuring higher levels of song perceptions, they made it possible
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to study sound perception using sounds with features they are naturally attuned to. Further-

more, although all syllables used originated from a single population (different from the exper-

imental population), since the variation in syllables within a zebra finch colony is large

compared to that between colonies [37] (but see [38]), we do not expect that this limits the

generalisability of the algorithm for different zebra finch colonies. Finally, the current algo-

rithm is only based on zebra finch perceptual judgements which may not be the same for all

bird species. Different species have different hearing sensitivities, and may differ in how they

weight different sound features [39–41]. Collecting similar perceptual judgements from a

range of other species will enable us to compare differences in perception and will improve

our overall ability to accurately measure song similarity.

Supporting information

S1 Fig. Operant feeder. For a schematic image see Fig 1.

(TIFF)

S2 Fig. Training stimuli and probes projected in 2-dimensional space. Extracted from

64-dimensional embedding using T-SNE for the projection with Euclidean distances. Sets of

training stimuli are connected with blue lines, connections between probes and training sti-

muli with grey lines. Stimuli used for training on the left side are coloured in red, training sti-

muli on the right side are coloured in green.

(TIFF)

S3 Fig. Overview of deep learning model architecture. Input is a time-frequency representa-

tion of a recording, with shape 170 time frames and 150 frequency bins. The shared convolu-

tional part performs a number of convolutions, batch normalisations, and leaky-ReLU non-

linearities to the input. The output of the convolutional part is used as input to two different

branches of the network, one performing attention pooling and the other performing max

pooling. The results of the two branches are concatenated together and used as input to the

final layer of the network; a dense layer that performs projection of the input into an N-dimen-

sional embedding space. Figure adapted from [20].

(TIFF)

S4 Fig. Mel spectrograms of a stimulus pair and 4 probes assessed by the bird trained with

the stimulus pair. Probes in the left column were assessed by the bird as being more similar to

the left stimulus, and probes in the right column were assessed as being more similar to the

right stimulus. Numbers indicate the dissimilarity between the probe and the left (L) and right

(R) stimulus according to Luscinia. Note that for 3 probes the bird agrees with the assessment

of Luscinia, while for one probe (M2210_4) it disagrees with the Luscinia assessment.

(TIFF)

S5 Fig. Accuracy (%) of deep learning models based on the learnt embedding space dimen-

sions.
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S6 Fig. Accuracy (%) results on the evaluation set after removing triplets that produce zero

‘similarity’ values in Sound Analysis Pro for both pairs in a triplet. Details are the same as

in Fig 5.

(TIFF)

S7 Fig. Outcome of MRM analyses. Results show the standardised regression coefficients (A)

when grouping the variables by the 5 overall song features and syllable length and (B) when

PLOS COMPUTATIONAL BIOLOGY Measuring song similarity from birds’ perspective

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012329 August 7, 2024 18 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s007
https://doi.org/10.1371/journal.pcbi.1012329


grouping the variables by summary statistics start, end and mean. Each bar represents the stan-

dardised regression coefficient from the respective MRM analysis.

(TIFF)

S8 Fig. Within and between stimulus set similarity. Comparison of similarity within a stimu-

lus category (close: core stimulus exemplar in group ‘A’ with the 7 other syllables of group A

and the same for group B) and between stimulus categories (far: between core stimulus exem-

plar A and the 8 stimuli in group B, and vice versa) for Luscinia, SAP and Raven (SPCC) for

the evaluation set. For all three algorithms the close and far groups separate out, showing a

higher similarity for the close group than for the far group.

(TIFF)

S1 Table. Table of parameter settings for Luscinia.

(PDF)

S2 Table. Table of MRM standardised regression coefficients.

(PDF)

Acknowledgments

We thank Neeltje Boogert for making zebra finch recordings available.

Author Contributions

Formal analysis: Lies Zandberg, Veronica Morfi, Dan Stowell, Robert F. Lachlan.

Investigation: Lies Zandberg, Veronica Morfi, Julia M. George, Dan Stowell, Robert F.

Lachlan.

Methodology: Lies Zandberg, Veronica Morfi, David F. Clayton, Dan Stowell, Robert F.

Lachlan.

Writing – original draft: Lies Zandberg, Veronica Morfi, Dan Stowell, Robert F. Lachlan.

Writing – review & editing: Lies Zandberg, Veronica Morfi, Julia M. George, David F. Clay-

ton, Dan Stowell, Robert F. Lachlan.

References
1. Catchpole CK, Slater PJ. Bird song: biological themes and variations. Cambridge University Press;

2003.

2. Whiten A. Cultural evolution in animals. Annual Review of Ecology, Evolution, and Systematics. 2019;

50:27–48.

3. Bolhuis JJ, Okanoya K, Scharff C. Twitter evolution: converging mechanisms in birdsong and human

speech. Nature Reviews Neuroscience. 2010; 11(11):747–759. https://doi.org/10.1038/nrn2931 PMID:

20959859

4. ten Cate C, Lachlan R, Zuidema W. Analyzing the Structure of Bird Vocalizations and Language: Find-

ing Common Ground. In: Bolhuis JJ, Everaert M, editors. Birdsong, speech, and language: exploring

the evolution of mind and brain. MIT Press; 2013. p. 243–260.

5. Janik VM. Pitfalls in the categorization of behaviour: a comparison of dolphin whistle classification meth-

ods. Animal Behaviour. 1999; 57(1):133–143. https://doi.org/10.1006/anbe.1998.0923 PMID:

10053080

6. Marler P. Variation in the song of the Chaffinch Fringilla coelebs. Ibis. 1952; 94(3):458–472. https://doi.

org/10.1111/j.1474-919X.1952.tb01845.x

7. Thorpe WH. The process of song-learning in the chaffinch as studied by means of the sound spectro-

graph. Nature. 1954; 173(4402):465–469. https://doi.org/10.1038/173465a0

PLOS COMPUTATIONAL BIOLOGY Measuring song similarity from birds’ perspective

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012329 August 7, 2024 19 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012329.s010
https://doi.org/10.1038/nrn2931
http://www.ncbi.nlm.nih.gov/pubmed/20959859
https://doi.org/10.1006/anbe.1998.0923
http://www.ncbi.nlm.nih.gov/pubmed/10053080
https://doi.org/10.1111/j.1474-919X.1952.tb01845.x
https://doi.org/10.1111/j.1474-919X.1952.tb01845.x
https://doi.org/10.1038/173465a0
https://doi.org/10.1371/journal.pcbi.1012329


8. Clark CW, Marler P, Beeman K. Quantitative analysis of animal vocal phonology: an application to

swamp sparrow song. Ethology. 1987; 76(2):101–115. https://doi.org/10.1111/j.1439-0310.1987.

tb00676.x

9. K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology. Raven Pro: Inter-

active Sound Analysis Software (Version 1.6.1) [Computer software]. Ithaca, NY: The Cornell Lab of

Ornithology. 2019, http://ravensoundsoftware.com/.

10. Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP. A procedure for an automated measure-

ment of song similarity. Animal behaviour. 2000; 59(6):1167–1176. https://doi.org/10.1006/anbe.1999.

1416 PMID: 10877896

11. Lachlan RF. Luscinia: Bioacoustic analysis of field recordings (version 2.20.03.11.01) [Computer soft-

ware] 2019, https://github.com/rflachlan/Luscinia/.

12. Mets DG, Brainard MS. An automated approach to the quantitation of vocalizations and vocal learning

in the songbird. PLoS computational biology. 2018; 14(8):e1006437. https://doi.org/10.1371/journal.

pcbi.1006437 PMID: 30169523

13. Goffinet J, Brudner S, Mooney R, Pearson J. Low-dimensional learned feature spaces quantify individ-

ual and group differences in vocal repertoires. eLife. 2021; 10:e67855. https://doi.org/10.7554/eLife.

67855 PMID: 33988503

14. Sethi SS, Jones NS, Fulcher BD, Picinali L, Clink DJ, Klinck H, et al. Characterizing soundscapes

across diverse ecosystems using a universal acoustic feature set. Proceedings of the National Acad-

emy of Sciences. 2020; 117(29):17049–17055. https://doi.org/10.1073/pnas.2004702117 PMID:

32636258

15. Fel T, Felipe I, Linsley D, Serre T. Harmonizing the object recognition strategies of deep neural net-

works with humans. arXiv e-prints. 2022; p. arXiv:2211.04533.

16. Dooling RJ, Prior NH. Do we hear what birds hear in birdsong? Animal behaviour. 2017; 124:283–289.

https://doi.org/10.1016/j.anbehav.2016.10.012 PMID: 29628517

17. Boogert NJ, Lachlan RF, Spencer KA, Templeton CN, Farine DR. Stress hormones, social associations

and song learning in zebra finches. Philosophical Transactions of the Royal Society B: Biological Sci-

ences. 2018; 373(1756):20170290. https://doi.org/10.1098/rstb.2017.0290

18. Bromley J, Bentz JW, Bottou L, Guyon I, LeCun Y, Moore C, et al. Signature Verification Using A “Sia-

mese” Time Delay Neural Network. IJPRAI. 1993; 7(4):669–688.

19. Bredin H. TristouNet: Triplet Loss for Speaker Turn Embedding. In: 2017 IEEE international conference

on acoustics, speech and signal processing (ICASSP); 2017. p. 5430–5434.

20. Morfi V, Lachlan RF, Stowell D. Deep perceptual embeddings for unlabelled animal sound events. The

Journal of the Acoustical Society of America. 2021; 150(1):2–11. https://doi.org/10.1121/10.0005475

PMID: 34340499

21. Kumari P, Chaudhuri S, Chaudhuri S. PerceptNet: Learning Perceptual Similarity of Haptic Textures

in Presence of Unorderable Triplets. In: 2019 IEEE World Haptics Conference (WHC); 2019. p. 163–

168.

22. Schultz M, Joachims T. Learning a Distance Metric from Relative Comparisons. In: Thrun S, Saul LK,

Schölkopf B, editors. Advances in Neural Information Processing Systems 16. MIT Press; 2004. p. 41–

48.

23. Weinberger KQ, Saul LK. Distance Metric Learning for Large Margin Nearest Neighbor Classification.

Journal of Machine Learning Research. 2009; 10(9):207–244.

24. Wang J, Song Y, Leung T, Rosenberg C, Wang J, Philbin J, et al. Learning Fine-Grained Image Similar-

ity with Deep Ranking. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014.

p. 1386–1393.

25. Hoffer E, Ailon N. Deep Metric Learning Using Triplet Network. In: Feragen A, Pelillo M, Loog M, editors.

Similarity-Based Pattern Recognition. Cham: Springer International Publishing; 2015. p. 84–92.

26. Thakur A, Thapar D, Rajan P, Nigam A. Deep metric learning for bioacoustic classification: Overcoming

training data scarcity using dynamic triplet loss. The Journal of the Acoustical Society of America. 2019;

146(1):534–547. https://doi.org/10.1121/1.5118245 PMID: 31370640

27. Elie JE, Theunissen FE. The vocal repertoire of the domesticated zebra finch: a data-driven approach

to decipher the information-bearing acoustic features of communication signals. Animal Cognition.

2016; 19:285–315. https://doi.org/10.1007/s10071-015-0933-6 PMID: 26581377

28. Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering.

In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015. p. 815–823.

29. Lichstein JW. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol-

ogy. 2007; 188:117–131. https://doi.org/10.1007/s11258-006-9126-3

PLOS COMPUTATIONAL BIOLOGY Measuring song similarity from birds’ perspective

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012329 August 7, 2024 20 / 21

https://doi.org/10.1111/j.1439-0310.1987.tb00676.x
https://doi.org/10.1111/j.1439-0310.1987.tb00676.x
http://ravensoundsoftware.com/
https://doi.org/10.1006/anbe.1999.1416
https://doi.org/10.1006/anbe.1999.1416
http://www.ncbi.nlm.nih.gov/pubmed/10877896
https://github.com/rflachlan/Luscinia/
https://doi.org/10.1371/journal.pcbi.1006437
https://doi.org/10.1371/journal.pcbi.1006437
http://www.ncbi.nlm.nih.gov/pubmed/30169523
https://doi.org/10.7554/eLife.67855
https://doi.org/10.7554/eLife.67855
http://www.ncbi.nlm.nih.gov/pubmed/33988503
https://doi.org/10.1073/pnas.2004702117
http://www.ncbi.nlm.nih.gov/pubmed/32636258
https://doi.org/10.1016/j.anbehav.2016.10.012
http://www.ncbi.nlm.nih.gov/pubmed/29628517
https://doi.org/10.1098/rstb.2017.0290
https://doi.org/10.1121/10.0005475
http://www.ncbi.nlm.nih.gov/pubmed/34340499
https://doi.org/10.1121/1.5118245
http://www.ncbi.nlm.nih.gov/pubmed/31370640
https://doi.org/10.1007/s10071-015-0933-6
http://www.ncbi.nlm.nih.gov/pubmed/26581377
https://doi.org/10.1007/s11258-006-9126-3
https://doi.org/10.1371/journal.pcbi.1012329


30. Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. Journal

of Statistical Software. 2007; 22(7):1–19. https://doi.org/10.18637/jss.v022.i07

31. Borg I, Groenen PJF, Mair P. In: The Purpose of MDS. Berlin, Heidelberg: Springer Berlin Heidelberg;

2013. p. 7–19.

32. Bell BA, Phan ML, Vicario DS. Neural responses in songbird forebrain reflect learning rates, acquired

salience, and stimulus novelty after auditory discrimination training. Journal of Neurophysiology. 2015;

113(5):1480–1492. https://doi.org/10.1152/jn.00611.2014 PMID: 25475353

33. Giraldeau LA, Dubois F. Social foraging and the study of exploitative behavior. Advances in the Study of

Behavior. 2008; 38:59–104. https://doi.org/10.1016/S0065-3454(08)00002-8

34. Burgering MA, Ten Cate C, Vroomen J. Mechanisms underlying speech sound discrimination and cate-

gorization in humans and zebra finches. Animal Cognition. 2018; 21:285–299. https://doi.org/10.1007/

s10071-018-1165-3 PMID: 29435769

35. Kong Q, Cao Y, Iqbal T, Wang Y, Wang W, Plumbley MD. PANNs: Large-scale pretrained audio neural

networks for audio pattern recognition. IEEE/ACM Transactions on Audio, Speech, and Language Pro-

cessing. 2020; 28:2880–2894. https://doi.org/10.1109/TASLP.2020.3030497

36. Lasseck M. Audio-based Bird Species Identification with Deep Convolutional Neural Networks. Working

Notes of CLEF. 2018; 2018.

37. Lachlan RF, Van Heijningen CA, Ter Haar SM, Ten Cate C. Zebra finch song phonology and syntactical

structure across populations and continents—a computational comparison. Frontiers in Psychology.

2016; 7:980. https://doi.org/10.3389/fpsyg.2016.00980 PMID: 27458396

38. Wang D, Forstmeier W, Farine DR, Maldonado-Chaparro AA, Martin K, Pei Y, et al. Machine learning

reveals cryptic dialects that explain mate choice in a songbird. Nature Communications. 2022; 13(1):1–

12.

39. Dooling RJ, Prior NH. Do we hear what birds hear in birdsong? Animal Behaviour. 2017; 124:283–289.

https://doi.org/10.1016/j.anbehav.2016.10.012 PMID: 29628517

40. Dooling RJ, Brown SD, Klump GM, Okanoya K. Auditory perception of conspecific and heterospecific

vocalizations in birds: evidence for special processes. Journal of Comparative Psychology. 1992; 106

(1):20. https://doi.org/10.1037/0735-7036.106.1.20 PMID: 1555398

41. Okanoya K, Dooling RJ. Hearing in the swamp sparrow, Melospiza georgiana, and the song sparrow,

Melospiza melodia. Animal Behaviour. 1988; 36(3):726–732. https://doi.org/10.1016/S0003-3472(88)

80155-6

PLOS COMPUTATIONAL BIOLOGY Measuring song similarity from birds’ perspective

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012329 August 7, 2024 21 / 21

https://doi.org/10.18637/jss.v022.i07
https://doi.org/10.1152/jn.00611.2014
http://www.ncbi.nlm.nih.gov/pubmed/25475353
https://doi.org/10.1016/S0065-3454(08)00002-8
https://doi.org/10.1007/s10071-018-1165-3
https://doi.org/10.1007/s10071-018-1165-3
http://www.ncbi.nlm.nih.gov/pubmed/29435769
https://doi.org/10.1109/TASLP.2020.3030497
https://doi.org/10.3389/fpsyg.2016.00980
http://www.ncbi.nlm.nih.gov/pubmed/27458396
https://doi.org/10.1016/j.anbehav.2016.10.012
http://www.ncbi.nlm.nih.gov/pubmed/29628517
https://doi.org/10.1037/0735-7036.106.1.20
http://www.ncbi.nlm.nih.gov/pubmed/1555398
https://doi.org/10.1016/S0003-3472(88)80155-6
https://doi.org/10.1016/S0003-3472(88)80155-6
https://doi.org/10.1371/journal.pcbi.1012329

