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Abstract: This study provides a new methodology for the rapid analysis of numerous venom samples
in an automated fashion. Here, we use LC-MS (Liquid Chromatography–Mass Spectrometry) for
venom separation and toxin analysis at the accurate mass level combined with new in-house written
bioinformatic scripts to obtain high-throughput results. This analytical methodology was validated
using 31 venoms from all members of a monophyletic clade of Australian elapids: brown snakes
(Pseudonaja spp.) and taipans (Oxyuranus spp.). In a previous study, we revealed extensive venom
variation within this clade, but the data was manually processed and MS peaks were integrated
into a time-consuming and labour-intensive approach. By comparing the manual approach to
our new automated approach, we now present a faster and more efficient pipeline for analysing
venom variation. Pooled venom separations with post-column toxin fractionations were performed
for subsequent high-throughput venomics to obtain toxin IDs correlating to accurate masses for
all fractionated toxins. This workflow adds another dimension to the field of venom analysis by
providing opportunities to rapidly perform in-depth studies on venom variation. Our pipeline opens
new possibilities for studying animal venoms as evolutionary model systems and investigating
venom variation to aid in the development of better antivenoms.

Keywords: LC-MS; snake venom; high throughput; data analysis

Key Contribution: Our study provides a novel analytical and bioinformatic platform for venom
analysis using an existing commercially available software for protein deconvolution. Subsequent ve-
nomics allowed for the identification of several toxins underlying variations within the monophyletic
clade of clinically relevant Australian elapids.

1. Introduction

Snake venoms are complex mixtures of proteins, peptides, and small molecules. These
mixtures are produced in specialised oral glands and are transferred via the venom duct
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to fangs; glands, ducts, and fangs collectively form the snake venom delivery system [1].
Using this delivery system, venom toxins are injected into prey to facilitate their capture.
These venom toxins immobilise prey by disrupting key pathophysiological pathways
involving cardiovascular or nervous systems [2]. Therefore, the primary function of snake
venom is prey acquisition [3–5]. Interestingly, there is no strong evidence suggesting
that snake venom has evolved in order to be used as a defense mechanism [6]. The only
exception can be seen in spitting cobras that evolved defensive venom-spitting behaviour
to deter aggressors [7]. As predator and prey inevitably exert selection pressures upon
each other, venom toxins—as molecules that mediate this antagonistic ecology—are at the
centre of this co-evolutionary dynamic interplay. On one hand, prey evolve resistance to
protect themselves [8]. On the other, snake venoms must maintain a selective advantage to
overcome this resistance. Over millions of years, these reciprocal ecological interactions
may have driven the evolution of the dramatic variation seen in snake venoms today [9].

Venom variation in snakes can be observed on the interspecific level (between species)
and intraspecific level (within a species) [9]. While venom variation between species has
been well studied (e.g., [4,5,10,11]), the extent of intraspecific variation is starting to gain
significant attention [12]. A thorough understanding of venom variation is of interest to dif-
ferent scientific disciplines, as venom variation provides a model system for understanding
adaptive responses to biotic and abiotic factors in an ecological context [5,7,13,14]. Addi-
tionally, snakebite envenoming is a neglected tropical disease severely affecting millions of
people worldwide [15], and venom variation between and within species can complicate
the cross-neutralising capacity of snakebite treatments [16]. For example, Russell’s viper
(Daboia russelii) venoms of Bangladeshi populations are poorly neutralised by antivenoms
that are solely manufactured using venoms from Indian snake populations [17]. As a result,
the standard treatment dose must be drastically increased (i.e., five to ten times) to achieve
effective neutralising of venom toxins in the body of a snakebite victim [17]. Furthermore,
the diversity of bioactive venom toxins also provides a unique and promising resource for
medicine, diagnostics, and cosmetics [18].

There is a need for analytical methods to characterise snake venoms in a high-
throughput fashion to study their compositional diversity. However, there are limitations in
the high-throughput analysis of large numbers of venoms. An important limitation in this
regard when analysing snake venoms using Liquid Chromatography–Mass Spectrometry
(LC-MS) is processing the LC-MS data acquired by integrating the peaks of all toxins found
in each venom. This process will eventually result in a coherent list that can be used to look
at venom variation at the toxin level. Due to the extensive number of proteins found in
each venom [19] from gene duplication, isoform differentiation is paramount [20], and this
is an arduous and tedious process that can also be tainted by manual errors both at the
quantification of the peak areas—also known as integration—and data processing stages.
These isoforms can result from post-translational modifications (PTMs), which change the
mass of the protein toxin (compared to its amino acid sequence alone mass calculated by
for example Mascot), and, depending on the specific protein, can also change the bioactivity
of the toxins. This in turn has the consequence that eventual pathologies caused by venom
toxins can also be mediated by PTMs on certain toxins [21].

To enable efficient venom variation studies based on LC-MS data, we established an
automated analytical pipeline for the rapid characterisation and abundance comparison of
toxins in large numbers of venoms. In our workflow, first venom toxins are separated using
LC followed by MS detection with optional parallel nanofractionation via a post-column
(1:9) flow splitter. After the flow split, the smaller fraction is sent to MS, and the larger
fraction is transferred to a nanofraction collector for collecting high-resolution fractions
in 384-well plates, which can then be used for high-throughput (HT) venomics charac-
terisation [22] of the venom composition. Accurate masses of all toxins found from all
venoms analysed can this way be retrieved from the LC-MS data and correlated to toxin
IDs retrieved from the HT venomics data. The current main drawback in this analytical
workflow is the tedious manual integration of all peak areas found in each venom analysed.
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In one of our previous studies, a similar workflow was demonstrated with venoms of
Australian elapids for which the LC-MS data was indeed labouriously integrated manually
(and the HT venomics results were not included) [10]. This drawback of manually integrat-
ing the intensities of all toxin m/z values found for each venom (and in this endeavour, only
considering the highest charge state per toxin) is illustrated by the many months it took
to process all LC-MS data. The current study presents automated peak area integration
and sorting of all LC-MS data to overcome this drawback. Additionally, it includes HT
venomics to correlate toxin masses used for venom variation analysis with toxin IDs.

We have validated this approach using 31 venoms of brown snakes (Pseudonaja spp.)
and taipans (Oxyuranus spp.), two genera that form together the monophyletic Pseudonaja-
Oxyuranus clade. This clade is well known for having some of the most lethal venoms
of any snake species in the world [23] and has clinical relevance on the Australasian
continent [24,25]. Our dataset covers all twelve documented species of this monophyletic
clade, including several widespread localities. The LC-MS dataset was taken from our
previous study, where the LC-MS data were manually integrated and processed [10].
This was carried out to validate the automatic data extraction procedure presented in the
current study with the previous manual peak area integration [10]. By demonstrating and
validating the automated LC-MS data extraction process, we aim for high-throughput
LC-MS data processing, thereby allowing us to rapidly investigate many venoms for their
variation in the toxins present in each venom under study. The automatic data processing
methodology presented here reduces data extraction and processing time by >99%.

2. Results and Discussion

In this study, we present a method that can automatically extract venom protein
features from LC-MS data. These features are arrays of several properties of each toxin:
peak retention time, peak area, peak width at half height, most abundant m/z value, and
the deconvoluted mass. “Features” is a term utilized to avoid referring to toxins and their
characteristics before the process that validates all the mentioned properties. We ratified
our results by comparing them to the standard—manual—manner of data processing [26].
To achieve this, we compared the results of automatic data extraction and processing with
those of our previous manually curated data of the same dataset [10]. Furthermore, to
correlate accurate toxin masses with toxin IDs, proteomic analysis was applied to two
pooled venom samples using our HT venomics approach [22]. We analysed one pool
containing all Pseudonaja venom samples and one containing all Oxyuranus samples. The
pooled proteomic data allowed us to study venom variability at the toxin-ID level for a
set of toxins, instead of the previously published toxin-accurate mass level alone [10]. An
overview of the pipeline presented in this study is shown in Figure 1.

2.1. Automatic Feature Extraction

First, the features, which include peak area, peak retention time, peak width, and
deconvoluted mass for each peak considered to be a toxin, were extracted from the LC-
MS data. The extraction was automatically performed by recognising the retention time
window for each toxin—also known as dissection—and deconvoluting the different charge
states of each protein toxin from the raw Bruker LC-MS data. This was carried out using the
built-in functions of the DataAnalysis Bruker software (i.e., dissection and deconvolution)
using standard parameters specified in Section 4.2. By following this procedure, the
software is able to recognise a coherence between m/z-value peaks belonging to the same
toxin (i.e., the different charge states measured by MS for each toxin) through the raw
LC-MS data and combines their intensities under the same feature (i.e., all information
extracted for each toxin found in each LC-MS analysis). Subsequently, the mass that
corresponds to each toxin is automatically calculated from its features. The peak area for
each toxin is given as the sum of all the intensities of all m/z values of all charge states of
the same toxin. In total, from all venom samples, 1035 features were extracted by using this
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method. An example of three arbitrarily different features for one of the samples can be
found in Table 1.
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Figure 1. Summary of the analytical methodology used to investigate venom variation in the
monophyletic Pseudonaja–Oxyuranus clade. The analytical workflow starts with LC-MS analysis of
the 31 venoms included in this study, with an additional high-throughput (HT) venomics analysis
of pooled venoms from Pseudonaja spp. and Oxyuranus spp. The LC-MS data were analysed both
manually and automatically, both providing the same information. This is finally compared with the
HT venomics data to analyse venom variation at the toxin-ID level.

Table 1. Three arbitrarily chosen features in one sample are shown as an example.

# Peak RT (min) Area (Count·min) FWHM (min) MW (Da) I (Count) Max. m/z Value

57 24.7 233,095 0.3 15,149.29 13,716 3029.47

58 24.8 504,943 0.3 29,802.46 26,676 3313.84

59 25.1 343,360 0.3 14,948.22 18,931 2992.06
RT = Retention Time; FWHM = Full Width at Half Maximum; MW = Molecular Weight; I = Intensity.

Next, the automatically extracted features for each venom were compared with the
manually processed results obtained by van Thiel et al. [10], who used manual deconvo-
lution and peak-by-peak integration of the same LC-MS data. Therefore, these manually
extracted and processed data provide an excellent opportunity to compare manual and
automated data processing of the same dataset. Using the manual approach, a total of
185 unique masses were included in the processed dataset. This resulted in the extraction
of 485 unique peak height values among all 31 venoms analysed. These peak height values
were obtained from the highest peak height of the most abundant m/z value of each protein.
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Thus, these peak height values represent the unique toxins found in each venom, develop-
ing the concept of a “toxin sample pair”. A toxin sample pair is the feature corresponding
to a specific toxin in a specific venom sample. For this study, there is a need to make a
differentiation between toxin sample pairs and features, as each feature found through the
two different data processing methods (i.e., manual and automatic) is compared to validate
the data processing methods. Using the automated method, we identified 1035 peak areas,
one for each toxin sample pair. This implied that the automatic method was able to detect
more than twice the number of peaks that were recognised manually (i.e., 1035 vs. 485). As
previously mentioned, the peak area of each feature was the chosen parameter to study
because it is the most reproducible parameter that directly relates to the relative amount of
a toxin found in each venom over a large concentration span [27]—which was the case in
our sample set. The areas of the automatically extracted peaks were compared to the peak
heights of the manually extracted data (because the area was not included in the manually
extracted data).

2.2. Comparison between Manually and Automatically Extracted Data Using the In-House Script

The comparison between the manual method and the automated method described
in this research is between toxins coming from the same dataset in both scenarios. As the
method described in this study identifies more unique toxins, only the manually extracted
toxin sample pairs were compared to the automatically extracted ones to avoid bias. The
toxin sample pairs extracted both manually and automatically were compared using three
diverse approaches. The first approach accounts for both mass and most abundant m/z-
value match with a certain error window. The second approach considers either the mass
or the most abundant m/z value to perform the matching. However, either due to human
or algorithmic deconvolution errors, there is the possibility that the corresponding mass
or most abundant m/z value will not match between both datasets; therefore, to address
this, our third approach considered neither the mass nor the most abundant m/z value to
match. Instead, we inferred the same toxin due to the tight relationship between these two
values (e.g., if we find a manually deconvoluted toxin sample pair has a mass of 1000 Da
and a most abundant m/z value of 500 and, for the same venom, we find an automatically
deconvoluted mass of 2000 Da and a most abundant m/z value of 1000, it can be inferred
that they are the same toxin). These approaches consider both the most abundant m/z
values and the accurate masses of a toxin, and similar m/z values and accurate masses
match among all venom samples. These three approaches were chosen because they cover
all corrections between manually deconvoluted and automatically deconvoluted spectra.

All three approaches considered error windows for all comparisons that ranged from
0 to ±2.5 Da—all of which are explained hereafter. However, the three approaches vary in
how close these two values between the toxins must be for them to be recognised as the
same toxin, because if the mass and m/z-value match between deconvolution methods, we
are more confident of them being the same protein, and thus can make the error window
larger. Thus, for the first approach, both the m/z value and the accurate mass of two
different toxins must be quite similar (the thresholds used were ±2 Da and ±1.1 m/z value)
for them to be recognised as the same one. For the second approach, the procedure of the
first one is followed, and the rest of the toxins are checked for similarities (the thresholds
used were ±2 Da or ±1.1 m/z value) and recognised as the same. Lastly, for the third
method, the procedure of the second approach was followed, and the remaining toxins
were further compared. It was checked whether these yet-unmatched toxins contained
accurate masses which, when divided by the mass of the suspected related toxin, the
remainder of the operation was one of the following numbers: 0, 0.25, 0.333, 0.5, 0.75,
or 0.666 (e.g., a protein with a mass of 1500 Da in the manually extracted dataset and
3000 Da in the automatically extracted dataset for the same venom would be considered
the same). We selected these values to anticipate potential mass changes resulting from
alterations in recognized charge states. They represent common relationships between
charge values, allowing for full coverage: ratio of 2-1 (0.5), 3-1 (0.333), 1-4 (0.25), 2-3 (0.66),
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and 3-4 (0.75). By including these relationships, we look into variations in charge states
and their relationship with the masses. This is carried out because manual error might lead
to incorrect charge state or mass deconvolution. This approach makes it safe to assume
that applying the third approach is equally valid to applying the first one; because we
are analysing the same toxins, an approximately linear relationship between peak heights
and areas should be found, as they both linearly increase with the concentration of the
analyte. Thus, the relationship between the areas and their respective peak heights should
remain constant if we are analysing similar toxins. The added benefit of the third method
allows for more toxins to be recognised as matching with those of the manual extraction,
as it includes all toxins from the first and second approaches, while adding the matching
toxins that can be found as multiples of their mass values. A summary of this procedure
can be found in Figure 2. A more detailed description of this procedure can be found
in the Supplementary Materials (Section: detailed comparison between manually and
automatically extracted data).
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Figure 2. Summary of the three approaches taken for the comparison between the two methods. The
data processing workflows start with the data obtained from the Raw MS data. The toxin sample
pairs are compared by the three different methods. A matching of 98.9% of the toxin sample pairs was
obtained by the best processing workflow (i.e., approach 3) on which finally PCA was performed.

Still, some of the toxins were not recognised as being the same because both their
m/z values and masses were seen as different, while they did belong to the same toxin.
Manually inspecting these toxins revealed that the difference was because the accurate
mass had a proportional value to that found in the other dataset. The main reason this can
happen is due to human error during the determination of the charge state. This issue can
be circumvented by recognising all toxins in the automatically extracted dataset that have
masses which division leaves one of the following numbers as a remainder: 0, 0.25, 0.333,
0.5, 0.75, or 0.666 with very narrow thread windows (≤0.005), and they are thus considered
to be the same (e.g., a protein with mass 1500 Da in the manually extracted dataset and
3000 Da in the automatically extracted dataset for the same venom would be considered the
same after the two previous comparison methods had not found any match). By applying
this third method, 98.8% of the protein–venom pairs were correctly recognised, and 98.9%
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of the unique toxins were also recognised. The percentage of underestimated peak heights
was 4.4% in this case, and 0.4% for the overestimated peak areas.

2.3. Comparison between Results of Manual and Automatic Approaches

The next step is to determine the compositional variability of venoms between the
manual and automatic approaches. Therefore, we compared the principal component
analysis (PCA) results between the two methods. The manual PCAs were taken from van
Thiel et al. [10], and the automatic data processing procedure PCAs were made under the
same settings. This allows for a direct comparison between both approaches. This process
is included in the algorithms for extracting manual and automatic data that can be found in
the Supplementary Materials (ExtractionAutomatedData.jl and ExtractionManualData.jl).

When analysing all 31 venoms using 2 PCA dimensions, similar trends emerge be-
tween manual and automated approaches (Figure 3). Most notably, both PCA plots show a
consistent pattern where P. modesta is completely distinct from the other venoms. However,
both families are clearly differentiated as certain exact masses and are genus-specific. It
is relevant that not only the scores (i.e., projection of the sample onto the principal com-
ponents) should look similar, but also the loadings should hold similar weight for each
of the toxins in each PC when comparing the manually extracted. This is because the
distribution of the scores can be achieved by chance, but if the relevance of each variance is
also the same, it means the data are comparable. Thus, the loadings of the first two PCs are
plotted against the same values for the manually extracted data found in Figure 4. The PCs
and scores corresponding to the Oxyuranus and Pseudonaja separately can be found in the
Supplementary Materials (Section: PCs and loadings of independent genera).

The general weight of all the variables is maintained constant throughout the different
extraction methods. In some variables, the relevance of each feature (how much their values
differ from 0) is not exactly the same. This is due to two main reasons that previously have
been mentioned: (i) the use of areas instead of intensities in the automatic method, and
(ii) the small percentage (5%) of toxin sample pairs that are either over or underestimated,
as discussed in Section 2.2. There is an intrinsic importance to looking into the loadings
of the PCAs, as the distributions found in Figure 3 might have been similar, but with no
real similarities between the variables it used to generate that distribution. By looking at
Figure 4, we can clearly see that relationship, and we can see how the importance given
to each individual value is highly similar between manually and automatically extracted
data. However, the key difference between both methods is that by using the automatic
approach, the information was obtained faster, more robustly, and more accurately. Manual
analysis is labour-intensive and time-consuming, whereas our novel automated approach
provides a high-throughput platform that opens new possibilities in studying venom
variation, making it achievable to evaluate large venom datasets rapidly and robustly. To
investigate venom variability at the toxin level (i.e., toxin IDs), instead of only looking at
their accurate masses, their accurate masses need to be correlated to their toxin IDs, which
can be completed with the help of proteomics analyses. To demonstrate this procedure,
we performed our recently established HT venomics [22] on pooled venom samples of the
brown snakes (Pseudonaja spp.) and of the taipans (Oxyuranus spp.). Then, we used these
data to correlate toxin IDs to their accurate masses for further investigating the data. The
relevance of looking into toxin IDs is paramount for being able to correlate toxin masses
to their toxin IDs. Knowing the toxin IDs of the toxins allows us to study toxin variation
at the toxin ID level, thereby knowing which actual toxin is being studied. In addition,
when looking into intact masses of toxins, their potential Post-translational Modifications
(PTMs) can be investigated. When looking into these intact masses, possible variations
in mass compared to exact masses given by Mascot (based on their amino acid sequence
alone) due to PTMs can be revealed. This is the case if there is a mass difference between
an accurate mass of a toxin measured and the mass given by the Mascot derived from its
amino acid sequence alone and pinpoints PTMs. PTMs can alter the bioactivity of toxins
and as such are important for their toxicity and resulting pathologies. Some PTMs, such as
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glycosylations, can drastically increase the immunogenicity of proteins, which is important
knowledge for antivenom production.
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2.4. High-Throughput Venomics

To identify all toxin IDs, venomics was performed on two pooled venom samples
consisting of either all Pseudonaja species or all Oxyuranus species. Bottom-up venomics
revealed that a total of 50 toxins were found within both pooled samples (Figure 5). In
the pooled Oxyuranus venoms, we identified five toxin superfamilies: three-finger toxin
(3FTx), phospholipase A2 (PLA2), Kunitz-type serine protease inhibitor (KTSPI), natriuretic
peptide (NP), and Cysteine-rich venom protein (CRVP). All identified toxins are common
among taipan venoms [28–30]. Surprisingly, venom factor X (vFX) and venom factor V
(vFV), which together make up the prothrombinase complex, were not detected (Figure 5).
Furthermore, no subunits of the pre-synaptic “taipoxin” complex were detected, though
this toxin is a characteristic of venoms from the Oxyuranus genus (Figures 5 and 6) [31].
In the pooled Pseudonaja venoms, we identified seven toxin superfamilies: 3FTx, PLA2,
KTSPI, NP, CRVP, vFX, and vFV (Figure 5). All identified toxins are common among brown
snake venoms [30,32–34]. In contrast to the pooled taipan venom, we did identify both
vFX and vFV in the pooled Pseudonaja venom sample, which hints at, on average, a higher
concentration of these proteins in this pooled venom sample. A recent study generating
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the most comprehensive Pseudonaja textilis venom gland transcriptome to date revealed the
presence of at least 18 toxin superfamilies, of which at least 9 were actually expressed in
venom [35]. We identified 7 out of 9 families among all brown snakes, with only 2 minor
venom components (i.e., SVMP and 5′-nucleotidase) being unidentified.
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Toxins 2024, 16, 181 10 of 15Toxins 2024, 16, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 6. Merged results from the analysis of the pooled Oxyuranus venoms (a) and intact MS results 
(b,c). While the TIC and the chromatographic peaks of all toxins can be found in (c), (b) contains all 
chromatographic peaks of the toxins of which their accurate mass peaks matched with those of the 
PCSs in terms of retention time and peak shape. The coloured toxins in (a) represent these toxins, 
whereas the black ones represent those toxins for which accurate mass data could not be matched. 

We were able to identify all major toxin superfamilies in Oxyuranus and Pseudonaja 
venoms. From this information, we matched the exact masses calculated from each venom 
sample to the exact masses of the toxin IDs from the venomics. These toxins are obtained 
by an in-house written script that can extract the amino acid sequence of each protein from 
a toxin database (UniProt) and sum the exact mass of each amino acid while also consid-
ering the disulphide bonds in each toxin. Afterwards, the most abundant mass is also de-
rived from the isotopic information of each amino acid. The total number of toxins that 
we were able to match among both pooled venoms include four venom gene families: 
3FTx, PLA2, KTSPI, and NP. This shows that we were able to identify the three most 

Figure 6. Merged results from the analysis of the pooled Oxyuranus venoms (a) and intact MS results
(b,c). While the TIC and the chromatographic peaks of all toxins can be found in (c), (b) contains all
chromatographic peaks of the toxins of which their accurate mass peaks matched with those of the
PCSs in terms of retention time and peak shape. The coloured toxins in (a) represent these toxins,
whereas the black ones represent those toxins for which accurate mass data could not be matched.

We were able to identify all major toxin superfamilies in Oxyuranus and Pseudonaja
venoms. From this information, we matched the exact masses calculated from each venom
sample to the exact masses of the toxin IDs from the venomics. These toxins are obtained
by an in-house written script that can extract the amino acid sequence of each protein
from a toxin database (UniProt) and sum the exact mass of each amino acid while also
considering the disulphide bonds in each toxin. Afterwards, the most abundant mass
is also derived from the isotopic information of each amino acid. The total number of
toxins that we were able to match among both pooled venoms include four venom gene
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families: 3FTx, PLA2, KTSPI, and NP. This shows that we were able to identify the three
most common venom protein families (i.e., 3FTx, PLA2, and KTSPI) among taipan and
brown snake venoms [28–30,32,34]. Unfortunately, not all toxins could be matched to their
exact mass values. The main issue is that toxins undergo post-translational modifications,
such as glycosylation and amidation [36–38]). These modifications affect their exact mass
and are therefore difficult to predict. Furthermore, higher-mass toxins may break down
during the separation and thus are detected as lower masses than that of the intact protein
complexes. Compositional variation among the presence of 3FTx, PLA2, and KTSPI among
brown snakes and taipans was observed, and we previously showed this variation can be
explained by a combination of the absence/presence and differential abundance of venom
toxins [10]. Although pooled venoms do not accurately reflect the total makeup of venom
in each genus, proteomics analysis of each individual venom was not possible due to
instrument-time restrictions. However, pooling the venoms and studying their toxins-IDs
does allow for comparing the same toxin in the two different genera. Furthermore, the
proteomics toxin IDs retrieved were used in the first place to correlate toxin-accurate masses
(used for studying toxin variation) to their toxin IDs. It should then be noted that this is a
relative qualitative comparison.

While the measurements did not find all expected present toxins, we did observe
several biologically interesting patterns. The PLA2 OS1 (UniProt protein ID: Q4VRI5)
was identified in all O. scutellatus populations, except for the isolated Northern Territory
individual that did not possess this toxin. This might suggest that this population lost this
PLA2 isoform, or might be an artefact of sample selection. The highly neurotoxic PLA2
OS2 (UniProt protein ID: Q45Z47) was only observed in O. scutellatus male individuals
within the Cooktown and Saibai Island populations, whereas it was absent in both males
of the Gladstone population. A short-chain neurotoxin (UniProt protein ID: A7X4S0) was
identified in most taipans, except for O. temporalis venoms and the O. microleptidus Coober
Pedy individual. Textilinin-3 (UniProt protein ID: Q90W99) was only identified in P. textilis
males (n = 3) while being absent in the only female. This could potentially be an example
of venom variation related to sex. Furthermore, our results also suggest that a short-chain
neurotoxin isoform (UniProt protein ID: Q9W7K0) might be a clade-specific toxin, as it was
only identified in P. inframacula, P. aspidorhyncha, and P. affinis venoms. While we must be
cautious in overinterpreting any biological patterns without a representative sample size,
our new approach allows for the rapid processing and analysis of large venom datasets.

3. Conclusions

Snake venoms are complex mixtures consisting of multiple toxins, and their com-
positional variation can be analysed by LC-MS. As most of the snake venom toxins are
proteins, this makes it difficult for fast-paced analysis and data processing of many venom
samples. Our study provides a new approach allowing for fast and accurate data extraction
and analysis of numerous LC-MS data. This drastically reduces the amount of time spent
on the tedious manual data processing of the analyses. We have demonstrated that our
automatic data processing approach significantly outperforms manual data analysis for
LC-MS data measurements of snake venoms. This provided a comprehensive dataset of the
presence of venom toxins (i.e., their accurate masses) together with their relative intensities
(extracted from the MS data) and allowed us to visualize both interspecific as well as
intraspecific venom variation in a monophyletic clade of clinically important Australian
elapids. Studying venoms with the here presented approach can help in better understand-
ing venom composition and venom variation within venomous species. Also, together
with the proteomics data, it can be used to obtain a better idea of possible PTMs present
on venoms, which is important knowledge for antivenom production, as some PTMs
(such as glycosylations) can influence the immunogenicity of toxins. Investigating this
versatility in possible PTMs on venom toxins is conducted in practice by calculating mass
differences between exact masses given by Mascot, which are calculated from toxin amino
acid sequences alone, and accurate masses found by LC-MS. Knowing which PTMs are on
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toxins is, for some toxins, of paramount importance due to their involvement in the toxin’s
bioactivity and, as such, its possible contribution to pathology. This is especially true when
the PTM is a glycosylation, because it is able to modify the toxin’s immunogenicity. LC-MS
and proteomics analysis of venoms with a focus on PTMs is, however, out of scope for this
research but is the focus of one of our currently ongoing studies. The information that can
be measured with the here presented research can be translated into valuable knowledge
for clinical practice. Although demonstrated in this study for Australian elapids, with a
focus on validation-type research, this methodology can straightforwardly be extrapolated
to other venomous species and the toxins in their venoms.

4. Materials and Methods

The Liquid Chromatography–Mass Spectrometry (LC-MS) data used in this study
was the same dataset used in the study by van Thiel et al. [10]. Thus, the LC-MS part
of the workflow here described is given by van Thiel et al. [10]. In this study, additional
HT venomics has been measured according to Slagboom et al. [22], for the correlation of
toxin-accurate masses to toxin IDs.

4.1. Manual Processing of LC-MS Venom Variation Data

Bruker Compass software was used for the LC-MS-data analysis. The LC-MS data
were acquired from van Thiel et al. [10] and it was manually analysed as follows: first, the
average mass spectrum was extracted from the total MS-chromatogram using the Total Ion
Current (TIC). This was carried out from a retention time of 0 min to 50 min. Subsequently,
deconvolution of the charge states from each relevant toxin in the average mass spectrum
was performed to yield the toxin-accurate masses, resulting in the monoisotopic masses of
the toxins. Then, the Extracted Ion Currents (EICs) of the highest charge state of each toxin
were plotted for the 10–15 highest abundant toxins. By plotting these highest-intensity
charge states resulting in the corresponding EICs, the peak area integration value of the
toxin for each EIC was then retrieved. For each of the EICs, their monoisotopic mass, m/z
-value, and corresponding highest peak height were manually extracted for further analysis.
Then, to confirm either the presence or absence of each mass among all other tested venom
samples, all raw MS data were manually screened for the charge states found for each of
the abundant masses. These masses were considered the same if they were all within 1 Da
range from each other and had a similar retention time. This resulted in two comparative
datasets: one including all taipan (Oxyuranus spp.) venoms, and one including all brown
snake (Pseudonaja spp.) venoms.

4.2. Automated Data Extraction, Cleaning and Analysis of LC-MS Venom Variation Data

Dissection, a process by which compounds are found and their m/z values are grouped
under the same unique mass, and deconvolution of the raw LC-MS data was performed
for each individual venom analysed by Bruker DataAnalysis software to extract all features
from the LC-MS analyses. These features consisted of all dissected potential toxins found
in the MS data and included their corresponding properties, such as peak retention time,
peak area, most abundant m/z value, and deconvoluted mass. Thus, samples are defined
as all features belonging to an analysed venom. To repeat for clarity, each feature found in
each venom contains the following information on a toxin: peak retention time, peak area,
most abundant m/z value, and deconvoluted toxin-accurate mass.

The parameters for dissection were as follows: algorithm, version 3.0 (MS); sensitivity,
99%; area threshold, off; absolute intensity threshold, 1000; min. peak valley, 10%; internal
S/N threshold, 3; max. number of overlapping compounds, 15; cut-off intensity, 0.01%; and
recalculated precursor mass was ticked. The parameters for deconvolution were as follows:
for peptides/small molecules, adduct ions, +H; deconvolute, MS; abundance cutoff [%],
1; and maximum charge, auto. Proteomics CHNO, excluding reporter ions and, creating
a neutral spectrum were ticked. The output of this extraction procedure was a folder
containing one .CSV file per venom, which included a list of the extracted toxin features.
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Next, the toxin features within each sample were filtered by checking whether the
same feature was found more than once within the same sample. Two toxin features were
defined as being the same when there was a difference of, maximally, 1.5 m/z value or 2 Da
in mass, and they eluted at the same retention time (defined as the top of the peak within a
time frame of 3 times the standard deviation of the compound peak). These repeated toxin
features were filtered out by generating a new feature with the added areas of both. This
was carried out to consider an error found by us in the software dissection tool, where the
same features were included several times within one sample due to the software creating
two different features for the same toxin, either by recognising they had a different charge
state or a different most common m/z value. The area of the remaining feature was the
sum of itself plus the deleted one. This way, a list is obtained for each sample, containing
all the features within the sample. Afterwards, all features within each sample that were
previously (manually) processed by van Thiel et al. were used for data comparison between
both studies to test the validity of the automated extraction method [10]. This resulted in a
list that contained all matching features per sample, with the toxin abundances per accurate
mass found by van Thiel and colleagues [10]. This list can be found in the Supplementary
Materials (Matrix of Toxins.xlsx). After checking the validity of the comparison between
both datasets, as described and discussed in Section 2, the same dimensionality reductions
by PCA were applied, and compared to van Thiel et al. [10].

4.3. High-Throughput Venomics

HT proteomics materials and methods can be found in the Supplementary Materials
(Section: HT venomics materials and methods), which was also detailed in [22].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins16040181/s1, Figure S1: PCA representation of the man-
ually extracted data (left) and automatically extracted data (right) for the Oxyuranus samples;
Figure S2: Representation of the loadings of the PCAs 1 and 2 of the manually extracted data (blue)
and automatically extracted data (orange) for the Oxyuranus samples PCAs; Figure S3: PCA rep-
resentation of the manually extracted data (left) and automatically extracted data (right) for the
Pseudonaja samples; Figure S4: Representation of the loadings of the PCAs 1 and 2 of the manually
extracted data (blue) and automatically extracted data (orange) for the Pseudonaja samples PCAs;
Table S1: Matrix of Toxins; Script S1: ExtractionAutomatedData; Script S2: ExtractionAutomatedData.
References [10,11,22,27,39] are cited in the Supplementary Materials.

Author Contributions: Conceptualisation: L.L.A., J.v.T. and J.K.; methodology, L.L.A. and S.S.;
software, L.L.A. and J.S.; validation, L.L.A., J.K. and S.S.; formal analysis, J.v.T. and J.S.; investigation,
J.v.T., L.L.A. and J.S; resources, N.D., T.N.W.J., J.K. and C.M.M.; data curation, J.v.T., C.M.M. and
L.L.A.; writing—original draft preparation, L.L.A. and J.v.T.; writing—review and editing, C.M.M.,
N.D., T.N.W.J., L.L.A. and J.K.; visualisation, L.L.A.; supervision, T.N.W.J., C.M.M., S.S. and J.K.;
project administration, N.D., T.N.W.J. and J.K.; funding acquisition, J.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded in part by the Wellcome Trust [221712/Z/20/Z]. For the purpose
of open access availability, the author has applied a CC BY public copyright license to any Author
Accepted Manuscript version arising from this submission.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Nathan Dunstan was employed by Venom Supplies Pty. Ltd. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

https://www.mdpi.com/article/10.3390/toxins16040181/s1
https://www.mdpi.com/article/10.3390/toxins16040181/s1


Toxins 2024, 16, 181 14 of 15

References
1. Malhotra, A. (Ed.) Evolution of Venomous Animals and Their Toxins; Springer: Dordrecht, The Netherlands, 2017. [CrossRef]
2. Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. Trends

Ecol. Evol. 2013, 28, 219–229. [CrossRef]
3. Daltry, J.C.; Wüster, W.; Thorpe, R.S. Diet and snake venom evolution. Nature 1996, 379, 537–540. [CrossRef]
4. Barlow, A.; Pook, C.E.; Harrison, R.A.; Wüster, W. Coevolution of diet and prey-specific venom activity supports the role of

selection in snake venom evolution. Proc. R. Soc. B Biol. Sci. 2009, 276, 2443–2449. [CrossRef]
5. Holding, M.L.; Strickland, J.L.; Rautsaw, R.M.; Hofmann, E.P.; Mason, A.J.; Hogan, M.P.; Nystrom, G.S.; Ellsworth, S.A.;

Colston, T.J.; Borja, M.; et al. Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proc. Natl.
Acad. Sci. USA 2021, 118, e2015579118. [CrossRef]

6. Ward-Smith, H.; Arbuckle, K.; Naude, A.; Wüster, W. Fangs for the Memories? A Survey of Pain in Snakebite Patients Does Not
Support a Strong Role for Defense in the Evolution of Snake Venom Composition. Toxins 2020, 12, 201. [CrossRef]

7. Kazandjian, T.D.; Petras, D.; Robinson, S.D.; Van Thiel, J.; Greene, H.W.; Arbuckle, K.; Barlow, A.; Carter, D.A.; Wouters, R.M.;
Whiteley, G.; et al. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science 2022,
371, 386–390. [CrossRef]

8. van Thiel, J.; Khan, M.A.; Wouters, R.M.; Harris, R.J.; Casewell, N.R.; Fry, B.G.; Kini, R.M.; Mackessy, S.P.; Vonk, F.J.;
Wüster, W.; et al. Convergent evolution of toxin resistance in animals. Biol. Rev. 2022, 97, 1823–1843. [CrossRef]

9. Casewell, N.R.; Jackson, T.N.W.; Laustsen, A.H.; Sunagar, K. Causes and Consequences of Snake Venom Variation. Trends
Pharmacol. Sci. 2020, 41, 570–581. [CrossRef]

10. van Thiel, J.; Alonso, L.L.; Slagboom, J.; Dunstan, N.; Wouters, R.M.; Modahl, C.M.; Vonk, F.J.; Jackson, T.N.; Kool, J. Highly
Evolvable: Investigating Interspecific and Intraspecific Venom Variation in Taipans (Oxyuranus spp.) and Brown Snakes
(Pseudonaja spp.). Toxins 2023, 15, 74. [CrossRef]

11. Jackson, T.N.W.; Koludarov, I.; Ali, S.A.; Dobson, J.; Zdenek, C.N.; Dashevsky, D.; Op den Brouw, B.; Masci, P.P.; Nouwens, A.;
Josh, P.; et al. Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution of Australian Elapid Snake
Venoms. Toxins 2016, 8, 309. [CrossRef]

12. Avella, I.; Wüster, W.; Luiselli, L.; Martínez-Freiría, F. Toxic Habits: An Analysis of General Trends and Biases in Snake Venom
Research. Toxins 2022, 14, 884. [CrossRef]

13. Casewell, N.R.; Wagstaff, S.C.; Wüster, W.; Cook, D.A.N.; Bolton, F.M.S.; King, S.I.; Pla, D.; Sanz, L.; Calvete, J.J.; Harrison, R.A.
Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc. Natl. Acad.
Sci. USA 2014, 111, 9205–9210. [CrossRef]

14. Smith, C.F.; Nikolakis, Z.L.; Ivey, K.; Perry, B.W.; Schield, D.R.; Balchan, N.R.; Parker, J.; Hansen, K.C.; Saviola, A.J.;
Castoe, T.A.; et al. Snakes on a plain: Biotic and abiotic factors determine venom compositional variation in a wide-ranging
generalist rattlesnake. BMC Biol. 2023, 21, 136. [CrossRef]

15. Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis.
Primers 2017, 3, 17063. [CrossRef]

16. Harrison, R.A.; Cook, D.A.; Renjifo, C.; Casewell, N.R.; Currier, R.B.; Wagstaff, S.C. Research strategies to improve snakebite
treatment: Challenges and progress. J. Proteom. 2011, 74, 1768–1780. [CrossRef]

17. Pla, D.; Sanz, L.; Quesada-Bernat, S.; Villalta, M.; Baal, J.; Chowdhury, M.A.W.; León, G.; Gutiérrez, J.M.; Kuch, U.; Calvete, J.J.
Phylovenomics of Daboia russelii across the Indian subcontinent. Bioactivities and comparative in vivo neutralization and
in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka. J. Proteom. 2019,
207, 103443. [CrossRef]

18. Oliveira, A.L.; Viegas, M.F.; da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The chemistry of snake venom and its
medicinal potential. Nat. Rev. Chem. 2022, 6, 451–469. [CrossRef]

19. Calvete, J.J. Proteomic tools against the neglected pathology of snake bite envenoming. Expert. Rev. Proteom. 2011, 8, 739–758.
[CrossRef]

20. Hargreaves, A.D.; Swain, M.T.; Hegarty, M.J.; Logan, D.W.; Mulley, J.F. Restriction and Recruitment—Gene Duplication and the
Origin and Evolution of Snake Venom Toxins. Genome Biol. Evol. 2014, 6, 2088–2095. [CrossRef]

21. Hermann, J.; Schurgers, L.; Jankowski, V. Identification and characterization of post-translational modifications: Clinical
implications. Mol. Asp. Med. 2022, 86, 101066. [CrossRef]

22. Slagboom, J.; Derks, R.J.E.; Sadighi, R.; Somsen, G.W.; Ulens, C.; Casewell, N.R.; Kool, J. High-Throughput Venomics. J. Proteome
Res. 2023, 22, 1734–1746. [CrossRef]

23. Broad, A.J.; Sutherland, S.K.; Coulter, A.R. The lethality in mice of dangerous Australian and other snake venom. Toxicon 1979,
17, 661–664. [CrossRef]

24. Johnston, C.I.; Ryan, N.M.; Page, C.B.; Buckley, N.A.; Brown, S.G.; O’Leary, M.A.; Isbister, G.K. The Australian Snakebite Project,
2005–2015 (ASP-20). Med. J. Aust. 2017, 207, 119–125. [CrossRef]

25. Williams, D.J.; Jensen, S.D.; Nimorakiotakis, B.; Müller, R.; Winkel, K.D. Antivenom use, premedication and early adverse
reactions in the management of snake bites in rural Papua New Guinea. Toxicon 2007, 49, 780–792. [CrossRef]

26. Melani, R.D.; Nogueira, F.C.S.; Domont, G.B. It is time for top-down venomics. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 44.
[CrossRef]

https://doi.org/10.1007/978-94-007-6458-3
https://doi.org/10.1016/j.tree.2012.10.020
https://doi.org/10.1038/379537a0
https://doi.org/10.1098/rspb.2009.0048
https://doi.org/10.1073/pnas.2015579118
https://doi.org/10.3390/toxins12030201
https://doi.org/10.1126/science.abb9303
https://doi.org/10.1111/brv.12865
https://doi.org/10.1016/j.tips.2020.05.006
https://doi.org/10.3390/toxins15010074
https://doi.org/10.3390/toxins8110309
https://doi.org/10.3390/toxins14120884
https://doi.org/10.1073/pnas.1405484111
https://doi.org/10.1186/s12915-023-01626-x
https://doi.org/10.1038/nrdp.2017.63
https://doi.org/10.1016/j.jprot.2011.06.019
https://doi.org/10.1016/j.jprot.2019.103443
https://doi.org/10.1038/s41570-022-00393-7
https://doi.org/10.1586/epr.11.61
https://doi.org/10.1093/gbe/evu166
https://doi.org/10.1016/j.mam.2022.101066
https://doi.org/10.1021/acs.jproteome.2c00780
https://doi.org/10.1016/0041-0101(79)90245-9
https://doi.org/10.5694/mja17.00094
https://doi.org/10.1016/j.toxicon.2006.11.026
https://doi.org/10.1186/s40409-017-0135-6


Toxins 2024, 16, 181 15 of 15

27. Kadjo, A.F.; Dasgupta, P.K.; Su, J.; Liu, S.; Kraiczek, K.G. Width Based Quantitation of Chromatographic Peaks: Principles and
Principal Characteristics. Anal. Chem. 2017, 89, 3884–3892. [CrossRef]

28. Herrera, M.; Fernández, J.; Vargas, M.; Villalta, M.; Segura, Á.; León, G.; Angulo, Y.; Paiva, O.; Matainaho, T.; Jensen, S.D.; et al.
Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia:
Role of neurotoxic and procoagulant effects in venom toxicity. J. Proteom. 2012, 75, 2128–2140. [CrossRef]

29. Tasoulis, T.; Silva, A.; Veerati, P.C.; Baker, M.; Hodgson, W.C.; Dunstan, N.; Isbister, G.K. Intra-Specific Venom Variation in the
Australian Coastal Taipan Oxyuranus scutellatus. Toxins 2020, 12, 485. [CrossRef]

30. Skejic, J.; Steer, D.L.; Dunstan, N.; Hodgson, W.C. Venoms of related mammal-eating species of taipans (Oxyuranus) and brown
snakes (Pseudonaja) differ in composition of toxins involved in mammal poisoning. Evol. Biol. 2018. [CrossRef]

31. Fohlman, J.; Eaker, D.; Karlsson, E.; Thesleff, S. Taipoxin, an Extremely Potent Presynaptic Neurotoxin from the Venom of the
Australian Snake Taipan (Oxyuranus s. scutellatus). Eur. J. Biochem. 1976, 68, 457–469. [CrossRef]

32. Birrell, G.W.; Earl, S.T.H.; Wallis, T.P.; Masci, P.P.; De Jersey, J.; Gorman, J.J.; Lavin, M.F. The Diversity of Bioactive Proteins in
Australian Snake Venoms. Mol. Cell. Proteom. 2007, 6, 973–986. [CrossRef]

33. Reeks, T.; Lavergne, V.; Sunagar, K.; Jones, A.; Undheim, E.; Dunstan, N.; Fry, B.; Alewood, P.F. Deep venomics of the Pseudonaja
genus reveals inter-and intra-specific variation. J. Proteom. 2016, 133, 20–32. [CrossRef]

34. McCleary, R.J.R.; Sridharan, S.; Dunstan, N.L.; Mirtschin, P.J.; Kini, R.M. Proteomic comparisons of venoms of long-term captive
and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity. J. Proteom.
2016, 144, 51–62. [CrossRef]

35. Modahl, C.M.; Han, S.X.; Van Thiel, J.; Vaz, C.; Dunstan, N.L.; Frietze, S.; Jackson, T.N.; Mackessy, S.P.; Kini, R.M. Distinct
regulatory networks control toxin gene expression in elapid and viperid snakes. BMC Genom. 2023, 25, 186. [CrossRef]

36. Andrade-Silva, D.; Zelanis, A.; Kitano, E.S.; Junqueira-de-Azevedo, I.L.M.; Reis, M.S.; Lopes, A.S.; Serrano, S.M. Proteomic and
Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes.
J. Proteome Res. 2016, 15, 2658–2675. [CrossRef]

37. Earl, S.T.H.; Birrell, G.W.; Wallis, T.P.; St Pierre, L.D.; Masci, P.P.; De Jersey, J.; Gorman, J.J.; Lavin, M.F. Post-translational
modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms. Proteomics 2006,
6, 6554–6565. [CrossRef]

38. García, L.T.; Parreiras ESilva, L.T.; Ramos, O.H.P.; Carmona, A.K.; Bersanetti, P.A.; Selistre-de-Araujo, H.S. The effect of post-
translational modifications on the hemorrhagic activity of snake venom metalloproteinases. Comp. Biochem. Physiol. Part C Toxicol.
Pharmacol. 2004, 138, 23–32. [CrossRef]

39. Jackson, T.N.W.; Sunagar, K.; Undheim, E.A.B.; Koludarov, I.; Chan, A.H.C.; Sanders, K.; Ali, S.A.; Hendrikx, I.; Dunstan, N.; Fry,
B.G. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins. Toxins 2013, 5, 2621–2655. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/acs.analchem.6b04857
https://doi.org/10.1016/j.jprot.2012.01.006
https://doi.org/10.3390/toxins12080485
https://doi.org/10.1101/378141
https://doi.org/10.1111/j.1432-1033.1976.tb10833.x
https://doi.org/10.1074/mcp.M600419-MCP200
https://doi.org/10.1016/j.jprot.2015.11.019
https://doi.org/10.1016/j.jprot.2016.05.027
https://doi.org/10.1186/s12864-024-10090-y
https://doi.org/10.1021/acs.jproteome.6b00217
https://doi.org/10.1002/pmic.200600263
https://doi.org/10.1016/j.cca.2004.04.004
https://doi.org/10.3390/toxins5122621

	Introduction 
	Results and Discussion 
	Automatic Feature Extraction 
	Comparison between Manually and Automatically Extracted Data Using the In-House Script 
	Comparison between Results of Manual and Automatic Approaches 
	High-Throughput Venomics 

	Conclusions 
	Materials and Methods 
	Manual Processing of LC-MS Venom Variation Data 
	Automated Data Extraction, Cleaning and Analysis of LC-MS Venom Variation Data 
	High-Throughput Venomics 

	References

