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Local environmental 
factors drive distributions 
of ecologically‑contrasting 
mosquito species (Diptera: 
Culicidae)
Roel M. Wouters 1,2,3*, Wouter Beukema 1,4, Maarten Schrama 2, Koos Biesmeijer 1,2, 
Marieta A. H. Braks 2,5, Pepijn Helleman 2, Francis Schaffner 6, Joey van Slobbe 7, 
Arjan Stroo 8 & Jordy G. van der Beek 1,2,9

Mosquitoes are important vectors of disease pathogens and multiple species are undergoing 
geographical shifts due to global changes. As such, there is a growing need for accurate distribution 
predictions. Ecological niche modelling (ENM) is an effective tool to assess mosquito distribution 
patterns and link these to underlying environmental preferences. Typically, macroclimatic variables 
are used as primary predictors of mosquito distributions. However, they likely undervalue local 
conditions and intraspecific variation in environmental preferences. This is problematic, as mosquito 
control takes place at the local scale. Utilising high‑resolution (10 × 10 m) Maxent ENMs on the island 
of Bonaire as model system, we explore the influence of local environmental variables on mosquito 
distributions. Our results show a distinct set of environmental variables shape distribution patterns 
across ecologically‑distinct species, with urban variables strongly associated with introduced species 
like Aedes aegypti and Culex quinquefasciatus, while native species show habitat preferences for 
either mangroves, forests, or ephemeral water habitats. These findings underscore the importance of 
distinct local environmental factors in shaping distributions of different mosquitoes, even on a small 
island. As such, these findings warrant further studies aimed at predicting high‑resolution mosquito 
distributions, opening avenues for preventative management of vector‑borne disease risks amidst 
ongoing global change and ecosystem degradation.

Mosquitoes belong to the family of Culicidae with approximately 3700  species1. A subset of these species plays 
an important role in global public health as vector of infectious diseases for humans, livestock and wildlife. 
According to recent estimations, by 2050, half of the world’s population will be at risk of vector-borne  diseases2. 
As a result of global change, many mosquito species are on the  move3–6. Hence, there is a growing need to accu-
rately predict mosquito distributions. As such, it is essential to understand the underlying drivers of mosquito 
distributions.

Large scale spatial projections of mosquito distributions rely on the predictive value of large-scale climatic 
factors (i.e. temperature and precipitation), resulting in relatively coarse-scale maps of species  distributions2,4,7–11. 
However, at the local scale (< 10  km2), these climatic factors are largely indistinctive and local scale environmental 
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parameters are thought to dictate the heterogeneity in mosquito distribution and local distribution maps of 
mosquitoes are generally  lacking12–16. This greatly hampers the use of distribution maps to guide policy, e.g., to 
guide vector-control and other management/mitigation strategies that operate at similar local  levels17. Hence, 
there is a growing need to include (local) environmental conditions, other than climatic variables in understand-
ing mosquito  distributions12,13,17.

Species distribution modelling, also known as ecological niche modelling (ENM), allows for fine-scale pre-
dictions of species  occurrences18–20. ENMs comprise a family of statistical or machine-learning models, which 
may be used to predict the potential distribution of a given species in a given area by relating occurrence data 
to ecologically-relevant environmental  conditions21. While ENMs have previously been used to generate global 
distribution maps largely relying on abovementioned climatic  variables2,4,7–11, the models also allow for the inclu-
sion of more local-scale environmental variables thus contributing to the understanding of the fine scale distri-
bution of a given species. As such, ENM holds the potential to be applied for vector-borne disease management 
efforts, improving traditional disease risk maps and increasing knowledge on the ecology of a given  species18.

Indeed, studies applying fine-scale ENM highlight the potential importance of local-scale  variables12,17. For 
example, the occurrence of the (introduced) arbovirus vectors Aedes aegypti and Aedes albopictus in a human-
dominated landscape in the tropics and subtropics can be explained by a number of key urban and nature-related 
factors (including population density, house density and distance from vegetation or water), and to a lesser extent 
also by local climatic factors such as temperature and  precipitation20,22–25. However, there is a major bias in ENM-
based studies on mosquitoes: the vast majority is geared towards a limited number of species involved in disease 
transmission, while preciously little is known about the distribution of other  species26. This greatly limits our 
understanding of the importance of environmental variables in shaping the distribution of ecologically divergent 
mosquito species and in particular how introduced invasive species differ from the established native species.

Here, we use the island of Bonaire (288  km2), one of the islands of the Lesser Antilles in the Caribbean region 
(Fig. 1H), as a model to show how a confined set of key environmental factors at high resolution can be used to 
explain the local distributions of mosquito species with contrasting ecological strategies.

Figure 1.  Habitat suitability maps for the seven modelled mosquito species: (A) Aedes aegypti, (B) Culex 
quinquefasciatus, (C) Aedes taeniorhynchus, (D) Deinocerites sp., (E) Culex nigripalpus, (F) Psorophora confinnis 
s.l., (G) Haemagogus chrysochlorus. (H) A map of the island of Bonaire as part of the Lesser Antilles, located 
near coast of Venezuela. Habitat suitability (relative likelihood) is illustrated with a gradient fill, where brown 
indicates low habitat suitability and green indicates high suitability. Species are grouped by corresponding 
habitat type.
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Results and discussion
Habitat suitability (relative likelihood) for seven out of twelve mosquito species collected on Bonaire was esti-
mated using a high-resolution ENM approach involving variable selection procedures, null model validation, 
and model selection to obtain an optimally parameterised model for each species. For five out of the twelve spe-
cies, models could not be generated because the number of observations was insufficient to run the models (see 
Fig. S1 and Table S1). The most important contributing environmental variables for each species and the model 
performance (i.e., AUC and Boyce index) varied between mosquito species (Table 1), resulting in strikingly 
different predicted distribution patterns of the species on the island (Fig. 1). Below, the key findings concern-
ing overall model performance and the important environmental factors contributing to the habitat suitability 
for the seven species are reported. See Table S2 and Fig. S2–S8 for complete model selection, performance and 
variable response curves per species and see Table S3 for an overview of all spatial data included in the models.

Aedes aegypti and Culex quinquefasciatus
Both Ae. aegypti and Cx. quinquefasciatus show a relatively similar predicted occurrence over the island 
(Fig. 1A,B). Models performed moderately (AUC = 0.65 and 0.64, and Boyce index = 0.41 and 0.31 respectively) 
and the most important variable contributing to the habitat suitability of both species is the distance to urban 
habitat (100% and 79% respectively, Table 1), which is negatively correlated thus implying that habitat suitability 
decreases with increasing distance to urbanisation. For Cx. quinquefasciatus also land use (mangrove habitat, 
21%) contributes to the habitat suitability. The predicted habitat suitability maps for these two species (Fig. 1A,B) 
reveal a wide distribution over the island with urban environments including the cities of Kralendijk (central 
west) and Rincon (northwest), as well as the main roads and other urban elements as important predictors.

Aedes taeniorhynchus
In the model for Ae. taeniorhynchus, the most important contributing environmental variable is the distance 
to mangrove habitat (58.4%). The negative correlation between this variable and the occurrence of this species 
implies that the likelihood of observing Ae. taeniorhynchus decreases further away from mangrove habitat. 
Distance to nature is the second important variable (18.8%). Elevation (negative correlation) and the categori-
cal variable mangrove habitat contribute respectively 12.9% and 9.8% (Table 1). The selected model has a high 
performance with AUC = 0.89 and Boyce index = 0.74. The predicted habitat suitability for Ae. taeniorhynchus 
is particularly high at lower elevations, including the salt plains and mangrove habitats in the south (Fig. 1C).

Deinocerites sp.
The model for the yet undescribed species of Deinocerites sp. performs well with an AUC of 0.78 and a Boyce 
index of 0.47. The most important variable contributing to the habitat suitability of Deinocerites sp. is the distance 
to protected natural area (54.4%). The second contributing variable is the distance to mangrove habitat (46%, 

Table 1.  Variable importance (%), ecology known from the literature and model performance (AUC values) 
for each modelled species. Cumulative contribution of the variables is at least 80%. The distance to variables are 
all negative correlations where increasing distance means lower suitability.

Species

Contributing environmental variables

Known ecology AUC value Boyce indexVariable 1 Variable 2 Variable 3 Variable 4

Aedes aegypti Distance to urban 
habitat (100%)

Introduced; container 
breeder;  urban28,35 0.65 0.41

Culex quinquefasciatus Distance to urban 
habitat (79%)

Land use Mangrove 
habitat (21%)

Introduced; nutrient-
rich, dirty standing 
water breeder;  urban28

0.64 0.31

Aedes taeniorhynchus Distance to mangrove 
habitat (58.4%)

Distance to natural 
habitat (18.8%)

Elevation—negative 
correlation (12.9%)

Land use mangrove 
habitat (9.8%)

Breeds in fresh, brack-
ish and saline water-
bodies;  mangrove27,28

0.89 0.74

Deinocerites sp. Distance to protected 
nature area (54.4%)

Distance to mangrove 
habitat (46%)

Land crab-hole 
breeder; brackish and 
saline water tolerant; 
restricted to land crab 
holes of the family 
 Gecarcinidae29,38

0.78 0.47

Culex nigripalpus Distance to temporary 
waterbody (84.5%)

Distance to urban 
vegetation (15.5%)

Breeds in flooded 
ditches and small 
ponds; related to 
rainfall and ephemeral 
 waterbodies27,28

0.50 0.11

Psorophora confinnis s.l Distance to protected 
nature area (85.1%)

Distance to temporary 
waterbody (14.9%)

Breeds in flooded 
plains and ponds; 
related to rainfall 
and ephemeral 
 waterbodies28,39

0.56 0.63

Haemagogus chrys-
ochlorus

Distance to natural 
habitat (48%)

Elevation—positive 
correlation (18.6%)

Land use forest and 
high scrub habitat 
(12.4%)

Geology high terrace 
(7.2%) Tree-hole  breeder29,37 0.56 − 0.11
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Table 1). Both variables show negative correlations with the respective environmental variables, implying that 
the probability of occurrence decreases further away from these habitats. A very high predicted suitability was 
observed in the southern part of Bonaire, where the protected salt plains are located (Fig. 1D). The vegetation on 
these salt plains consists predominantly of (low shrub) mangrove, and the waters are brackish or (hyper) saline; 
this is also the location with highest observed densities of land crabs which are closely associated with this spe-
cies. Several suitable hotspots can also be found in the north in protected mangrove habitats.

Culex nigripalpus
The model for Cx. nigripalpus showed that the two most important contributing variables are (1) the distance 
to temporary waterbodies (84.5%) and (2) the distance to urban vegetation (15.5%), which includes city parks 
and other green areas within the urbanised areas (Table 1). Both variables show no clear correlation (see Fig. 
S7) and the model performance is poor with an AUC of 0.5 and a Boyce index of 0.11). The habitat suitability 
map predicts high suitability in the north and northwest (i.e. in a protected nature area, agricultural habitat and 
around the city of Rincon) and east of Kralendijk (Fig. 1E), both areas consisting primarily of agricultural and 
unprotected nature areas. Several suitable habitats can be found in the southeast, where protected mangrove 
vegetation is dominant.

Psorophora confinnis s.l.
For Ps. confinnis s.l., 85.1% of the modelled habitat suitability can be explained by the distance to protected 
nature area and the remaining 14.9% is explained by the distance to temporary waterbodies (Table 1). The model 
predicts high habitat suitability for this species in the central north and central south, which are both protected 
nature areas, as well as along the east coast (Fig. 1F). The model has a poor to moderate performance with an 
AUC of 0.56 and a Boyce index of 0.63.

Haemagogus chrysochlorus
Haemagogus chrysochlorus was found at 23 unique sampling locations, the largest sample size of all modelled spe-
cies. Nevertheless, the selected model had a poor performance (AUC = 0.56 and Boyce index = − 0.11). The four 
most contributing environmental variables were respectively: (1) distance to natural habitat (48%), (2) elevation 
(18.6%), (3) land use (forest and high scrub habitat, 12.4%) and (4) geology (higher terrace, 7.2%) (Table 1). For 
Hg. chrysochlorus, the model predicts high suitability in the higher elevated areas which are covered with forests 
containing trees of low height. Those areas are located in the north and centre of the island, both in protected 
natural areas. Several smaller suitable spots on the map are located central east and central south (Fig. 1G).

Model performance and validation
We observe the lowest AUC validation scores for Cx. nigripalpus and Hg. chrysochlorus (AUC of 0.50 and 0.56, 
and Boyce index of 0.11 and − 0.11 respectively). For Ps. confinnis s.l. we observe a low AUC score of 0.56 but a 
better Boyce index score of 0.63. As we applied random stratified sampling based on the available habitat types, we 
do not expect a collection bias is the cause of these low validation scores. We argue instead that lacking environ-
mental information at local to micro scales affects model performances in these species. Specifically, information 
(in the form of GIS layers) in the form of ephemeral waterbodies and tree hole availability, which are used as 
breeding sites, is currently not available at spatial broad scales. Inclusion of such small-scale landscape elements 
could likely improve model performance in the future. These relatively poor model performances (Table 1) imply 
that these ENM outputs need to be interpreted with caution and further ecological validation is necessary to 
affirm model results. Nevertheless, the contributing environmental variables explaining their distribution are 
largely in line with the known ecology of these species throughout their geographic  distributions27–32 (Table 1). 
This underscores the notion that, despite the suboptimal performance, these models may still be useful to gener-
ate good local projections of the occurrence of the species of interest.

In the sampling data set, larval, pupal and adult stages of the modelled species were grouped to ensure a 
large enough sample size for model input. However, adult mosquitoes have the ability to disperse in contrast to 
the strictly water-bound larvae and pupae. Adults of some species, notably Ae. taeniorhynchus, are known to be 
able to cover large  distances33,34. Interestingly, our findings show a distance to variable has the highest explana-
tory contribution for all seven species, suggesting sample sizes were robust enough to account for the dispersal 
of adult stages. This stresses the value of including distance to matrices when modelling flying insects such as 
mosquitoes. Using data from only a single life stage could potentially underestimate (larval) or overestimate 
(adult) the potential distribution and spatial invasion risk.

Distinct environmental variables shape distributions
There was a remarkable difference between the predicted distribution of the introduced species (Ae. aegypti and 
Cx. quinquefasciatus; most likely introduced on Bonaire in the fifteenth th/sixteenth  century35,36) on the one hand 
and mosquitoes that are likely of native origin (Ae. taeniorhynchus, Deinocerites sp., Cx. nigripalpus, Ps. confinnis 
s.l. and Hg. chrysochlorus) on the other hand. The introduced mosquito species show a distribution strictly cen-
tred around urban environments which matches the known ecology and lifecycle of these species along their 
distribution globally and in the Caribbean  region2,28,35. Inclusion of more high-resolution urban spatial layers, 
for instance dealing with urban structure or demography, might reveal more detailed environmental information 
about the local distribution of these species that play an important role in public health.

In marked contrast to the urban-dwelling species discussed above, the distribution of the various native 
mosquito species is explained by different elements of the natural environment. Based on the predicted habitat 
suitability outcomes of the models, their distribution appears to reflect three separate habitat preferences: (1) 
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mangrove-dwelling species, (2) forest-dwelling species and (3) ephemeral water-dwelling species (Fig. 1). The 
models for the native mangrove-dwelling mosquitoes (i.e. Ae. taeniorhynchus and Deinocerites. sp.) show a dis-
tribution closely aligned with natural mangrove habitats, which are predominantly located on the coastal areas. 
This coincides with the known ecology and breeding habits of these salt tolerant, mangrove breeding  species27,28. 
The habitat suitability maps for these species suggest possible co-occurrence which was confirmed in our field 
survey. Two other species show a clear habitat preference towards ephemeral fresh waterbodies restricted to 
natural areas (Ps. confinnis s.l.) or vegetation-rich areas in urban environments (Cx. nigripalpus). This matches 
previous observations as both species are known to depend on ephemeral fresh waterbodies like natural and 
artificial ponds and  floodplains27,28. To further increase model performance for this specific group, more fine-
scale spatial information on different kinds and stages of ephemeral waterbodies would likely be needed. The 
forest-dwelling species group is represented by a single species: Hg. chrysochlorus. This species typically breeds 
in tree  holes29,37, a behaviour consistent with our observed field data and the predicted distribution in forests at 
slightly elevated elevations on the high terrace of Bonaire. Notably, this region has many older trees, primarily 
Guaiacum officinale L., which frequently harbour tree holes. Additionally, larvae of the species were recorded in 
rockpools with abundant leaflitter within the same area. Overall our predicted maps closely match the known 
ecology of the species in this study, thus highlighting the strength of this approach to generate fine-scale distri-
bution maps for mosquito species. However, this strongly relies on the availability of information on the local 
ecological factors at a given place.

Conclusion
The results of this study show that, on a small but ecologically diverse island used as a model system, contrast-
ing distributions of mosquito species can be explained by a set of ecologically-relevant environmental variables 
using the ENM approach Maxent. We observed a clear distinction between introduced species, of which the 
distributions were primarily explained the distance to urbanisation, and the native mosquitoes, of which the 
distribution is primarily explained by environmental predictors that are characteristic of natural habitats. Within 
the native mosquito species pool, predicted distributions were associated with three distinct habitat associations: 
mangrove-dwelling species, forest-dwelling species, and ephemeral water-dwelling species, which is largely in 
line with the known ecology of the modelled species despite poor model performances for three of seven species. 
Overall, our data implies that high-resolution ENM modelling reveals crucial insights in local habitat preferences 
that may ultimately benefit vector management and control. As such it can be a highly valuable tool to generate 
predictions on local mosquito distributions, but this relies strongly on the availability of high resolution data on 
local environmental factors. With increasing availability of remote sensing techniques leading to broad-scale, 
high-resolution spatial data, the application of ENM approaches for modelling vectors and their relatives will 
likely become more important in predicting distributions. This paves the way for generating fine-scale distribu-
tion maps that may benefit local policy and management (e.g. vector-control strategies) and other management 
practice related to (wildlife) veterinary and public health.

Methods
Study site and mosquito diversity survey
The island of Bonaire, located in the Lesser Antilles, is part of the Dutch Caribbean and with an area of 288  km2, 
it is one of the smaller inhabited islands in the Caribbean region. The island is located 80 km off the coast of 
Venezuela and has a semi-arid tropical savanna climate. Bonaire is primarily covered by limestone with basalt 
lava rock formations breaking through on the higher  elevations40. The vegetation mainly consists of low shrub 
cacti and acacias with some ruminant low forest on the higher elevations. Both in the south and the north, pro-
tected mangrove vegetation surrounds the numerous salt lakes, locally called saliñas40. We conducted a thorough 
mosquito diversity survey on the island of Bonaire in December 2022 as part of a larger inventory of the mosquito 
diversity on the Dutch ABC islands (Aruba, Bonaire and Curaçao). The survey was conducted for a period of 
fourteen days (from 30 November until 14 December 2022). We sampled during the end of the rainy season 
(September through December), which is generally a favourable time for mosquito activity due to the presence 
of different types of waterbodies. The rainy season of 2022 was incredibly wet, with almost double the amount of 
precipitation compared to the annual  average41. We conducted random stratified sampling based on the diversity 
of habitat types present on Bonaire. We selected the different habitat types based on existing vegetation and land 
use  maps40,42 (Table S3) and we sampled all (aquatic) habitat types in Bonaire (excluding deep sea and shallow 
coastal waters, as they do not form suitable habitat for mosquitoes in general). Habitats were reached either by 
car or by foot and places suitable for trapping were identified on sight and with expertise from local collaborators.

Mosquito collection
Mosquitoes are holometabolic insects, meaning they undergo complete metamorphosis and therefore have a 
larval and pupal stage before reaching their imago (adult) stage. To get a complete overview of the diversity, 
the used sampling methods were aimed to trap all larval, pupal and adult stages. Larvae and pupae are strictly 
bound to water and therefore, they were sampled from waterbodies using traditional dipping  methods43. Adult 
specimens were trapped using traps baited with  CO2 produced by yeast (Biogents Pro  trap44), as well as using 
aspirators and netting techniques.  CO2-baited traps were placed for a period of 24 h, covering diurnal, nocturnal 
and crepuscular species. From each trapping site corresponding coordinates and habitat type were registered, 
along with other environmental parameters (including pH and salinity of the water). Coordinates and cor-
responding environmental information were later attributed to the identified species. Collected samples were 
morphologically identified on-site to species level using a compilation of identification  keys27–29,45–49. We omitted 
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specimens that could not be identified to species level from further modelling. Table S1 shows all species identi-
fied from Bonaire.

Data preparation, modelling pipeline and model selection
Occurrence data cleaning, preparation of environmental variables used to characterise species distributions, 
and ENM building were conducted in the R (version 4.2.2) open source statistical programming language (R 
Core Team 2022). Packages used include data.table (v.1.14.8)50 and dplyr (v.1.1.2)51 (general functions), ncdf4 
(v.1.22)52, raster (v.3.6.26)53, rgdal (v.1.6.7)54, rgeos (v.0.6.4)55, sf (v.1.0.14)56, sp (v.2.1.2)57, and vegan (v.2.6.4)58 
(spatial functions), and ade4 (v.1.7.22)59, dismo (v.1.3.14)60, ecospat (v.3.5.1)61, ENMeval (v.2.0.4)62, ENMTools 
(v.1.0.6)63, and spatialEco (v.2.0.1)64 (ENM-related functions).

We exclusively used occurrence data of specimens we collected during our field survey and did not work 
with open databases or formerly collected data. See Fig. S1 for a spatial rendering of the occurrence data for all 
modelled species. For the occurrence data, no distinction was made between the life stages (i.e. larval, pupal and 
adult stages) and only one occurrence point per unique location where a given species was present was used. This 
means only presence was taken into account, not abundance. Species with less than four unique collection sites 
were not modelled. Subsequently, we prepared a variety of biotic and abiotic environmental spatial layers. We 
started with publicly available layers which included layers that are known to be important for explaining mos-
quito distributions (e.g. urban habitat). Spatial layers include land use, vegetation, geology, soil type, elevation, 
protected nature areas, information on riverbeds and larger semi-temporary waterbodies and urban variables 
including urban areas, neighbourhoods, roads and footpaths. We did not provide a priori environment-species 
interactions and therefore initially included all spatial layers in each species model (see Table S3 for all base maps 
used for the environmental spatial layers). Because of its small size, Bonaire has just one macroclimatic zone. 
Therefore, no macroclimatic or weather variables were added to the models. Notably, a recent study examin-
ing the impact of climate change on Bonaire, did not distinguish more than one macroclimatic region on the 
island in their modelling  approaches65. No microclimatic variables (e.g. higher temperature or lower humidity 
because of differences in urbanisation and tree cover) were available for Bonaire, and as such these could not 
be included. We rescaled the spatial layers with an original resolution of 2 × 2 m or 5 × 5 m to a resolution of 
10 × 10 m in R and QGIS and we changed the coordinate system to WGS84. For most of the categorical layers, 
we created a distance to matrix as well. This enables numerical analyses of these variables and the importance of 
the proximity to a specific category.

Our chosen presence-background ENM approach needs a dataset of ‘background sites’ that are compared 
with the environmental variation at locations where mosquitos were collected. Therefore, we created such a 
background dataset by randomly selecting a total of 10,000 occurrence points within the well-sampled areas to 
prevent overprediction of the  model62,66,67. As a threshold, only background areas were selected when at least 
two or three species were collected.

The machine-learning ENM algorithm  Maxent66 was used to generate suitability predictions via the R pack-
age ENMeval62. Maxent is one of the most widely used SDM algorithms, often outperforms other ENMs, and 
generally achieves good results when using small datasets (e.g., Wisz et al.67). Applying Maxent in ENMeval 
permits splitting occurrence data into ‘spatial blocks’, which among other benefits decreases the chance of high 
spatial autocorrelation between training and testing sites, and thereby counters model  overfitting68. ENMeval 
also includes model selection  procedures69.

The ENM pipeline consisted of the following steps. Occurrence- and background data were first divided into 
spatial blocks to decrease chances for high spatial autocorrelation between training and testing sites. Then, a set 
of initial models was created for these subsets, each with different combinations of parameter settings, which 
together represent all combinations of regularization multiplier (1–5) and feature class settings [‘linear’ (L), 
‘linear & quadratic’ (LC), hinge (H), and linear, quadratic and hinge (LQH)]. The optimal model was defined 
as the model with the lowest mean percentage of test sites falling outside the predicted range (i.e., lowest mean 
omission error), and the highest mean evaluation (AUC)  value70,71. To check whether this model performed 
significantly better than models based on randomly selected data, a series of 100 null models was  created72 based 
on Raes and Ter  Steege21. Optimal models of Aedes aegypti, Aedes taeniorhynchus, Culex quinquefasciatus, Culex 
nigripalpus, Deinocerites sp., Haemagogus chrysochlorus and Psorophora confinnis s.l. were found to perform 
significantly better than models based on randomly selected data. See Table 1 for more information on their 
ecology and habitat preferences. All environmental variables were used in the initial models; no initial correlation 
assessments were performed. Because Maxent is a machine learning algorithm, (strongly) correlating variables 
have no effect on performance when predictions are only made for the current time  period73. However, there is 
a risk of overparameterisation, and suitability maps based on ecologically relevant variables are more accurate 
than maps based on arbitrary environmental  variables74–76. The percentage contribution of each environmental 
variable was therefore retrieved from the results of the initial models and used to select the most influential vari-
ables. If within this selection there were still sets of variables with a correlation of less than − 0.7 or more than 
0.7 Pearson’s r, the least important variable was removed (based on  Jueterbock77). The final set of environmental 
variables was used to generate a new set of models, again for all different combinations of parameter settings. 
The optimal model from this series was selected as the final model. From this model, plots of the occurrence 
data divided into spatial blocks, metadata, species-environment relationship plots, and the spatial predictions 
(suitability maps) were exported as separate files. Taking into account the growing criticism, the evaluation of 
model performance continues to predominantly rely on the validation of Area Under the Curve (AUC)  scores78,79. 
In the context of our investigation, we adopt a nuanced approach to interpreting AUC values: an AUC value of 
≤ 0.5 is considered not performing better than random. Those within the range of AUC > 0.5 but < 0.7 are clas-
sified as demonstrating poor to moderate performance; AUC values > 0.7 but < 0.9 signify models exhibiting 
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moderate to high performance; and notably, an AUC > 0.9 is indicative of excellent  performance80–82. On top 
of AUC values we also evaluated model performance based on the Boyce  index83. The index ranges from − 1 to 
1. A value closer to 1 indicates model predictions align with presences’ distribution while a value closer to − 1 
indicates the model predictions do not align with the presence’s distribution. Values around zero indicate the 
model does not differ from a random model. Variable response curves were also evaluated to understand the 
correlations between variables and predicted distributions (Figure S2). The entire pipeline can be found under 
Data Availability Statement.

Data availability
All data, including used scripts, can be found on our GitHub repository, link: https:// github. com/ woute rbeuk 
ema/ Woute rs_ et_ al_ Mosqu itosB onaire.
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