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Global birdsong embeddings 
enable superior transfer learning 
for bioacoustic classification
Burooj Ghani 1,5*, Tom Denton 2,5*, Stefan Kahl 3,4 & Holger Klinck 3

Automated bioacoustic analysis aids understanding and protection of both marine and terrestrial 
animals and their habitats across extensive spatiotemporal scales, and typically involves analyzing 
vast collections of acoustic data. With the advent of deep learning models, classification of important 
signals from these datasets has markedly improved. These models power critical data analyses for 
research and decision-making in biodiversity monitoring, animal behaviour studies, and natural 
resource management. However, deep learning models are often data-hungry and require a significant 
amount of labeled training data to perform well. While sufficient training data is available for certain 
taxonomic groups (e.g., common bird species), many classes (such as rare and endangered species, 
many non-bird taxa, and call-type) lack enough data to train a robust model from scratch. This study 
investigates the utility of feature embeddings extracted from audio classification models to identify 
bioacoustic classes other than the ones these models were originally trained on. We evaluate models 
on diverse datasets, including different bird calls and dialect types, bat calls, marine mammals calls, 
and amphibians calls. The embeddings extracted from the models trained on bird vocalization data 
consistently allowed higher quality classification than the embeddings trained on general audio 
datasets. The results of this study indicate that high-quality feature embeddings from large-scale 
acoustic bird classifiers can be harnessed for few-shot transfer learning, enabling the learning of new 
classes from a limited quantity of training data. Our findings reveal the potential for efficient analyses 
of novel bioacoustic tasks, even in scenarios where available training data is limited to a few samples.

Bioacoustic analysis provides a rich window into biodiversity, animal behavior and ecosystem health. Passive 
acoustic monitoring (PAM) in particular has become a widely used tool for wildlife conservation. PAM uses 
autonomous recording devices (ARUs) that collect vast amounts of acoustic data, containing a wealth of informa-
tion about biological, geophysical, and anthropogenic activities in the deployment area. It allows researchers to 
study and protect animals and their habitats non-invasively at ecologically-relevant temporal and spatial scales1. 
PAM involves recording sound in nature and has been used to study a wide range of species, including whales 
and dolphins2,3, pinnipeds4,5, birds6,7, insects8,9, fish10,11, frogs12,13, and terrestrial mammals14,15. In recent years, 
many automated deep learning-based analysis tools have been developed that are now commonly used to analyze 
long-term acoustic data efficiently16. By utilizing these tools, researchers can automatically detect and categorize 
animal vocalizations, saving them a significant amount of time and effort and facilitating the investigation of 
less researched species17. However, the development of these tools typically depends on the availability of well-
annotated training data. Obtaining sufficient training data can be a major challenge. While there are sufficient 
amounts of training data available for some taxonomic groups, including common bird species (e.g., through 
community collections like Xeno-canto18 or the Macaulay Library19), training data is often lacking for rare and 
endangered species, which are often the prime target of conservation efforts20. In addition, traditional approaches 
to species-level classification may not be suitable for all applications. For example, a fixed set of classes may not 
be desirable in cases where researchers are interested in the fine-grained classification of vocalizations, such as 
identifying specific call types rather than simply identifying the presence or absence of a species21. Call types 
and the associated behaviors (e.g., foraging or breeding) can provide critically important cues on habitat use and 
inform, for example, land management decisions.
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One way to address the challenge of data deficiencies is to utilize learned feature embeddings for few-shot 
transfer learning. In the context of machine learning, feature embeddings are vectors obtained from some inter-
mediate layer of a trained machine learning model16. Since 2014, numerous studies have found that embeddings 
from pre-trained models can allow more efficient learning of novel tasks22–24. Few-shot learning refers to a wide 
array of methods attempting to produce strong models with little training data, inspired by the apparent human 
ability to learn new classes from a handful of examples25. Feature embeddings often figure prominently in few-
shot learning designs, allowing transfer of learned features to new tasks and domains.

High-quality feature embeddings offer several benefits over traditional approaches to species-level classifica-
tion. First, feature embeddings can help to differentiate between classes of acoustic events that are very similar 
and differ only in subtle details. For instance, songbirds can display local variations (also called dialects) in their 
song patterns, which may lead to slight differences in note sequences26. Feature embeddings can capture these 
nuances and enable more precise classification. Additionally, embeddings facilitate transfer learning between 
species, enabling researchers to train models on data from more commonly occurring or extensively studied spe-
cies and then apply that knowledge to a target species, which may have insufficient training data. This approach 
also saves researchers time and effort that would otherwise be needed to train a dedicated classifier from scratch 
while enhancing the accuracy of classification results. Furthermore, cross-taxa classification based on feature 
embeddings is also possible when such embeddings can generalize across acoustic domains and events.

Because the relevant features for different problems may vary, we hypothesize that models trained on a 
problem closely related to the target problem will often outperform models trained on very different problems. 
In fact, the recent HEAR Benchmark competition found that no single model dominated across event detec-
tion, music transcription, and speech recognition tasks27. However, as mentioned earlier, many problems lack 
sufficient data for training a robust classifier from scratch. In these cases, re-using the feature embeddings from 
a pre-trained model allows learning the new task efficiently, so long as the embeddings are sufficiently relevant.

In this study, we investigate the use of various acoustic classifiers to produce feature embeddings that can be 
used to perform fine-grained classification of bird calls and dialect types, and out-of-scope but related identifi-
cation of acoustic events (non-bird animal calls) that these models have not been trained on. Furthermore, we 
include in our analysis classifiers that are either trained on AudioSet dataset28 (a broad spectrum of audio data 
extracted from YouTube clips) or on extensive datasets of bird vocalisations from around the world. In doing so, 
we are able to compare the effectiveness of these embeddings derived from different classifiers, evaluating their 
capacity to generalize and detect a variety of bioacoustic events.

The paper aims to provide a simple method for species-agnostic classification across taxonomic groups by 
leveraging transfer learning capabilities of selected classifiers. The effectiveness of the approach is demonstrated 
by evaluating on a diverse set of data sources covering birds, bats, marine mammals, and amphibians. Overall, 
our study suggests that the proposed approach can help to advance automated analysis in passive acoustic moni-
toring by solving the problem of species and call type recognition in low- and medium-data regimes. The use of 
transfer learning capabilities of selected classifiers provides a practical and effective way to classify a wide range of 
acoustic events across different taxa and can help to improve the accuracy and efficiency of PAM analysis efforts.

Relationship to previous work
Previous works have investigated transfer learning for novel bioacoustic tasks, including the use of pre-trained 
global bird embeddings29–31. Many of these prior works focus on a single use-case, leaving the question of breadth 
of generalization unanswered.

Other studies on bioacoustic transfer learning use only embeddings from VGGish32, a general audio model. 
This is an older model, and even recent bioacoustic studies33–36 continue to use it, despite long being surpassed on 
general audio benchmarks. In this work, we provide comparisons of bioacoustic transfer learning from VGGish 
to more recent SOTA (state-of-the-art) models, such as AudioMAE (a self-supervised transformer), YAMNet, 
and PSLA (more recent convolutional models).

Our study provides a far more complete comparison of global bird embeddings against general audio models, 
across a diverse array of datasets, demonstrating robust generalization.

Methods
In this work, we focus on the extraction of feature embeddings from six CNN models and one transformer 
model, described below in “Model descriptions”. These embedding models are trained on either general YouTube 
data or global data sets of bird vocalizations. All models map spectrograms (visual representation of sound) to 
their class labels. Using logistic regression, we train classifiers on the feature embeddings extracted from each 
model as described in “Linear probes on feature embeddings”. Figure 1 provides an overview of the classification 
pipeline we employed for our experiments.

Spectrograms serve as the input data for our framework. The pre-trained embedding model, which is essen-
tially the large-scale classifier without the classifier head, processes the spectrograms and produces an embedding. 
The embedding can be seen as a compact representation capturing the salient features of the input. This embed-
ding is then forwarded to the classifier head, which is implemented as a fully connected layer. The classifier head 
applies a linear transformation to the embedding, followed by a sigmoid function to obtain class probabilities, 
and is trained via standard logistic regression. In summary, this architecture, comprising the embedding model, 
fully connected layer, and sigmoid activation, enables the extraction of relevant features from spectrograms and 
the subsequent generation of probability estimates for downstream classification purposes.

By employing simple logistic regression, we are able to judge the direct utility of each model’s pre-trained 
embedding to a range of problems. Additionally, we save an immense amount of training effort by pre-computing 
the embeddings for each dataset.
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Linear probes on feature embeddings
In this work, we consider the case of keeping the entire pre-trained embedding frozen and learning a single 
linear layer for the new tasks. This method is essentially a linear probe of the selected embeddings, which allows 
assessment of the availability of desired task-specific information in the embeddings37. If the downstream task 
can be performed well with just a linear layer on top of these embeddings, it suggests that the embeddings already 
have the necessary information encoded in them.

For each pairing of model and data set, we first calculate the model embeddings for the full data set. Each 
model has a native sample rate and window size, chosen independently of any of the datasets under consideration. 
Each audio sample is resampled to the model’s native sample rate (though we experiment with alternatives in 
“Experiment: deep-dive into AudioMAE”). When an example is shorter than the model’s window size, we apply 
centered zero-padding to obtain the target length. When a model’s window size is shorter than a target example, 
we frame the audio according to the model’s window size, create an embedding for each frame, and then average 
the results. In the end, each example is associated with a single embedding vector. We then randomly choose 
a fixed number k of examples from each class, using a seeded random shuffle to ensure that the same training 
examples are used for every model. The k examples are used to train a linear classifier over the pre-computed 
embeddings, and all remaining examples are used for evaluating the trained classifier. We use a binary cross 
entropy (BCE) loss, with sigmoid activation, and train the classifier to convergence. This process is repeated 
five times with different random seeds for each combination of model, dataset, and k, using the same set of five 
random seeds for each combination. We do this to report a reliable estimate of the classification performance38. 
By default, we choose k = 32.

For evaluation we compute (1) macro-averaged ROC-AUC (computing ROC-AUC for each class, and then 
averaging over all classes) and (2) Top-1 Accuracy. Reported metrics are averaged over the five training runs.

Experiment: few‑shot learning
By varying the amount of training data, we can further understand the resilience of each embedding to reduced 
data availability. As it turns out, linear probes of pretrained embeddings is a surprisingly successful strategy for 
few-shot learning, as described in39, which found this baseline method to be competitive with far more com-
plicated approaches such as meta-learning. Other subsequent works have confirmed that ‘frustratingly simple’ 
approaches with strong embeddings are sufficient for many few-shot learning tasks40–42. We leave comparison 
of more involved few-shot techniques for the future work. Consequently, we vary k as powers-of-two between 
4 and either 32 or 256, depending on the size of the target dataset.

Experiment: visualizing embedding spaces
We can also observe the geometry of the embedding space using a t-SNE transformation of the model 
embeddings43. The t-SNE transformation attempts to preserve distances in the embedding space while project-
ing to two dimensions. In Fig. 3 we plot t-SNE transforms for YAMNet, AudioMAE, BirdNET and Perch. Note 
that t-SNE plots can be tricky to interpret appropriately44, though points which are close in the original space 
tend to be close after applying the t-SNE transform. We choose t-SNE over other alternatives specifically because 
it uses a shallow model, and we wish to preserve as closely as possible the structure of the embedding spaces.

Experiment: deep‑dive into AudioMAE
In recent years, transformer and self-supervised models have taken a dominant position in machine learning 
research. Therefore, it may be surprising that AudioMAE—a self-supervised transformer—under-performed 
the humble EfficientNet-B1 architecture. We therefore performed a number of additional experiments to dis-
cover whether additional tweaking of the experimental setup would uncover hidden performance gains for the 
AudioMAE embeddings. We applied three different treatments on all six datasets, attempting to find a higher-
performing operating point for the AudioMAE.

First, we compared quality of the pre-trained unsupervised embedding and the embedding obtained from 
supervised fine-tuning on AudioSet. Because the unsupervised objective is spectrogram reconstruction, one 
would expect that all relevant information should be present in the pre-trained embedding, but possibly sup-
pressed by fine-tuning on the irrelevant AudioSet label-space. In fact, using the pre-trained or fine-tuned embed-
ding does change the metrics, but not in a predictable way.

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…

Spectrogram inputs Pre-trained 
embedding model 

Feature 
embedding Classifier head Output labels

Figure 1.   Workflow illustrating the process of downstream classification for various bioacoustic tasks. 
Spectrograms are processed by pre-trained models, producing embeddings. These embeddings are then passed 
to a classifier head-a fully-connected feed forward neural network-which is trained for final classification.
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Second, we experimented with ignoring the audio sample rate when loading the target audio. Because the 
AudioMAE consumes 16 kHz audio, any significant features above the Nyquist frequency of 8 kHz will be lost 
when audio is resampled to the model’s input rate. Instead of resampling, we may instead load the audio at its 
native sample rate and feed it directly to the model as though it were 16 kHz.

Finally, we tried using a two-layer network with the pre-trained model, under the hypothesis that the raw 
self-supervised embedding may not be well aligned for classification tasks. The two-layer network consists of 
batch-normalization, a hidden layer with 2048 units (double the embedding dimensionality), a ReLU activation, 
and an output layer.

Experiment: varying embedding size
We can view feature embeddings as a lossy compression of the input data. For instance, in terms of raw data, the 
embedding produced by the Perch model contains only 1.6% of the data of the raw audio (a 1280-dimensional 
32-bit float vector, derived from 5 s of 32 kHz audio encoded as 16-bit integers). Yet these embeddings enable 
efficient recognition of a wide range of global bird species. For this to work well, the classifier must learn features 
relevant to the classification problem while allowing irrelevant data to be discarded. This compression viewpoint 
suggests that embedding size may play a role in overall embedding quality.

We ran an additional ablation on embedding size while investigating the difference between BirdNET 2.2 and 
Perch models, which had embedding sizes 320 and 1280, respectively. We investigate the role of embedding size 
by comparing two versions of BirdNET with different embedding sizes (320 and 1024) and six versions of Perch 
(160, 320, 640, 960, 1280, 2560), using the same methodology and datasets described above.

Since we do not have ready access to the training infrastucture for the general audio models, we exclude 
them from this ablation.

Experiment: no‑pretraining baseline
It is reasonable to ask how a custom-trained model would perform on the novel tasks we consider in this study. 
However, it is difficult to train a model from scratch with reasonable performance on the amount of data pro-
vided for the tasks. To provide this baseline, we extract MFCC features from the target audio and train a small 
two-layer neural network with 2048 hidden features on each dataset, mirroring a baseline considered in the 
BEANS benchmark34.

Experiment: comparison to a regional model
One might also ask how transfer of the global bird embeddings compares to transfer of embeddings from a 
model trained on a smaller collection of bioacoustic classes. For this, we compare the transfer performance of a 
regional model trained for identification of 89 species in the Sierra Nevadas.

Models and datasets
Model descriptions
We compare three models trained on bird data (BirdNET, Perch, and Sierras) to four models trained on variants 
of AudioSet45 for general audio event detection (AudioMAE, PSLA, YAMNet, VGGish). Table 1 summarizes the 
characteristics of various embedding models, including their run-times on a 4.3 GHz AMD CPU.

BirdNET and Perch are similar models, differing mostly in their training data. While Perch is trained exclu-
sively on bird sounds data, BirdNET’s training dataset also comprises of a relatively small fraction of non-birds 
sound data.

AudioSet comprises an extensive compilation of over 2 million audio clips, each 10 s in duration. These clips 
are derived from YouTube videos and are categorically labeled according to the type of sound they contain, with 
a total of 527 unique classes. The classes include ‘wild animals’, but the associated labels are very coarse (bird, 
frog, roaring cat) and constitute only about 2% of the total dataset. To elaborate further, the specifications of the 
models are detailed as follows.

Table 1.   Summary of embedding model characteristics. CPU(ms/s) is the benchmarked run-time for 
evaluating one audio window with the model, divided by model’s window size. Models were benchmarked on a 
4.3 GHz AMD CPU with 12 cores. *We expect that PSLA inference can be optimized to under 50 ms.

Architecture Training data Window (s) Embedding size CPU(ms/s)

Google Perch EfficientNet B1 XenoCanto 5.0 1280 24.3

BirdNET 2.2 / 2.3 EfficientNet B1 XC+ML+Custom 3.0 320 / 1024 10.0 / 11.1

Sierras Birds EfficientNet B0 XenoCanto+Custom 5.0 1280 12.2

AudioMAE MAE (Large) AudioSet 10.0 1024 78.2

PSLA EfficientNet B2 AudioSet 10.0 1408 246.0*

YAMNet MobileNet v1 AudioSet 0.96 1024 7.7

VGGish Modified VGG YouTube 8M 0.96 128 2.8

BEANS baseline MFCCs + MLP N/A N/A 160 N/A
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Perch46 is an EfficientNet B147 trained on the full corpus of bird song recordings from Xeno-Canto (XC) down-
loaded in July, 2022. Because XC is weakly labeled (a single label for an entire file), we use an activity detec-
tor to select training windows from each file, as described in48. During training we augment with MixUp49, 
random gain adjustment, and random time-shifting of up to 1 s. The model is trained to classify all levels 
of the taxonomy for each recording simultaneously (species, genus, family, order). The base Google Perch 
model and further evaluation statistics are available at TFHub and supporting code is available on GitHub50.
BirdNET51 also uses an EfficientNet architecture, but does not use taxonomic outputs. BirdNET has a broader 
training set, including XC, the Macaulay Library, and labeled soundscape data from around the world, ulti-
mately targeting many thousands of bird species. Additionally, BirdNET is trained to identify human speech, 
dogs, and many species of frogs. To enable a range of downstream use-cases, BirdNET trades off some 
accuracy for efficient computation. We report on BirdNET 2.2 and 2.3. Version 2.3 features a higher embed-
ding dimension (see “Experiment: varying embedding size”) and is trained on a larger bird species list. The 
BirdNET code is available on GitHub52, and includes support for training small classifiers on embeddings.
Sierra Birds48 is a ‘regional’ bird classification model, trained on 89 bird species found in the California 
Sierra Nevada mountains. The model uses an EfficientNet B0 architecture, marginally smaller than the B1 
architecture used by the BirdNET and Perch models, and was primarily trained on XC recordings. The model 
training data was augmented with additional non-bird noise data, as described in48.
AudioMAE53 is a more recent general audio model built with a transformer architecture. The model is trained 
on AudioSet with a self-supervision task, reconstructing masked spectrograms. The model consists of an 
encoder (which produces embeddings of patches of the spectrogram) and a decoder (which reconstructs the 
spectrogram from the patch embeddings). For this study, we use the embeddings produced by the encoder 
and discard the decoder. A 1024-dimensional embedding is obtained by averaging the per-patch embeddings, 
as is typical when using AudioMAE for classification tasks. We evaluated a re-implementation of AudioMAE, 
using the ‘Large’ model with 300M parameters, provided by Eduardo Fonseca54. This model obtains a mAP 
of 46.4 on AudioSet-2M after fine-tuning, comparable to the original AudioMAE’s reported mAP of 47.3. 
We experimented with many configurations of AudioMAE, as described in “Experiment: deep-dive into 
AudioMAE”. AudioMAE training consists of a pre-training stage, where it is trained only for reconstruction of 
masked spectrograms, and a fine-tuning stage, where it is trained for supervised classification. None of these 
methods was consistently better than all others, so for brevity, we report results for the fine-tuned model with 
averaged embeddings unless otherwise noted. The original AudioMAE code can be accessed on GitHub55.
PSLA56 is an EfficientNet model trained on AudioSet, which we include for comparison with the EfficientNet-
based global bird models. The model is competitive with SOTA models, obtaining a mAP score of 47.4 on 
Audioset-2M. Unlike the bird models, it uses an attention layer over the final embeddings to produce its pre-
dictions. We replace this attention layer with an averaging of the final embeddings to produce a summarized 
embedding for an audio segment, suitable for transfer learning.
YAMNet and VGGish are both convolutional models trained to predict AudioSet classes. YAMNet uses a 
MobileNetV1 architecture57. VGGish is an older audio event-detection model, using a variant of the VGG 
architecture and trained on an earlier version of AudioSet32. Both of these models process audio frames of 
0.96 s. While the YAMNet model generates a feature embedding vector of 1024 dimensions, the VGGish 
embedding size is limited to 128 dimensions. The YAMNet58 and VGGish59 codes can be accessed on GitHub.
BEANS Baseline is not a pretrained model. Following the method in the BEANS Benchmark34, we extract a 
160-channel MFCC representation of the input audio. This frequency information is then mean-pooled for 
the audio example, and a two-layer fully connected neural network is trained to predict the target class. This 
provides a simple baseline without pre-training for each task.

Evaluation datasets
We use a range of datasets for our analysis. These datasets were constructed by different groups with different 
goals and methodologies, and therefore vary in their characteristics. For instance, the RFCX and Watkins datasets 
contain cross-class contamination—examples of a specific class where another unlabeled class is present. The 
bat species and Watkins datasets have variable clip length, whereas the other datasets have a fixed clip length. 
Table 2 presents an overview of all the datasets used in this work.

Table 2.   Summary of target dataset characteristics. For the Bats dataset, frequency shifting was applied to 
move signal into the audible range.

# Classes Mean class size Smallest class Sample rate (kHz) Clip length (s)

Godwit Calls 5 1343 628 44.1 3.0

Yellowhammer Dialects 2 772 444 48 3.5

Bats 4 887 360 44.1 kHz 1.0–13.0

Watkins Marine Mammals 32 60 35 22.05 0.1–10.0

RFCX Frog Species 12 50 37 48 5.0

RFCX Bird Species 13 53 34 48 5.0
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Godwit Calls (GC) The GC dataset contains five different calls of Black-tailed Godwit. The recordings were 
made by Ondrej Belfin as part of his masters thesis at the University of Groningen in the Netherlands60. All 
recordings are 3 s long and are annotated by Ondrej Belfin himself.

Yellowhammer Dialects (YD) The YD dataset comprises two dialects of Yellowhammer songs, denoted as 
X and B61, derived from audio recordings of Yellowhammer vocalizations. The two dialects are characterized 
based on variations of elements in the terminal phrase of the song. These recordings were sourced from sub-
missions made through the BirdNET App, captured with various mobile phone microphones. Recordings were 
annotated in a two-step process. Connor Wood performed preliminary annotations, which were later refined by 
Pavel Pipek, a specialist in yellowhammer dialects at the Department of Ecology, Charles University in Prague. 
All recordings were acquired in 2020. Each audio recording within the data set has a duration of three seconds, 
facilitating a comprehensive analysis of the yellowhammer vocalizations. These dialects have a duration in the 
range 2.2–2.7 s and a fundamental frequency in the range of 5–6 kHz.

Bats (BT) The BT dataset contains four species of North American bats. The eastern red bat (Lasiurus borealis, 
LABO) with 1124 recordings, the little brown bat (Myotis lucifugus, MYLU) with 1119 recordings, the northern 
long-eared bat (Myotis septentrionalis, MYSE) with 360 recordings, and the tricolored bat (Perimyotis subflavus, 
PESU) with 948 recordings. The dataset is sourced from two origins: (1) Training dataset for NABat Machine 
Learning V1.062, and (2) Dr. Patrick Wolff, US Army ERDC-CERL. The datasets were collected at ultrasonic 
sampling rates. We applied pitch shifting via sample rate conversion to these datasets, to bring the bat vocaliza-
tions into the audible range. After this pre-processing step, all audio has a sampling rate of 44.1 kHz.

Watkins Marine Mammal Sounds Database (WMMSD) The WMMSD dataset covers 60 species of marine 
mammals but we employ the ‘best of ’ category enlisted in the database as the species with higher quality and 
lower noise recordings. The taxonomical representation encompasses species from the Odontocete and Mysticete 
suborders within the order Cetacea, in addition to the Phocid and Otariid families, which are part of the clade 
Pinnipedia. The auditory documentation, spanning a substantial time period of seven decades, encapsulates a 
diverse range of recording methodologies, ambient acoustical conditions, and sampling frequencies63. The com-
pilation of this auditory data was accomplished and annotated by several researchers including William Watkins, 
William Schevill, G. C. Ray, D. Wartzok, D. and M. Caldwell, K. Norris, and T. Poulte, and is openly accessible 
for academic use64,65. The audio examples are cropped to the length of the actual vocalization, which means that 
the lengths of the audio files vary greatly by species. We exclude five classes for which there are a fewer than 32 
examples provided, and two additional species which are characterized by very low frequency vocalizations (fin 
whale and northern right whale).

Rainforest Connection Kaggle dataset (RFCX Frogs, RFCX Birds) This is the training data from the 2021 
Species Audio Detection challenge, consisting of recordings of Puerto Rican birds and frogs. Both birds and 
frogs are present in the class list; to understand model performance on these taxa, we present results on each 
taxa separately, and all together.

The bird species in the RFCX data appear in the training data for both the Perch and BirdNET models, but 
most of these species have very limited training data. As of this writing, the median number of Xeno-Canto 
recordings for these thirteen species is just 17, and only two species have more than 50 recordings (the Banana-
quit with 579 recordings, and the Black-Whiskered Vireo with 68 recordings). Thus, these are largely low-data 
species for these models.

Dataset limitations
Each of the datasets we work with presents distinct difficulties.

First, our methodology does not create an ideal train/test split when multiple examples originate from the 
same original recording. Ideally, different source recordings or entire recording sites would appear consistently 
as train or test data to reflect model generalization to new conditions. We do not have sufficient metadata avail-
able for all datasets to perform such a split, and so results may overestimate model generalization on the target 
tasks. Instead, we treat each example independently, and create a train/test split over the examples we have. We 
believe this issue affects only the Bats, RFCX, and a subset of the Watkins species.

Secondly, some recordings contain additional unlabeled vocalizations, which may lead to under-estimation of 
model quality. This is especially the case for the Watkins and RFCX frog datasets. (See Table 6 for some analysis 
of the Watkins dataset.)

Results
Linear probes on feature embeddings
Our study delves into the classification performance by employing a variety of embeddings with linear probes for 
novel bioacoustic tasks. For an in-depth look, refer to Table 3, which elucidates the results when training linear 
probes with k = 32 examples per class. Additionally, Fig. 2 provides a visual representation of the results across 
diverse training data sizes, ranging from 4 to either 32 or 256 examples per class, contingent on the dataset size.

The Perch and BirdNET 2.3 models obtain similar performance. However, Perch achieved the highest Top-1 
accuracy and AUC across all the datasets, making it the most consistent performer. It performed particularly well 
with “Godwit Calls” and “Bat Species”, with AUCs of 0.99 and 0.97, respectively. Similarly, BirdNET 2.3 exhibited 
a good performance, especially with Godwit Calls (GC) and Bat species (BT) (0.99, 0.96).

Both bird models markedly outperform the AudioSet models on all tasks (VGGish, YAMNet, PSLA, and 
AudioMAE). The macro-averaged ROC-AUC scores are typically high, suggesting good binary classification 
on each class individually. In case of AudioMAE, the performance dropped noticeably, especially with the Yel-
lowhammer dialects (YD) and RFCX birds datasets, which had lower AUCs of 0.66 and 0.78, respectively. The 
performance declined further using the YamNet model. The Top-1 accuracy was relatively low across datasets, 



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22876  | https://doi.org/10.1038/s41598-023-49989-z

www.nature.com/scientificreports/

and AUCs were significantly lower, particularly for the YD dataset. The VGGish model had the lowest perfor-
mance across all datasets, notably underperforming on the WMMSD dataset with a very low Top-1 accuracy 
of 0.04 and AUC of 0.52. In summary, the Perch and BirdNET 2.3 models outperformed the others in terms of 
both Top-1 accuracy and AUC, demonstrating superior generalizability across various bioacoustic datasets. On 
the other hand, VGGish showed the weakest performance. Among the three models trained on the AudioSet, 
the transformer-based AudioMAE model outperformed the CNN-based VGGish, YAMNet, and PSLA models 
across all datasets except for the RFCX Birds dataset in which YAMNet performed slightly better. The perfor-
mance gain for YD and GC datasets was considerable.

Experiment: few‑shot learning
In Fig. 2 we show results with varying amounts of training data per class. We again find that using transfer 
learning with global bird models (BirdNET and Perch) consistently outperforms general event-detection models 
trained on YouTube data (AudioMAE, Yamnet, and VGGish).

In all cases, the global bird models show an ROC-AUC greater than 0.5 by a considerable margin even with 
only 4 training examples.

Table 3.   Table of results. We report the top-1 accuracy and ROC-AUC score of the linear classifiers, averaged 
over five runs, for each data set. All results are for 32 training examples per species. Entries are bold-faced if 
the model scored highest on all five runs, and italic if highest on four of five runs.

Model

GC YD BT WMMSD RFCX Frogs RFCX Birds

Top-1 AUC​ Top-1 AUC​ Top-1 AUC​ Top-1 AUC​ Top-1 AUC​ Top-1 AUC​

Perch 0.92 0.99 0.87 0.91 0.86 0.97 0.83 0.98 0.74 0.96 0.83 0.97

BirdNET 2.3 0.91 0.99 0.84 0.91 0.85 0.96 0.81 0.98 0.73 0.95 0.78 0.96

Sierras 0.76 0.93 0.56 0.57 0.77 0.93 0.72 0.96 0.65 0.92 0.69 0.94

AudioMAE 0.85 0.96 0.61 0.66 0.63 0.85 0.74 0.96 0.56 0.89 0.43 0.85

PSLA 0.20 0.80 0.65 0.51 0.27 0.57 0.06 0.76 0.10 0.59 0.06 0.60

YamNet 0.71 0.91 0.54 0.55 0.61 0.83 0.69 0.96 0.48 0.86 0.43 0.84

VGGish 0.63 0.86 0.51 0.51 0.57 0.80 0.04 0.56 0.48 0.85 0.39 0.81

BEANS Baseline 0.14 0.53 0.72 0.51 0.24 0.53 0.04 0.56 0.11 0.52 0.05 0.58

Figure 2.   Results of few-shot transfer learning tasks. ROC-AUC scores are plotted with log-odds scaling. A 
point is plotted for each experiment, and the curve connects the average quality for experiments at each number 
of training examples per class.
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Experiment: Visualizing embedding spaces
In the easier Godwit problem (Fig. 3), we observe cleaner clustering of labeled data in the Perch embeddings, with 
large margins suggesting easy linear separability of the classes. By contrast, there are no clean margins between 
classes in the YAMNet embeddings, and smaller, noisier margins for the AudioMAE embeddings.

For the more difficult Yellowhammer problem, we observe a complete intermixing of the two classes for 
YAMNet, explaining the model’s inability to linearly separate the classes. For AudioMAE, which performs mar-
ginally better, we can observe a couple pockets of concentrated blue points, but no clear clustering. For Perch 
and BirdNET we see some clustering, but still a great deal of inter-mixed data, explaining the slow improvement 
on this task.

Experiment: deep‑dive into AudioMAE
The best overall AudioMAE performance was obtained by using a 2-layer perceptron and no audio resampling 
with the pre-trained embeddings, as detailed in Table 4. Despite substantial effort, we found the global bird 
embeddings—with no additional tweaking—uniformly outperformed the AudioMAE model. PSLA benefitted 
significantly from a two-layer probe, but still underperformed both AudioMAE and the global bird classifiers.

Experiment: varying embedding size
An ablation over the embedding dimension is summarized in Fig. 4. The Top-1 Accuracy and ROC-AUC scores 
on different datasets using various embedding sizes are shown in Table 5. Perch with a 320-dimensional embed-
ding (matching BirdNET 2.2) has significantly degraded quality in all tasks. Doubling the base Perch embedding 
dimension to 2560 yields a further increase in model performance for some downstream tasks.

Increasing the size of the BirdNET embedding to 1024 led to similar performance as the Perch model in 
most downstream tasks.

Experiment: no‑pretraining baseline and regional model
The results for the BEANS MFCC baseline and Sierra Birds model are included in Table 3 and Fig. 2. We find 
that the MFCC model barely exceeds chance, significantly underperforming transfer from VGGish, the weakest 
of the audio domain models.

We find that the global bird models significantly outperform the ‘regional’ Sierra Birds model. Furthermore, 
the regional model underperforms general audio embeddings on some datasets.

Discussion
The performance results displayed in Fig. 2 underscore the value of transfer learning with global bird models 
such as BirdNET and Perch. These models consistently outperformed general event-detection models trained on 
broader auditory data, such as YouTube-sourced data utilized by AudioMAE, PSLA, YAMNet, and VGGish. This 
observation is pivotal as it suggests that models specifically trained on bird data possess a heightened capacity 
for generalization within the realm of bioacoustic tasks, successfully identifying and analyzing previously not 
encountered bioacoustic patterns.

In our study, we employed a linear probe method to evaluate the pre-trained embeddings of various models, 
including BirdNET and Perch. This method, essentially a linear layer placed on top of the selected embeddings, 

Figure 3.   t-SNE plots of Godwit and Yellowhammer embeddings. Points are colored by class.
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serves as a tool for assessing the availability of desired task-specific information within these embeddings. 
Consequently, our findings, as demonstrated in Fig. 2 and Table 3, suggest that the embeddings derived from 
global bird models contain rich, task-specific information conducive to bioacoustic analysis. This is in contrast 
to general auditory event-detection models, which although trained on a broader spectrum of auditory data, 
do not exhibit the same level of performance. This superior generalization capability of deep embeddings from 
global bird models is an important finding, as it highlights the potential of these specialized models in provid-
ing a more robust and adaptable framework for varied bioacoustic tasks by learning good quality embeddings 

Table 4.   Results of AudioMAE Steel-man Experiments. Results are all for 32 examples per class. Probe is LR 
for linear regression or 2LP for two-layer perceptron. ‘RS’ indicates whether the audio was resampled to the 
embedding model’s preferred sample rate. ‘MAE/p’ is the pretrained unsupervised embedding model, and 
‘MAE/f ’ is fine-tuned with supervision on AudioSet. The highest score in each column is bold-faced, and the 
highest AudioMAE score is in italic.

Model Probe RS?

GC YD BT WMMSD RFCX-F RFCX-B

Top-1 AUC​ Top-1 AUC​ Top-1 AUC​ Top-1 AUC​ Top-1 AUC​ Top-1 AUC​

Perch LR Y 0.92 0.99 0.87 0.91 0.86 0.97 0.83 0.98 0.74 0.96 0.83 0.97

Perch LR N 0.91 0.99 0.86 0.93 0.80 0.94 0.80 0.98 0.76 0.96 0.83 0.98

Perch 2LP Y 0.92 0.99 0.87 0.92 0.86 0.97 0.81 0.98 0.73 0.96 0.83 0.97

Perch 2LP N 0.92 0.99 0.84 0.92 0.81 0.95 0.79 0.96 0.76 0.96 0.83 0.98

BN2.3 LR Y 0.91 0.99 0.84 0.91 0.84 0.96 0.81 0.98 0.73 0.95 0.78 0.96

MAE/p LR Y 0.72 0.91 0.57 0.60 0.68 0.88 0.60 0.93 0.59 0.91 0.53 0.90

MAE/p LR N 0.80 0.95 0.59 0.62 0.65 0.87 0.68 0.95 0.64 0.93 0.65 0.94

MAE/p 2LP Y 0.82 0.96 0.66 0.64 0.74 0.91 0.78 0.97 0.69 0.94 0.64 0.94

MAE/p 2LP N 0.84 0.97 0.63 0.65 0.73 0.91 0.81 0.97 0.70 0.94 0.72 0.96

MAE/f LR Y 0.85 0.96 0.61 0.66 0.63 0.85 0.74 0.96 0.56 0.89 0.43 0.85

MAE/f LR N 0.86 0.97 0.62 0.66 0.61 0.84 0.76 0.97 0.62 0.91 0.55 0.88

MAE/f 2LP Y 0.85 0.97 0.63 0.67 0.65 0.86 0.79 0.97 0.60 0.89 0.49 0.86

MAE/f 2LP N 0.87 0.97 0.64 0.67 0.64 0.86 0.80 0.97 0.60 0.89 0.62 0.90

PSLA LR N 0.20 0.80 0.65 0.51 0.27 0.57 0.06 0.76 0.10 0.59 0.06 0.60

PSLA 2LP N 0.82 0.96 0.46 0.58 0.46 0.76 0.63 0.94 0.35 0.77 0.40 0.81

Figure 4.   Results of embedding size ablation test. ROC-AUC scores are plotted with log-odds scaling.
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from data. In the realm of bioacoustic sound event detection, the ability to generalize across distinct taxonomic 
categories and acoustic characteristics is invaluable, as it facilitates the fine-grained classification of call types, 
song dialects, and out-of-scope identification of acoustic events.

This finding might be attributed to the inherent diversity and complexity found in bird vocalizations. Bird 
songs and calls occupy a broad range both temporally and in the spectral domain, exhibiting diverse frequency 
modulations, harmonic structures, and rhythmic patterns. This wide array of acoustic characteristics provides 
a rich and versatile training data set for models such as BirdNET and Perch. The comprehensive nature of these 
vocalizations may have facilitated the models’ ability to learn more generalized representations of bioacoustic 
patterns.

This versatility in bird vocalizations has a dual implication. Firstly, it enriches the training dataset, provid-
ing varied instances for the model to learn from, and subsequently, it enables the model to capture a broader 
range of acoustic patterns, improving its ability to generalize to novel categories. Secondly, the acoustic diversity 
among bird species might mimic the bioacoustic variability encountered in other taxa, thus further enhancing 
the model’s generalization capabilities when applied to sounds from different taxa. Indeed, previous work has 
found a collection of mechanisms, termed MEAD, by which all birds and mammals vocalize66, and which may 
help explain the successful transfer of bird features to other taxa. This hypothesis provides an intriguing direction 
for future research—exploring the specific characteristics of bird vocalizations that contribute to these superior 
generalization capabilities. Understanding these characteristics could guide the collection and selection of train-
ing data for future bioacoustic models, with the aim of maximizing their generalization potential.

The extensive diversity inherent in bird vocalizations, both in terms of acoustic characteristics and species 
diversity, is not just a theoretical advantage but also a practical one. The availability of a vast array of bird species 
audio data provides an advantageous basis for model training. Recent work has shown that training on a larger 
number of diverse classes helps model generalization more than adding data from a smaller number of classes67. 
To make this concrete, we include a comparison to a regional bird classification model trained on 89 bird species 
from the Sierra Nevadas. The global bird models, which were trained on a larger variety of classes and quantity 
of data, exhibited superior performance compared to the Sierra Birds model. This under-performance of the 
regional model is further highlighted when compared to general audio embeddings, where it falls short in some 
datasets. This aligns with findings from the above paper which emphasized that a greater number of training 
classes enhances the generalization ability of models. The regional model’s limited scope in terms of training 
classes could be a key factor in its lower effectiveness compared to the more broadly trained global bird models, 
and begs further study: We believe that bioacoustic data, with such a wide variety of classes and data, provides 
an ample testing ground for such questions in the theory of machine learning.

We designed an experiment aimed to uncover any potential performance gains hidden within the architec-
ture of the AudioMAE, which is SOTA and widely believed to have a superior architecture. Despite the general 
dominance of transformer and self-supervised models in machine learning in the recent years, AudioMAE was 
outperformed by the more basic EfficientNet-B1. The investigation involved three key experiments: examining 
the quality of pre-trained vs. fine-tuned embeddings, bypassing audio sample rate adjustments, and employing 
a two-layer network to align the self-supervised embedding for classification tasks. Surprisingly, the best perfor-
mance of AudioMAE was achieved using the pre-trained embeddings with a two-layer perceptron and without 
audio resampling. However, even with these adjustments, the global bird embeddings, without any tweaking, 
consistently outperformed the AudioMAE model. We also found that PSLA, a near-SOTA AudioSet model with 
an EfficientNet architecture, performed poorly on our target tasks. Together, these findings demonstrate that the 
data effects dominate the architecture effects.

To demonstrate the robustness of each embedding in the context of reduced data availability, we ran experi-
ments to train the linear probes by varying the amount of training data. Our results, as seen in Fig. 2, have shown 
promising prospects for bioacoustic recognition tasks even when faced with as little as 4 training samples. The 
global bird models once again outperform other models in this experiment. This shows that these models can 
be used for active learning on novel tasks, starting even from a handful of examples.

Lower Top-1 accuracy scores (see Table 3) suggest that inter-class calibration may still be a difficulty for simple 
linear probes, though unlabelled vocalizations in the test set may account for some difficulty. For the Watkins 

Table 5.   Results of embedding size ablation. We report the top-1 accuracy and ROC-AUC score of the linear 
classifiers, averaged over five runs, for each data set. All results are for 32 training examples per species. All 
Perch models were trained for this ablation from scratch.

Model Size

Godwit Calls Yellowhammer Bat Species Watkins RFCX Frogs RFCX Birds

Top-1 AUC​ Top-1 AUC​ Top-1 AUC​ Top-1 AUC​ Top-1 AUC​ Top-1 AUC​

Perch 2560 0.91 0.99 0.92 0.96 0.85 0.96 0.83 0.98 0.75 0.96 0.82 0.97

Perch 1280 0.91 0.99 0.88 0.93 0.85 0.96 0.80 0.98 0.73 0.95 0.83 0.97

Perch 960 0.91 0.98 0.88 0.93 0.85 0.96 0.80 0.98 0.74 0.95 0.82 0.97

Perch 640 0.90 0.98 0.87 0.92 0.84 0.96 0.74 0.97 0.73 0.95 0.81 0.97

Perch 320 0.89 0.98 0.80 0.87 0.80 0.94 0.71 0.96 0.71 0.94 0.81 0.97

Perch 160 0.88 0.97 0.80 0.84 0.79 0.93 0.66 0.95 0.68 0.93 0.78 0.96

BirdNET 2.3 1024 0.91 0.99 0.84 0.91 0.85 0.96 0.81 0.98 0.73 0.95 0.78 0.96

BirdNET 2.2 320 0.90 0.98 0.83 0.88 0.83 0.95 0.79 0.98 0.75 0.96 0.79 0.96
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dataset, a significant amount of confusions (18.6%) occurred between bearded seals and bowhead whales, two 
highly vocal Arctic marine mammal species (see Table 6). Both species are known to overlap in range and are 
frequently recorded together, especially during the late spring and early summer months68. This is also the case 
for the weakly-labeled training data we used, which explains the comparatively high degree of confusion. More 
sophisticated pre-processing of the training data and adding some strongly labeled data would help to increase the 
classification performance for these two species. The confusion between co-occurring dolphin species is also not 
surprising. First, these data were downsampled to the audible frequency range, which will cutoff higher frequency 
components of the vocalizations. In addition, dolphin species are generally difficult to classify acoustically69 
because they produce highly variable vocalizations including whistle, echolocation clicks, and burst pulses. 
Lastly, dolphins also occur in mixed species groups which can make it challenging to obtain clean training data.

We also see a particularly high variance in model quality for the YD dataset in the low-data regime. Since this 
is only a two-class problem, there are fewer total examples used for training in the low-data regime. However, 
this is also a subtle problem: the Yellowhammer dialect is distinguished by the order of the last two notes of the 
song: mid-then-high versus high-then-mid. Other variations in timbre of the initial portion of the song and 
up- or down-sweep in the high note do not distinguish between the two dialects. The subtlety of the problem 
apparently makes it easy to over-generalize from few examples.

To demonstrate the efficacy of embeddings as condensed ’fingerprints’ of raw audio, we conducted experi-
ments that revealed an enhancement in separability for bioacoustic tasks with the increase in embedding size. 
However, this improvement comes at the cost of increased model size and reduced inference speed. Newer ver-
sions of BirdNET have a larger embedding size as a result of these observations.

Our approach—utilizing fixed, pre-trained embeddings for novel problems—also suggests a more efficient 
workflow for large-scale bioacoustic data sets. Large PAM deployments may accumulate tens to hundreds of 
terabytes of data during a single field season70. This makes model inference tasks especially time-consuming and 
potentially expensive. Given a model which produces generally useful feature embeddings, the practitioner may 
embed their entire data set once and then use the pre-computed embeddings for a wide range of subsequent 
analysis tasks. Training and inference with small models over fixed embeddings are much faster than training 
entirely new models: Training a high-quality classifier from scratch can take many days of GPU time, but train-
ing small linear classifiers over fixed embeddings, can take less than a minute to train on a modern workstation. 
This allows fast experimentation with different analysis techniques and quickly iterating with human-in-the-loop 
active learning techniques.

Conclusions
Our study explored generalizablility of feature embeddings within the bioacoustics domain, focusing on the 
application of large-scale audio classification models to previously unencountered taxonomic groups such as 
marine mammals, bats, and frogs, in addition to intraspecific calls and dialects of a bird species. Our study sup-
ports the hypothesis that feature embeddings, especially those derived from bird data, can effectively represent 
high-dimensional categorical or discrete features as a low-dimensional continuous vector space. We report that 
embeddings derived from models specifically trained using bird sounds data consistently facilitated superior 
classification quality compared to those trained on broader audio datasets. This study’s findings also suggest that 
feature embeddings from global bird acoustic classifiers can be effectively utilized for few-shot transfer learning. 
This enables the acquisition of new classes with a minimal amount of training data. Our empirical findings have 
significant implications for Passive Acoustic Monitoring, potentially enhancing the methods by which we detect 
and classify animal species based on their sounds. This could revolutionize the application of PAM, particularly 
in low-data regimes, by enabling more effective transfer learning between coarse-level classification and more 
fine-grained vocalization classification.

Data availability
The RFCX dataset is available from Kaggle, at https://​www.​kaggle.​com/​compe​titio​ns/​rfcx-​speci​es-​audio-​detec​
tion/​data. We used the Watkins Marine Mammal dataset as packaged by the Earth Species Project, availble at 
https://​archi​ve.​org/​detai​ls/​watki​ns_​202104. The Bats, Yellowhammer, and Godwit Calls datasets were graciously 
provided by third-party researchers, as detailed above, and are available from the authors upon reasonable request 
and with permission of the third-party providers.

Table 6.   Top five marine mammal species confusions, averaged over five runs with the Perch model, using 32 
examples per class. Bearded Seal and Bowhead Whale often appear in the same recording, though only one is 
labeled.

Species Confused species Confusion rate

Bearded seal Bowhead whale 0.186

Pantropical spotted dolphin Spinner dolphin 0.097

Common dolphin Striped dolphin 0.091

Frasers dolphin Pantropical spotted dolphin 0.082

Killer whale Narwhal 0.067

https://www.kaggle.com/competitions/rfcx-species-audio-detection/data
https://www.kaggle.com/competitions/rfcx-species-audio-detection/data
https://archive.org/details/watkins_202104
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