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Abstract: The ongoing biodiversity crisis, driven by factors such as land-use change and global
warming, emphasizes the need for effective ecological monitoring methods. Acoustic monitoring of
biodiversity has emerged as an important monitoring tool. Detecting human voices in soundscape
monitoring projects is useful both for analyzing human disturbance and for privacy filtering. Despite
significant strides in deep learning in recent years, the deployment of large neural networks on
compact devices poses challenges due to memory and latency constraints. Our approach focuses
on leveraging knowledge distillation techniques to design efficient, lightweight student models for
speech detection in bioacoustics. In particular, we employed the MobileNetV3-Small-Pi model to
create compact yet effective student architectures to compare against the larger EcoVAD teacher model,
a well-regarded voice detection architecture in eco-acoustic monitoring. The comparative analysis
included examining various configurations of the MobileNetV3-Small-Pi-derived student models to
identify optimal performance. Additionally, a thorough evaluation of different distillation techniques
was conducted to ascertain the most effective method for model selection. Our findings revealed that
the distilled models exhibited comparable performance to the EcoVAD teacher model, indicating a
promising approach to overcoming computational barriers for real-time ecological monitoring.

Keywords: passive acoustic monitoring; eco-acoustics; deep learning; knowledge distillation;
bioacoustics; classification; transfer learning; speech detection

1. Introduction

Bioacoustics is the scientific discipline that focuses on sounds generated by animals [1].
The field offers insight into the behaviors, communication, and migration patterns of
different species. Recent advances in computational bioacoustics, such as data storage
and digital recording costs, have enabled the application of more advanced analytical
approaches like deep learning [1]. While early deep learning methods focused on neural
networks such as the multilayer perceptron (MLP), Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) models currently surpass and exceed MLP models
in the field [1]. More recently, a convolution-free Audio Spectrogram Transformer (AST),
an attention-based model for audio classification, was designed [2]. However, due to the
quadratic complexity of self-attention, transformer-based models such as AST are known
to be computationally expensive, resulting in increased latency and model size when
compared with lightweight CNNs [3].

Despite the recent progress in computational bioacoustics, some practical and theo-
retical obstacles remain that prevent deep learning methods from broad usage in the field.
A notable obstacle arises from the intricacies of dealing with human speech recordings
in wildlife settings. Although these recordings serve as a useful proxy for quantifying
human disturbance in ecosystems, they also allow for a more precise assessment of human
presence [4]. This increased precision, while beneficial in one aspect, could lead to signif-
icant data privacy concerns as acoustic monitoring equipment becomes more advanced
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and more widely implemented [1]. The implications of this obstacle extend even further
given the documented impact of human activity on the temporal dynamics of animal
activity patterns, which include an increase in nocturnality and potential consequences
for ecological interactions [5-7]. Moreover, noise pollution levels in protected areas have
doubled, affecting critical habitat areas for endangered species [8]. In response to these
challenges, Cretois, Rosten, and Sethi [4] developed a voice activity detection (VAD) model,
EcoVAD, aimed at addressing both the need for precise measurement of human presence
and privacy preservation in eco-acoustic data.

In addition to the above-mentioned theoretical challenges, there are practical chal-
lenges that prevent deep models, such as EcoVAD, from being deployed in eco-acoustic
environments. The deployment of such models has high latency costs [1]. The current
state-of-the-art acoustic monitoring tool, AudioMoth [9], is a low-cost, low-power solution
to certain technical challenges in bioacoustics. However, AudioMoth is not efficient enough
to execute deep neural networks (DNNs) in real time [10]. The challenges that DNNs
bring for deploying models on small devices have led to a series of model compression
and acceleration techniques, one of which is knowledge distillation [11]. The main idea
behind knowledge distillation is that a student model is trained to emulate the processing
performed by a larger teacher model in order to distill refined knowledge and obtain a
competitive performance versus the teacher [11]. This technique allows efficient DNNs to
be trained from large DNNs without a substantial drop in accuracy [11].

While knowledge distillation addresses the compression framework required for
deployment on edge devices, architectural efficiency remains another critical aspect for
real-time inference [1,12]. In an attempt to design a more efficient architecture, Howard et
al. [13] introduced the MobileNetV1 architecture, which replaced the convolutional layer
of CNNs with depth-wise separable convolutions. Specifically, the utilization of factor-
ized convolutions through the combination of depth-wise and point-wise convolution
reduced the computation required by the convolutional block by a factor of eight [13].
While the introduction of MobileNetV1 allowed for a reduction in parameters without
a significant loss in accuracy, it was not effective at efficiently extracting the manifold of
interest (MOI) [14]. This issue was in part due to the application of the nonlinear functions
(RELU) on low-dimensional activations, which lead to information loss in the MOI. To con-
front this problem within the MobileNetV1 architecture, ref. [14] introduced MobileNetV2,
which incorporated inverted residuals with a linear bottleneck. In order to improve the
representational power of the CNN architecture, Hu, Shen, and Sun [15] implemented
a Squeeze-and-Excitation block (SE), which allows the weighting of interdependencies
between channels for feature selection. In light of this development, researchers then
attempted to augment MobileNetV2 and introduced the SE block in the MobileNetV3
architecture. As a result, this led to an improvement in both the latency and parameter size
of the model [16].

Despite the design of MobileNet architectures addressing the model complexity and
latency costs for deployment on small mobile devices, these architectures are not optimized
for other edge devices, such as Raspberry Pi, NVIDIA Jetson Nano, or Google Coral,
which contain different hardware specifications [17,18]. In an attempt to improve the
MobileNetV3 design for Raspberry Pi devices, MobileNetV3-Small-Pi was developed [18].
This architecture replaced the 5x5 filter with a 3x3 filter in the convolution block and
changed the hard-swish activation function to RELU. The modifications made to the
MobileNetV3 led to improvements in both latency and accuracy in MobileNetV3-Small-
Pi[18].

Silva et al. [19] built a CNN-based VAD model using audio spectrograms to detect
speech in audio signals. Using the LeNet 5 CNN and the Half Total Error Rate metric, the
proposed method outperformed several baseline VAD models in low-, medium-, and high-
noise conditions. In an effort to further optimize VAD models in noisy conditions, ref. [20]
integrated a two-layer bottleneck Denoising Autoencoder (DAE) with a CNN. The re-
searchers carried out experiments using two different feature sets, MFCCs (Mel-Frequency
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Cepstral Coefficients) and filterbanks, and compared their performance in various Signal-
to-Noise Ratio (SNR) conditions. The results demonstrate an improvement in classifying
speech in high-noise environments. In an attempt to measure human disturbance in ecologi-
cal settings, ref. [4] proposed an alternative approach for acoustic VAD models. Researchers
trained CNN models on synthetic datasets containing human voices mixed with typical
background noises encountered in eco-acoustic data. By proposing a specialized prepro-
cessing pipeline for audio augmentation and synthetic dataset building, the results indicate
the performance of a custom VGG11 model established a new state-of-the-art benchmark
for VAD models in ecological settings. Despite the advances demonstrated in the afore-
mentioned studies with respect to the accuracy of VAD models, the challenge of designing
models that are suitable for real-time inference and deployment on edge devices remains
a significant challenge. Ref. [21] proposed a lightweight CNN with data augmentation
and regularization techniques to improve the generalization ability of the model. Utilizing
the PreAct ResNet-18 architecture as a teacher and log-scaled Mel Spectrogram as feature
inputs, researchers trained a student model using response-based distillation resulting in a
lower equal error rate and latency from the distilled model. In a similar piece of research,
ref. [22] proposed a response-based knowledge distillation approach, where the teacher
estimates the frame probability for each sound event and provides frame-level supervision
to the student model, which was trained to then discriminate ground truth speech from
non-speech-labeled events. With the aim of deployment on embedded devices such as
Raspberry Pi, the results indicate a 98% reduction in parameters while outperforming the
teacher model.

This study addresses the challenge of deploying deep learning models for ecological
speech detection within the computational constraints of small, edge devices. These cost-
effective and low-power devices struggle to efficiently run complex neural networks like
EcoVAD, hampering real-time bioacoustic monitoring. To circumvent these challenges, our
research focuses on applying knowledge distillation to create streamlined student models
that parallel the larger EcoVAD teacher model’s performance. This approach is intended
to overcome the inherent memory, latency, and computational limitations of such devices
while facilitating a more robust model capable of effective ecological monitoring.

2. Materials and Methods

In the current study, we build on the previous research discussed above, which has
proven instrumental in developing efficient, compact deep learning models suitable for
deployment. We design and execute experiments to optimize deep neural networks for
real-time speech detection. To achieve this objective, we investigate the suitability of
MobileNetV3-Small-Pi [18] model as a student architecture for EcoVAD [4]. The afore-
mentioned studies also highlight the significance of specialized preprocessing, efficient
lightweight architectures, and distillation techniques for optimizing VAD models for such
deployment. Consequently, we employ different knowledge distillation techniques while
incorporating variations in the MobileNetV3-Small-Pi architecture to achieve optimal per-
formance. Finally, we examine how reductions in parameters, floating-point operations per
second (FLOPs), multiplications, and memory utilization in student VAD models influence
the performance of the resulting architectures.

2.1. Knowledge Distillation Technigues

Hinton, Vinyals, and Dean [23] first popularized the knowledge distillation method
by training a smaller student network, using a teacher for distilled knowledge transfer.
The method, known as response -based distillation, trains the student to optimize the
loss function based on the student and teacher’s softened outputs. While response-based
distillation allowed for “dark knowledge” to be distilled, depth is a critical aspect of feature
representation learning [11,24].

In an attempt to distill intermediate representations, ref. [24] introduced feature-
based distillation, which trained a student network to optimize the loss function based
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on the student’s outputs and ground truth labels, along with the feature maps from an
intermediary layer within the student and teacher, respectively. This method, which selects
a teacher hidden layer as a “hint” layer and student hidden layer as a “guide”, improved
the generalization and accuracy of the student when compared with the teacher [11].

While featured distillation allowed for deeper representation learning, the knowl-
edge distilled is independent of outside data examples. Thus, Park et al. [25] introduced
relational knowledge distillation, a method relying upon the relations between learned
representations. This method trained the student network to optimize the loss function
based on the angle-wise and distance-wise relations between different data points, allow-
ing the teacher to distill refined instance relations between the layers and outputs of the
model [25].

2.2. Model Architectures

The teacher architecture used for knowledge distillation is based on a customized
VGG11 architecture [4], adapted to process 128 x 128 single-color channel images, in
contrast to the standard VGG11’s handling of 224 x 224 RGB images. Significant mod-
ifications included the reconfiguration of input and output neurons, the introduction of
batch normalization after each convolutional layer, and the implementation of a dropout
strategy in fully connected layers to enhance the model’s specificity for binary speech
detection. Additionally, a Fast Fourier Transform (FFT) window duration of 64 milliseconds
(equivalent to 1024 samples at a sampling rate of 16 kHz) with a 50% overlap (hop size
of 512 samples) was selected for its proven effectiveness in audio classification tasks, as
detailed in [4]. This approach is further validated by the findings of [26], particularly
highlighting the significant role of normalizing the Mel Spectrograms along each frequency
bin in enhancing classifier performance. By compressing the frequency into 128 Mel scale
bands and implementing this normalization, the model’s input is finely tuned, thereby
improving its capability to accurately differentiate between speech and nonspeech elements.
All student architectures were based on MobileNetV3-Small-Pi (MSP) [18]. The student
architectures maintained the differences implemented in [18] with respect to MobileNetV3,
more specifically, the adjustment from a 5 x 5 filter with a 3 x 3 filter in the later convolu-
tion blocks and an adjustment from the hard-swish activation function to RELU. However,
the architectural differences in the students differ from MSP in a number of ways.

With the goal of analyzing the efficiency of student architectures, four different student
designs were trained to measure the tradeoffs in accuracy and efficiency. The primary
differences between these four architectures lie within the number of channels used in
the convolutional and bottleneck layers, as well as the overall depth of the architecture,
allowing for an exploration of established principles [27] to find an optimal balance between
model complexity and computational efficiency. Student 1 starts with an initial 3 x 3
convolutional layer with 16 output channels, followed by a series of bottleneck layers with
channels ranging from 16 to 512. This design leverages concepts from residual learning to
reduce the computational cost and enhance feature extraction capability compared with
prior CNNs by using depth and channel expansion to capture complex patterns within
the data [14]. Student 2, while similar to Student 1, has a reduction in the number of
bottleneck layers and a difference in the input channels prior to the Adaptive Average
Pooling layer. The input channels are changed from 256 to 512 in this case. The reduction
in bottleneck layers allows for a continuation of the reduction in the depth of the network
while maintaining a higher learning capacity for feature extraction in the later stages of
the network.

Student 3 was initiated with a smaller number of channels compared with the afore-
mentioned student architectures, starting at only 4 output channels in a 3 x 3 convolutional
layer and progressing through a series of more compact bottleneck layers that scale from
4 to 128 channels. This architecture emphasizes an experimental divergence from its prede-
cessors to examine efficiency with an inherent reduction in model capacity. The decrease in
initial channels and compact bottleneck design was to ensure a reduction in calculations per-
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formed for each convolutional operation while ensuring computations performed within
the bottleneck layers were reduced due to smaller feature maps. The final student, Student
4, maintains a similar foundational structure to Student 3, with a 3 x 3 convolutional layer
with 4 output channels in the initial bottleneck. However, the number of bottleneck layers
is reduced in this case, leading to a more compact architecture with fewer layers. The
channel sizes range from 4 to 64. These design changes reflect our efforts to prioritize a
reduction in depth and complexity in order to assess the generalization capabilities of a
simplified network.

Each student architecture maintains a similar final layer construction, which consists
of an Adaptive Average Pooling layer, two 1 x 1 convolutional layers, and a flatten layer.
The models also maintain the presence or absence of the SE block, as in [18]. Furthermore,
each student’s architecture maintains the same expansion ratio pattern, with the exception
of Student 4. The differences in teacher and student architectures, which are highlighted in
Table 1, influence each respective model’s capacity for feature extraction and performance
on the voice activity detection task.

Table 1. Summary of different teacher and student model characteristics. Avg. inference time is
defined as the average time taken by the model to make a prediction on a single input instance,
measured over 100 trials.

Model Parameters Layers FLOPS Multiplications Memory (MB) Avg. Inference Time (s)
Teacher 59,568,769 20 2,485,390,000 1,242,700,000 227 0.17
Student 1 4,662,017 215 388,459,000 194,230,000 17 0.038
Student 2 2,930,177 179 337,257,000 168,628,000 11 0.042
Student 3 502,793 179 27,353,400 13,676,700 1.91 0.0087
Student 4 52,253 114 8,648,350 4,324,170 0.19 0.0050

2.3. Dataset and Preprocessing

The current study used three distinct datasets for the EcoVAD preprocessing pipeline:

The Soundscape Dataset [4], collected from the Bymarka forest near Trondheim, Nor-
way, contains a total of 10 days of acoustic data recorded in files of 55 s at a sampling
frequency of 44.1 kHz. From the initial 10 days of recordings, a subset of data were used for
the EcoVAD preprocessing pipeline, consisting of 9037 raw audio signals from a continuous
5-day forest recording sampled with the same rate and intervals.

The Libri-Speech Dataset [28], a corpus containing 1000 h of 16kHz of read English
speech with a 1:1 male-to-female ratio was used for voice active detection. The data used
for the EcoVAD preprocessing pipeline were a subset from the corpus containing 360 h, of
which 200 h of English reading speech with a 1:1 male-to-female ratio was extracted.

The Background Noise Dataset is a combination of the ESC-50 dataset [29] and Bird-
Clef 2017 dataset [30]. The ESC-50 dataset, used for environmental sound classification,
contains 2000 environmental recordings organized in 50 classes. For training, we subsetted
the data to only include 1600 recordings organized into 40 classes at 5 s intervals, removing
human-related sounds. The BirdClef 2017 dataset, which includes audio recordings of vari-
ous bird species, contains 36,496 audio recordings with 1500 species classes. Due to storage
limitations, a subset of the dataset was used, accounting for 11,889 audio recordings belong-
ing to 501 species. The three datasets, namely Soundscape, Libri-Speech, and Background
Noise, were collectively utilized as inputs for the EcoVAD preprocessing pipeline.

The EcoVAD preprocessing pipeline [4] was used to generate a synthetic dataset
consisting of 20,000 audio files, with a 1:1 distribution between speech and nonspeech
audio files. The pipeline augments raw soundscape audio into processed 3 s soundscape
audio clips, which are accompanied by ground truth labels denoting the presence or
absence of speech. These processed 3 s soundscape audio clips were augmented with
speech, background, and bird species audio recordings to build an accurate representation
of the ecological soundscape. To refine the raw audio signals into features for the speech
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detection task, the signals were converted into 128 x 128 Mel Spectrograms containing
a single color channel, as in [4]. The Mel Spectrograms were then used as input into the
student and teacher architectures for training.

The Evaluation Playback Dataset [4] is an extensive collection of audio recordings
designed to simulate diverse environmental conditions for the purpose of testing voice
activity detection (VAD) models. This unique curated collection of three-second audio
clips is derived from 48 two-minute recordings within forest and seminatural grassland
environments. This dataset, consisting of 5140 audio files, incorporates audio recordings
of male, female, and child voices, both in speech and nonspeech contexts, captured at
distances of 1, 5, 10, and 20 m. The playback dataset allows for the final evaluation and
verification of the robustness of the various student models across distinct landscapes and
at varying distances.

2.4. Training and Evaluation

The synthetic dataset generated for training each student model was broken down
into training, evaluation, and test sets with ratios of 60%, 20%, and 20%, respectively. All
models utilized in this study were subjected to a training process that involved a maximum
of 50 epochs, employing batch sizes of 32. The number of inputs for each model was set to
the Mel Spectrograms’ feature dimensions, where the outputs for each model were set to
one. Given that the task is binary classification, this allows for the model to produce values
between 0 and 1 in order to represent a prediction for speech detection. Furthermore, we
use binary cross entropy with logits loss for the student losses and binary cross-entropy for
the teacher loss function to accurately predict the binary classification task and replicate
the training procedure implemented in [4].

Moreover, after initial hyperparameter testing, we found that the Adam optimizer [31]
was best suited for the optimization algorithm. Additionally, in each distillation experiment,
we employed a learning rate of 0.001. The temperature parameter, which is used to soften
the probability distribution of the logits, was set to 5. The alpha parameter, which controls
the balance between the distillation loss and student loss in the total loss function, was
set to 0.2. Finally, an early stopping method was used to prevent overfitting. The method
involved comparing the present validation loss with the best validation loss. Furthermore,
a patience parameter was introduced and set to 3 in order to ensure that if the loss failed to
improve over a predetermined number of epochs specified by the patience parameter, the
training of the model would be completed.

The evaluation metrics used to measure student model performance include the F1
score and the Area Under the Receiver Operating Characteristic Curve (AUC) score. The
F1 score is a statistical measure used to evaluate the accuracy of a binary classifier, which
can be seen as the harmonic mean of precision and recall. It provides a single performance
measurement that balances both the false positives and false negatives [32] . On the other
hand, the AUC score represents the likelihood that the classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one. It measures the
area under a curve that plots the true positive rate (TPR) against the false positive rate
(FPR), offering an aggregate measure of performance across all possible classification
thresholds [4]. Both the F1 score and AUC score were chosen to evaluate the student
models based on the metrics employed in the training of the teacher model.

2.5. Software

The python programming language (3.10.11) was used throughout the study. The
preprocessing pipeline was developed using EcoVAD [4], which utilizes Librosa v.0.8.1 [33]
and Pydub v.0.25.1 [34] as the audio processing libraries. The data visualizations were
performed using matplotlib [35]. The pandas [36] and NumPy [37] libraries were used for
data loading and preprocessing. PyTorch (2.0.0) [38] was used for developing the deep
learning models. The Scikit-learn [39] library was used for the evaluation of the models.
The Google Colaboratory Environment [40] was used for training the models.
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3. Results
3.1. Refinement of Knowledge Distillation Technigues

The performance of student models employing various knowledge distillation tech-
niques was assessed using median Area Under the Curve (AUC) and F1 scores, providing
robust central tendency measures appropriate for our data’s non-normal distribution (see
Table 2). In multiple experiment runs without fixed seeds, soft target distillation yielded
a median AUC of 0.98625 with a confidence interval of 0.9704 to 0.989, and a median F1
score of 0.95395 with a confidence interval of 0.9216 to 0.9596. Feature-based distillation
exhibited a median AUC of 0.98795 with a confidence interval of 0.98755 to 0.99015 and a
median F1 score of 0.95460 with a confidence interval of 0.95015 to 0.9583. Relational-based
distillation demonstrated a median AUC of 0.98905 with a confidence interval of 0.9879 to
0.9898 and a median F1 score of 0.95900, with a confidence interval of 0.9538 to 0.96125.

Table 2. Table of results for different student models employing distinct distillation techniques. We
report median AUC and F1 scores of the student models and distillation methods with bootstrap
confidence intervals given in brackets.

Model Soft Target Feature-Based Relational-Based
Distillation Distillation Distillation
Student 1 AUC: 0.9892 AUC: 0.9880 AUC: 0.9899
F1: 0.9599 F1: 0.9520 F1: 0.9595
Student 2 AUC: 0.9908 AUC: 0.9899 AUC: 0.9897
F1: 0.9593 F1: 0.9594 F1: 0.9619
Student 3 AUC: 0.9850 AUC: 0.9874 AUC: 0.9880
F1: 0.9492 F1: 0.9483 F1: 0.9502
Student 4 AUC: 0.9870 AUC: 0.9877 AUC: 0.9878
F1: 0.9528 F1: 0.9542 F1: 0.9552
Overall AUC: 0.98625 AUC: 0.98795 AUC: 0.98905
[0.9704-0.9895] [0.98755-0.99015] [0.9879-0.9898]
F1: 0.95395 F1: 0.95460 F1: 0.95900

[0.9216-0.9596]

[0.95015-0.9583]

[0.9538-0.96125]

A pairwise comparison of the different distillation methods, assessed by the Mann-—
Whitney U test, did not reveal statistically significant differences in median AUC or F1
scores between the distillation methods (all p-values > 0.05). This indicates that the perfor-
mance of student models is consistent across different distillation methods, suggesting that
while the refinement of knowledge distillation techniques did not improve the performance
of the resulting models, no substantial reduction in performance was observed either.

3.2. Impact of Parameter Reduction and Efficiency on Model Accuracy

The reduction in parameters, FLOPs, multiplications, and memory utilization had
varied accuracies across different distillation techniques (Figure 1). Despite these re-
ductions, the F1 scores of the student models did not decrease when compared with
the teacher-replica model. For instance, Student 1, with only 4,662,017 parameters and
388,459,000 FLOPs, achieved a median F1 score of 0.9552 in the relational distillation
method, which was higher than the teacher-replica model’s F1 score of 0.9376.

The results indicate that the models are not in alignment with the assumption that a direct
linear relationship exists between reductions in model parameters—inclusive of floating-point
operations per second (FLOPs), multiplications, and memory utilization—and model accuracy,
as Student 2 and Student 4 outperformed Student 1 and Student 3, respectively.
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Figure 1. Varied distillation technique results per student with respect to FLOPS and Size. S1-54
corresponds to the four student models, while the teacher replica is the EcoVAD model. The size of
the circles corresponds to the number of parameters.

3.3. Performance of Lightweight Student Models On Playback Dataset

In terms of performance, the student models demonstrated comparable, and in one
instance superior, performance relative to the EcoVAD teacher model (Figure 2). For
instance, Student 1 achieved average F1 scores of 0.94595, 0.93945, 0.93875, and 0.79895 at 1,
5,10, and 20 m, respectively, compared with the EcoVAD teacher model’s average F1 scores
of 0.93500, 0.94000, 0.96500, and 0.83200 at the same distances.

Average F1 Score vs. Distance

Role
Student 1
Student 2
Student 3
Student 4
EcoVADTeacher

0.95 4

—

0.85 4

ti4¢

Average F1 Score

0.80 1

0.75

0.70

2.5 5.0 75 ld.O 1215 15.0 17.5 20.0
Distance (Meters)
Figure 2. Avg. F1 scores based on distance on the playback evaluation data set for relational-based
models. Please note: In this figure, we report mean rather than median scores to facilitate comparison
with [4].

Furthermore, while the avg. F1 score across all distances for the EcoVAD model was
0.917, the student averages were 0.905, 0.886, 0.832, and 0.862 for Students 1-4, respectively.
These results indicate that efficient, lightweight student models can achieve comparable
performance relative to the more complex EcoVAD teacher model.

These results highlight the potential of using knowledge distillation techniques for
generating efficient, lightweight models for VAD tasks. Furthermore, these models maintain
their accuracy despite significant reductions in parameters, FLOPs, multiplications, and
memory utilization.
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4. Discussion

The goal of this study was to build an efficient general-purpose algorithm for voice
detection in environmental audio by comparing different knowledge distillation techniques
and student model architectures, more specifically, using the EcoVAD model [4] as a teacher
and variations in MobileNetV3-Small-Pi [18] as student models to compare knowledge
distillation techniques for designing an efficient EcoVAD model. The results of this study
were compared with the EcoVAD model on a playback dataset to evaluate the robustness
of the efficient EcOVAD models on different landscapes with varying distances.

This study demonstrates that efficient, lightweight student models can indeed achieve
comparable performance relative to the EcoVAD teacher architecture using knowledge
distillation and efficient student architectures. Students 1 and 2 maintained similar avg. F1
scores on the playbacks dataset using the relational distillation models when compared
with the EcoVAD teacher model. This outcome supports the findings of previous research
that distillation techniques can be used to create smaller, more efficient models without
a significant reduction in accuracy [11]. Furthermore, the statistical analyses conducted
across various distillation techniques revealed no significant effect attributable to the
refinement of knowledge distillation processes on enhancing the performance of student
models. Interestingly, in both feature-based and relational distillation experiments, Student
2’s architecture outperformed Student 1’s in the VAD task on the test dataset; however,
Student 1 outperformed Student 2 on the evaluation playback dataset. This could be the
result of Student 2 being overfitted on the test set; however, further testing would need to
be conducted in order to determine if this is the case.

Given their reduced computational demands, these student models are well-suited for
deployment in edge devices, where efficiency is paramount. This study also demonstrates
that reductions in parameters, FLOPs, multiplications, and memory utilization do not
necessarily result in a significant decrease in model accuracy. However, the results are not
linear. The student models” performances on the evaluation dataset demonstrated that
while Student 1 and Student 2 outperformed the smaller models, Student 4 consistently
outperformed Student 3 on both the test set and playback dataset. This could be the result
of certain architectural design features between student models, such as a difference in the
expansion ratio and SE block implementation; however, further testing would need to be
carried out in order to validate these claims.

5. Conclusions

This study demonstrates that efficient student models can achieve comparable perfor-
mance to EcoVAD. The findings indicate that MobileNetV 3-Small-Pi [18] can serve as a
backbone for building efficient EcoVad models capable of achieving results comparable to
the EcoVAD teacher model [4]. This study suggests that Student 1 illustrates the feasibility
of deploying effective lightweight EcoVAD models on small-edge devices for real-time
ecological monitoring. These advancements are crucial for the field of ecological monitor-
ing, offering a scalable solution for biodiversity assessment and the monitoring of human
impacts on natural habitats.

The results of the current study are subject to certain limitations. This study incorpo-
rated a limited range of distillation techniques; therefore, other distillation methods could
serve to improve upon the current results. Additionally, the experiments ran were nonde-
terministic; therefore, the implementation of a fixed seed could potentially enhance the
reproducibility of these experiments. Moreover, portions of the data used to generate the
synthetic dataset are proprietary and therefore restricted to research purposes only. Future
research could explore the use of other distillation techniques while further investigating
different variations in the student EcoVAD models presented. Additionally, research could
investigate the performance of these models in real-world settings.

Our work contributes to ongoing efforts to expand eco-acoustic monitoring technolo-
gies. Our focus on efficiency and the deployment feasibility of VAD models paves the way
for such algorithms to be deployed on small embedded devices, such as Raspberry Pi, to
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detect and remove human voices where privacy is a strong constraint or equally well to
monitor patterns of human disturbance. The present study indicates that the optimization
and design of efficient lightweight student models can lead to results comparable to the
larger EcoVAD model. While the current study is in no way a thorough investigation into
efficient VAD model design, it can be considered a contribution toward the design of an
efficient general-purpose algorithm for voice detection in ecological settings.
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