
Naturalis Repository

Higher temperature induces oxidative stress in hybrids but not in
parental species: A case study of crested newts

Tamara G. Petrović, Tijana Vučić, Pablo Burraco, Branka R. Gavrilović,
Svetlana G. Despotović, Jelena P. Gavrić, Tijana B. Radovanović, Sanja Šajkunić,
Ana Ivanović, Marko D. Prokić

DOI:
https://doi.org/10.1016/j.jtherbio.2023.103474

Downloaded from

Naturalis Repository

Article 25fa Dutch Copyright Act (DCA) - End User Rights
This publication is distributed under the terms of Article 25fa of the Dutch Copyright Act (Auteurswet)

with consent from the author. Dutch law entitles the maker of a short scientific work funded either wholly

or partially by Dutch public funds to make that work publicly available following a reasonable period after

the work was first published, provided that reference is made to the source of the first publication of the

work.

This publication is distributed under the Naturalis Biodiversity Center ‘Taverne implementation’

programme. In this programme, research output of Naturalis researchers and collection managers that

complies with the legal requirements of Article 25fa of the Dutch Copyright Act is distributed online and

free of barriers in the Naturalis institutional repository. Research output is distributed six months after its

first online publication in the original published version and with proper attribution to the source of the

original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the

author(s) and copyrights owner(s) of this work. Any use of the publication other than authorized under

this license or copyright law is prohibited.

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests,

please let the department of Collection Information know, stating your reasons. In case of a legitimate

complaint, Collection Information will make the material inaccessible. Please contact us through email:

collectie.informatie@naturalis.nl. We will contact you as soon as possible.

https://doi.org/10.1016/j.jtherbio.2023.103474
https://repository.naturalis.nl
mailto:collectie.informatie@naturalis.nl


Journal of Thermal Biology 112 (2023) 103474

Available online 10 January 2023
0306-4565/© 2023 Elsevier Ltd. All rights reserved.

Higher temperature induces oxidative stress in hybrids but not in parental 
species: A case study of crested newts 
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A B S T R A C T   

Ectotherms are particularly sensitive to global warming due to their limited capacity to thermoregulate, which 
can impact their performance and fitness. From a physiological standpoint, higher temperatures often enhance 
biological processes that can induce the production of reactive oxygen species and result in a state of cellular 
oxidative stress. Temperature alters interspecific interactions, including species hybridization. Hybridization 
under different thermal conditions could amplify parental (genetic) incompatibilities, thus affecting a hybrid’s 
development and distribution. Understanding the impact of global warming on the physiology of hybrids and 
particularly their oxidative status could help in predicting future scenarios in ecosystems and in hybrids. In the 
present study, we investigated the effect of water temperature on the development, growth and oxidative stress 
of two crested newt species and their reciprocal hybrids. Larvae of Triturus macedonicus and T. ivanbureschi, and 
their T. macedonicus-mothered and T. ivanbureschi-mothered hybrids were exposed for 30 days to temperatures of 
19◦C and 24◦C. Under the higher temperature, the hybrids experienced increases in both growth and develop
mental rates, while parental species exhibited accelerated growth (T. macedonicus) or development 
(T. ivanbureschi). Warm conditions also had different effects on the oxidative status of hybrid and parental 
species. Parental species had enhanced antioxidant responses (catalase, glutathione peroxidase, glutathione S- 
transferase and SH groups), which allowed them to alleviate temperature-induced stress (revealed by the absence 
of oxidative damage). However, warming induced an antioxidant response in the hybrids, including oxidative 
damage in the form of lipid peroxidation. These findings point to a greater disruption of redox regulation and 
metabolic machinery in hybrid newts, which can be interpreted as the cost of hybridization that is likely linked to 
parental incompatibilities expressed under a higher temperature. Our study aims to improve mechanistic un
derstanding of the resilience and distribution of hybrid species that cope with climate-driven changes.   

1. Introduction 

Human activity and the resulting global change underlie a dramatic 
worldwide loss of biodiversity (Simide et al., 2016; Román-Palacios and 

Wiens, 2020; Mi et al., 2022). Habitat fragmentation, diseases, lower 
resource levels and extreme environmental events are among the main 
factors threatening wildlife (Blaustein et al., 2001; Strong et al., 2017). 
Although organisms have evolved mechanisms to detect and respond to 
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changes in habitat, the intensity and pace of these changes often exceed 
the tolerance limits of different organisms and thus negatively affect 
their performance and fitness (Hoffmann and Sgrò, 2011; Román-Pala
cios and Wiens, 2020). 

Beyond the effects of global change at the individual level, envi
ronmental shifts influence changes at the population and species levels, 
driving ecological and evolutionary processes (Visser and Both, 2005; 
Williams and Jackson, 2007; Traill et al., 2010). One potential way of 
coping with environmental variation is species hybridization. Theoret
ical and empirical studies often indicate that interspecific hybrids differ 
ecologically from both parents and that hybridization can promote rapid 
population segregation and the development of novel adaptive traits 
(Seehausen, 2004). However, hybridization has associated costs such as 
reductions in an individual’s capability to maintain optimal levels of 
certain physiological pathways (Arnqvist et al., 2010; Koevoets et al., 
2012; Gvoždík, 2012; Barreto and Burton, 2013; Du et al., 2017; Prokić 
et al., 2018). One of the costs is related to perturbations in mitochondrial 
functioning arising from incompatibilities between maternal mito
chondrial and parental nuclear DNA (mitonuclear mismatch) (Burton 
et al., 2006). This mismatch can lead to inefficiency of oxidative phos
phorylation (OXPHOS) (Burton et al., 2006; Koch et al., 2021), distur
bances in electron flow (Gusdon et al., 2007; Rand et al., 2018) and 
redox balance, and Krebs cycle flux, with downstream consequences on 
the biosynthesis, repair, gene expression and phenotype of individuals 
(Miller and Matute, 2017; Rodríguez et al., 2021). 

Ectotherms have a limited ability to use metabolic heat to maintain 
their body temperature, and some of their basic physiological functions 
such as locomotion, growth and reproduction are strongly influenced by 
ambient temperature (Kingsolver et al., 2013). Many ectotherm species 
hybridize and the resulting hybrids usually face the same environmental 
conditions as their parents. The interplay between intrinsic chromo
somal rearrangements, genetic and mitonuclear interactions and 
extrinsic environmental render hybrid individuals more sensitive to 
environmental (temperature) shifts and can involve maladaptive re
sponses that alter hybrid development and distribution (Koevoets et al., 
2012; Chunco, 2014; Canestrelli et al., 2017; Miller and Matute, 2017). 
Climate change can mediate hybrid zone movement and result in 
changes in gene flow and alterations in hybrid functioning, leading to 
either the breakdown or buildup of hybrid boundaries (Ryan et al., 
2018). Therefore, studying the mechanisms that underlie the responses 
of ectothermic hybrids to environmental change and in particular to 
temperature conditions, will assist us in understanding of their evolu
tionary potential and limits, as well as provide solutions for conservation 
efforts and management of natural resources. 

Among vertebrates, amphibians are an ideal study system to inves
tigate the impact of global climate change on hybrid species. Amphib
ians are the most threatened vertebrate group (Blaustein et al., 2010; 
Catenazzi, 2015), with interspecific hybridization a commonly observed 
process (Chunco, 2014). It is anticipated that many extant amphibian 
populations will be increasingly endangered in the following decades, 
and that most European species will be incapable of adequately coping 
with the predicted scenarios of global climate change (Catenazzi, 2015). 
Many amphibians have a biphasic life cycle that includes abrupt trans
formations from an aquatic larva to a terrestrial juvenile through 
metamorphosis, with the size at metamorphosis often predictive of 
survival later in life (Cabrera-Guzmán et al., 2013; Székely et al., 2020; 
Zhu et al., 2021). Also, amphibian larvae frequently maintain and ex
press plastic responses at the expense of energetically demanding pro
cesses (Gervasi and Foufopoulos, 2008; Burraco et al., 2022a), which, 
together with their highly permeable skin (Yu et al., 2015; Strong et al., 
2017; Ruthsatz et al., 2018) and limited vagility (Enriquez-Urzelai et al., 
2022) make them highly vulnerable to environmental variations. In
creases in ambient temperature are predicted to negatively affect 
amphibian populations and are likely linked to carry-over effects at a 
later age, including altered developmental or growth rates (Tejedo et al., 
2010; Ruthsatz et al., 2020; Sinai et al., 2022). As in other ectotherms, 

the temperature exerts pervasive effects on the metabolic rate, loco
motor activity, water balance, feeding behavior (Baškiera and Gvoždík, 
2019), breeding phenology, gametogenesis (Blaustein et al., 2001, 
2010) and susceptibility to infection (Sauer et al., 2018) in amphibians. 
Most of these processes can lead to increased production of reactive 
oxygen species (ROS) (Speakman, 2005; Halliwell and Gutteridge, 2015; 
Koch et al., 2021). Even though ROS have signaling roles, the mismatch 
between the rate of ROS production and the capacity of the antioxidant 
defense system (AOS) components disrupt the oxidative balance (ROS 
steady-state) and lead to oxidative stress (Halliwell and Gutteridge, 
2015; Costantini, 2019). Oxidative stress is accompanied by damage to 
essential biomolecules and the formation of oxidative damage products 
(carbonyl proteins, lipid peroxides and 8-oxo-7,8-dihydro-2’-deox
yguanosine) that disrupt cell and tissue homeostasis (Halliwell and 
Gutteridge, 2015). As regards amphibian hybrids, research has shown 
that their antioxidant machinery often has different dynamics than that 
of their parents (e.g., higher enzymatic activities and lower levels of 
overall correlation with the antioxidant system index of integration) 
(Prokić et al., 2018), in addition to a larger investment in the AOS and 
higher metabolic rates (Gvoždík, 2012; Prokić et al., 2018, 2021a), 
which points to the metabolic cost of hybridization. The question is 
whether changes in habitat conditions such as temperature can poten
tially exacerbate differences in the oxidative status of amphibian 
hybrids. 

Herein we present the findings of our investigation into the physio
logical effects of different ambient temperatures on two species: Triturus 
macedonicus and T. ivanbureschi and their reciprocal hybrids (T. mace
donicus-mothered and T. ivanbureschi-mothered). These species belong 
to the crested newt group of the monophyletic genus Triturus. Triturus 
macedonicus and T. ivanbureschi are phylogenetically well-separated 
species from two distinct clades of crested newts (Wielstra et al., 
2019; Rancilhac et al., 2021) that slightly differ in life history traits and 
morphology and possess distinct distribution ranges (Arntzen et al., 
2018; Vučić et al., 2019, Vučić et al., 2020a,b), with the contact zone 
positioned on the Balkan Peninsula (the central and eastern parts of 
Serbia; Fig. 1). Complex interactions between the species include 
expansion of the range of T. macedonicus over T. ivanbureschi, followed 
by asymmetrical introgression of T. ivanbureschi mtDNA in 
T. macedonicus, which can be regarded as a genomic footprint of the 
previous range of T. ivanbureschi (Arntzen and Wallis, 1999; Wielstra 
and Arntzen, 2012; Wielstra et al., 2017). At the contact zone, viable 
hybrid populations consist of only hybrids with T. ivanbureschi mtDNA 
derived from many generations of mutual hybrid crossing and back
crossing with both parental species (Wielstra and Arntzen, 2012; Wiel
stra et al., 2017; Arntzen et al., 2018). Most crested newt species develop 
and reproduce between 18◦C and 20◦C (Litvinchuk et al., 2007), while 
the larvae experience water temperatures up to 25◦C (Smolinský and 
Gvoždík, 2014; Smith et al., 2015; Winterová and Gvoždík, 2021). 

In this study, we examined the effect of two temperature regimes 
(19◦C and 24◦C) on the development, growth and oxidative stress pa
rameters of crested newt parental species and hybrid larvae. To deter
mine the oxidative stress status of individuals, we measured AOS 
parameters (the activities of superoxide dismutase- SOD, catalase- CAT, 
glutathione peroxidase- GSH-Px, glutathione reductase- GR and gluta
thione S-transferase- GST, and concentrations of glutathione- GSH and 
SH groups) and oxidative damage by quantifying lipid peroxidation 
(LPO). We hypothesized that a higher temperature should accelerate 
development and induce oxidative stress in the larvae of both parental 
species and hybrids. Additionally, as growth and development require 
synchronized actions of both nuclear and mitochondrial genomes, the 
potential dysfunction of mitochondria associated with mitonuclear in
compatibilities in hybrids can decrease the physiological ability of hy
brids to tolerate higher temperatures, and as a consequence, this will 
result in increased oxidative damage. The absence of hybrid individuals 
with T. macedonicus mtDNA in nature suggests that this genotype faces 
greater perturbations and intense oxidative stress. 

T.G. Petrović et al.                                                                                                                                                                                                                              
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2. Materials and methods 

2.1. Experimental design 

T. macedonicus and T. ivanbureschi adult females and males were 
collected in populations in the wild (T. macedonicus in 2015 from Ceklin, 
Montenegro; 42◦21′N, 18◦59′E, and T. ivanbureschi in 2014 from Zli Dol, 
Serbia; 42◦25′N, 22◦27′E). The capture of animals was approved by the 
Ministry of Energy, Development and Environmental Protection of the 
Republic of Serbia (Permit No. 353-01-75/2014-08), and the Environ
mental Protection Agency of Montenegro (Permit No. UPI-328/4). The 
experimental procedure was approved by the Animal Ethical Committee 
of the Institute for Biological Research “Sinǐsa Stanković”, University of 
Belgrade (Decision No. 03-03/16). After hibernation, we crossed adult 
individuals in large mesocosms aiming to simulate their natural envi
ronment (i.e., in 500-L tanks filled with dechlorinated water, closed with 
a protective net and containing plastic strips as underwater ‘vegetation’ 
for egg deposition, with bricks for shelter and plastic floating islets). To 
obtain larvae of the species and their reciprocal F1 hybrids we made four 
different crossings as follows: (i) T. ivanbureschi (T. ivanbureschi 3♀ ×

3♂), (ii) T. macedonicus (T. macedonicus 3♀ × 3♂), (iii) T. ivanbureschi- 
mothered hybrids (T. ivanbureschi 3♀ × T. macedonicus 3♂), and (iv) 
T. macedonicus-mothered hybrids (T. macedonicus 3♀ × T. ivanbureschi 
3♂). Maternal identity could not be controlled as the combinations of 
crossings of each species were conducted in a single mesocosm; how
ever, maternal effects were reduced by using males and females origi
nating from the same population (Parichy and Kaplan, 1992; Kaplan, 
1998). 

Eggs were collected daily and maintained in Petri dishes until 
hatching. Once hatched, the larvae were raised in 100-mL plastic cups 
and fed ad libitum with Artemia sp. until they reached stage 50 according 
to Glücksohn (1932). At this stage, they were placed individually in 2-L 
plastic containers half-filled with dechlorinated tap water. From this 
stage, the larvae were fed with Tubifex sp. All individuals were main
tained at the same temperature (19◦C) and photoperiod. At stage 62 
(larvae with fully developed limbs and tail; Glücksohn, 1932), half of the 
individuals from each genotype were individually and randomly 
assigned to two temperature treatments – 19◦C and 24◦C (N = 30 in
dividuals per treatment). The larvae were exposed to the temperatures 
for 30 days in 2-L plastic containers half-filled with dechlorinated tap 
water. Individuals were fed with Tubifex sp. ad libitum. Twice a day feces 
were removed from the containers to keep the water clean. During the 
entire experiment, the water was renewed completely every other day. 
The body size of each individual was recorded at the start and at the end 
of the experiment by taking photographs of the dorsal view, from the tip 
of the snout to the level of the posterior edge of hind legs (designated as 
the SVL), and photographs were analyzed with the help of ImageJ 
software. All photographs included a metric scale and were taken with a 
Sony DSCF828 digital camera (24-bit color and 3264 × 2448-pixel 

resolution (MP, Sony Corp., Tokyo, Japan). The growth rate was 
calculated as the increase in SVL from the start until the end of the 
experiment (mm/day). At the end of the experiment, individuals were 
killed by immersion in liquid nitrogen. 

2.2. Sample processing and biochemical analyses 

Oxidative stress parameters were measured in whole bodies. To 
quantify the activity of the antioxidant parameters, each sample was 
homogenized in 5 vol of 25 mM sucrose buffer, pH 7.4, containing 10 
mMTris-HCl and 5 mM EDTA using an Ultra-Turrax, Janke and Kunkel, 
IKA-Werk (Germany) homogenizer (Lionetto et al., 2003). The homog
enate was sonicated for 30 s at 10 kHz with a Sonopuls ultrasonic ho
mogenizer (HD 2070; Bandelin Electronic, Germany).The sonicated 
samples were immediately separated into aliquots for the measurement 
of total GSH. GSH sonicates in 10% sulfosalicylic acid were centrifuged 
at 5,000×g for 10 min (Griffith, 1980); for other AOS parameters, 
samples were centrifuged at 100,000×g for 90 min at 4◦C using a 
Beckman ultracentrifuge (Takada et al., 1982; Abele et al., 2011). To 
determine the activity of SOD, the autoxidation of adrenaline to adre
nochrome at 480 nm (Misra and Fridovich, 1972) was followed. CAT 
activity was assessed by Claiborne’s (1984) method, which quantifies 
the degradation of hydrogen peroxide at 240 nm. To assay GSH-Px ac
tivity, the protocol developed by Tamura et al. (1982) was used, and for 
GR activity, the protocol described by Glatzle et al. (1974). Activities of 
both GSH-Px and GR are based on the rate of NADPH oxidation. To 
measure GST activity, the method described by Habig et al. (1974) was 
used. The activities of three enzymes, GSH-Px, GR and GST, were 
measured at 340 nm. The activities of all antioxidative enzymes were 
expressed as U mg−1 protein. To measure GSH concentration, the 
method of Griffith (1980), which is based on 5,5ʹ-dithio-bis-(2-ni
trobenzoic acid) (DTNB) enzymatic recycling, was used. GSH concen
tration was expressed in nmol g−1 tissue. After incubation of tissue 
extracts with DTNB, the contents of protein sulfhydryl (SH) groups were 
recorded (Ellman, 1959). The concentration of SH groups was expressed 
as nmol mg−1 protein. At 412 nm, the absorbance of both GSH and SH 
groups was measured. To quantify thiobarbituric acid-reactive sub
stance (TBARS), the assay developed by Rehncrona et al. (1980) was 
used. Samples were homogenized and sonicated at pH 7.4 in 10 vol of 
ice-cold Tris-HCl buffer, and centrifuged for 10 min in 40% trichloro
acetic acid (TCA) at 10,000×g at 4◦C. The obtained supernatants were 
used to measure lipid peroxidation (LPO) at 532 nm and were expressed 
as nmol (mg tissue)−1. The total amount of protein contained in samples 
was quantified according to Lowry et al. (1951) using a UV-VIS spec
trophotometer with a temperature-controlled cuvette holder (UV-1800, 
Shimadzu, Japan); all parameters were measured at 19◦C, which is 
considered the optimal temperature for the studied species (as regards 
their habitat and body temperature) (Gvoždík et al., 2007; Abele et al., 
2011; Prokić et al., 2018). 

Fig. 1. The contact zone between Triturus ivanbur
eschi (blue) and T. macedonicus (pink). The north- 
western enclave of T. ivanbureschi in central Serbia 
is separated from the species main range by expand
ing T. macedonicus. Blue lines represent the range of 
T. macedonicus containing T. ivanbureschi mitochon
drial DNA. The populations with a substantial genetic 
admixture of the two species’ nuclear genome 
(Wielstra et al., 2017; summarized in Vučić et al., 
2020a,b) are highlighted. The hybrid populations 
consist of individuals derived from many generations 
of mutual hybrid crossings and backcrossing with 
both parental species (Arntzen at el., 2018).   
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All reagents were obtained from Sigma (St. Louis, MO, USA). The 
intraclass correlation coefficients (ICC) were as follows: 0.982, 0.978, 
0.988, 0.992, 0.975, 0.983, 0.987 and 0.786 for SOD, CAT, GSH-Px, 
GST, GR, GSH, SH groups and LPO, respectively. 

2.3. Statistical analyses 

To check for possible outliers, Grubb’s test was used and no outliers 
were detected. Normal distribution of data and homogeneity of variance 
were confirmed with the Kolmogorov-Smirnov and Levine tests, 
respectively. A mixed model for repeated measures was performed to 
test for differences in SVL within and between genotypes during the 
experiment, using SVL values at the sampling point (beginning or end of 
the experiment) as a repeated variable (within-subject), with the geno
type and temperature as fixed factors. Differences among the studied 
factors were checked by posthoc test with Bonferroni’s correction for 
multiple comparisons. The Fisher exact test was used to analyze differ
ences in the percentages of metamorphosed individuals at the end of the 
experiment. To check for differences between two independent factors, 
i.e., genotype (parental species and hybrids), temperature (19◦C and 
24◦C), and their interaction with oxidative stress parameters, factorial 
ANOVA was applied. When a significant interaction between factors 
(treatment × genotype) was observed, the posthoc test was conducted to 
check for differences between levels (i.e., pairwise multiple comparisons 
with Tukey’s adjusted P values). In canonical analyses, AOS parameters 
were included for individuals exposed to a temperature of 24◦C to 
determine the parameters that contributed the most to the differences in 
stress response among hybrids and parental species. Statistical analyses 
were performed using STATISTICA 8.0, except for the mixed model, 
which was performed in IBM SPSS Statistics (Ver. 27.0). Pairwise mul
tiple comparisons were performed in XLSTAT (Ver. 2014.5.03), and 
intraclass correlation coefficients were calculated in R 3.4.4 (R Devel
opment Core Team) with ICC (package ‘ICC’ 2.3.0). 

3. Results 

3.1. Growth and development 

Differences in growth and developmental rates between hybrids and 
their parental species were observed. At the beginning of the experi
ment, the T. macedonicus-mothered hybrid had a significantly greater 
SVL than T. macedonicus and the T. ivanbureschi-mothered hybrid 
(Fig. 2). All the examined groups, regardless of the temperature to which 
they were exposed, at the end of the experiment showed significantly 
higher SVL values in comparison to the SVL values at the start of the 
experiment (Fig. 2, Table S1). At the end of the experiment, the larvae of 
parental species and hybrids reared at 19◦C did not differ in SVL. 
Comparison between groups from the warm environment (24◦C) 
showed that only individuals of T. ivanbureschi had significantly lower 
SVL values than individuals from the other genotypes (Fig. 2, Table S1). 
T. ivanbureschi was the only genotype that at the end experiment did not 
display significant differences in SVL at either 19◦C or 24◦C, whereas in 
all other genotypes, the higher temperature led to a significant increase 
in SVL (Fig. 2, Table S1). After 30 days of exposure to 19◦C, growth rates 
were similar among species (Fig. 3). In contrast, at 24◦C T. macedonicus 
experienced the highest growth rate, followed by both hybrids, while 
T. ivanbureschi exhibited the lowest growth rate (Fig. 3). T. ivanbureschi 
was the only species that did not exhibit a higher growth rate in warm 
conditions. At the end of the experiment (after 30 days of exposure to 
temperature treatments), larvae exposed to 19◦C did not yet complete 
metamorphosis. In contrast, 36.7% (11 of 30 individuals) of the 
T. macedonicus-mothered hybrid, 30.0% of the T. ivanbureschi-mothered 
hybrid (9 of 30) and 20.0% of T. ivanbureschi (6 of 30) completed 
metamorphosis after exposure to 24◦C. None of T. macedonicus larvae 
completed metamorphosis at either of the temperatures. Comparisons 
for the number of metamorphosed individuals between genotypes at 

different temperatures (19◦C vs. 24◦C) revealed a significantly higher 
number of metamorphosed individuals at the warm temperature for 
both hybrids (T. macedonicus-mothered hybrid P = 0.0003 and 
T. ivanbureschi-mothered hybrid P = 0.0019), and T. ivanbureschi (P =
0.0237). The differences between parental species and their hybrids at 
24◦C showed that only T. macedonicus had a significantly lower number 
of metamorphosed individuals (none) in comparison to other genotypes 
(T. macedonicus vs T. ivanbureschi P = 0.0237; T. macedonicus vs the 
T. macedonicus-mothered hybrid P = 0.0003; T. macedonicus vs. the T. 
ivanbureschi-mothered hybrid P = 0.0019). 

3.2. Oxidative stress 

Factorial ANOVA conducted on oxidative stress parameters showed a 
significant influence of the genotype × temperature interaction on the 
activities of SOD and GST, and LPO concentrations (Table 1). Since the 

Fig. 2. Snout vent length (SVL-mm) of hybrids and parental species of crested 
newts larvae (Triturus) at the beginning and end of the experiment at temper
atures of 19 ◦C and 24 ◦C. “*” indicates significant differences between the 
beginning and end of the experiment for the same genotype/species; “#” in
dicates significant differences at the end of the experiment between the same 
species under the 19 ◦C and 24 ◦C treatment; lowercase letters indicate dif
ferences between species reared under 19 ◦C water temperature; capital letters 
indicate differences between species exposed to 24 ◦C water temperature. 
Different letters indicate significant differences (P ≤ 0.05). 

Fig. 3. Growth rates (mean ± standard error) of parental species and hybrid 
individuals (Triturus) reared at 19 ◦C and 24◦C. “*” indicates significant dif
ferences between the 19 ◦C and 24 ◦C treatment for the same species; lower case 
letters indicate differences between species reared under 19 ◦C water temper
ature; capital letters indicate differences between species exposed to 24 ◦C 
water temperature. Different letters indicate significant differences (P ≤ 0.05). 
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interaction was significant, the influence of single factors cannot be 
explained without considering the other factor, hence all post hoc tests 
on parameters where the interactions were significant are included in 
Table S2. For the other parameters, CAT, GSH-Px, GR, GSH and SH 
groups, significant differences for both factors (i.e., genotype and tem
perature) were recorded but not for their interaction (Table 1). 

3.2.1. Effects of temperature on the oxidative status of hybrids and parental 
species 

Warm conditions induced increases in SOD, CAT, GSH-Px and GST 
activities and SH concentrations in T. macedonicus individuals (Figs. 4 
and 5). In contrast, T. macedonicus individuals raised at 19◦C had higher 
GSH and LPO concentrations (Figs. 4 and 5). The higher temperature led 
to increased activities of CAT, GSH-Px, GST and SH concentration in 
T. ivanbureschi, whereas a lower temperature caused higher SOD activity 
and GSH concentration. In hybrids exposed to 24◦C, an overall increase 
in the values of oxidative stress parameters compared to those at 19◦C 
was observed. At 24◦C, the T. macedonicus-mothered hybrid exhibited 
higher activities of GSH-Px and GST, and the T. ivanbureschi-mothered 
hybrid higher activities of CAT, GSH-Px, GR and GST. Hybrids exposed 
to the higher temperature had higher concentrations of SH groups and 
LPO (Figs. 4 and 5). 

At the individual level, the growth rate was in significant correlation 
with GSH-Px (r = 0.29, P = 0.002), GST (r = 0.31, P = 0.001) activities 
and SH (r = 0.18, P = 0.048) concentration, whereas the correlations 
between individual growth rate and other oxidative stress parameters 
were non-significant (Table S3). 

3.2.2. Oxidative stress differences between parental species and hybrids 
Individuals of the T. macedonicus-mothered hybrid had significantly 

higher activities of SOD, CAT, GSH-Px, GR and GST in comparison to the 
parental species and T. ivanbureschi-mothered hybrids at both temper
atures (Figs. 4 and 5). At 24◦C, the T. macedonicus-mothered hybrid also 
displayed a higher concentration of LPO than both parental species, and 

of SH groups than T. macedonicus larvae (Fig. 5). Triturus ivanbureschi- 
mothered hybrids that were maintained at the lower temperature had 
lower activities of SOD, CAT and GSH-Px than T. ivanbureschi, and the 
concentration of LPO when compared to T. macedonicus. At the warm 
temperature, the T. ivanbureschi-mothered hybrid had lower CAT ac
tivity than T. ivanbureschi, and lower SOD activity than T. macedonicus. 
Higher LPO values were detected in T. ivanbureschi-mothered in
dividuals as compared to T. macedonicus and T. ivanbureschi, as well as 
higher concentrations of SH groups than in T. macedonicus. Comparisons 
between parental species revealed that the larvae of T. ivanbureschi had 
higher activities of CAT at both temperatures, of GSH-Px and SOD at 
19◦C, and SH concentration at 24◦C (Figs. 4 and 5). Only the activity of 
SOD in individuals of T. macedonicus at warmer temperature was higher 
than in T. ivanbureschi (Fig. 4). 

Canonical discriminant analysis was conducted on AOS parameters 
at 24◦C to obtain possible differences among genotypes in response to 
thermal stress. T. macedonicus-mothered hybrid individuals differed 
from the other genotypes according to the first canonical function (Root 
1–45.74% of the total heterogeneity; Fig. 6). The parameters that 
contributed most to the observed differences were GST, GR and GSH-Px 
(Table S4). The second canonical function (Root 2–30.58% of the total 
heterogeneity) separated parental species; the parameters that contrib
uted the most were SH groups and SOD and CAT activities (Table S4 and 
Fig. 6). 

4. Discussion 

In ectotherms, the relationships between mitochondrial activity, 
ROS production and ambient temperature often show that a higher 
temperature changes oxidative phosphorylation, increases mitochon
drial H2O2 production and activates the AOS (Paital and Chainy, 2014; 
Chung and Schulte, 2015; Wang et al., 2018; Roussel and Voituron, 
2020; Jie et al., 2021). Herein we investigated whether ambient tem
perature alters the life-history traits and oxidative status of larvae of two 
newt species and their hybrids. A higher water temperature induced 
overall activation of the AOS response in all four investigated crested 
newt genotypes. Higher activities of enzymes that remove H2O2 (i.e., 
CAT and GSH-Px) indicated that newt larvae were exposed to increased 
production of the free radical. The observed higher concentrations of SH 
groups in animals exposed to warmer temperature can be the result of 
intense somatic growth, protein reorganization and synthesis. Likewise, 
increases in GST activity in response to higher temperature match the 
ongoing process of lipid peroxidation via the formation of lipid hydro
peroxide (Pamplona and Costantini, 2011). Even though all genotypes 
displayed a similar pattern of AOS change in the warm conditions, the 
AOS of parental species was efficient enough to neutralize ROS pro
duction, as suggested by the similar levels of lipid peroxidation observed 
at both cold and warm temperatures. This contrasts with the pattern observed in 
hybrids since despite the activation of the AOS at the higher tempera
ture, the individuals displayed lipid oxidative damage. 

As oxidative stress is a driving force in life-history trade-offs (Cos
tantini, 2008; Monaghan et al., 2009; Metcalfe and Alonso-Alvarez, 
2010; Selman et al., 2012; Smith et al., 2016), higher levels of oxida
tive stress in the hybrids, aside from causing damage to macromolecules 
and increasing maintenance and repair costs, can lead to mtDNA rear
rangements and reduced fidelity of protein translation (Esposito et al., 
1999; Du et al., 2017). When these effects are combined, they can result 
in a detrimental effect on hybrid viability, growth and development rate, 
but also affect adult reproductive traits (fecundity and sperm swimming 
speed) and immune status (Alonso-Alvarez et al., 2007; Barreto and 
Burton, 2013; Hemmer-Brepson et al., 2014; Du et al., 2017; Hill et al., 
2018). However, the more pronounced effects of the warm water on the 
oxidative status of hybrids cannot be explained by the differences in 
growth and developmental rates nor by thermal tolerance among ge
notypes. Body growth and developmental acceleration in larvae likely 
induce overwhelming ROS production partly as the result of increased 

Table 1 
Factorial ANOVAs on examined oxidative stress parameters between genotype 
(Triturus macedonicus, T. ivanbureschi, T. macedonicus-mothered and 
T. ivanbureschi-mothered F1 hybrids), temperature (19 ◦C and 24 ◦C), and their 
interaction (genotype x temperature). Statistical significance (P ≤ 0.05) is given 
in bold.  

Parameter Effect Df F P 

SOD temperature 1 0.418 0.5194 
genotype 3 54.190 <0.0001 
genotype x temperature 3 13.826 <0.0001 

CAT temperature 1 15.826 <0.0001 
genotype 3 55.030 <0.0001 
genotype x temperature 3 0.298 0.8267 

GSH-Px temperature 1 54.641 <0.0001 
genotype 3 17.723 <0.0001 
species x temperature 3 1.245 0.2967 

GR temperature 1 4.180 0.0432 
genotype 3 61.345 <0.0001 
genotype x temperature 3 0.959 0.4146 

GST temperature 1 173.149 <0.0001 
genotype 3 82.244 <0.0001 
genotype x temperature 3 8.858 <0.0001 

GSH temperature 1 13.259 0.0004 
genotype 3 4.442 0.0054 
genotype x temperature 3 0.641 0.5905 

SH temperature 1 84.691 <0.0001 
genotype 3 11.582 <0.0001 
genotype x temperature 3 2.028 0.1140 

LPO temperature 1 0.392 0.5323 
genotype 3 3.628 0.0153 
genotype x temperature 3 7.714 0.0001  
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cellular activity that is required to attain body mass and size (Smith 
et al., 2016; Burraco et al., 2020), and also because corticosterone levels 
increase during metamorphosis (Costantini et al., 2011; Gomez-Mestre 

et al., 2013). In this study, we did not observe a significant correlation 
between body growth and the levels of oxidative damage. In addition, 
increased growth and accelerated metamorphosis at the higher 

Fig. 4. Enzymatic parameters of the antioxidant 
system (SOD, CAT, GSH-Px, GR and GST) in in
dividuals of Triturus macedonicus, T. ivanbureschi, 
T. macedonicus mothered and T. ivanbureschi moth
ered F1 hybrids reared at 19 ◦C and 24◦C. “*” in
dicates significant differences between the 19 and 
24 ◦C treatment for the same species; lower case let
ters indicate differences between species reared under 
19 ◦C water temperature; capital letters indicate dif
ferences between species exposed to 24 ◦C water 
temperature. Different letters indicate significant 
differences (P ≤ 0.05). Triangle – mean value; lines – 
standard deviation; dots –values for each individual. 
For species and hybrids, abbreviations see Fig. 3.   

Fig. 5. Non-enzymatic parameters of the antioxidant 
system (GSH and SH groups) and oxidative damage in 
lipids (LPO) in individuals of parental species and 
hybrids of crested newts larvae (Triturus) reared at 19 
◦C and 24 ◦C. “*” indicates significant differences 
between 19 and 24 ◦C treatment under the same 
species; lower case letters indicate differences be
tween species reared under 19 ◦C water temperature; 
capital letters indicate differences between species 
exposed to 24 ◦C water temperature. Different letters 
indicate significant differences (P ≤ 0.05). Triangle – 
mean value; lines – standard deviation; dots –values 
for each individual.   
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temperature were observed in both hybrids and in the parental species 
(T. macedonicus– significant growth, T. ivanbureschi – accelerated 
metamorphosis). The parental species did not exhibit higher oxidative 
damage. In natural habitats, T. macedonicus and T. ivanbureschi are faced 
with marked temperature gradients across their wide range of distri
bution. The warm experimental temperature used in our study is above 
the optimal temperature range for both species and hybrids. Hence, 
increased oxidative stress in hybrids that had to cope with the warm 
condition was probably the result of the interaction between the phys
iological and genetic characteristics of each genotype and the abiotic 
environment (see Hill et al., 2018). 

Several studies in ectothermic animals, insects and lizards, have 
suggested that hybrids are particularly vulnerable to high temperatures, 
as exemplified by the negative impacts on fitness-related traits such as 
survival, fertility and metabolic rates (Wade et al., 1999; Vinšálková and 
Gvoždík, 2007; Arnqvist et al., 2010; Koevoets et al., 2012; Miller and 
Matute, 2017; Rodríguez et al., 2021). In crested newt hybrids, the 
mismatch between mitochondrial and nuclear DNA can include higher 
metabolic rates and reduced mitochondria efficiency (Gvoždík, 2012). 
Exposure to thermal stress can amplify this disruption in mitochondrial 
activity and the metabolic pathways of hybrids showing maladaptive 
responses. Using the same species and hybrids, we previously revealed 
that other stressful conditions known to affect mitochondria function, 
such as fasting, induce greater oxidative damage in hybrids when 
compared to parental species (Prokić et al., 2021), indicating that hy
brids face mitonuclear mismatch to some extent. However, the degree of 
alteration of mitochondrial functioning and ROS production depends on 
the type of stress and the mitonuclear background (i.e., the association 
with maternal nuclear alleles and the mitochondrial genotype), and thus 
the consequences for the oxidative stress machinery are 
context-dependent and range from mild to severe (Healy and Burton, 
2020; Rodríguez et al., 2021). If hybrid dysfunction is not too severe, a 
compensatory response may mitigate to some extent fitness loss, but if 
mitigation fails and the cost of mounting the response exacerbates 
physiological dysfunction, it can contribute to the absence of hybrids in 
natural populations (Barreto et al., 2014). 

The differences in oxidative stress between the four studied geno
types (i.e., parental species and their reciprocal hybrids) match the 
occurrence of these genotypes in the natural hybrid zone. Individuals of 
the T. macedonicus-mothered hybrid are not found in natural pop
ulations (Wielstra et al., 2017; Wielstra and Arntzen, 2020). This hybrid 

also had the most disturbed redox balance in our experiment. Besides 
oxidative damage in response to a higher temperature, this hybrid ge
notype constitutively displayed high activities of most AOS components 
(SOD, CAT, GSH-Px, GST and GR), regardless of the temperature and develop
mental parameters, in comparison to other genotypes, pointing to 
greater ROS production and intrinsic incompatibilities. Barreto et al. 
(2014) suggested that aside from oxidative damage, the overexpression 
of genes involved in the antioxidant response can contribute to the 
metabolic syndrome and the breakdown of hybrids. The 
T. macedonicus-mothered hybrid also displayed significantly lower 
integration of the AOS (overall correlation/integration of AOS compo
nents) under non-stressful conditions in comparison to parental species, 
suggesting that hybrids require greater investment than the parents to 
maintain the same levels of oxidative damage (Prokić et al., 2018). 
Indeed, the maintenance of the AOS as unregulated is not free of cost, 
likely because of physiological constraints, and can affect subsequent 
ontogenetic stages, especially in changed environments (Pamplona and 
Costantini, 2011; Prokić et al., 2018; Petrović et al., 2020). In this study, 
we did not observe any cost in body growth, but the trade-off in a more 
active AOS could be seen in other biological functions (Isaksson et al., 
2011; Eikenaar et al., 2018; Janssens and Stoks, 2018). However, ad 
libitum feeding during the experiment could have masked any cost in 
body size. Our previous results showed that individuals of the 
T. macedonicus-mothered hybrid were significantly more aggressive and 
active in comparison to T. macedonicus, suggesting higher foraging and 
food intake rates (Petrović et al., 2020). According to the “increased 
intake hypothesis”, higher metabolic rates are linked with increased 
energy requirements and greater competition (Janča and Gvoždík, 
2017). In contrast to the T. macedonicus-mothered hybrids, 
T. ivanbureschi-mothered hybrids are present in nature; in our study they 
exhibited intermediate levels of AOS parameters relative to the parents. 
In natural populations, T. macedonicus individuals with the mtDNA of 
T. ivanbureschi can be found, indicating that mitonuclear mismatch is 
probably not as marked in this genotype. A similar mitonuclear 
mismatch was observed in natural populations of horseshoe bats (Rhi
nolophus affinis), whereas individuals with mitochondria introgression 
exhibited significant upregulation of genes associated with protection 
against oxidative damage, probably caused by the inefficiency of the 
OXPHOS pathway (Chen and Mao, 2021). 

5. Conclusions 

Our results point to a mismatch between developmental growth and 
oxidative stress responses in amphibian hybrids in warm conditions. 
Although extrapolating findings from the laboratory to wild populations 
in the context of climate change is very challenging, the data from this 
study will serve as a baseline for further research into natural pop
ulations where many external factors and their combinations affect the 
oxidative status and life-history traits. Overall, our study provides some 
mechanistic insight into species replacement and mitonuclear discor
dance in hybrids, and can explain the presence of narrow hybrid zones, 
regardless of a similar reproductive potential and viability of F1 hybrids 
and their parents (Bugarčić et al., 2022; Vučić et al., 2022). More pro
nounced physiological alterations and hybrid breakdown could be ex
pected in F2 and further generations of hybrids as the mitonuclear 
incompatibilities are shielded by dominance in the F1 generation (Bur
ton et al., 2006; for more read Hill et al., 2018). Further data on in
dividuals from wild populations, later life stages and succeeding 
generations are needed to understand the distribution of hybrid species 
in nature. Finally, this study aims to encourage further work on the 
eco-evolutionary consequences of global change on interspecific hy
brids, which can include the use of physiological data (such as redox 
information) in species distribution models (Pallarés et al., 2020; Bur
raco et al., 2022b) to predict the impact of future environmental sce
narios on wild populations. 

Fig. 6. Canonical discriminant analyses of the antioxidant parameters (SOD, 
CAT, GSH-Px, GST, GR, GSH and SH groups) of parental species and their hy
brids (Triturus) reared at 24 ◦C. See also Supplementary Table 2. 
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heterosis in hybrid crested newts. PeerJ 6, e5317. 

Arntzen, J.W., Wallis, G.P., 1999. Geographic variation and taxonomy of crested newts 
(Triturus cristatus superspecies): morphological and mitochondrial DNA data. 
Contrib. Zool. 68 (3), 181–203. 

Barreto, F., Pereira, R., Burton, R., 2014. Hybrid dysfunction and physiological 
compensation in gene expression. Mol. Biol. Evol. 32 (3), 613–622. 

Barreto, F.S., Burton, R.S., 2013. Elevated oxidative damage is correlated with reduced 
fitness in interpopulation hybrids of a marine copepod. Proc. R. Soc. Lond. B Biol. 
Sci. 280 (1767), 20131521. 
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Larvenperiode von Triton taeniatus Leyd. und Triton cristatus Laur. Wilhelm Roux’ 
Arch. Entwickl.-Mech. Org. 125, 341–405. https://doi.org/10.1007/BF00576359. 

Gomez-Mestre, I., Kulkarni, S., Buchholz, D.R., 2013. Mechanisms and consequences of 
developmental acceleration in tadpoles responding to pond drying. PLoS One 8, 
e84266. 

Griffith, O.W., 1980. Determination of glutathione and glutathione disulfide using 
glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207–212. 

Gusdon, A.M., Votyakova, T.V., Reynolds, I.J., Mathews, C.E., 2007. Nuclear and 
mitochondrial interaction involving mt-Nd2 leads to increased mitochondrial 
reactive oxygen species production. J. Biol. Chem. 282 (8), 5171–5179. 
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Ruthsatz, K., 2022 May. Developmental plasticity in amphibian larvae across the 
world: Investigating the roles of temperature and latitude. J Therm Biol. 106, 
103233 https://doi.org/10.1016/j.jtherbio.2022.103233. Epub 2022 Apr 8. PMID: 
35636893.  

Smith, G.D., Hopkins, G.R., Mohammadi, S., Skinner, H.M., Hansen, T., Brodie Jr., E.D., 
French, S.S., 2015. Effects of temperature on embryonic and early larval growth and 
development in the rough-skinned newt (Taricha granulosa). J. Therm. Biol. 51, 
89–95. 

Smith, S.M., Nager, R.G., Costantini, D., 2016. Meta-analysis indicates that oxidative 
stress is both a constraint on and a cost of growth. Ecol. Evol. 6 (9), 2833–2842. 
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