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Studies have found that biotic information can play an important role in shaping the 
distribution of species even at large scales. However, results from species distribution 
models are not always consistent among studies and the underlying factors that influ-
ence the importance of biotic information to distribution models, are unclear. We 
studied wild bees and plants, and cleptoparasite bees and their hosts in the Netherlands 
to evaluate how the inclusion of their biotic interactions affects the performance of 
species distribution models. We assessed model performance through spatial block 
cross-validation and by comparing models with interactions to models where the inter-
acting species was randomized. Finally, we evaluated how, 1) spatial resolution, 2) 
taxonomic rank (genus or species), 3) degree of specialization, 4) distribution of the 
biotic factor, 5) bee body size and 6) type of biotic interaction, affect the importance of 
biotic interactions in shaping the distribution of wild bee species using generalized lin-
ear models (GLMs). We found that the models of wild bees improved when the biotic 
factor was included. The model performance improved the most for parasitic bees. 
Spatial resolution, taxonomic rank, distribution range of the biotic factor and degree 
of specialization of the modelled species all influenced the importance of the biotic 
interaction to the models. We encourage researchers to include biotic interactions in 
species distribution models, especially for specialized species and when the biotic fac-
tor has a limited distribution range. However, before adding the biotic factor we sug-
gest considering different spatial resolutions and taxonomic ranks of the biotic factor. 
We recommend using single species or genus data as a biotic factor in the models of 
specialist species and for the generalist species, we recommend using an approximate 
measure of interactions, such as flower richness.
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Introduction

During the last decades, there has been a massive increase 
in the number of published studies using species distribu-
tion models (SDMs) (reviewed by Lobo et al. 2010, Melo-
Merino et al. 2020). Species distribution models are used to 
identify areas of potentially suitable habitat by linking spe-
cies occurrences to environmental variables (Loyola  et  al. 
2012, Silva et al. 2014). These predictions of suitable habitats 
have many applications (Elith and Leathwick 2009), includ-
ing: the estimation of potential distributions under different 
climate change scenarios (Marshall  et  al. 2018, Lima et  al. 
2020), the estimation of suitable areas for a species (Suzuki-
Ohno et al. 2017) and assessing the potential invasiveness of 
an exotic species (Srivastava et al. 2019). 

Biotic information is rarely included directly in distri-
bution models. Biotic interactions are interactive, resource-
related variables and are known as bionomic variables, 
relating to the Eltonian niche (Soberón 2007). On the other 
hand, the environmental variables represent the non-interac-
tive scenopoetic variables and are related to the Grinnellian 
niche (Soberón 2007). Even though competition can drasti-
cally change the distribution of species at a small scale, if the 
scale is large enough competitors may coexist for long times 
and the effect of the bionomic variable may be less appar-
ent (Soberón 2007). The mathematical background of dis-
tribution modelling assumes that the predictor variables are 
independent from the modelled species and such unlinked 
variables are defined as scenopoetic variables (Anderson 
2017). Biotic factors were not considered as scenopoetic 
variables, as the biotic predictor variable is influenced by the 
modelled species that they interact with (Anderson 2017). 
However, a biotic factor that is affected minimally by the 
modelled species, would constitute a scenopoetic variable 
and therefore the biotic factor could be a valid and valuable 
addition to the models (Anderson 2017). Biotic interactions 
can theoretically improve our understanding and predictions 
of the distribution of species through different mechanisms 
(Wisz  et  al. 2013). Previous studies showed an improve-
ment in the statistical performance of spatial models when 
including parasitic (Mathieu‐Bégné et al. 2021), facilitative 
(Heikkinen et al. 2007), resource–consumer (Kissling et al. 
2007, Bateman et al. 2012, Roslin et al. 2017, Atauchi et al. 
2018, Herrera et al. 2018), competitive (Leach et al. 2016, 
Mpakairi  et  al. 2017) and plant–pollinator interactions 
(Araújo and Luoto 2007, Espíndola and Pliscoff 2019, 
Kass et al. 2020).

The extent to which the inclusion of a biotic factor will 
improve the accuracy of a SDM depends on several prop-
erties of the model and the characteristics of the ecological 
interaction. For example, the spatial scale of the biotic factor 
is of importance when introducing it as an explanatory vari-
able (Heikkinen et  al. 2007). There is insufficient evidence 
as to how the explanatory power of biotic factors changes 
with spatial resolution, which is crucial for improving SDMs 
of species with strong hypothesized biotic interactions and 
spatial resolution may strongly affect the contribution of 

biotic interactions to modelled distribution patterns (Pearson 
and Dawson 2003, Soberon and Peterson 2005, Wisz et al. 
2013). Heikkinen et al. (2007) showed that the impacts of 
facilitation between owls and woodpeckers are more visible in 
terms of model performance at a resolution of 10 km than 40 
km. This is consistent with Pearson and Dawson (2003), who 
hypothesized that at broader scales and coarse resolutions, cli-
mate variables are more dominant and biotic interactions less 
apparent. However, the type and strength of an ecological 
interaction may influence the scale dependency. For example, 
an obligate parasite with a strong interaction with its host 
may always be more dependent on its hosts’ distribution at 
any resolution.

Additional distinguishing attributes of the biotic factor 
include the taxonomic rank of the biotic factor, a crucial factor 
for specialist bees and their preferred plant taxon (Robertson 
1925, Rasmussen  et  al. 2020). Characteristics of the mod-
elled species themselves are also important, such as the degree 
of specialization (e.g. generalists versus specialists) and move-
ment range of species, which is strongly linked to how much 
the limited distribution range of the biotic factor may restrict 
the distribution of the modelled species (Giannini  et  al. 
2013). The bee body size shows a strong relation with the 
foraging distance of different bees (Greenleaf  et  al. 2007, 
Kendall et al. 2019) and smaller bees with a smaller foraging 
distance would require their host plant closer to their nest. 
The dietary breadth of the species could influence the impor-
tance of the biotic factor in the models (e.g. specialist versus 
generalist, de Araújo et al. 2014). In the case of bees, it has 
been shown that the population trend of specialist bees is cor-
related to the population trend of plants that they are depen-
dent on for their pollen (Scheper et al. 2014). Specialist bee 
species have a tendency to decline more than generalist bee 
species and their decline is correlated to the population trend 
of their host plant (Biesmeijer et al. 2006) and this leads us 
to expect that the specialist species show a higher contribu-
tion of the biotic factor to their models. Not much is known 
about the effect of the distribution range of a biotic factor 
on its importance to SDMs. However, it is expected that a 
smaller distribution range of the biotic factor would have a 
higher contribution to the models of specialist species, as it 
more likely to be the limiting factor of the modelled species. 

Here, we aim to use a priori knowledge to investigate the 
factors that influence the importance of biotic interactions 
in species distribution models of wild bees. Wild bees are a 
group of well-studied organisms that include species with 
a great importance to ecosystem resilience and that play a 
key role in pollination services to wild plants and crops 
(Kleijn  et  al. 2015, Senapathi  et  al. 2015, Weekers  et  al. 
2022). Bees depend on pollen and nectar provided by plants 
and diets range from narrow (oligolectic bees, using few plant 
species) to broad (polylectic bees, using many plant species) 
(Robertson 1925, Rasmussen et al. 2020). Other species, up 
to 30%, are cleptoparasitic, meaning they are brood parasites 
which lay eggs in nests of other bee species (Cardinal et al. 
2010). They may have one or multiple host bee species. The 
Netherlands is a suitable case study for the effects of biotic 
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interactions on the distribution of wild bees, as there are more 
than 300 species of wild bees (Reemer 2018) and there is 
extensive data on plant–pollinator interactions, hosts of clep-
toparasitic bees and occurrence data. By integrating knowl-
edge of plant visitation and cleptoparasitic interactions, we 
aim to 1) assess the performance of biotic factors in explain-
ing distributions of wild bees in the Netherlands and 2) assess 
how different factors influence the importance of the biotic 
variable, more precisely 1) spatial resolution, 2) taxonomic 
rank, 3) degree of specialization, 4) distribution of the biotic 
factor, 5) bee body size (as a proxy for movement range) and 
6) type of biotic interaction (cleptoparasitic, oligolectic and 
polylectic bees).

Material and methods

Overview of the modelling approach

The methods in this paper can be subdivided into three sepa-
rate modelling approaches (Fig. 1). For the first aim of the 
study, assessing the performance of biotic factors in explain-
ing distributions of wild bees in the Netherlands, we devel-
oped SDMs with the modelled bees as focal species and the 
abiotic variables and the biotic factor as predictors. The biotic 
factor was either the most visited plant for the pollen-col-
lecting bees or their known host bee for the cleptoparasitic 

bees. The species of the biotic factor was determined using 
the literature or a database and therefore these models are 
referred to as known interaction species distribution models 
(KI-SDMs). In contrast to the known interactions, we also 
introduced a random species as the biotic factor; these models 
are referred to as randomized interaction species distribution 
models (RI-SDMs). These models are an adapted version of 
the SDM null models (Raes and ter Steege 2007) and they 
account for collection biases and can test whether the impor-
tance of the biotic factor is specific to the known interaction 
or might be accounted for by the interaction with any other 
plant or bee. The second aim of this study is to assess how 
different factors influence the importance of the biotic factor 
to the models. To compare the effects of 1) spatial resolu-
tion and 2) taxonomic ranks we extend the KI-SDMs with 
a set of extra models that vary in the spatial resolution and 
taxonomic rank of the biotic factor. The third modelling step 
utilizes the output from the SDMs (the variable importance 
of the biotic factor) to assess the relative importance of the 
other factors, namely 3) degree of specialization, 4) distribu-
tion of the biotic factor and 5) bee body size (which relates 
to movement range) in explaining the contribution of the 
biotic factor to the models. We approached this by fitting 
generalized linear models (GLMs) with variable importance 
as the response variable and with the above factors included 
as explanatory variables. 

Figure 1. Schematic overview of the modelling workflow. The boxes represent models and variables and the arrows indicate the information 
flow. The circles represent the research aims that target the respective evaluation measures. 
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Abiotic variables

The abiotic variables totalled 29 variables, including five cli-
mate variables, sixteen land use variables and eight soil vari-
ables. We used climate data from the Koninklijk Nederlands 
Meteorologisch Instituut (KNMI 2016) from the period 
of 2000–2015 and converted the temperature and precipi-
tation values to the standard 19 bioclimatic variables (Fick 
and Hijmans 2017) using the R package ‘dismo’ (ver. 1.3-
3) (Hijmans  et  al. 2017). A principal component analysis 
(PCA) was used to transform the 19 bioclim variables in 
five orthogonal PCA axes that explained more than 90% of 
the variation. The resolution of the climate data was 100 m 
(100 × 100 m). Land use data consisted of 15 land use cat-
egories from different vector shapefile sources (Supporting 
information, Centraal Bureau voor de Statistiek (CBS) 2012, 
Inter Provinciaal Overleg 2016, Ministerie van Economische 
Zaken 2015). As an additional variable the sum of the differ-
ent number of land use polygons was calculated per 100 × 
100 m grid cells by summing the different number of land 
use types, in the corresponding grid cells in the ‘raster’ pack-
age (ver. 3.6-3) in R (Hijmans 2018). This package was also 
used to rasterize the land use and soil shapefiles to percent-
age cover per 100 × 100 m grid cell. The soil data consisted 
of eight classes of soil types in the Netherlands representing 
different concentrations of sand, silt and clay (Supporting 
information, Grondsoortenkaart 2006). The climate, land 
use, and soil data were not strongly correlated (Spearman’s ρ 
< 0.7; Dormann et al. 2013). 

Biotic variables

The bee occurrence data used in this study consisted of 1) 
opportunistic observations of bees from 2004 to 2019 and 
2) bee–flower visitation records from 2004 to 2019, obtained 
from the European Invertebrate Survey Netherlands (EIS 
2020). Both the occurrences and bee–flower visitation records 
originate from the same database that is a compilation of dif-
ferent datasets with observation records collected by profes-
sionals, amateur experts and citizen scientists. All the data has 
been validated by professionals. The different datasets consist 
of both opportunistic data and structured surveys. For the 
bee occurrences, we assigned a value of one when at least one 
occurrence point was present in a grid cell of 100 × 100 m and 
a value of zero when no occurrence point was present in the 
cell. Bees were classified as bees that visit a single plant taxon 
or show a clear preference for a single plant family or genera 
(oligolectic), bees that collect pollen and nectar from vari-
ous plant taxa (polylectic) (Robertson 1925, Rasmussen et al. 
2020) and brood parasites (cleptoparasitic); these traits were 
based on a traits database created for the Status and Trends 
of European Pollinators (STEP) project (Potts et al. 2015). 
We discarded the species without flower visitation informa-
tion and those with fewer than fifteen observations This selec-
tion resulted in 44 oligolectic bees, 97 polylectic bees and 55 
cleptoparasitic bees, totalling 194 species of the more than 
300 bee species in the Netherlands. We determined the most 

visited plant species and genus for each pollen-collecting bee 
species using the bee–flower visitation database. These dis-
tributions of these plant species were then used as the biotic 
factor in the KI-SDMs for the pollen-collecting bees. We 
checked the 44 oligolectic bees for their most visited plant 
from the flower visitation database and found that in all cases 
that the plant genus or species they had been observed visit-
ing the most was also listed as their pollen-collecting plant 
taxon in the traits database (Supporting information). Since 
no quantitative interaction data was available for cleptopara-
sitic bees and their host, we applied the knowledge from the 
literature to determine all the known host bee species and 
genera for the cleptoparasitic bees (Supporting information, 
Peeters et al. 2012). 

The plant occurrences for the period 2004–2019 were 
obtained from Dutch National Database of Flora and Fauna 
(NDFF 2021). The plant occurrence database like the bee 
occurrence database includes data from different sources. The 
data is either opportunistic data or structured vegetation sur-
veys both from professionals and amateurs. As with the bee 
occurrence data, only entries that are validated by profession-
als are included. The occurrences of the biotic factor, both 
host bees and plants, were transformed to a raster at a resolu-
tion of 100 m. We assigned a value of one when at least one 
occurrence point was present in the cell and a value of zero 
when no occurrence point was present in the cell. We repeated 
this process to create biotic factors to include in the KI-SDM 
at resolutions of 500 m, 1, 5 and 10 km by giving a positive 
value to a cell, when an occurrence point would be present 
in a larger aggregated grid cell of the respective distances. The 
same procedure was also applied at the taxonomic rank of 
genus. Some of the cleptoparasitic bees had multiple hosts 
and in this case a grid cell was classified as presence if any of 
the host species or genera was present. The models were run 
with the other variables at a 100 m resolution to eliminate 
any effects that their aggregation might have. All the biotic 
factors were tested for correlation with the abiotic variables 
and only 2.42% had a significant correlation that was higher 
than 0.7 Spearman’s rho (Supporting information).

Known interaction species distribution models

For the modelling of the species distributions, we executed 
all models in R ver. 4.0.3 (www.r-project.org) with ‘MaxEnt’ 
(ver. 3.4.1) (Phillips  et  al. 2006) and ‘dismo’ (ver. 1.3-3) 
(Hijmans et al. 2017) and each model was divided in four spa-
tially distinct selections of training and testing datasets, using 
the spatial block validation method in the ‘ENMeval’ package 
ver. 2.0.3 (Kass et al. 2021). Model evaluation measures were 
always averaged across these four spatial folds. The study area, 
where 10,000 background points were drawn from, included 
the administrative borders of the Netherlands, excluding grid 
cells with only sea. An overview of the SDMs can be found in 
Fig. 1, Supporting information, following the ODMAP pro-
tocol for SDM metadata reporting (Zurell et al. 2020). We 
ran all models in parallel using the package ‘snow’ ver. 0.4-3 
(Tierney et al. 2008) and the package ‘parallel’ in base R ver. 
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4.0.3 (www.r-project.org). Model performance was assessed 
with the average area under the curve of the receiver operat-
ing characteristic (AUC). This evaluation measure is a thresh-
old independent evaluation method of the performance of 
the calibration and evaluation dataset (Elith  et  al. 2006, 
Phillips et al. 2006). This metric has been criticised for its use 
with presence only SDMs because of its sensitivity to imbal-
anced data and requirements for absence data (Lobo  et  al. 
2008), and for this reason we included the corrected Akaike 
information criterion (AICc; Burnham and Anderson 2004), 
and Continuous Boyce index (CBI; Hirzel  et  al. 2006) as 
additional evaluation measures. Unlike the AUC the AICc 
includes a penalty based on the number of variables that is 
used in the models. We also looked at the percentage contri-
bution of the variable to the model gain and the permutation 
importance, which are measures of variable importance cal-
culated in the MaxEnt algorithm (Phillips et al. 2006). In the 
converged model, all variables are kept constant, while one 
is changed among the presence and background points and 
the corresponding change in AUC is used for the calculation 
of the permutation importance (Jarnevich et al. 2016). The 
percentage contribution can vary per environmental variable, 
as the MaxEnt algorithm can take different paths to come to 
the final model, in contrast to the permutation importance, 
that remains constant (Phillips  et  al. 2006). The degree of 
overfitting was used to select the appropriate regularization 
multiplier among the values of 1, 3, 5, 7, 9, 11, 13 and 15. 
We chose a value of 5 based on the evaluation AUC – cali-
bration AUC, an indication of overfitting (Radosavljevic and 
Anderson 2014, Supporting information) and the number 
of features and evaluation AUC. We selected only simple 
features (linear and quadratic features) in the model settings 
instead of more complex feature types, that would compli-
cate the ecological interpretation of the models’ responses to 
(a)biotic variables (Syfert et al. 2013). Additionally, allowing 
more complex features may result in a response that results 
from the database structure or data collection instead of repre-
senting physiological and/or ecological relationships with the 
environment (Syfert et al. 2013). The percentage contribution 
and permutation importance of the biotic factor of the differ-
ent resolutions were ranked per species to reduce variability 
between species and find the optimal model settings for the 
different groups of bees. By ranking the models, differences 
in variable contribution between species are removed. We 
made prediction maps of the models with the biotic factor 
(plant species for pollen-collecting bees and bee host for clep-
toparasitic bees) at a resolution of 1 km for the calculation of 
the models of the four spatial folds of the spatial block valida-
tion were used to calculate the evaluation measures and the 
average of these four values was taken. Per modelled species, 
this resulted in eleven models: one model without the biotic 
interaction, five models with the biotic interaction at genus 
taxonomic level at five different resolutions and five models 
with the biotic interaction at species taxonomic level at five 
different resolutions. Presence and absence maps were made 
based on the maximum training sensitivity and specificity 
threshold, that integrates both measures for the estimation 

of prediction success (De Barros et al. 2012). The difference 
between the CBI, AICc and evaluation AUC of models with 
and without biotic factors was not normally distributed and 
it was tested for significance against the null hypothesis of 
no significant difference by using a one-sample Wilcoxon 
signed rank (Wilcoxon 1947). We also compared the per-
centage contribution of the aggregated variables classes (land 
use, climate, soil, and biotic factors), using a non-parametric 
Kruskal–Wallis H-test (Kruskal and Wallis 1952) with a post 
hoc Nemenyi test (Sachs 1997) for pairwise group compari-
sons in the ‘PCMCRplus’ package (ver. 1.9.7) (Pohlert 2023). 

Randomized interaction species distribution models

The RI-SDMs differ from the KI-SDMs in the species that 
is included as the biotic factor. These RI-SDMs address the 
importance of including biotic interactions by comparing the 
KI-SDMs to multiple models which are structurally equiva-
lent except that a different (random) species is selected as the 
biotic factor. The biotic factor consists of plant species (for 
pollen-collecting bees) or host bee species (for cleptoparasitic 
bees) that are randomized from a pool of all plants that are 
visited by bees (interaction database; EIS 2020) and all host 
bees of cleptoparasitic bees (from the literature; Peeters et al. 
2012). These RI-SDMs are then compared to the KI-SDMs 
and allow us to distinguish the specificity of the known inter-
action to the models (Fig. 1). For example, a model may ben-
efit from many different plant or bee species as opposed to a 
model that benefits from only a single species and that may 
represent a more specific interaction. All the potential vis-
ited flowers were included in the total number of RI-SDMs 
per pollen-collecting bee (307 plant species and 161 plant 
genera). The cleptoparasitic bees had multiple hosts and for 
the RI-SDMs we used a total of 100 models per modelled 
species, randomizing the multiple hosts from a set of 15 
potential host bee genera or 42 host species. A more detailed 
description of the RI-SDMs can be found in the Supporting 
information. 

The evaluation AUC of the KI-SDM was ranked among 
the RI-SDMs per focal species and the percentage rank of 
the known interaction amongst the randomized interactions 
was compared between groups. We analysed per species the 
ranking of the model with the biotic factor compared to the 
models with random interactions and calculated the percent-
age of modelled species that were among the 5 and 25% best 
performing models.

Generalized linear models

The GLMs address the third research question in this study, 
assessing the importance of flower and host specialization, 
distribution range of the biotic factor and bee body size 
(which relates to movement range) in explaining the contri-
bution of the biotic factor to the KI-SDMs. These variables 
are included as explanatory variable in the GLMs with the 
variable importance of the biotic factor to the KI-SDMs as 
the response variable (Fig. 1). To calculate the distribution 
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range of the biotic factor for the flower visiting bees, we 
summed the amount of grid cells occupied by each visited 
plant species from the plant observation data. Secondly, we 
computed a measure of flower specialization, calculated as 
the diversity of genera visited in the interaction database for 
every flower visiting bee, using the inverse of the Shannon–
Wiener index (Shannon 1948). As oligolectic bees may visit 
multiple species of the same genus, we decided to calcu-
late the diversity of the genera visited and not the species 
themselves. Thirdly, we used the information on body size 
from the bee trait database. Intertegular distance (ITD, in 
mm; the distance between the wing insertion points) was 
used as a proxy for body size (Greenleaf  et  al. 2007). The 
cleptoparasitic bees were modelled in a similar way, except 
that the distribution range of the biotic factor was calculated 
from observation data from potential host bees (Supporting 
information) and the host specialization was the number of 
potential hosts in the literature (Peeters et al. 2012). In both 
cases, the explanatory variables were standardized, centred, 
and a gamma distribution with an inverse link function was 
used. The gamma distribution is applicable for situations 
in which we want to speculate about the response variable 
without certainty about its distribution (Faraway 2016) 
and for ecological data with non-zero values (Foster and 
Bravington 2013). Model selection was performed using the 
AICc and if the difference between models was less than two 
AICc units, we selected the models with the fewest variables 
and with only significant coefficients. From the focal species 
in the KI-SDMs, we made a selection of those species for 
the GLMs, removing the species that did not find a con-
tribution (e.g. no features of the respective variable present 
in the model) of their biotic factor in the KI-SDMs. The 
three explanatory variables of body size (a), distribution 
range (b) and specialization (c) resulted in seven possible 
combinations of variables: a + b + c, a + b, a + c, b + c, a, b, c 
(Supporting information). We evaluated the models using 
the AICc as described in Hurvich and Tsai 1989. The GLMs 
were developed in the ‘stats’ package in base R ver. 4.0.3 
(www.r-project.org). 

Results

The effect of the known interaction on overall model 
performance

The inclusion of biotic factors resulted in a statistically clear 
improvement of the KI-SDMs in explaining distributions 
of wild bees in the Netherlands. This was true for all evalua-
tion measurements considered; Area under the curve (AUC), 
continuous Boyce index (CBI) and corrected Akaike infor-
mation criteria (AICc). The final KI-SDMs included the 
known interaction at a resolution of 1 km, which was on 
average the optimal resolution for most models (see section 
‘Influence of spatial resolution and taxonomic rank on model 
performance’). The models of the cleptoparasitic, oligolec-
tic and polylectic bees all showed a statistically significant 

increase in evaluation AUC (Fig. 2A), evaluation CBI 
(Fig. 2B) and a decrease in calibration and evaluation AICc 
(Fig. 2C, Supporting information). Even though a similar 
trend was visible for the evaluation AICc, there were not 
enough samples in the evaluation data to calculate the AICc 
for a proportion of the bees (34.02% of the species; 66 spe-
cies) and only the cleptoparasitic bees showed a significant 
improvement at the species and genus level (Fig. 2D). The 
biotic interaction had a high contribution to the KI-SDMs 
of all the pollen-collecting and cleptoparasitic bees relative 
to the climate, land use and soil variables (Fig. 3, Supporting 
information). For the cleptoparasitic bees specifically, the 
biotic interaction always had the highest contribution to the 
KI-SDMs.

When comparing between the pollen-collecting bees and 
cleptoparasites, the models of the cleptoparasitic bees showed 
a statistically significant greater improvement in evaluation 
AUC, evaluation CBI and in calibration and evaluation AICc 
compared to the oligolectic and polylectic bees at both taxo-
nomic ranks (Supporting information). The difference in 
evaluation metrics between oligolectic and polylectic bees 
was in no case significant. 

The effect of any interaction on overall model 
performance

The purpose of the RI-SDMs was to check whether the biotic 
factor only improved the models, when it was included as an, 
ecologically supported, known interaction of a species instead 
of a randomized interaction. A higher specificity to the 
known interaction would provide a stronger support for the 
inclusion of known biotic interactions into SDMs. Models 
with the biotic factor (added at both taxonomic ranks) had 
an evaluation AUC that scored within the top 5% of the best 
performing models of the RI-SDMs for 52.8% (species) and 
62.3% (genus) of cleptoparasitic bees, 36.4 and 43.2% of oli-
golectic bees and 13.4 and 14.4% of polylectic bees (Fig. 4B, 
Supporting information). These percentage show a significant 
deviation in all groups with the biotic factor as the known 
interaction scoring higher than any interaction (exceeding 
the 5% threshold). When the threshold was increased to the 
25% best performing models, these percentages increased up 
to 83 and 94% of the cleptoparasitic bees, 56.8 and 63.6% 
of the oligolectic bees and 40.2 and 51.2% of the polylectic 
bees. The polylectic bees showed a less skewed distribution, 
but a more continuous distribution (Fig. 4A), suggesting that 
the models of the polylectic bees benefit more from any inter-
action as opposed to the known interaction compared to the 
oligolectic bees.

Influence of spatial resolution and taxonomic rank

We found that varying the spatial resolution and taxonomic 
rank of the biotic factor influenced the model performance 
of the KI-SDMs. The percentage contribution of the biotic 
factor to the models was ranked highest at 500 m resolution 
(cleptoparasitic bees) and 1 km (oligolectic and polylectic 
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Figure 2. The differences between models including host plant or parasitic host interactions and models with only land use, climate and soil 
variables. Evaluation measurements include Area Under the receiver operating characteristic curve (AUC) value of the evaluation dataset 
(Fig. 2A), Continuous Boyce index (CBI) of the evaluation dataset (Fig. 2B), Akaike information criteria for small sample sizes for both the 
evaluation and calibration data (AICc; Burnham and Anderson 2002; Fig. 2C) and AICc of the evaluation data only (Fig. 2D). Host plants 
and hosts of parasites were either included at the species or genus level. The difference in evaluation metrics for models with and without 
biotic factors, or difference from zero, is tested for significance with a one-sample Wilcoxon signed rank test (p < 0.05*; p < 0.01**, p < 
0.001***). For the AICc both the calibration and evaluation dataset were included, because 66 modelled bee species did not have enough 
evaluation datapoints to calculate the AICc.
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Figure 3. The different boxplots represent the summed percentage contribution of the five climate variables, the sixteen land use variables, 
the eight soil variables and the single biotic factor, averaged over the modelled species in the groups. The biotic factor is averaged over the 
species and genus taxonomic rank of the visited plant or host bee. The different letters above the boxplots indicate significant differences 
between variable groups within the functional trait groups (p < 0.05). 
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randomized interactions (%)

(A)

(B)

Figure 4. The comparison of the biotic interaction models to models with random interactions, described as randomized interaction species 
distribution models (RI-SDMs), with plants (for the oligolectic and polylectic bees) or bees (for the cleptoparasitic bees); (A) shows the 
distribution of the performance of the biotic interaction models, expressed as the rank of the evaluation AUC among all interaction models 
divided by the total number of models. The y-axis represents the total number of modelled species that fall within the performance thresh-
old on the x-axis. For example, the performance in evaluation AUC of the known interaction was compared to the other 306 plant species 
and ranked based on the position. If the known interaction was the third best performing model, the focal species would have the value of 
0.98% (the percentage rank would be 3/307 × 100 = 0.98%) and fall within 0–2.5% best performing models. The two lines indicate the 
threshold of 5 and 25% best performing models; (B) summarizes the results, comparing the percentage of modelled species that fall within 
the 5% best performing ranks, indicating a significant difference from the RI-SDMs with p < 0.05 (5% best performing models), and 25% 
best performing ranks. Although the percentage of models that fall within the 5% best performing models is higher for the oligolectic bees 
and cleptoparasitic bees, the polylectic bees show a high percentage of performance within the 25% best performing models, showing a 
more general preference of biotic interactions. The number of random interactions for every set of RI-SDMs are 306 interactions for the 
flower visiting bees with the biotic factor at species level, 160 interactions for the flower visiting bees with the biotic factor at genus level, 
99 interactions for the cleptoparasitic bees with the biotic factor at species level and 100 or 15 interactions for the cleptoparasitic bees with 
the biotic factor at genus level (Supporting information). 
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bees) and at both species and genus taxonomic ranks (Fig. 5A, 
Supporting information). The optimal resolution of 500 m 
for the cleptoparasitic bees and 1 km for the polylectic bees 
had a higher rank of the importance of the biotic factor (p < 
0.05) compared to the other resolutions except for the differ-
ence between 500 m and 1 km, which was not statistically 
significant at both taxonomic ranks (Supporting informa-
tion). The oligolectic bees only showed a statistically signifi-
cant difference between the optimal resolution of 1 km and 
the extremes (100 m and 10 km). The permutation impor-
tance showed a similar trend as the percentage contribution 

over the different resolutions for the oligolectic and polylec-
tic bees and the models at a resolution between 1 and 5 km 
ranked the highest (Supporting information). The permuta-
tion importance of the cleptoparasitic bees showed a different 
trend: the variable contribution ranked the highest at 100 m 
and 5 km resolution, when the biotic factor was introduced 
at the species level. When the biotic factor was introduced at 
genus level, it ranked the highest at 1 km, but this ranking 
was very close to 500 and 100 m.

When we analyzed the interaction between spatial reso-
lution and taxonomic rank, we found that the percentage 
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Figure 5. The effect of the resolution and taxonomic rank on the percentage contribution of the biotic factor to the model, expressed as the 
ranking of the biotic factor contribution per species and indicated with lines (from high to low: 1–5; (A)) and the difference in variable 
contribution between the species that the focal species interacts with (biotic factor) added at species and genus taxonomic rank per species 
(B). The arrows indicate the direction, where the variable contribution is the highest for the respective taxonomic rank. The resolution is 
the scale in longitudinal and latitudinal direction at which the biotic factor is observed. The gray area is the standard deviation. 
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contribution and permutation importance of the biotic fac-
tor to the models was generally higher when added at the 
species level for coarser resolutions and at the genus level at 
finer resolutions. The contribution of the biotic factor was 
higher at the species level at a coarser resolution from 5 to 
10 km and higher at the genus level from 100 m to 1 km 
for both percentage contribution and permutation impor-
tance (Fig. 5B, Supporting information). This trend was the 
strongest for the cleptoparasitic bees with a higher percentage 
contribution for the biotic factor at genus taxonomic rank 
compared to the species taxonomic rank at 100, 500 m and 1 
km (18.27, 7.94 and 2.42%) and lower percentage contribu-
tion at 5 and 10 km (−21.00 and −22.33%). 

The percentage contribution of the biotic factor was 
higher for the cleptoparasitic bees compared to the oli-
golectic and polylectic bees for both the genus and species 
taxonomic rank of the biotic factor. This difference was 
statistically supported at all resolutions of the biotic factor 
(Supporting information). The oligolectic and polylectic bees 
only showed a statistically significant difference at a 10 km 
resolution with a higher contribution of the biotic factor for 
the oligolectic bees. Similar to the percentage contribution, 
the permutation importance was significantly higher for the 
cleptoparasitic bees compared to the pollen-collecting bees 
for all taxonomic ranks and resolutions of the biotic factor 
(Supporting information). Additionally, the oligolectic bees 
had a higher permutation importance compared to the poly-
lectic bees for all taxonomic ranks and resolutions of the 
biotic factor (Supporting information).

Influence of flower and host specialization and body 
size and the biotic factor’s distribution range

In general, we found that the contribution of the biotic 
factor to the modelled species increased as the geographic 
range of the biotic factor decreased and as flower special-
ization increased. From the models of the pollen-collecting 
bees (Supporting information). the model with the lowest 
AICc (AICc = 960.8) resulted in the formula with flower 
specialization (β1) and distribution range of the biotic factor 
(β2): y = (0.063 – 0.0099 × β1 + 0.013 × β2)−1 (R2 = 0.39; 
Fig. 6A–B). This model was less than 2 AICc units away from 
the second best model that also included the body size, but 
the body size coefficient was not significant in this model 
(Supporting information). The selected model of the clep-
toparasitic bees contained the distribution range of the host 
bee (β) and it had the formula: y = (0.13 + 0.0099 × β)−1 (R2: 
0.47) (Fig. 6C, Supporting information). This model was less 
than two AICc units away from models that also included 
both or either body size and host specialization, but the coef-
ficients of these variables were not significant (Supporting 
information). When the response variable was changed to 
permutation importance, the trend between explanatory and 
response variables was similar and the same explanatory vari-
ables were selected, when using the AICc (Supporting infor-
mation). This was the case for both pollen-collecting bees and 
cleptoparasitic bees.

Discussion

Here we show that the inclusion of known interactions as 
biotic factors in SDMs improved our ability to explain the 
distributions of wild bees in the Netherlands. Adding the 
biotic factors to the abiotic models improved model perfor-
mance for multiple evaluation measures. Additionally, the 
RI-SDMs showed that the improvement observed in the 
models was more common for the known interaction com-
pared to any interaction. 

Spatial resolution, taxonomic rank and distribution of the 
biotic factor all influenced the importance of the biotic factor 
to the models. A higher degree of specialization was corre-
lated with a higher variable importance of the biotic interac-
tion to the models. The model performance peaked at finer 
resolutions of the biotic factor up until 5 km for the clepto-
parasitic bees and around 1 km for the pollen-collecting bees. 
The biotic factor at genus taxonomic rank was generally con-
tributing more at finer resolutions and at species level than at 
coarser resolutions. A smaller distribution range of the biotic 
factor was also correlated with a higher importance of the 
biotic factor to the models.

Including biotic information in SDMs generally 
improves model performance

The addition of the biotic interaction increases model perfor-
mance under all metrics and this increase is the highest for 
the cleptoparasitic bees, followed by the oligolectic then poly-
lectic bees. An increase in model performance by the addi-
tion of the host of the cleptoparasitic bee has been observed 
(Giannini et al. 2013), however the increase in model perfor-
mance for oligolectic bees and their host plants at a resolution 
of 10 km was often not significant (Giannini  et  al. 2013), 
highlighting the importance of resolution in SDMs, particu-
larly when including biotic information (Wisz et al. 2013). 
Furthermore, the importance of including biotic interactions is 
not limited to plant–pollinator interactions (Heikkinen et al. 
2007, Kissling et al. 2007, Bateman et al. 2012, Leach et al. 
2016, Mpakairi et al. 2017, Roslin et al. 2017, Atauchi et al. 
2018, Herrera et al. 2018, Mathieu‐Bégné et al. 2021) and 
biotic interaction can play a role in the distribution range 
edges of species even at a larger scale (Paquette and Hargreaves 
2021, Freeman et al. 2022). Anderson (2017) suggested that 
biotic interactions can be unlinked variables that are inde-
pendent from the modelled species. We argue that in our 
study the effects of the plant on the individual pollinator are 
negligible. Specialist and generalist pollinators often pollinate 
the same plant species and therefore represent a redundancy 
in the network (Scheper et al. 2014). Additionally, an impor-
tant cause of bee decline is the decline of their pollen host 
plants, while plants seem more threatened by abiotic variables 
(Scheper et al. 2014), which suggests that the plants would 
be less affected by the individual pollinator. In the case of the 
cleptoparasitic bees, the host bee is affected negatively and we 
argue that by using a large time-scale and different resolutions 
these processes at a smaller time and geographical scale have a 
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minimal effect on the models. A small percentage (2.42%) of 
the biotic factors were correlated with the soil variables that 
were the lowest contributing variables, and the contribution 
of these biotic factors to the models may be partly shared 
with soil requirements.

The RI-SDMs with interactions of random pollinated 
plants or host bees, revealed how the specificity of the interac-
tion (e.g. specialist versus generalist) influences how a biotic 
interactions could be included in a SDM approach. A higher 

specificity was observed for the oligolectic and cleptoparasitic 
bees than the polylectic bees, whose models benefitted from 
a range of different flowering plants. The high performance 
of the specific biotic factor in the models of the cleptopara-
sitic bees confirmed how important their host species are for 
modelling their distribution. Another contributing factor 
may be the biases in the data sources: the distribution of the 
cleptoparasitic bees and their hosts are sourced from the same 
wild bee occurrences database and therefore, share similar 
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Figure 6. The results of the generalized linear models (GLMs) show the relation between flower specialization (the inverse of the Shannon–
Wiener index of number of plants genera interacted with) and the percentage contribution of the biotic factor to the models of the oligolec-
tic and polylectic bees (Shannon 1948) (A); (B) shows effect of distribution of the most visited genus on the contribution of the biotic factor 
to the model; (C) shows the relation between the distribution of the host bees and the contribution of the biotic factor to the models of the 
cleptoparasitic bees. 
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collection biases. In contrast to the distribution of the plant 
species which likely have their own separate collection biases. 
The RI-SDMs enable us to compare different randomized 
interactions that share similar collection biases. Our findings 
show that models of known interactions improve significantly 
more than randomized interactions for both cleptoparasitic 
bees and oligolectic bees. Therefore, it is unlikely that the sim-
ilar collection bias of the modelled species and their known 
interaction is the primary factor influencing model improve-
ment. In the case that data on the biotic factor is lacking, an 
option would be to use information from a co-occurring spe-
cies (Briscoe Runquist et al. 2021). Our study showed that 
the inclusion of other visited plants can also improve model 
performance, especially for generalist species (polylectic bees 
as opposed to oligolectic bees). A model improvement of ran-
domized interactions could indicate that for this species an 
optimal foraging area can include a wider array of flowering 
plants. Another possibility is that the presence of the plant 
species could indicate other favourable abiotic conditions 
that are not explained by the abiotic factors. When multiple 
plant species improve model performance, the biotic factor 
could be included as an approximate of those plant–pollina-
tor interactions by integrating the plant species as flowering 
plant diversity or diversity of the top five of most contribut-
ing plants to the model of the bee.

Spatial scale matters for biotic interactions in SDMs

Non-parasitic wild bees are central-place foragers that repeat-
edly return to their nest (Cresswell et al. 2000). Consequently, 
foraging habits are limited in range. Oligolectic bees nest 
close to their pollen plants (Gathmann and Tscharntke 2002) 
and the majority of resource consumption by smaller bees is 
within a few hundred meters of their nests (Zurbuchen et al. 
2010, Hofmann et al. 2020) with larger average movement 
ranges for larger-bodied bees, over 1 km (Greenleaf  et  al. 
2007). Obligate cleptoparasitic bees lay their eggs on the pol-
len deposits of other bees (Litman 2019). They may search 
freely over large distances and are less limited in range, as 
they don’t have to return to their nest to collect nectar and 
pollen for their offspring (Litman 2019). Nevertheless, they 
can often be found close to the nests of their hosts, waiting 
for the host bee to leave and forage (Litman 2019). The opti-
mal spatial resolutions are similar to the recorded movement 
ranges of many wild bees, showing an optimal resolution of 
the biotic factor at finer resolutions from 100 m to 5 km for 
the cleptoparasitic bees and around 1 km for the oligolectic 
and polylectic bees. 

Genus-level biotic information as a surrogate for 
species-level knowledge in SDMs

The biotic factor had a higher contribution when created 
using genus level observations of the known interaction, at 
finer resolutions (500 m and 1 km). Using observation data at 
the genus taxonomic level could be a compromise, balancing 
the reduction in taxonomic resolution of biotic interactions 

with an increase in the number of records at finer resolutions. 
Additionally, pollinators generally visit closely related plants 
more often than would be expected by chance (Vamosi et al. 
2014) and our results suggest that at finer resolutions biotic 
interactions at genus level could adequately substitute spe-
cies level interactions. This might be due to similar habitats 
occupied by host species and niche conservationism, observed 
in, for example, higher plants (Prinzing  et  al. 2001), or it 
could also imply that the genus records are dominated by 
the same host species at these locations. Another possibility 
could indicate high quality habitat for plants/hosts in general 
(Widhiono  et  al. 2016). Only a few of the oligolectic bees 
are monolectic, as most oligolectic bees collect pollen from 
more than one taxonomically related plant species (Cane 
2021), resulting in a dependency on multiple plant species 
in the same genus or family. The similar biosynthetic path-
ways in related plants are associated with similar nutritional 
values of their pollen (Ruedenauer et al. 2019), which explains 
why plant genus was found to be a good approximation of 
the biotic interaction. The cleptoparasitic bees showed lower 
variable importance of the biotic factor at coarse resolutions at 
the genus level compared to the biotic factor at species level. It 
is likely that this trend is related to a loss of information on a 
coarser scale, as the contribution of the biotic factor at genus 
level decreases as the resolution decreases. A potential explana-
tion for the higher contribution of the host at species level is 
that cleptoparasitic bees tend to become more specialized as 
coevolution between a parasite and its host often leads to spe-
cialization (Bogusch et al. 2006). It is, therefore, no surprise 
that around a quarter of the European cleptoparasitic bees are 
thought to parasitize on only one species (Bogusch et al. 2006).

The sampling effort for large observation databases is 
uneven across countries and continents (Beck  et  al. 2014). 
This is also true for wild bees, however the Netherlands is 
comparatively a well-sampled country (Marshall et al. 2024). 
This study suggests that when data is lacking, replacing biotic 
interactions with genus-level taxonomic data or using the spe-
cies richness of multiple species as a proxy are good alternatives. 
Additionally, large data infrastructures like the Distributed 
System of Scientific Collections (DiSSCo; Hardisty  et  al. 
2021) can help establish whether the sparsity of records is due 
to undersampling or a representation of the species’ distribu-
tion. In some cases, data may not be missing but rather reflect 
the limited distribution and abundance of the biotic interac-
tions. Whether data is missing or the biotic interaction has a 
very limited distribution and abundance, these interactions 
can still be incorporated into models. An absence of model 
improvement is not proof of an absence of an ecological inter-
action; additionally our study found a correlation between a 
higher importance of biotic interactions and a more limited 
extent of occurrence of the biotic interaction.

Influence of flower and host specialization and the 
distribution range of the biotic factor

We found that a higher degree of flower specialization for the 
flower visiting bees and a narrower distribution range of the 
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biotic factor for both the cleptoparasitic and flower visiting 
bees were related to a higher importance of the biotic factor 
in the SDMs. The dependence between the distribution of 
two organisms, each at one side of the biotic interaction, has 
been shown in many different studies (Fauchald et al. 2000, 
Byholm et al. 2012, Atauchi et al. 2018) and at macroeco-
logical scales (Araújo and Luoto 2007). If the distribution of 
the biotic factor is narrow, it is more likely to be a limiting 
factor, delimiting the boundaries of the potential distribution 
of the focal species. Other studies have found that narrow 
distributions, although not too narrow, lead to more accu-
rate models and high importance for certain key habitat fac-
tors (Tsoar et al. 2007, Syphard and Franklin 2010) and that 
specialist species yield better models than generalist species 
(Grenouillet et al. 2011, Marshall et al. 2015). We found that 
if the biotic relationship is strong, e.g. parasite–host relation-
ships, then that becomes by far the most important factor. 

An important consideration is that the biotic factor may 
be dependent on abiotic factors (such as climatic variables), 
making it less likely to explain the species occurrences which 
abiotic factors cannot explain (Silva  et  al. 2014). Another 
commonly used approach for modelling biotic interactions are 
Joint-SDMs (Kissling et al. 2012). They are suitable for situa-
tions where the biotic interactions are not known a priori, and 
this method helps to understand a species’ geographical range 
from a community ecology perspective (Pollock et al. 2014, 
Ovaskainen et al. 2017). However, the risk is high that any 
detected relationships between species may be due to shared 
habitat preferences not accounted for elsewhere in the model 
instead of biotic relationships (Wisz et al. 2013, Pollock et al. 
2014, Ovaskainen  et  al. 2017). In this study the risk that 
any detected relationship between species is related to abiotic 
factors is lower for reasons that we integrate the biotic factor 
as the interaction known a priori, we compare the known 
interaction to randomized interactions, we tested for collin-
earity and we included a wide range of abiotic variables. Still, 
SDMs and Joint-SDMs estimate co-occurrence and correla-
tions (Pollock et al. 2014) and to confirm the causality (true 
interaction) of the co-occurrence between species we would 
need to employ field studies. Here, we showed that biotic fac-
tors can improve the SDMs of wild bees in the Netherlands, 
especially when the distribution of the biotic factor is narrow 
and the modelled species is a specialist. Resolution and taxo-
nomic rank of the biotic factor, should be taken into account 
to achieve the most optimal models. Our hypothesis that a 
biotic factor with a more narrow range would lead to a higher 
importance of this biotic factor to the models of the specialist 
species was confirmed. We recommend using single species or 
genus data as a biotic factor in the models of specialist species 
and to use an approximate, such as flower richness, for more 
generalist species.
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