
communications earth & environment Article

https://doi.org/10.1038/s43247-024-01273-2

Seasonal dependence of deterministic
versus stochastic processes influencing
soil fungal community composition in a
lowland Amazonian rain forest
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The contribution of deterministic versus stochastic processes to the spatio-temporal assembly of soil
microbial communities in tropical forests requires quantification so that responses to climate change
may be accurately projected. Here we report the spatio-temporal composition of soil fungal
communities in a topographically homogeneous forest area in central Amazonia. Soil fungal
communities have a greater turnover in space than over time. Stochastic processes are inferred to
dominate in the rainy season and deterministic processes in the dry season. Our study highlights the
importance of spatial heterogeneity in the absence of environmental gradients and its relationshipwith
seasonal patterns that modulate spatial heterogeneity and contribute to environmental determinism
versus stochasticity for fungal community assembly. This baseline may serve to assess deviations in
community patterns caused by changes in biotic interactions with above-ground vegetation, such as
those resulting from shifts in taxonomical/functional composition of trees driven by climate change.

Ecological communities are characterised by deterministic/niche-based
processes, which shape species assemblages based on the differences in the
selectionof species in response to abiotic andbiotic factors (e.g., climate, soil,
vegetation, direct and soil-mediated species interactions), and by neutral1

and stochastic processes, including dispersal, ecological drift and other non-
deterministic processes2–4. How the occurrence and/or the abundance of
species within a community varies in space and time may inform about the
relative importance of deterministic vs. stochastic processes for community
assembly. Both processes are modulated by the interaction between spatial
variability in the environment and biological processes (e.g., biotic inter-
actions and demographic processes), which, in turn, are influenced by
temporal patterns in resource availability. The rate of replacement and the
relative abundance of taxa in a community can be described by the above
variables/processes,more readily for organismgroupswith short generation
times such as microorganisms5–8, and for contrasting environments, asso-
ciated for example with climate9,10 or topography-related soil and hydro-
logical properties11–13.

Lowland tropical rain forests are very diverse in their tree species
composition. The corresponding variation in biochemical attributes (leaf

chemistry, root exudates) contributes to a high degree of small-scale spatial
heterogeneity of resources14 for soil microbial communities, influencing
their biotic interactions and coexistencepatterns.Animals also contribute to
spatial heterogeneity and niche differentiation for soil bacteria15 and fungi16,
by creating transient, but frequent nutrient-enriched patches by their
excreta. An additional factor related to temporal variability in soil microbial
community composition and assembly is attributable to seasonality of
rainfall and nutrient/chemical input by litterfall17.

While recent studies have provided new insights on the links between
soil fungal community structure/composition in lowland evergreen tropical
rain forests and factors related to the environment18,19 and biotically
mediated environmental patterns20–22, few studies have attempted to identify
the simultaneous role of spatial and temporal variation in community
composition of microbes in tropical rain forests23. In a recent study con-
ducted across the island of Hainan, China, Wei, et al.24 have shown that
spatial heterogeneity exerts a stronger influence on soil microbial com-
munity assembly than precipitation seasonality. The patterns, observed in
that study conducted at the regional scale, were, however, underlain by
obviously strong climatic and edaphic differences and thus masked
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mechanisms of community assembly associated with the intrinsic tree
species diversity of lowland evergreen tropical rain forests.

The lack of knowledge on spatio-temporal community assembly in
tropical rain forest soils hinders the capacity to project linked plant and soil
microbial community responses to climate anomalies and extreme events,
and departures fromhistorical climatic trends. The duration, frequency and
severity of drought events, for example, are projected to increase across the
tropics, and particularly in some parts of the Amazon basin25,26. The con-
sequences for soil microbial communities/processes and feedback on cli-
mate change are yet little known. Fungal communities could be affected, for
example, by climate-driven changes in biotic interactions with above-
ground vegetation, such as those resulting from shifts in taxonomical/
functional composition of trees27. A quantitative understanding of how
fungal communities vary in space and time for establishing their natural
baseline variability is imperative for projecting and assessing significant
departures in biogeochemical cycles and overall ecosystem function in
response to future weather extremes and climate changes28.

A varying degree of precipitation seasonality in tropical lowland ever-
green rain forests leads to different degrees and duration of a negative
hydrological balance. The alternance between dry and wet seasons influences
phenological cycles, nutrient availability29,30 and photosynthetic activity31,
and, in turn, ecosystem processes. Litterfall and fine root turnover dynamics
are related to seasonality, the dry season having the greatest rates of
litterfall32–34 and new leaf flush35,36, and the rainy season the largest production
of fine root biomass37–39. Rainy and dry seasons are also associated with
different rates of soil respiration38,40,41, decomposition and mineralisation34,42,
these processes being generally slowed down in the dry season.

Litterfall and fine root turnover induce changes in plant nutrient
uptake and re-translocation of nutrients/carbohydrates in the dry season43,
provide decomposable material, and contribute to large fluxes of dissolved
organic matter (OM) early in the rainy season32. In tropical lowland rain
forests inAmazonia, trees have been shown to preferentially allocate carbon
to roots during the rainy season and to leaves in the dry season43. The
seasonal trade-off in carbon allocation between roots and leaves affects the
dynamics of the composition and quantity of root exudates, which, in a
localised manner can be related to microbial community dynamics44.

Distance/environmental decay patterns of soil fungal community
similarity in tropical rain forests are likely to be characterised by different
processes at different spatial and temporal extents. Recent studies have
shown that the relative contribution of niche-based vs. stochastic processes
in determining fungal community assembly is scale-dependent45. Addi-
tionally to extent, the grain size dependence of observed distance and
environmental decay patterns of soil fungi has been shown by Peguero,
et al.46 along topographic gradients (plateaux, slopes and valley bottoms) in
French Guyana, a landscape pattern that also characterises tropical rain
forests in most of the Amazon basin. The study by Peguero, et al., however,
did not investigate the temporal dynamics in spatial patterns. The selection
of an obvious topography-driven soil and hydrological gradient yielded
results which, while are interesting, reaffirm differences in soil and hydro-
logical factors and associated ecological communities (trees and microbes,
see e.g., de Oliveira Freitas, et al.47) that are linked to patterns determined by
topography. Knowledge on the relative influence of deterministic and sto-
chastic processes on fungal community assembly not influenced by obvious
environmental gradients is lacking.

To address this knowledge gap, we followed the conceptual framework
proposed by Vellend4, according to which ecological communities are
controlled by four ecological processes, i.e., selection, ecological drift, dis-
persal and speciation, andused two complementary approaches to study the
relative contribution of deterministic and stochastic processes to fungal
community composition. Accordingly, we used the term ‘deterministic
process’ to refer to any ecological process that involves non-aleatory niche-
based mechanisms (i.e., selection and speciation), and the term ‘stochastic
process’ to refer to theprocessesof dispersal anddrift, being aware of the fact
that someprocesses (e.g., dispersal limitation)may influence both stochastic
and deterministic community assembly48.

We first characterised distance/environmental decay patterns of soil
fungal communities to estimate the contribution of deterministic vs. sto-
chastic processes in space and time to soil fungal community assembly.We
then complemented the results on decay patterns by using another null
model-based approach to obtain quantitative information on community
assembly processes. We asked what the contribution of deterministic vs.
stochastic processes to soil fungal community assembly would be like in a
species-rich and diverse tropical rain forest, in the absence of topo-pedo-
hydrological gradients and if these patterns could be related to seasonality in
precipitation and tree phenology. We hypothesised that (H1) the turnover
of fungal communities in space would be greater than in time (within-year).
This is because the direct effect of fluctuations in soil moisture and soil pore
water to air ratio would be counterbalanced by seasonal litter/root turnover
patterns that are likely to strengthen spatial patterns related to the biogeo-
chemical footprint of trees14, and which may alter biotic interactions
between fungi and trees. We also hypothesised that (H2) the relative con-
tribution of environmental determinism and stochastic processes to soil
fungal community assembly would change with season, and that determi-
nistic processeswould dominate in thewet season. This is because in thewet
season trees preferentially allocate carbon to roots, and thus impact the
seasonal dynamics of rhizodeposition, and because of the increased rates of
decomposition. These two factors were thus expected to result in a more
deterministic environment than that exists in the dry season.

To test the above hypotheses, we characterised the fungal communities
along a transect of a 1.5-km-long section in a plateau area in a central
Amazonian tropical rain forest, three times during a year: in the wet season
(Time 1), in the transition to the dry season (Time 2) and at the end of the
dry season (Time 3).We found (i) a higher soil fungal community turnover
in space than in time, (ii) a season-dependent contribution of stochastic
processes vs. environmental determinism to community assembly, the first
governing community assembly in the rainy season and the latter in the dry
season (Table 1).

RESULTS
Of the total sequences, 48.3% (992 Amplicon Sequence Variants, ASVs)
were assigned to a unique functional group and 98.7% (2028 ASVs) were
classifiable to some taxonomic level. Fungal communities were domi-
nated by saprotrophs (75.6%; 750 ASVs) followed by pathogens (12.6%;
125 ASVs), endophytes (1.8%; 18 ASVs) and symbionts (1.5%; 15 ASVs).
Symbionts were likely to have been underrepresented due to the use of
soil fungal primers that are not designed to amplify arbuscular mycor-
rhizal fungi that represent the dominant symbiosis type in these tropical
rain forests. Significant differences in α-diversity and/or abundance of
dominant functional groups between sampling times were observed for
saprotrophs, pathogens, and endophytes (Fig. 1). The α-diversity of
saprotrophs and pathogens was significantly higher at Time 3 when
compared to Time 1. Pathogens and endophytes showed larger values of
α-diversity at Time 2 when compared to Time 1. On the other hand,
lower saprotroph abundance was observed at Time 3 when compared
with that at Time 1, while pathogen abundance was significantly greater
at Time 3 than at Time 2.

At the phylum level, the sequences were dominated by Ascomycota
(67.3%), followedbyMucoromycota (21.4%) andBasidiomycota (9.9%).All
other phyla including Chytridiomycota, Glomeromycota, Mortier-
ellomycota and Rozellomycota, were represented by <1% of the total
number of reads. Unidentified reads and unidentified ASVs accounted for
1.4% of the total number of reads and for 3.9% of total ASVs. The highest
number ofASVswas also recorded forAscomycota (1,406, 75,6%), followed
by Basidiomycota (323, 17.4%) and Mucoromycota (32, 1.7%). Ascomy-
cota, Basidiomycota andMucoromycota showed significantly greater values
of α-diversity at Time 2 than at Time 1; the α-diversity of Ascomycota and
Basidiomycota differed significantly between Times 1 and 3 being greater at
Time 3 (Supplementary Fig. 1). Significant shifts in relative abundance (RA)
were observed among the three sampling times for the three main phyla.
The RA of Ascomycota was lower at Time 2 than at Time 1 and greater at
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Time3 than atTime 2,while theRAofMucoromycotawas higher at Time2
than at Times 1 and 3 (Supplementary Fig. 1).

Soil analyses
Among soil properties, mineral nitrogen, soil pH, potassium (K+), cation
exchange capacity (CEC) and exchangeable acidity (hydrogen, H+ plus
aluminium, Al3+) differed significantly among sampling dates (Table 2).
Both ammonium (NH4

+) and nitrate (NO3−) were significantly lower at
Time 2 than at Time 1 and higher at Time 3 than at Times 2 or 1. The values
of pH increased successively fromTime 1 to Time 3. Both CEC andH+ plus
Al3+ decreased fromTime 1 to Time 3 and fromTime 2 to Time 3 while K+

showed an opposite pattern and was significantly higher at Time 3 than at
Times 1 and 2. Fine root biomass was significantly higher at Time 1 than at
Times 2 and 3.

Spatio-temporal turnover of fungal communities
Spatial and temporal differences in fungal communities were strongly
related to the turnoverofASVsacross space andover time. Suchcommunity
turnover (ßsim) contributed spatially (overall plot-wise comparisons) from
91.9% (Time 1) to 94.8% (Time 2) of ß-diversity (Time 1: ßsim, 0.76, nest-
edness or ßsne, 0.05; Time 2: ßsim, 0.73, ßsne, 0.06; Time 3: ßsim, 0.75, ßsne,
0.04). Turnover over time (paired comparison of each plot with itself at
different sampling dates) ranged from 85.8% (between Time 1 and Time 2)
to 88% (betweenTime 1 andTime 3),withßsim, 0.59, ßsne, 0.1 betweenTime
1 and Time 2; ßsim, 0.58, ßsne, 0.08 between Time 1 and Time 3; and ßsim,
0.58, ßsne, 0.08 between Time 2 and Time 3. Community composition was
more similar in samples of the sameplot/site. Themagnitudeof variability in
species turnoveracross the full spatial extent (1.5 km;Whittaker’s ßspace, 8.1)
was, on average, 3.5 times greater than the temporal variability (ßtime, 2.3;
Supplementary Table 1). Significant differences in the ratio ßspace:ßtime were
found between Time 1 (mean, 3.04; SD, 0.85) and Time 3 (mean, 3.56; SD,
0.61; p < 0.05).

Distance and environmental decay of fungal communities
Statistically significant relationships between community similarity and
spatial distance were found at Time 1 for similarity calculated on presence/
absence (pseudo-R2 0.06, p ≤ 0.05, Table 1; Supplementary Fig. 2; Supple-
mentary Table 2) and at Time 1 and Time 2 for similarity calculated on
abundance data (Time 1: pseudo-R2 0.01, p ≤ 0.01; Time 2: pseudo-R2 0.06,
p ≤ 0.05; Fig. 2; Supplementary Table 3). Decay patterns were comparable

when using abundance and relative abundance data. No significant decay
was found for community similarity with environmental distance (Sup-
plementary Table 2).

As there were no differences between abundance and relative abun-
dance decay patterns, differences in the rate of community similarity decay
(slope) and initial similarity (intercept) among seasons were calculated only
for abundance data. Slopes were significantly different between Time 1
and Time 3 (mean, −0.284; SE, 0.004 vs. mean, −0.096; SE, 0.003; z
ratio,−36.61; p < 0.001) and betweenTime 2 (mean,−0.284; SE, 0.003) and
Time 3 (z ratio, −36.72; p < 0.001). Intercepts were significantly lower at
Time 3 when compared with those at Time 1 (mean, 0.27; SE, 0.005 vs.
mean, 1.56; SE, 0.033; z ratio, 32.55; p < 0.001) and Time 2 (mean, 1.42; SE,
0.035; z ratio, 28.97; p < 0.001), and at Time 2 when compared with Time 1
(z ratio 3.586; p < 0.001).

Soil fungal communities showed significant distance/environmental
decay over short distances (60 samples; 4 sample plots per site; grain size
1 m2; site extent ca. 25 m2; 15 sites over a linear extent of 1.5 km) with
community similarity based on occurrences (Supplementary Fig. 3), as well
as on abundances (Supplementary Fig. 4). Decaywas stronger (larger values
of pseudo-R2)when similaritywas based onpresence/absencematrices than
for abundances. The power-law model fitted best the relationship between
soil fungal community similarity and spatial distance (presence/absence:
pseudo-R2 0.16, p ≤ 0.001), and the exponential decay model fitted best the
relationship between community similarity and environmental distance
(presence/absence: pseudo-R2 0.02, p ≤ 0.001; Supplementary Fig. 3; Sup-
plementary Table 4). Power-law models highlighted an abrupt change in
community similarity at a distance of ca. 5-6m, corresponding to the spatial
extent sampled at the site level (Supplementary Fig. 3). The environmental
variables thatwere significantly related to community composition included
pH, OM, PO4

3-, K+, Ca2+, Mg2+, H+ plus Al3+ and fine root biomass for
presence/absence data, and pH and OM for abundance data (Supplemen-
tary Table 4).

Community assembly processes
Measures of the modified Raup-Crick dissimilarity metric (RC), the stan-
dardised effect size (SES), and the taxonomic normalised stochasticity ratio
index (tNST) presented similar results using Sørensen’s or Jaccard’s indices
(occurrence data) and the Bray-Curtis or Ružička indices (abundance data).
We therefore report here the results obtained with Jaccard’s and Ružička’s
indices. Values of allmetrics calculated on occurrence data at each sampling

Table 1 | Stochastic vs. deterministic components of soil fungal community assembly in a lowland tropical rain forest in
Amazonia

Method Result Inference

Null models – distance vs. environmental (soil
physico-chemical properties) decay

Significant distance decay in the rainy season and
transition into dry season in community similarity*

Community assembly governed by stochastic processes in the
rainy season and transition into dry seasonNon-significant environmental decay in community

similarity in all seasons

Significant distance decay and environmental decay
in community similarity when considering SDP

Community assembly governed by both stochastic and deter-
ministic processes at short distances

Null models – observed β-diversity vs.
expected β-diversity

Pattern in ASV abundance x site matrix significantly
different from null model:
• RC (dry season)
• SES (dry season)
• tNST (transition into dry season; dry season)

Community assembly primarily governed by deterministic pro-
cesses in the dry season

Pattern in ASV abundance x site matrix not sig-
nificantly different from null model:
• RC (rainy season; transition into dry season; SDP)
• SES (rainy season; transition into dry season; SDP)
• tNST (rainy season; SDP)

Community assembly primarily governed by stochastic pro-
cesses in the rainy season, in the transition into dry season and at
short distances

* community similarity was calculated using abundance data, i.e., reads of amplicon sequence variants (ASVs).
Stochastic processes may include stochasticity due to ecological drift and/or limited dispersal but also to unmeasured environmental variables linked to tree species-specific leaf morphology and
chemistry.
RCmodifiedRaup–Crickdissimilaritymetric,SESstandardisedeffect size, tNST taxonomicnormalisedstochasticity ratio index,SDPsampling that consideredshort-distancepatternsup to6m (4plots per
site; grain size 1 m2; site extent ca. 25 m2; 15 sites over a linear extent of 1.5 km)
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time indicated that observed dissimilarity did not differ from estimated
dissimilarity, i.e., community composition was governed primarily by sto-
chastic processes (Supplementary Table 5).Mean values of RC ranged from
-0.66 (SD, 0.17;Time1) and -0.22 (SD,0.19;Time3), SESbetween-1.76 (SD,
0.45; Time 1) and -0.65 (SD, 0.46; Time 3) and tNSTbetween0.69 (SD, 0.04;
Time 1) and 0.82 (SD, 0.04; Time 3). Values of all indices were significantly
different between Time 1 and Time 2 and between Time 1 and Time 3.

Index values calculated on abundance data indicated that there was a
significant departure between observed and estimated dissimilarity (i.e.,
community composition was governed primarily by deterministic pro-
cesses) at Time 2 and Time 3 (Fig. 3; Table 1). RC ranged from 0.6 (SD, 0.12;
Time 1) and 0.95 (SD, 0.03; Time 3), and values were significantly different
between Time 1 and Time 3 (p < 0.001) and between Time 2 (0.81; SD, 0.1)
andTime3 (p < 0.05). SES ranged from1.01 (SD, 0.19;Time1) and2.08 (SD,
0.2; Time 3), the differences being significant between Time 1 and Time 2
(1.71; SD, 0.28; p < 0.05) and Time 1 and Time 3 (p < 0.001). The value of
tNST ranged from 0.33 (SD, 0.06; Time 3) and 0.81 (SD, 0.09; Time 1) being

significantly different between Time 1 and Time 2 (0.49; SD, 0.09; p < 0.05)
and Time 1 and Time 3 (p < 0.01).

Over short distances, mean values of all metrics calculated on both
occurrence and abundance data indicated that observed dissimilarity did
not differ from estimated dissimilarity (mean ± SD presence/absence: RC,
−0.68 ± 0.05; SES,−1.92 ± 0.18; tNST, 0.73 ± 0.02; mean ± SD abundance:
RC, 0.54 ± 0.06; SES, 0.97 ± 0.11; tNST, 0.99 ± 0.06).

Discussion
We assessed soil fungal community assembly, along a 1.5 km section of a
plateau area in the central part of the Amazon basin, accounting for tem-
poral changes linked to seasonality in precipitation. Our study showed that
spatial distance in a highly diverse lowland rain forest in Amazonia exert a
stronger influence on soil fungal community assembly than seasonal pat-
terns linked to the precipitation regime and thus confirmed our first
hypothesis. The relative magnitude of community turnover at the spatial
extent studied was, on average, 3.5 times larger than that attributable to
seasonality, indicating a strong relationship between spatial variability and
community composition (grain size 1m×1m). The ratio of ßspace:ßtimewas
significantly related to seasonality reflecting greater species turnover in
space than in time in the dry season than in the rainy season.

Fungal communities were characterised by higher taxonomic and
functional α-diversity in the dry season when compared to that in the rainy
season. The same pattern has recently been observed in an eastern Ama-
zonian lowland forest on yellow oxisol23 and could be attributable to several
concomitant and interacting factors, including the reduced competitive
interactions amongmicrobial taxadue to the lack of connectivity among soil
pores in the dry season49, the input of fungal species from the phyllosphere
microbiome17 and/or to compositional shifts during litter decomposition
that may increase overall microbial diversity50,51.

The relationship between space (physical and environmental) and time
is however complex as the indirect effects that seasonality exerts on fungal
community assembly through changes in litter input/quality and root
turnover/exudate patterns linked to species-specific traits contribute to
maintaining a high level of spatial heterogeneity. This makes it difficult to
disentangle the contribution of spatial heterogeneity vs. temporal variation
(seasonality) on soil fungal community assembly. A larger relative con-
tribution of spatial over temporal variability on fungal community com-
position, similarly to that observed in this study has recently been reported
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Fig. 1 | Species richness and relative abundance of soil fungal functional groups in
response to precipitation seasonality in a lowland tropical rain forest in Ama-
zonia. Fuchsia, rainy season; turquoise, transition into dry season; yellow, dry sea-
son. Richness, number of Amplicon Sequence Variants (ASVs) in each taxonomic
group; total number for all samples per functional group in upper left corner of
panels; total number per season inside plotted boxes; relative abundance, the pro-
portion of reads. The complete pool assigned to a functional group consisted of 992
ASVs. Significant differences as determined by paired t-tests or Wilcoxon signed-
rank tests, corrected for multiple comparisons using the false discovery rate method
are indicated by grey arrows; * p < 0.05. Boxplots: centre line, median; empty square,
mean value; box limits, 25th and 75th percentiles; whiskers, 1.5 times interquartile
range; empty circles, outliers. The y-axis values for richness are number of ASVs and
percent for relative abundance.

Table 2 | Seasonal dynamics of soil chemical composition and
root biomass in a lowland evergreen rain forest in central
Amazonia17

Time 1 Time 2 Time 3

pH 3.75 ± 0.06a 3.87 ± 0.05b 4.27 ± 0.06c

NH4
+(μg g−1) 26.6 ± 1.6a 17.1 ± 1.2b 51.8 ± 1.2c

NO3
−(μg g−1) 2.98 ± 0.3a 1.93 ± 0.2b 5.07 ± 0.7c

PO4
3−(μg g−1) 11.21 ± 0.38 10.86 ± 0.43 10.46 ± 0.4

K+(mmolc kg−1) 1.36 ± 0.07a 1.39 ± 0.09a 1.58 ± 0.11b

Ca2+(mmolc kg−1) 4.31 ± 0.96 3.92 ± 0.79 3.71 ± 0.7

Mg2+(mmolc kg−1) 1.72 ± 0.16 1.93 ± 0.19 1.68 ± 0.09

H+ + Al2+(mmolc kg−1) 205.4 ± 15.4a 193.5 ± 14.9a 155.9 ± 12.2b

Organic matter (%) 7.52 ± 0.49 7.68 ± 0.45 7.12 ± 0.38

CEC (mmolc kg−1) 213.7 ± 15.8a 200.8 ± 15.1a 162.8 ± 12.3b

Fine roots (Mg ha−1) 7.03 ± 0.73a 4.5 ± 0.34b 4.56 ± 0.27b

Coarse roots (Mg ha−1) 2.75 ± 1.27a 3.29 ±1.4a 6.52 ±1.77b

Values are averaged data (n = 15 for all except mineral nitrogen and root biomass with n = 20),
followed by standard error. Letters in superscript indicate statistically significant differences
between sampling times as determined by paired t-test andWilcoxon signed-rank test. Time 1 rainy
season; Time 2 transition into dry season; Time 3 dry season;NH4

+ ammonium;NO3
− nitrate;PO4

3−

phosphate;K+potassium,Ca2+ calcium,Mg2+magnesium;H+plusAl3+, exchangeable acidity,CEC
cation exchange capacity; fine roots fine root biomass; coarse roots coarse root biomass.
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byWei, et al.24 for tropical forests in Hainan (18° to 20° N and 108° to 111°
E), China. Their study was conducted at the regional scale, where the pat-
terns detected could be attributable to strong climatic and edaphic differ-
ences across the extent of the studyarea.Herewe show that, in the absenceof
obvious environmental gradients, a similar pattern occurs at amuch smaller
spatial extent (1.5 km vs. > 150 km) and is likely to be related to the intrinsic
tree species diversity of tropical rain forests. Although the trees around
which we sampled had been selected randomly and were not identified, a
posterior identification of six focal trees and their surrounding trees in a 10-
m radius showed that all focal trees belonged to different species. Using the
data based on six of the 15 sites, we calculated that owing to the large
diversity (120 individuals identified belonged to 80 species), the chances of
randomly selecting two individuals of the same tree species would be no
more than 15%.

It has previously been hypothesised that the relative importance of
spatial heterogeneity in soil chemical properties in tropical lowland rain
forests is expected to shift from abiotic to biotic control from regional to
landscape and local scales14. This would also apply to the Amazon basin
where there is a clear topography-related abiotic control at the landscape
scale (dissected undulating topography associated with different soil types,
water table depth and nutrient availability e.g.,47), which at the local scale is
likely to shift to a biotic control, related to differences in tree species and
mediated by their biochemical differences. Trees exert strong direct and
indirect biotic controls on soil microbial communities through plant-
derived soil resources that reflect differences in plant species composition
and their spatial distribution22,52. The quality/chemistry and quantity of
plant inputs (Fig. 4;53) influences soil microbial community assembly by
affecting decomposers54,55, as well as via the specificity of biotic interactions
between fungal symbionts/pathogens and trees56–58. Tree species diversity in
tropical rain forests contributes therefore to both spatially and temporally
uneven distribution of resources that contribute to shaping soil microbial
community assemblages.

Our second hypothesis that the relative contribution of environmental
determinismand stochastic processes to fungal community assemblywould
change with seasonality was supported by our results. However, determi-
nistic processes dominated in the dry season (Table 1), and not in the rainy
season as we had hypothesised. We based our second hypothesis on the
premise that during the rainy season, the concomitant availability of
resources and altered soil conditions (e.g., improved moisture) increase the
rate of microbial processes such as decomposition and mineralisation34,42

and would likely to auto-intensify the environmental controls exerted on
microbial communities by plant-derived resources. We found a significant
butweak distance decay pattern in community similarity in the rainy season
(Time 1) and in the transition from the rainy into the dry season (Time 2),
while no statistically significant decay was observed with environmental
distance at any season (Table 1). The distance decay patterns were com-
parable to those found by Peguero, et al.46. However, the relative importance
of a process may depend on when a community is characterised, because
seasonality influences processes that govern community assembly59. Our
distance decay patterns were related to seasonality and were not observable
in the dry season (Table 1). In the absence of an environmental gradient,
these results could indicate the dominance of stochastic processes, including
ecological drift and dispersal at Times 1 and 2. Ecological drift can act alone
through probabilistic factors, especially when the regional pool is very large
compared with the size of local communities60. Combining the facts that
turnover is a function of species pool, that fungal communities in our study
area were characterised by high turnover rates, and that local communities
were on average 10 times smaller than the regional pool, we can assume that
ecological drift might have had a contribution to fungal community
assembly. The effects of dispersal limitation are also expected to be greatest
for large pools and diverse communities, because of the existence of a large
proportion of rare species in the pool60 which was also the case in our study.
Therefore, community assembly in the rainy season was likely governed by
both ecological drift and dispersal limitation.
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Fig. 2 | Seasonal decay of soil fungal community similarity across spatial dis-
tances and bootstrapped distribution of their intercepts and slopes in a lowland
tropical rain forest in central Amazonia. The similarity was calculated on abun-
dances as 1 –Morisita index. Fuchsia, rainy season; turquoise, transition into dry

season; yellow, dry season. Circles represent pairs of plots (15 soil samples). The
distance decay model was fitted by using a non-linear regression with the power-law
function. ∗∗p ≤ 0.01; ∗p ≤ 0.05; ns, not statistically significant.
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Estimated values of RC, SES, and tNST calculated on abundance data
complemented the above findings indicating that turnover in community
composition in the rainy season was governed by drift and dispersal lim-
itation, while species selection and/or dispersal limitation (acting in concert
with ecological drift) could have been the main processes governing the
aggregate distribution of species in the dry season. These values were not
affected by the number of samples used in the analyses (15 vs. 60). Col-
lectively, the two different analytical approaches, support that stochastic
processes could be more important for soil fungal community assembly in
the rainy season, while abiotic and biotic factors (deterministic processes)
would govern community assembly in the dry season.

The control exerted by plant-derived resources on fungal community
assembly may be linked to the peak in litterfall that characterises tropical
lowland rain forests in Amazonia late in the dry season. A study conducted
in a neotropical lowland rain forest has shown that host plant taxonomic
identity explained most of the variation in the phyllosphere fungal com-
munity composition61. The study has also shown that host functional traits
related to leaf morphology and chemistry were significantly associated with
fungal community structure. In a previous research conducted in Amazo-
nia, in the same study area reported here, it has been shown that during the

litterfall peak, in thedry season, there is an input of bacterial species from the
phyllosphere (e.g. Beijerinckiaceae, see Buscardo, et al.17). This would sug-
gest that individual tree species with their specific traits including leaf
morphology, and chemistry and associated microbiome contribute to
characterise the soil environment and the biotic interactions in their sphere
of influence andmight indeed createwhat Townsend, et al.14 have definedas
tree-specific ‘biogeochemical footprint’. The ‘biogeochemical footprint’
extends from the canopy to the soil, influencing and being influenced by soil
microbial communities (Fig. 4). Under these premises, geographic position
and environmental factors would, in our case, both mirror the environ-
mental variability linked to the presence of individual tree species, giving
support to our hypothesis of a temporal alternation of the dominance of
niche-based and stochastic processes,wherebyniche-basedprocesseswould
dominate in the dry seasonwithin the influence zone of a tree. Following the
logic of the ‘biogeochemical footprint’, the environmental distance between
individual neighbouring trees would overlap with their spatial distance to a
degree that varies depending on the identity of neighbouring trees. This is
supported by the results that included short-distance patterns, which
allowed the detection of a weak albeit significant environmental distance
decay co-occurring with a spatial distance decay. At the same time, high
species diversity would dilute the effect of individual influence spheres (see
Fig. 4; Supplementary Fig. 5) andwith increasing distance it would augment
the probability of the occurrence of fungal species related to stochastic
effects62. Thus, a biochemically heterogeneous environment would result in

Lb

Rb

Fig. 4 | Representation of the concept of individual tree-specific biogeochemical
footprint in lowland tropical rain forests inAmazonia.The concept was originally
proposed by Townsend, et al.14. According to the authors, the diverse tree species
composition that characterises lowland tropical rain forests is likely to result in a
large variation in biochemical attributes among different tree species. This, in turn,
would contribute to a high degree of spatio-temporal heterogeneity of resources for
soil microbial communities and influences both their biotic interactions and coex-
istence patterns. Individual tree species might therefore create specific biogeo-
chemical footprints. In species-rich tropical rain forests, inputs to the forest floor/
soil by trees via litterfall (litter biochemistry, Lb) and root exudate (root biochem-
istry, Rb) create overlapping spheres of influence (viz. differently coloured ellipses)
on soil microbial communities, among neighbouring tree species.
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Fig. 3 | Estimated contribution of stochastic vs. deterministic processes to soil
fungal community assembly in a lowland tropical rain forest in central Ama-
zonia. Different null model approaches were used to compare the observed β-
diversity to the β-diversity expected by randomly sampling individuals from the
regional species pool. This was done according to the probability proportional to
observed species relative abundance in the regional pool and the total number of
individuals in each plot. RC, modified Raup–Crick dissimilarity metric; SES, stan-
dardised effect size (SES); tNST, taxonomic normalised stochasticity ratio index;
Time 1, rainy season; Time 2, transition into dry season; Time 3, dry season. RC, SES
and tNST were calculated based on abundance using Ružička’s index. Differences
between seasons in these metrics were tested using nst.boot (999 permutations) in
‘NST’86 and are indicated by grey arrows; *p < 0.05; ***p < 0.001. Boxplots: centre
line, median; empty square, mean value; box limits, 25th and 75th percentiles;
whiskers, 1.5 times interquartile range; empty circles, outliers.
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emergent stochastic patterns at the large scale that would arise from small-
scale deterministic processes.

Soil fungal communities in Amazonian lowland rain forests have been
shown to be characterised by large turnover rates in the presence of strong
environmental gradients that affect tree species diversity/structure, e.g.,
seasonally flooded vs. non-flooded forests21, or gradients linked to dissected
topographies46. In the present study, which excluded such gradients we
detected large turnover rates even at short distances (up to 6m), reflecting
thehighheterogeneity that characterise the influence sphereof an individual
tree and its microbiota (defined by Vandenkoornhuyse, et al.63 as the
holobiont). The low initial community similarity (withvery lowvalues in the
dry season) and the small amount of variation explained by geographical
distance beyond the area of influence of a specific tree, might be attributable
to aleatory factors other than dispersal limitation, as well as to sampling62.

A largeproportionof unexplainedvariation inß-diversity is expected in
a tropical rain forest characterised by high diversity, due to sampling effect,
local stochasticity due to ecological drift and/or unmeasured environmental
variables64. Our findings indicate that soil physico-chemical explanatory
variables alone are likely to be insufficient to predict community patterns in
environments where obvious soil and hydrological contrasts are absent and
that even a four-foldmore intensive sampling does not significantly increase
the amount of explained variation. We, thus, call for the inclusion of addi-
tional factors in future studies, both environmental (e.g., species-specific
secondary chemicals in leaf litter) and biological (biotic interactions) for
improving our understanding of the relative importance of agents and
mechanisms that shape microbial assemblages in tropical rain forests.

Our study highlights the importance of spatial heterogeneity in the
absence of environmental gradients and its relationship with seasonal pat-
terns linked to the precipitation regime in determining soil fungal com-
munity assembly in a lowland tropical rain forest. Phenology linked to
climate seasonality modulates spatial heterogeneity and its contribution to
environmental determinism vs. stochasticity for fungal community
assembly. Future studies characterising the biogeochemical footprint of
target trees (and the resulting alterations of it by neighbouring trees) on
fungal communities, and which consider environmental factors linked to
plant—fungal biotic interactions could help to further improve our
understanding of the processes that shape microbial community assembly
and function in tropical rain forests. It is of great scientific and practical
interest how the relative contribution of these processes may be altered by
climate change. Some of the changes are likely to be mediated by shifts in
taxonomical and functional compositionof trees and consequent changes in
biotic interactions below- and above-ground.

MATERIALS AND METHODS
Site details
The study was carried out in the Adolpho Ducke Forest Reserve (ADFR;
03°00′00″− 03° 08′00″ S; 59°52′40″− 59° 58′00″W), 26 kmNE ofManaus,
Brazil, in 2013, in a plateau area to avoid the environmental variation
associatedwith topography (pedo-hydro-topo gradients). The regionhas an
equatorial climatewithmean annual temperature of 26 °C andmean annual
precipitation of 2550mm year−1 (period 1966–2014) with a pronounced
drop in precipitation between June and October that coincides with the
litterfall peak39. The year of the study was much wetter (3385mm) than the
average, however, the monthly distribution of precipitation did not deviate
from the long-term pattern. There was nomonth with a perceived negative
hydrological balance (precipitation <100mm).

TheADFR is a 10-km2 area at an elevation of 40–140mabove sea level,
characterised by a dissected and undulating topography of valley bottoms,
slopes and plateaux (Supplementary Fig. 6). Soils in plateau areas are well-
drained oxisols not affected by waterlogging or flooding during the rainy
season; slopes and valleys are characterised by ultisols and hydromorphic
spodosols65. The vegetation is lowland evergreen tropical rain forest (locally
known as terra firme) and plant community composition and structure are
related to topography with emergent trees up to ca. 45m, frequent on the
plateaux where average canopy height reaches 35–40m66.

Experimental design
Initially, 20 siteswere chosenalong a1.5-km-long section in aplateau areaof
the RFAD using random coordinates generated by the ‘Sample’module in
IDRISI Selva v.17 software67. In the field, an unidentified canopy tree closest
to the predefined coordinates was selected to mark the centre of the site
(reference tree). The minimum distance between any two sites was at least
40m (Supplementary Fig. 6) to avoid autocorrelation in soil variables and
associated microbial communities (Supplementary Fig. 7). The initial
number of sites, which was later reduced to 15 for molecular analyses, was
chosen to allow for potential losses that might occur owing to treefall, or
other disturbances thatmay affect the sampling during the experiment.One
plot of 1m × 1m in size and subdivided into 15 subplots was marked
permanently at each site, at a distance of 1.5 m from the reference tree
(Supplementary Fig. 6).

Soil was sampled three times during a year to characterise microbial
community composition and deduce community dynamics: (i) in the wet
season (Time 1, 13 April 2013), (ii) in the transition to the dry season (Time
2, 28 July) and (iii) at the end of the dry season (Time 3, 6November). After
the removal of litter, soil was collected from three randomly selected sub-
plots in every plot to a depth of 5 cm using a cylindrical metal corer of 3-cm
indiameter. ForDNAextraction soil was collected fromeach sub-sample by
using a sterile needle and pooled by plot at each sampling in a 2.5-ml
Eppendorf vial, yielding 45 samples (3 times x 15 samples). The vials were
maintained at −20 °C until molecular analyses. The remaining soil was
pooled in an identical manner for soil chemical analyses.

To characterise short-distance (up to 6m) processes/microbial com-
munity patterns (Supplementary Figs. 5, 6) within the presumed biogeo-
chemical footprint of the reference trees, at Time 1 we undertook a
complementary sampling (3 samples x 15 sites; plot size 1m2; extent at each
site ca. 25m2). This, togetherwith the original 15 samples at Time1, resulted
in 60 samples.

Molecular analyses
Fungal communities were characterised by analysing a total of 90 samples.
DNA extractions were carried out for each sample using a PowerSoil DNA
Isolation Kit (MOBIO) with 250mg of soil. The PCR andDNA sequencing
were carried out as described in detail in Geml et al.68. Briefly, primers
fITS769 and ITS470 with Ion Torrent adapters were used to amplify the ITS2
region (ca. 250 bp) of the nuclear ribosomal rDNA repeat, using the fol-
lowing PCR conditions: one cycle of 95 °C for 5min, then 37 cycles of 95 °C
for 20 sec, 56 °C for 30 sec, and 72 °C for 1.5min, ending with one cycle of
72 °C for 7min. The ITS4 primer was labelled with sample-specific Multi-
plex Identification DNA-tags (MIDs). A negative control consisting of
Milli-Q water (Merck Millipore, Burlington, MA, U.S.A.) instead of DNA
were made and underwent the PCR reaction under the same experimental
conditions and was shown on a gel to be amplicon-free. The PCR products
were assessed for size distribution and for DNA concentration using a
Bioanalyser 2100 (Agilent Technologies Inc., Santa Clara, CA, U.S.A.) and
were cleaned up using 0.9x Ampure® beads (Beckman Coulter, Beverly,
MA) to remove short fragments. The amplicons were diluted with Milli-Q
water to achieve equal DNA concentration for each sample in the final pool
to be sequenced. Aquantity of 250 µl of the pool was used for emulsionPCR
according to the Ion PGMTM 200XpressTM Template Kit manual. The
amplicon library was sequenced using an Ion 318TM Chip by an Ion
Torrent Personal Genome Machine (Life Technologies, Guilford, CT,
U.S.A.) at the Naturalis Biodiversity Center, Leiden, The Netherlands.

Raw DNA sequences were processed with the ‘dada2’ package71,
implemented in R v. 3.6.2 (R Development Core Team 2013), designed to
resolve fine-scale DNA sequence variation with improved elimination of
artificial sequences. Because ‘dada2’ does not involve clustering sequences
into OTUs and is robust for removing spurious data, the output of unique
ASVs capture both intra- and interspecific genetic variation of fungi found
in the samples. Raw sequenceswere truncated to 240 bp andwere denoised,
with themaximumnumber of expected errors (maxEE) allowed in a read set
to 2. Identical sequences were clustered into ASVs, while preserving
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information regarding their copy numbers in individual samples, and
putative chimeric ASVs were eliminated. Taxonomic assignments of fungi
were made with USEARCH v. 1172 based on the UNITE database (v. 8.3) of
reference sequences that represents all fungal species hypotheses based on a
dynamic delimitation73.

We assigned fungal ASVs to putative functional guilds using the
curated FungalTraits database74. ASVs with <10 reads in a given sample
were excluded from that sample to minimise the possible effects of low-
abundance contaminants and tag-switching. In addition, ASVs that
occurred in a single sample were deleted to minimise artefactual sequences.
Normalisation of the fungal community matrix (rarefaction) was made by
random subsampling to the smallest library size (11,042 reads).

Soil analyses
Soil properties were characterised for each soil sample (see Buscardo,
et al.17). Soil moisture, NH4

+ and NO3− were quantified within 48 h after
collection in the Soil Laboratory of the National Research Institute of
Amazonia, Manaus, Brazil. Soil mineral nitrogen was quantified by spec-
trophotometry using flow injection analysis75,76 while soil moisture content
was determined by the gravimetric method by drying the soil at 105 °C to
constantmass76. Soil pH, totalOM, extractable PO4

3−, cations (K+, Ca2+ and
Mg2+) and exchangeable acidity (H+ plus Al3+), were determined on air
dried soil (Laboratory of Soil Analysis, University of São Paulo, Piracicaba,
Brazil), according to van Raij, et al.77. Fine (≤2mm) and coarse (>2mm)
roots were extracted from each soil sample and their mass determined after
oven drying at 65 °C to constant mass.

Data analyses
All DNA samples, except one that did not amplify, were included in the
analyses totalling 2055 ASVs (2,703,823 sequence reads) and an average
number of 30,380 (range 11,042–69,938) sequence reads per sample. The
analyses were conducted on presence/absence and abundance data.
Abundance data were rarefied using the ‘GUniFrac’ R package78.

To assess the effects of seasonality on fungal functional and taxonomic
groupswequantified the abundance andα-diversity (total numberofASVs)
of each functional and taxonomic group at each sampling time. Between-
season differences in the diversity of ASVs and soil properties were tested
using pair-wise differences with the t-test or Wilcoxon’s test for non-
normally distributed data. Statistical significance was corrected for multiple
comparisons using the false discovery rate method79.

To test our first hypothesis that spatial heterogeneity would be more
strongly related to soil fungal community assembly than seasonal patterns
linked to precipitation regime, we first calculated β-diversity (βsor) and its
components (spatial turnover, βsim and nestedness, βsne) at each sampling
date (15 samples) using the R package ‘betapart’80 and Sørensen’s similarity
index. Temporal changes in community composition between different
sampling dates for each plot sampled were assessed by computing dissim-
ilarities on presence/absence data.

We then quantified the relative magnitude of spatial (βspace, spatial
variability at the stand level, i.e. full extent of the sampling transect) and
temporal (βtime, temporal variability at the individual plot level) variability,
by using Whittaker’s formula of ß-diversity (β = γ/α; where γ is the total
number of ASVs at each sampling occasion, i.e., the total of 15 plots for
space, and of three samplings per plot for time; α is the number of ASVs per
plot at a given time). Between-season differences in ß-diversity were tested
using pair-wise differences with the t-test or Wilcoxon’s test for non-
normally distributed data.

To test our second hypothesis that the relative contribution of sto-
chastic processes and environmental filtering in fungal community
assembly would change with seasonality, and that environmental filtering
would dominate in the wet season, we (1) calculated the distance decay of
soil fungal community similarity with geographical and environmental
distance at Times 1, 2, and 3, and then (2) used another null-model based
approach to compare the observed β-diversity with the β-diversity expected
from random sampling of the regional species pool (Table 1).We tested the

significance of the difference using three different metrics (modified Raup-
Crick dissimilarity metric, RC; standardised effect size, SES; taxonomic
normalised stochasticity ratio index, tNST).

Distance decay – The geographical distance between pairs of sites was
calculated using the function dist of the ‘vegan’ package. Environmental
dissimilaritywas calculated as the Euclideandistance between all pairs of sites
considering soil physico-chemical properties quantified at each site and
standardised to their z-scores ([x –mean] divided by the standard deviation)
by using the function vegdist (‘vegan’). From the original environmental
variable data set only continuous variables that were related significantly to
soil fugal community composition were included following Martiny, et al.81.
Significant explanatory variableswere selected via permutation tests using the
reduced model option for constrained correspondence analysis (function
ANOVA in ‘vegan’). To calculate the similarity matrix, community compo-
sition was compared between each pair of sites. The similarity index was
calculated using both the presence/absence and abundance matrices. Com-
munity similaritybasedonoccurrenceswasdeterminedas1–βsim, computed
with Sørensen’s similarity index in ‘betapart’, while community similarities
based on abundance (calculated as 1 – the Morisita index) and relative
abundance (calculated as 1 – the Morisita-Horn index) matrices were com-
puted in ‘vegan’. The relationships between pairwise similarities and spatial
and environmental distances were modelled using the decay.model function
in ‘betapart’82. Distance decay models were fitted by using non-linear
regressions with negative exponential and power-law functions62,83. The
goodness offit of the decaymodels (i.e., explained variation)wasmeasured as
the pseudo-R2 calculated as (deviance null model – deviance distance decay
model)/deviance null model, while model significance was assessed by ran-
domising spatial or environmental distances (1000 permutations) and cal-
culating the proportion of times in which the decay model deviance was
smaller than the null model deviance84. Differences in the rate of community
similarity decay and initial similarity among seasons were estimated from
pairwise comparisons of the bootstrapped distributions of slopes and inter-
cepts (1000 permutations, boot.coefs.decay in ‘betapart’), computing p-values
as the proportion of times in which the bootstrapped parameters were larger
(or smaller) in one season than the other82.

Comparing observed β-diversity with expected β-diversity – For
comparing the observed β-diversity to the β-diversity expected from a
random sampling of the regional species pool, the null model regional
‘species’ pool was defined as the total number of ASVs observed at the stand
level (i.e., across all plots). Observed β-diversity (i.e., dissimilarity between
each pair of plots within the stand) was measured using both presence/
absence data (1 - Sørensen’s and 1 - Jaccard’s index) and abundance data
(Bray-Curtis and Ružička). The null model to simulate species assemblages
in each plot was applied by randomly sampling individuals from the
regional pool, according to the probability proportional to observed species
occurrence/relative abundance in the regional pool and the total number of
individuals in each plot. Three metrics were used to estimate the con-
tribution of stochastic processes and environmental filtering in fungal
community assembly based on the null model analysis of dissimilarity (999
randomised matrices): (i) RC85 that calculates the proportion of observed
dissimilarities across samples that are higher than those estimated from the
null model. This metric ranges from –1 to 1; values between –0.95 and –1
indicate mass effect, values between 0.95 and 1 indicate environmental
filtering and values between –0.95 and 0.95 indicate drift; (ii) SES as the
difference between the observed and mean expected dissimilarity, divided
by the standard deviation of expected values, where values around zero
indicate that observed dissimilarity does not differ from estimated dissim-
ilarity, values greater than zero indicate a higher observed dissimilarity than
expected by chance and values lower than zero indicate a lower dissimilarity
than expected by chance; (iii) tNST, a measure of the relative position of
observed dissimilarity values between extreme values (0 to 1) under pure
deterministic and pure stochastic assembly86. RC and SES reflect the con-
tribution to community assembly of deterministic processes (RC > |0.95|;
SES > |2|) based on the significance of the difference between observed and
null expectation, while tNST reflects the contribution of stochastic assembly
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(tNST > 0.5) based onmagnitude of this difference. RC, SES and tNSTwere
calculated using the tNST function, while differences between seasons in
thesemetrics were tested using nst.boot (999 permutations), both in ‘NST’86.

Phylogenetic diversity analyses were not made as the ITS region is not
phylogenetically conserved87, and as such ITS-based analyses are not sui-
table for multiple sequence alignments required for phylogenetic diversity
analyses88.

Data availability
Sequences were deposited at DDBJ/EMBL/GenBank under the BioProject
accessionnumberPRJNA579099.Data supporting thefindings of this study
are available at https://doi.org/10.6084/m9.figshare.25008662.
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