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Abstract: Coral-dwelling gall crabs (Cryptochiridae) are common inhabitants of scleractinian corals.
Several species have been described as new in recent years, including Lithoscaptus doughnut, which
was described from Hong Kong based on a single female retrieved from the coral Plesiastrea peroni.
Here we extend the distribution range of L. doughnut with nine additional localities throughout the
Indo-West Pacific, from the Red Sea to the Coral Triangle and Japan. We describe a male specimen of
L. doughnut for the first time, based on a specimen from Malaysia, and provide photographs of life
and preserved material. Haplotype networks based on COI mtDNA (n = 12) and 16 rRNA sequences
(n = 12) were created. We retrieved eleven COI haplotypes and six 16S haplotypes, however no clear
geographic distribution pattern was discerned. Intraspecific variation in L. doughnut was 1.4% for
COI and 0.2% for 16S. Lastly, the first colour photos and records of associated parasites of this species
are provided.
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1. Introduction

Tropical coral reefs are among the most biodiverse ecosystems on the planet. A
large part of the biodiversity on coral reefs is composed of invertebrates that live in
close association with sessile organisms. Reef-building stony corals (Scleractinia) provide
habitat to a wide range of species, and their associated fauna has been reviewed in several
papers [1–3]. Although the exact nature of these associations is not always well understood,
with species exhibiting dependencies ranging from facultative to obligate symbiosis, this
small majority is an important component of the biodiversity on coral reefs.

Decapod crustaceans form a major part of the coral-associated fauna [3]. The small,
coral-dwelling gall crabs of the family Cryptochiridae Paulson, 1875 are obligately sym-
biotic with scleractinian corals and have been the subject of various recent studies on, for
example, their reproductive morphology, occurrence patterns, biogeography, and even
fluorescence [4–7]. Their association with host corals is strong and not affected by intraspe-
cific coral competition [8]. Gall crabs are found on coral reefs worldwide. They are most
abundant on shallow-water tropical reefs, but are known to also occur in the deep sea at
>500 m depth [9]. There are currently 54 described species across 21 genera [10], however,
recent studies highlighted the presence of large (cryptic) diversity in the genera Hapalocarci-
nus Stimpson, 1859 and Opecarcinus Kropp & Manning, 1987 [7,11]. Cryptochirids show
varying degrees of host specificity; most species inhabit a single coral genus or several
closely related species [12–14]. The Atlantic species Troglocarcinus corallicola Verrill, 1908
is the only host generalist in the family [9,15]. Besides this variation in host-specificity,
cryptochirids differ in their geographic distribution. Some species are very widespread,
whereas others are only known from a smaller geographic area [7,15]. The Coral Triangle is
the biodiversity hotspot for scleractinian corals [16,17], with the Red Sea as a secondary
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centre of biodiversity [17]. Geographic range shifts are thought to play a critical role in
generating the observed species diversity gradients on coral reefs [16], however for many
invertebrates, including gall crabs, these distribution ranges need to be studied in more
detail [7,18].

Gall crabs of the genus Lithoscaptus A. Milne-Edwards, 1862 inhabit corals of the
family Merulinidae H. Milne Edwards & Haime, 1857 [13]. The genus is composite in
nature and in need of revision [19,20]. It currently comprises 13 described species; however,
more diversity is expected, based on preliminary data [20]. The recently described species
L. semperi Van der Meij, 2015, L. tuerkayi Van der Meij, 2017, and L. aquarius Van der Meij,
2023 strictly associate with Trachyphyllia geoffroyi (Audouin, 1826), Caulastrea spp. Dana,
1846, and Catalaphyllia jardinei (Saville-Kent, 1893), respectively, whereas other species
have been recorded from multiple host genera [13,21]. Like many other gall crab genera,
Lithoscaptus has been recorded throughout most of the Indo-West Pacific (IWP), albeit with
patchily known distribution records [13].

Recently, the species Lithoscaptus doughnut Wong, Tsao, Qui & Chan, 2023 was de-
scribed based on a single female specimen collected from Plesiastrea peroni H. Milne Ewards
& Haime, 1857 near Basalt Island (Hong Kong), limiting the species’ known distribution
to the type locality. Here, we extend the distribution range of L. doughnut throughout the
IWP, based on material collected from the Red Sea to the Coral Triangle and Japan. We
illustrate and describe the male of L. doughnut, based on a specimen from Malaysia, provide
haplotype networks based on sequence data of the cytochrome c oxidase subunit I gene
(COI) and 16S mtDNA and the first colour photographs of the species. Lastly, we comment
on the identity of L. cf. doughnut based on 16S data.

2. Material and Methods
2.1. Sampling

Gall crabs were sampled from Plesiastrea peroni during fieldwork between 2007 and
2016 in the Red Sea, Maldives, Malaysia, Indonesia, and Japan (Table 1, Figure 1), and
provisionally identified as a new species by the senior author under the placeholder name
Lithoscaptus “Plesi”. One sample was collected from a free-living colony (corallith) of
Cyphastrea chalcidicum (Forskål, 1775). Most samples were collected from deeper parts of
the reef, between 8 and 24 m depth. Based on morphology, COI barcoding, and host data,
these samples are now identified as Lithoscaptus doughnut. All specimens are deposited
in the scientific collections of Naturalis Biodiversity Center in Leiden (The Netherlands),
with the collections coded as RMNH.CRUS.D. All corals were photographed in situ in
the field, whereas the crabs were photographed in field laboratories using a digital SLR
camera equipped with a macro lens. Abbreviations used: CL: carapace length; P: pereiopod;
MXP-3: maxilliped 3; G1: gonopod 1; G2: gonopod 2.
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Table 1. Overview of material used for genetic analyses.

Voucher Code COI 16S Host Coral Country Locality

CEL-Hapa-
040/ASIZCR OP103644 n/a Plesiastrea peroni, Milne

Edwards & Haime, 1857 Hong Kong Basalt Island, Sai Kung

CEL-Hapa-006 OP103613 OP114856 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Hong Kong Long Ke Tsai,

Sai Kung

RMNH.CRUS.D.54169 OR710957 OR711069 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Indonesia

Tanjung Nanas II,
Lembeh Isl., N

Sulawesi

RMNH.CRUS.D.54172 OR710956 OR711070 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Indonesia Pulau Abadi, Lembeh

Isl., N Sulawesi

RMNH.CRUS.D.54106 OR710954 OR711068 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Indonesia Lekuan III, Bunaken

Isl., N Sulawesi

RMNH.CRUS.D.54063 OR710953 OR711067 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Indonesia Tiwoho, Bunaken Isl.,

N Sulawesi

RMNH.CRUS.D.53890 OR710955 OR711066 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Indonesia

Mayalibit Bay, E Manil
Isl., Raja Ampat,

W Papua

RMNH.CRUS.D.57236 NA OR711074 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Japan Mizugama, Okinawa

RMNH.CRUS.D.53725 OR710951 OR711064 Cyphastrea chalcidicum
(Forskål, 1775) Malaysia Mabul Isl., Eel Garden,

Semporna

RMNH.CRUS.D.53740 OR710952 OR711065 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Malaysia Mata Pahi Isl.,

Semporna

RMNH.CRUS.D.58330 OR710958 OR711072 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Maldives Free Climbing,

Faafu Atoll

RMNH.CRUS.D.58331 OR710959 OR711073 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Maldives Route 66, Faafu Atoll

RMNH.CRUS.D.54404 OR710960 OR711071 Plesiastrea peroni, Milne
Edwards & Haime, 1857 Saudi Arabia Shib Radib, offshore of

Farasan Banks

2.2. Haplotype Networks

Sequences of COI mtDNA (COI [22]) and 16S rRNA (16L2 and 16H10 [23]) were ob-
tained following the protocol in Van der Meij [14]. Sequences were assembled in Sequencher
4.10.1 [24] and aligned using ClustalW Multiple Alignment in BioEdit v7.0.5.3 [25], together
with the sequences from Wong et al. [26]. Sequences were trimmed to have the same maxi-
mum length, 620 bp for COI and 585 bp for 16S. Median-joining haplotype networks were
constructed with PopArt 1–7 [27] for both sets of sequences. All samples were assigned to
their sampling localities; both networks span 9 locations throughout the IWP (Table 1).

2.3. Intraspecific Divergence

MEGA11 [28] was used to determine the intraspecific divergence of L. doughnut. The
best-fitting model of nucleotide substitution was calculated using MEGA11, resulting in
the Tamura 3-parameter model for both datasets [29], which was subsequently used to
calculate the within-group intraspecific divergence.

3. Results and Discussion
3.1. Distribution and Haplotype Networks

Lithoscaptus doughnut is now recorded from nine localities ranging from the Red Sea to
the Coral Triangle and Japan, extending the distribution range of the species from Hong
Kong to all throughout the IWP (Figure 1). The distribution is roughly in line with the
distribution of its host P. peroni [30]. The Pacific Ocean, where P. peroni also occurs, has not
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yet been sampled for L. doughnut. The haplotype network based on COI sequences data
shows eleven different haplotypes; however, no clear geographical pattern was observed
(Figure 2). The 16S haplotype network yields six haplotypes, providing less diversity in
comparison to the COI haplotype network (Figure 3). Here, all sequences from the Coral
Triangle are included in the main haplotype or differ one or two base pairs from this most
common haplotype.
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The difference in the number of haplotypes between the COI and 16S networks is
supported by the different evolutionary divergence estimates. The intraspecific difference
within the sequences is 1.4% for COI and 0.2% for 16S.

3.2. Coral Host

Plesiastrea peroni was identified as the host of L. doughnut by Wong et al. [26]. This is in
agreement with our samples, which were retrieved from the same coral host. Earlier studies
recorded Plesiastrea versipora (Lamarck, 1816) as the host of this species [31,32]; however,
Plesiastrea corals in (sub)tropical waters should be referred to as P. peroni instead [30].
Plesiastrea versipora is restricted to temperate waters, and, so far, no gall crabs have been
recorded from this species. One of our samples (from Semporna, Malaysia) was collected
from a Cyphastrea chalcidicum corallith. It is not uncommon for host-specific species to
occasionally end up in the ‘wrong’ host [33], perhaps caused by the crab needing to settle
after reaching the megalopa stage.

Plesiastrea peroni belongs to the Plesiastreidae Dai & Horng, 2009, a family with just
two species. Plesiastreidae cluster basal to Montastraeidae Yabe & Sugiyama, 1941 and
Diploastraeidae Chevalier & Beauvais, 1987, as well as the species-rich coral families
Lobophylliidae Dai & Horn, 2009 and Merulinidae [34]. All other Lithoscaptus species are
associated with Merulinidae corals; hence, L. doughnut is currently the only Lithoscaptus
species associated with a non-Merulinidae coral. Cyphastrea, the host genus of one of our
specimens, does belong to the Merulinidae.

3.3. Phylogenetic Position

Wong et al. [26] retrieved L. doughnut as a sister to L. paradoxus A. Milne-Edwards,
1862 and L. scottae Wong, Tsao, Qiu & Chan, 2022 based on COI phylogeny, albeit without
support. Lithoscaptus doughnut was already included in the phylogenetic reconstruction of
Van der Meij and Klaus [35] under the placeholder name Lithoscaptus “Plesi”. Based on their
three-marker phylogeny, the species was retrieved in a fully supported clade containing
Lithoscaptus paradoxus, Lithoscaptus semperi, Lithoscaptus prionotus Kropp, 1994, and Xynomaia
sheni (Fize & Serène, 1956). Lithoscaptus aquarius Van der Meij, 2023, associated with
Catalaphyllia jardinei, also belongs to this clade [36]. Here, we confidently place L. doughnut
as a sister to the above-mentioned taxa.

3.4. Lithoscaptus cf. doughnut

A second specimen from P. peroni obtained by Wong et al. [26] was identified as
Lithoscaptus cf. doughnut. The COI sequence obtained from this specimen was shorter in
length (567 bp) and had a Kimura 2-parameter (K2P) distance of 2.73%. The authors chose
to stay conservative and not fully assign this specimen to L. doughnut, also because this
second specimen was damaged and a few morphological differences were observed. The
intraspecific divergence falls within the range of our COI sequence data. Based on 16S data,
Lithoscaptus cf. doughnut differs by just one base pair from the most common 16S haplotype
found in the Coral Triangle (Figure 3). Based on the COI and 16S data presented here, there
appears to be enough support to simply regard L. cf. doughnut as L. doughnut. The observed
morphological differences could potentially be regarded as intraspecific diversity.

3.5. Colour in Life

The colour of L. doughnut is overall beige. The deflected anterior one-third of the dorsal
surface is a dark brown, whereas the posterior two-thirds are light beige. Granules are a
lighter shade (Figure 4A). Chelipeds are dark beige with brown chelae (Figure 4A,B), and
another specimen shows clear white markings on the chelae (Figure 4C,D). Pereiopod two
is beige with reddish-brown propodus and dactylus, whereas pereiopods three to five are
translucent with few off-white markings (Figure 4A–D). The telson from a specimen from
the Red Sea is largely translucent (Figure 4C,D), whereas the first and second segments of a
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specimen from Indonesia have dark brown speckles (Figure 4A,B). The third maxilliped is
dark brown, with translucent antennule with white bands, and reddish-brown cornea.
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Figure 4. Colour in life of Lithoscaptus doughnut. Non-ovigerous females. (A,B) RMNH.Crus.D.54172;
dorsal view and ventral view. (C,D) RMNH.Crus.D.54404; dorsal view and ventral view. Photos not
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3.6. Description of Male L. doughnut

Material examined: ♂(1.6 mm × 1.3 mm, RMNH.CRUS.D.53725, Genbank; COI:
OR710951; 16S: OR711064), collected from Cyphastraea chalcidium (Figure 5).
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Figure 5. Male Lithoscaptus doughnut (RMNH.CRUS.D.53725): (A) dorsal view (B) ventral view.
(C) close-up view of MXP-3. Photos by Tao Xu.

Description: Carapace 1.2 times as long as broad, mildly convex, less so than female.
Anterior half squaroid, posterior half trapezoid with the shorter base at the posterior end.
Anterior half of carapace strongly deflected, with two depressions antero-laterally of meso-
gastric region. Mesogastric region inflated; lacks distinct longitudinal grooves observed in
females. Carapace mildly granulated, well isolated from each other, distribution of granules
sparse at posterior half giving a smooth appearance. Antero-lateral edge with spines at
outer corners, small spines at inner orbital angle. Lateral edge finely serrated anteriorly,
smooth towards posterior end. External orbital angles similar height to internal orbital
angle. Orbit broadly V-shaped. Female specimen from the same lot (RMNH.CRUS.D.53725)
has an inner orbital angle protruding further than described of the holotype of L. doughnut
(see description [26]: Figure 10a). Eye-stalks stout, 1.2 times as long as broad, and more
straight than eye-stalks of female. Cornea anterolateral. Pterygostomial region similar to
that of female, but lacking granules.

Cheliped stout, merus strongly compressed, half as long as carpus, propodus and
merus strongly granulated dorsally, dactylus as long as palms, straight dorsal margin but
rounded and open on palmar side, distal tips of fingers touching. Tip of left movable finger
is damaged. Several rows of rounded tubercles on dorsal margin of propodus. Carpus
armed with small spines, more so than female. Pereiopods decreasing in size: P2 1.3 times
longer than P5. Propodus of P2–4 serrated along dorsal margin, dorsal margin of P5 smooth.
Proportions of segments similar to female’s. P2-left missing.

Antennulae smooth and tubular. Distal projection of antennular peduncles triangular,
strongly toothed and extending beyond eye-stalks, congruent with antennular peduncles
of female. Epistome does not show longitudinal crests, unlike female. MXP-3 squaroid
with rounded margins, mesial margin of ischium lacking clear granules. Merus with distal
external angle. Carpus and propodus grape-like in shape. Propodus with small tuft of
setae. Exopod identical to female. Clearly accentuated pleural ridge. Abdomen elongated
and straight, approximately three times longer than broad. Abdomen only covers middle
of thoracic region, whereas female’s abdomen forms a brood pouch covering the entire
thoracic region. Telson rounded. Middle thoracic segments broader than anterior and
posterior segments. Anterior plate of thoracic sternites broad, devoid of granules. G1
slightly curved laterally, broad at shoulder, apex pointed. G2 approximately one-third
length of G1, inserted into base of G1.

Remarks: colour in life was not recorded.
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3.7. Parasites

In a review paper of all known parasites of Cryptochiridae, the bopyrid parasite
Carcinione platypleura Bourdon, 1983 was recorded from two Lithoscaptus sp. B spec-
imens from N Sulawesi, Indonesia (RMNH.CRUS.D.54106, RMNH.CRUS.D.54172) [32].
Carcinione platypleura appears to be the most common parasite of gall crabs, with a
wide distribution in the Indo-West Pacific. Furthermore, the parasitic epicaridean isopod
Cabirnalia nausicaa Boyko & Van der Meij, 2018 was described from material obtained
from various hosts, including Lithoscaptus sp. B (RMNH.CRUS.D.57236). Lithoscaptus
sp. B was undescribed at the time but is now known as Lithoscaptus doughnut; hence, L.
doughnut is an involuntarily host to C. platypleura and C. nausicaa parasites.

3.8. Concluding Remarks

Cryptochiridae show a mix of more widely distributed species and species seemingly
confined to smaller geographic areas [7,18]. Here we showed that Lithoscaptus doughnut is
a widely distributed species associated with P. peroni across its range. Parts of the range
of P. peroni, from the the Red Sea to the Polynesian archipelago in the Pacific Ocean [30],
still need to be sampled for the presence of this crab species. One L. doughnut sample was
collected from a Cyphastrea chalcidicum corallith. We confidently showed that L. doughnut
belongs to a clade with the type species L. paradoxus. The genus remains in urgent need of
revision, and the diversity, host associations, and distribution patterns of many Lithoscaptus
species are poorly understood. Further research is needed to solve the composite nature of
Lithoscaptus and study its divergence across hosts and basins.
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