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ABSTRACT
Traditionally, population models distinguish individuals on the basis
of their current state. Given a distribution, a discrete time model
then specifies (precisely in deterministic models, probabilistically in
stochasticmodels) the populationdistribution at the next timepoint.
The renewal equation alternative concentrates on newborn individ-
uals and themodel specifies the production of offspring as a function
of age. This has two advantages: (i) as a rule, there are far fewer birth
states than individual states in general, so the dimension is often
low; (ii) it relates seamlessly to the next-generation matrix and the
basic reproduction number. Herewe start from the renewal equation
for the births and use results of Feller and Thieme to characterize
the asymptotic large time behaviour. Next we explicitly elaborate
the relationship between the two bookkeeping schemes. This allows
us to transfer the characterization of the large time behaviour to
traditional structured-population models.
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1. Introduction

In the pioneering paper [7], Jim Cushing and Zhou Yicang

(i) defined the net reproductive number (aka the basic reproduction number and in
the present paper denoted by R0) in the context of linear discrete time popula-
tion models, while highlighting its interpretation as the expected lifetime number
of offspring,
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(ii) showed that the stability of the extinction state (i.e. the trivial steady state) is gov-
erned by the sign of R0 − 1 (where, in the case of nonlinear models, R0 refers to
the linearized model),

(iii) demonstrated, by way of examples, that oftenR0 is much easier to determine than
the real time growth rate (in the present paper denoted by ρ).

By making systematic use of Perron-Frobenius theory, Chi-Kwong Li and Hans Schnei-
der streamlined the proofs and extended these results in [22]. For far-reaching general-
izations we refer to recent papers of Horst Thieme, in particular [28, 29]. And for similar
continuous time results in the context of epidemic models to [9, 14, 15, 27]. Also see [6].

Over the years (and in close collaboration with various other authors) we have devel-
oped theory for continuous time structured-population models [10–12, 24]. These papers
deal with rather general models and may, as a consequence, not be easily accessible. The
aim of the present paper is to formulate the discrete time version of the linear theory in a
reader-friendly fashion. To this end, we limit our attention to population models in which
individuals are distinguished by a number of traits (e.g. species, age, size, spatial location,
infection status), but such that the set of conceivable individual states (shortly, i-states) is
finite.

In our approach, the renewal equation (RE) for the birth rate takes centre stage. Once
one solves the RE constructively, all other relevant quantities are given by explicit expres-
sions in terms of the initial condition and the birth rate. As a consequence, we can deduce
the asymptotic large time behaviour of every quantity of interest from the asymptotic large
time behaviour of the birth rate. And to determine the latter, we can rely on Feller’s cele-
brated Renewal Theorem for scalar RE and on Thieme’s generalization for systems of RE
(see Section XIII.10 in [16] and [25]; continuous time results can be found in [4, 8, 17]).

The key feature that makes this approach both attractive and efficient is that, as a rule,
there are far fewer individual birth states than individual states in general. In particular, the
RE is a scalar equation when all individuals are identical at birth, either in the literal sense
(like, for instance, in the case of age as the only structuring trait) or in the stochastic sense,
when states-at-birth have a fixed probability distribution (for example, in an epidemiolog-
ical model where individuals begin their infected life (i.e. are born epidemiologically) as
symptomatic with probability p or asymptomatic with probability 1−p, regardless of the
i-state of the individual that infected them).

We begin by preparing the ground: in Section 2, we formulate the RE for the birth rate
and determine the asymptotic large time behaviour using the theorems of William Feller
(for scalar RE) andHorst Thieme (for systems of RE). In Section 3 we first show how classi-
cal discrete time structured-populationmodels (SPM) give rise to (typically much smaller)
systems ofRE for the birth rate anddiscuss how the twobookkeeping schemes relate to each
other in terms of dynamics and next-generation matrices. Next we show how, after having
deduced the asymptotic behaviour of solutions of the RE using the results of Section 2, one
can determine the asymptotic i-state distribution and the reproductive values in SPM from
the ones obtained in the corresponding RE (see Figure 1).

In Section 6 of [10] and Section 3.2 of [12] it was shown that, for the special situation
that R0 = 1, not only the spectral equivalence ρ = 1 holds, but that one can also com-
pute the asymptotic distribution (i.e. the right eigenvector) in the real time setting from
that in the generation bookkeeping framework. In Section 4 we supplement this result
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Figure 1. Deducing the asymptotic large time behaviour in (linear discrete time) structured-population
models via the corresponding renewal equation for the birth rate.

with a corresponding result for the reproductive values (or, in other words, for the left
eigenvector).

In [12] it was demonstrated that for a large class of nonlinear models the condition
R0 = 1 arises when looking for steady states. This makes the results about connecting the
eigenvectors useful for nonlinear models as well.

In Appendix we present a brief outline of continuous time analogues of various equa-
tions and identities derived in Sections 2, 3 and 4.

2. The renewal equation

The first step in the formulation of renewal equations is the identification of states-at-
birth. We may interpret this literally in the sense of determining all the i-states in which
individuals may begin their lives. For example, think of a model where individuals are
structured by age a and size s and where the set of i-states is {(a, s) : a = {1, . . . , k}, s =
{small, large}}. Assuming that newborns may be either small or large, there are two states-
at-birth: (1, small) and (1, large). However, when small and large offspring is produced at
a fixed ratio p : (1 − p) (independently of the i-state of the parent) we can exploit the fact
that there is a single state-at-birth in the stochastic sense: all individuals are born with the
same probability distribution of their i-state. Another example is an epidemiologicalmodel
where individuals may begin their infected life (i.e. are born epidemiologically) as either
asymptomatic or symptomatic. There are again two states-at-birth in the literal sense, but
when new cases arise at a fixed ratio there is but one state-at-birth in the stochastic sense.

Both interpretations of the term state-at-birth are valid. However, while the literal inter-
pretation may be a natural starting point, understanding the term in the stochastic sense
allows us to formulate RE systems of minimal size (we elaborate this point in Section 3).

We begin by considering the case where all individuals are identical at birth, i.e. are born
with the same probability distribution of their i-state.

2.1. The scalar equation

Imagine that immediately after the yearly breeding season a census is made of the subpop-
ulation of newborn females. Let b(t) denote that number in year t. If we ignore density
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dependence and adopt a deterministic point of view at the population level (i.e. we assume
that the numbers are so large that it makes sense to focus on expected values and to ignore
the effects of demographic stochasticity) then

b(t) =
∞∑
s=1

k(s)b(t − s), (1)

where k(s) is the expected number of daughters born to a female in year s after her own
birth. We consider the sequence {k(t)}∞t=1 as the basic model ingredient and make the
following assumptions:

(A1) k(t) ≥ 0 for all t ∈ N with strict inequality for at least one value of t.
(A2)

∑∞
t=1 k(t) < ∞.

Note that

R0 =
∞∑
t=1

k(t) (2)

is the basic reproduction number, i.e. the expected lifetime number of (female) offspring.
Equation (1) is linear and translation invariant, so we expect it to have geometric

solutions. If we substitute the Ansatz

b(t) = zt (3)

into (1) and divide both sides by zt we obtain the Euler–Lotka characteristic equation

1 =
∞∑
s=1

k(s)z−s =: k̄(z) (4)

for the unknown z. Note that k̄(z) is the (one-sided) z-transform of {k(t)}∞t=0 (with k(0) :=
0) and that the z-transform is the discrete time analogue of the Laplace transform.

For real z, k̄ is a strictly decreasing function with limit zero at infinity. So if k̄ takes, for a
real z, a value larger than one, Equation (4) has precisely one real solution. We denote this
solution by ρ and observe that there are precisely three possibilities:

1 < ρ < R0,

1 = ρ = R0,

R0 < ρ < 1

whenever k(s) > 0 for a value s ≥ 2 (in the degenerate case that only k(1) > 0 we have
ρ = R0 = k(1)). To see this, note that

(i) k̄(1) = R0,
(ii) ifR0 > 1 then k̄(R0) < 1,
(iii) ifR0 < 1 then k̄(R0) > 1 (possibly infinite).
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If z is complex then

|k̄(z)| ≤ k̄(|z|).
Consequently the solutions of (4) are contained within the closed disc of radius ρ.

We say that {k(t)}∞t=1 is periodicwith period p>1 if k(s) = 0 except when s is an integer
multiple of p. One easily verifies that in that case z is a solution of (4) if z is the product of
ρ and a pth root of unity. So for periodic {k(t)}∞t=1 there are non-real solutions of (4) on
the circle of radius ρ in C. We make a further assumption:

(A3) {k(t)}∞t=1 is not periodic.

So far we focused on special solutions of (1) of the form (3). Now, in the spirit of [13],
we prescribe the history of b up to t = 0 by putting

b(τ ) = θ(τ ), τ = . . . ,−2,−1 (5)

for a given function θ(τ ) ≥ 0 such that

g(t) :=
∞∑

s=t+1
k(s)θ(t − s) =

∞∑
l=1

k(l + t)θ(−l) (6)

is finite for t ∈ N. This allows us to rewrite (1) in the form

b(t) =
t∑

s=1
k(s)b(t − s) + g(t), t ∈ N, (7)

with the convolution product interpreted as zero for t = 0, i.e.

b(0) = g(0). (8)

Let b̄ and ḡ denote the (one-sided) z-transforms of, respectively, {b(t)}∞t=0 and {g(t)}∞t=0,
i.e.

b̄(z) =
∞∑
s=0

b(s)z−s, ḡ(z) =
∞∑
s=0

g(s)z−s.

The z-transform has the useful property that it turns a convolution product into an ordi-
nary product. So in terms of the z-transforms, the convolution equation (7) can be written
as

b̄ = k̄b̄ + ḡ.

If follows that

b̄ = (1 − k̄)−1ḡ

and next, by taking the inverse z-transform, that

b(t) = 1
2π i

∮
(1 − k̄(z))−1ḡ(z)zt−1 dz

where the closed contour encircles the origin counter-clockwise at a distance great enough
to enclose all singularities of the integrand. The observations made above concerning the
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solutions of (4) now suggest that b(t) ≈ ρt for t → ∞. Theorem 2.1 in Section XIII.10
of [16] gives a farmore informative characterization of the asymptotic large time behaviour
of b.

Theorem 2.1 (Feller’s Renewal Theorem): Consider the renewal Equation (7) and assume
that (A1), (A2) and (A3) hold. Furthermore, assume that g(t) ≥ 0 for all t ∈ N and that∑∞

t=0 g(t) < ∞. For R0 > 1 let ρ > 1 denote the unique real solution of the Euler-Lotka
Equation (4).

(i) IfR0 < 1 then b(t) → 0 for t → ∞ and

∞∑
t=0

b(t) = ḡ(1)
1 − R0

.

(ii) IfR0 = 1 then for t → ∞

b(t) → ḡ(1)∑∞
s=1 sk(s)

.

(iii) IfR0 > 1 then for t → ∞

ρ−tb(t) → ḡ(ρ)∑∞
s=1 sk(s)ρ−s .

Remark 2.2: To facilitate comparison with Feller’s formulation in [16], we present the
notation-translation table:

Here Feller [16]

b v
k f
g b

.

More importantly, note that Feller uses the generating function rather than the z-
transform. If k̃ denotes the generating function of {k(t)}∞t=0 then

k̃(s) = k̄(s−1).

If (6) holds we deduce from the second identity that

ḡ(ρ) =
∞∑
l=1

c(l)θ(−l) (9a)

with

c(l) :=
∞∑
s=0

ρ−sk(l + s). (9b)

The coefficients c(l) thus tell us how the various components of the initial condition (5)
contribute to the ultimate geometric population growth with multiplication factor ρ when
R0 > 1 (for the time being, we do not normalize these contributions).
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We conclude that Theorem 2.1 gives a complete description of the large time behaviour
of solutions of the renewal Equation (7) when we prescribe as an initial condition the
history of b up to time zero as in (5).

2.2. Systems of renewal equations

Suppose that individuals begin their lives in one of m>1 states-at-birth. The renewal
equation now reads

B(t) =
∞∑
s=1

K(s)B(t − s), (10)

where the components bj(t) of the vector B(t) ∈ Rm denote the number of females born
at time t with state-at-birth j and K(s) is a positivem × mmatrix with elements

kij(s) = the expected number of daughters with state − at − birth i produced by a

female that was herself born s time units ago with state − at − birth j.

Remark 2.3: A matrix A is called positive if aij ≥ 0 for all i and j. In this case, we write
A ≥ 0. We write A>0 when A ≥ 0 and A �= 0. A matrix A is called strictly positive if
aij > 0 for all i and j. In this case, we write A 	 0. In Appendix we use that a matrix A is
called positive-off-diagonal if aij ≥ 0 for i �= j and aii ∈ R [1].

The sequence of matrices K = {K(t)}∞t=0 (with K(0) := 0) forms a kernel. We assume

(A4) K(t) ≥ 0 for all t ∈ N with K(t) > 0 for at least one t ∈ N.
(A5)

∑∞
t=0 ‖K(t)‖ < ∞.

Remark 2.4: In a population dynamical context, it is preferable to equip Rm with the l1-
norm, i.e. to define ‖X‖ = ∑m

j=1 |xj|. In A5, we then use the corresponding operator norm,

‖K(t)‖ = max
1≤j≤m

m∑
i=1

|K(t)ij|.

If we now look for solutions of the RE (10) in the form B(t) = zt� for some m-vector
� we observe that the Euler-Lotka equation takes the form

rσ (K̄(z)) = 1, (11)

where rσ denotes the spectral radius and where, as before,

K̄(z) =
∞∑
s=0

K(s)z−s. (12)

We call K̄(1) the next-generation matrix and define

R0 := rσ (K̄(1)). (13)

Note (by exploiting the fact that the spectral radius of K̄(z) is a decreasing function of z)
that the Euler-Lotka Equation (11) has a unique real solution ρ whenR0 is larger than or
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equal to one. In that case, we necessarily have 1 < ρ < R0 or 1 = ρ = R0. Furthermore,
K̄(1) and K̄(ρ) are positive matrices, and therefore for both matrices the spectral radius is
a dominant eigenvalue with a positive corresponding eigenvector [1, 2].

The key reference concerning the asymptotic behaviour of the solutions of the renewal
equation (10) is now [25]. In order to present Thieme’s renewal theorem, we again
prescribe the history of B up to t = 0,

B(τ ) = �(τ), τ = . . . ,−2,−1 (14)

for given positive �(τ) ∈ Rm such that

G(t) :=
∞∑

s=t+1
K(s)�(t − s) =

∞∑
l=1

K(l + t)�(−l) (15)

defines a vector with finite components for all t ∈ N. This allows us to write (10) as

B(t) =
t∑

s=1
K(s)B(t − s) + G(t), t ∈ N (16)

with the convention

B(0) = G(0). (17)

Next, we introduce the resolvent of the kernel K. The resolvent R = {R(t)}∞t=0 is defined by
the equation

R = K ∗ R + K = R ∗ K + K

where ∗ denotes the convolution product, i.e.

K ∗ R(t) :=
t∑

s=0
K(s)R(t − s). (18)

In our case K(0) = 0 and consequently R(0) = 0, meaning that we can write (18) as

K ∗ R(t) =
t−1∑
s=1

K(s)R(t − s).

The results in [25] concern a rather general setting in terms of positive linear operators on
ordered Banach spaces. When dealing with spaces of functions defined on non-compact
domains, it often helps to define positivity in terms of a special element w of the positive
cone, with w possibly tending to zero for the argument tending to infinity. Here, however,
we only deal with the standard positive cone in Rm and when invoking the results of [25]
we simply take the m-vector w = [1, . . . , 1]T .

We make further assumptions

(A6) There exists t0 ∈ N such that R(t0) 	 0.
(A7) There exist t1, t2 ∈ N such that their greatest common divisor is one and R(ti) > 0

(i = 1, 2).
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Theorem 2.5 (Thieme’s Renewal Theorem): Consider the renewal equation (16) and
assume that (A4), (A5), (A6) and (A7) hold. Furthermore, assume that there exists M>0
such that ‖G(t)‖ ≤ M for all t ∈ N. Assume that R0 ≥ 1. The Euler–Lotka equation (11)
has a unique real solution ρ with either 1 < ρ < R0 or ρ = 1 = R0. Furthermore let �,
with ‖�‖ = 1 and 	, with 	� = 1, denote, respectively, the right and the left normalized
positive eigenvector of K̄(ρ) corresponding to eigenvalue 1.

Then for t → ∞
ρ−tB(t) → c� (19a)

with

c = 	
Ḡ(ρ)

c0
and c0 = 	

( ∞∑
s=1

sρ−sK(s)�

)
. (19b)

Remark 2.6: (i) The following table aims to facilitate comparison with Thieme’s results
in [25]:

Here Thieme [25]

B u
K A
G ū

(ii) Note that one can normalize 	 in any way one wants, since in (19b) 	 is a factor
in both the numerator and the denominator. Our choice, 	� = 1, is handy in the
context of many applications.

3. Structured-populationmodels

When density dependence is ignored and the set of i-states is finite, a discrete time
structured-population model leads to the system of linear recursion relations

X(t) = (F + T)X(t − 1). (20)

Here the components xj(t) of the vector X(t) ∈ Rn correspond to the density of females
with i-state j at time t, while F and T are positive n × nmatrices that describe, respectively,
reproduction and survival & development, cf. [3, 5]. More precisely, F = (fij)ni,j=1 and T =
(tij)ni,j=1 where

fij = the expected number of daughters with i−state i,

produced by a female with i−state j

and

tij = the probability that an individual with i−state j

is alive and has i−state i one time unit later.

Since no individual is immortal we assume that rσ (T) < 1.
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The aim of this section is twofold: (i) we show how the recurrence (20) and the renewal
equation (10) relate to each other and (ii) we discuss how the next-generation matrix and
the basic reproduction number corresponding to (20) are connected with (13). We begin
with the former.

Suppose there arem states-at-birth in the literal sense (1 ≤ m ≤ n). There exist a posi-
tive n × mmatrix V (normalized such that allm columns of V have l1-norm equal to one)
and a positivem × nmatrix U such that

F = VU. (21)

In particular, if the states-at-birth are j1, . . . , jm ∈ {1, . . . , n}we defineV as thematrix with
columns ej1 , . . . , ejm and U as the fertility matrix obtained by taking the rows j1, . . . , jm
from F.

Directly from the interpretation we discover the first relation, namely,

B(t) = UX(t − 1). (22)

Using the generation expansion we then deduce from (20), (21) and (22) that

X(t) = VB(t) + TX(t − 1)

= VB(t) + TVB(t − 1) + T2X(t − 2)

= . . . ,

leading in the limit to the second relation

X(t) =
∞∑
s=0

TsVB(t − s). (23)

The twoEquations (22) and (23) can both be understood on the basis of their interpretation
and together they provide a complete description of the dynamics. By substituting (23)
into (22) one obtains (10) with

K(s) = UTs−1V . (24)

Likewise one recovers (20) from (22) and (23) by splitting off the s = 0 term in (23) to
obtain

X(t) = VB(t) + TX(t − 1) (25)

and next use (22) and (21).
The two Equations (22) and (23) relate the time course of B to that of X and vice versa,

when defined for all t, not just for t ≥ 0. To deal with the initial value problem for X, we
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can rewrite (20) in the variation-of-constants form

X(t) = TtX(0) +
t∑

s=1
Ts−1FX(t − s). (26)

By acting on both sides of this identity with F we obtain

Y(t) = FTtX(0) +
t∑

s=1
FTs−1Y(t − s) (27)

where

Y(t) = FX(t).

Once we solve the RE (27), we can rewrite (26) as the explicit expression

X(t) = TtX(0) +
t∑

s=1
Ts−1Y(t − s). (28)

Here Y takes values in Rn, but whenever F has the form (21), we know that

Y(t) = VB(t) (29)

for a function B taking values in Rm. We can then rewrite (27) in the form

B(t) = UTtX(0) +
t∑

s=1
UTs−1VB(t − s), (30)

that is, we get (16) with

K(s) = UTs−1V , (31a)

G(s) = UTsX(0). (31b)

Note thatwhen the rank ofU is notmaximal, there are fewer states-at-birth in the stochastic
sense than there are in the literal sense. In such a case, a further reduction in RE system
size is possible with a different choice of U and V (see one such example below).

Hence, if the conditions of Theorem 2.5 (or Theorem 2.1 in the case where (30) amounts
to a scalar equation) are satisfied, we can first deduce the asymptotic behaviour of B(t)
from that theorem and then use (28), with Y given by (29), to determine the large time
behaviour of the population state X(t). We work out the details of this procedure in the
two subsections that follow. But first, we discuss how the next-generation matrix and the
basic reproduction number corresponding to (20) are connected with (13).

For t ∈ N, the (i, j)th element of Tt is the probability that an individual with i-state j is
alive t units of time later and has then i-state i. If rσ (T) < 1 then (I − T)−1 exists and the
(i, j)th element of

(I − T)−1 =
∞∑
t=0

Tt

equals the expected time an individual starting with i-state j will spend in i-state i.
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The matrix

LL = F(I − T)−1 (32)

is the next-generation matrix (NGM) with large domain, with the (i, j)th element of LL
specifying the expected number of future offspring with i-state i produced by an individual
presently having i-state j. Often one defines

R0 = rσ (LL). (33)

The elements of the NGM with large domain (32) specify the expected numbers of future
offspring of individuals for all i-states. But, with the factorization of F as described directly
after (21), we can focus on the true NGM

L = U(I − T)−1V . (34)

We invite the reader to verify that the (i, j)th element of L gives the expected life-
time number of offspring with state-at-birth i produced by a newborn individual with
state-at-birth j.

Note thatwhen the rank ofU is smaller thanm (which happenswhenever there are fewer
states-at-birth in the stochastic sense than there are in the literal sense), a further reduction
to the NGM with small domainLS is possible by alteringU and V (see one example below
and also [14] for the derivation of NGM with small and large domains in the context of
epidemiological models in continuous time).

One easily verifies that

(i) the NGM with large domain (32) and the NGM (34) have the same non-zero
eigenvalues and therefore (33) amounts to

R0 = rσ (L). (35)

(And when further reduction to LS is possible then alsoR0 = rσ (LS).)
(ii) If � is a right eigenvector of L corresponding to a non-zero eigenvalue λ then �̃ =

V� is a right eigenvector of LL corresponding to eigenvalue λ.
(iii) If 	̃ is a left eigenvector of LL corresponding to a non-zero eigenvalue λ then 	 =

	̃V is a left eigenvector of L corresponding to eigenvalue λ.

Furthermore, when rσ (T) < 1 we deduce from (12) and (31a) that

K̄(1) = U(I − T)−1V . (36)

That is, when U and V are defined as described after (21) then K̄(1) is the NGM and we
recover (13).

3.1. One state-at-birth

The simplest situation arises when there is only one state-at-birth, either in the determin-
istic sense where all individuals are identical at birth (e.g. when age is the only struc-
turing variable) or in the stochastic sense where states-at-birth have a given probability
distribution. In that case F has one dimensional range.
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Then F = V U, where V ∈ Rn (with ‖V‖ = 1) spans the range of F andU corresponds
to the row n-vector (i.e. a 1 × nmatrix) of fertility rates. In the notation of Section 2.1 we
then define

b(t) = UX(t − 1)

and consider the scalar RE (7) with

k(t) = UTt−1V (37a)

g(t) = UTtX(0). (37b)

Let’s assume that {k(t)}∞t=1 and {g(t)}∞t=1 thus defined satisfy the conditions inTheorem2.1.
When rσ (T) < 1 we have

k̄(z) = U(zI − T)−1V (38)

for |z| ≥ 1 and in particular

R0 = U(I − T)−1V . (39)

IfR0 < 1 then b(t) → 0 as t → ∞ and consequently X(t) → 0 as t → ∞.
Let’s focus on the caseR0 ≥ 1. We can then compute the real time growth rate ρ as the

unique solution of the Euler–Lotka equation

k̄(z) = 1,

with necessarily either ρ = 1 = R0 or 1 < ρ < R0. Since (38) can be written as

k̄(z) = z−1U(I − z−1T)−1V (40)

we observe that the population growth rate ρ is the value of z for which both the gener-
ation and the real time process become stationary when we multiply all fertilities and all
transition probabilities by z−1. When ρ > 1 the latter can be interpreted as introducing an
additional, state-independent, death probability per time step 1 − ρ−1.

Then for t → ∞
b(t) = cρt + o(ρt)

for some constant c and from (28) and (29) it now follows that

X(t) = cρt
t∑

s=1
ρ−sTs−1V + o(ρt)

= cρt(ρI − T)−1V + o(ρt).

That is, the solution X(t) of (20) with X(0) > 0 grows, for large t, geometrically with rate
ρ while converging to the stable distribution

�r = 1
‖(ρI − T)−1V‖ (ρI − T)−1V . (41)
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Here the index r refers to ‘real time’ (as opposed to ‘generation’). By rewriting (41) as

�r = 1
‖(I − ρ−1T)−1V‖ (I − ρ−1T)−1V (42)

we can (with the l1 norm) interpret the denominator as the life expectancy of a new-
born individual whenwe introduce into the system an additional, state-independent, death
probability per time step 1 − ρ−1 (or, in other words, discount again and again the next
year by a factor ρ−1).

In the spirit of (9b) we next ask: how do the components of X(0) contribute to future
population sizes, i.e. to the constant c? From (37b) it follows that

ḡ(z) = zU(zI − T)−1X(0). (43)

Now recall Theorem 2.1(iii) and conclude that the j-th component of the row vector

	r = cU(ρI − T)−1 (44)

specifies the (relative) contribution of individuals with i-state j to future population size.
Or, in the now generally accepted terminology introduced by Fisher [18], specifies the
reproductive value of state j.

It is straightforward to check that

(i) F+T has dominant eigenvalue ρ with the stable distribution�r as the corresponding
right eigenvector and the vector of reproductive values 	r as the corresponding left
eigenvector.

(ii) 	r is also a left eigenvector of the scaled NGM with large domain

L(ρ)
L := F(ρI − T)−1 = ρ−1F(I − ρ−1T)−1

corresponding to eigenvalue 1. That is, it is also (modulo normalization) the vector
of generation-based reproductive values when we discount fertilities and transition
probabilities by ρ−1.

We normalize the vector of reproductive values by requiring

	r�r = 1 (45)

and obtain

	r = ‖(ρI − T)−1V‖
U(ρI − T)−2V

U(ρI − T)−1. (46)

If we now observe that

(I − ρ−1T)−2 = I + 2ρ−1T + 3ρ−2T2 + . . . ,

we can rewrite 	r as

	r = ‖(I − ρ−1T)−1V‖
U(I − ρ−1T)−2V

U(I − ρ−1T)−1 (47)

and interpret the denominator as ρ−1 times the expected discounted age of the parent of
a newborn individual.
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Example 3.1: Consider the Leslie model with three age classes, i.e.

T =
⎡
⎣ 0 0 0
t21 0 0
0 t32 0

⎤
⎦ and F =

⎡
⎣f1 f2 f3
0 0 0
0 0 0

⎤
⎦ .

(see Figure 2 for the schematic representation of the model). All individuals are born into
the first age class so F = V U for

V =
⎡
⎣10
0

⎤
⎦ and U = [

f1 f2 f3
]
.

A straightforward calculation reveals that

(zI − T)−1 =
⎡
⎣ z−1 0 0

t21z−2 z−1 0
t32t21z−3 t32z−2 z−1

⎤
⎦ ,

which yields the Euler–Lotka equation

k̄(z) = f1z−1 + f2t21z−2 + f3t32t21z−3 = 1.

Hence

1 = f1ρ−1 + f2t21ρ−2 + f3t32t21ρ−3,

R0 = f1 + f2t21 + f3t32t21.

Using (42), we obtain the asymptotic age distribution

�r = 1
1 + t21ρ−1 + t32t21ρ−2

⎡
⎣ 1

t21ρ−1

t32t21ρ−2

⎤
⎦ ,

while (47) gives the row vector of reproductive values

	r = c
[
f1ρ−1 + f2t21ρ−2 + f3t32t21ρ−3, f3t32ρ−2 + f2ρ−1, f3ρ−1]

= c
[
1, f3t32ρ−2 + f2ρ−1, f3ρ−1]

where the constant c is determined such that 	r�r = 1.

Figure 2. A schematic representation of the Leslie model in Example 3.1.
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Figure 3. The plots of (a) z �→ k̄(z), (b) the asymptotic age distribution and (c) the reproductive values
for the (concrete example of the) Leslie model in Example 3.1.

For the specific case with t21 = 0.7, t32 = 0.8, f1 = 0, f2 = 1 = f3 we find that ρ = 1.1
andR0 = 1.26 (see Figure 3(a)). The asymptotic age distribution is

�r =
⎡
⎣0.4760.303
0.221

⎤
⎦ ,

while the normalized vector of reproductive values is

	r = [
0.867, 1.363, 0.788

]
(see panels (b) and (c) of Figure 3). Note that if we define N(t, a) = xa(t) we can write

N(t + 1, a + 1) = t(a+1)aN(t, a)

N(t + 1, 1) =
3∑

a=1
faN(t, a)

which clearly exposes the Leslie matrix model as the analogue of the PDE formulation of
a continuous age and time model. The RE (7) is, of course, the analogue of Lotka’s RE in
the continuous age and time setting. Note also that b(t) = N(t, 1).

3.2. More than one state-at-birth

Even when individuals may be born in different i-states, the number of individual states-
at-birth is typically significantly lower than the total number of i-states, thus making the
much smaller system sizes of RE an attractive alternative to (20).

Suppose there arem states-at-birth with 1<m<n (this can now be understood literally,
or, if aiming for the minimal RE system size, in a stochastic sense). We then write F = VU
for some positive n × mmatrix V (normalized such that allm columns of V have l1-norm
equal to one) and a positivem × nmatrix U and consider the RE (16) with {K(s)}∞s=1 and
{G(s)}∞s=1 as in (31a). Next, require that the assumptions of Theorem 2.5 hold.

If rσ (T) < 1 the asymptotic dynamics of (30) is completely determined by the second
term. Furthermore,

K̄(z) = U(zI − T)−1V (48)

for |z| ≥ 1. In particular, K̄(1) is the next-generation matrix (possibly with small domain)
and

R0 = rσ (U(I − T)−1V). (49)
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WhenR0 < 1 we have B(t) → 0 as t → ∞ and consequently X(t) → 0 as well.
Suppose now that R0 ≥ 1. The real time growth rate ρ is determined as the unique

solution of the Euler-Lotka equation

rσ (K̄(z)) = 1,

where again either ρ = 1 = R0 or 1 < ρ < R0. Note that rewriting (48) as

K̄(z) = z−1U(I − z−1T)−1V , (50)

we can oncemore observe that the population growth rate ρ is the value of z for which both
the generation and the real time process become stationary when we multiply all fertilities
and all transition probabilities by z−1 (and when ρ > 1 the latter can be interpreted as
introducing an additional, state-independent, death probability per time step 1 − ρ−1).
Note also that thematrix K̄(ρ) is theNGM(orNGMwith small domain)whenwe discount
fertilities and transition rates by a factor ρ−1,

K̄(ρ) = ρ−1U(I − ρ−1T)−1V .

The m-vector B(t) will for large t grow geometrically with rate ρ while converging to
the distribution �, where � is the normalized positive right eigenvector of K̄(ρ) corre-
sponding to eigenvalue 1. We can then deduce from (28) and (29) that, for R0 > 1 and
a non-trivial initial condition X(0) > 0, the vector X(t) grows geometrically with rate ρ

while converging to the asymptotic distribution

�r = 1
‖(ρI − T)−1V�‖ (ρI − T)−1V� (51a)

= 1
‖(I − ρ−1T)−1V�‖ (I − ρ−1T)−1V�. (51b)

When using the l1 norm, we can interpret the denominator in (51b) as the expected dura-
tion of life of a newborn when newborns are sampled from the asymptotic distribution
� and with additional, state-independent, death probability 1 − ρ−1 introduced into the
system (or alternatively, when we discount again and again the next year by ρ−1).

To see how the components of X(0) contribute to future population growth (i.e. to the
constant c in (19b)) we compute

Ḡ(ρ) = ρU(ρI − T)−1. (52)

Using (19b) we now conclude that, if	 is a positive left eigenvector of K̄(ρ) corresponding
to eigenvalue 1 then the j-th element of the row n-vector

	r = c	U(ρI − T)−1 (53)

specifies the (relative) contribution of individuals with i-state j to future population growth.
Again, we normalize this vector by requiring 	r�r = 1. Thus we obtain

	r = ‖(ρI − T)−1V�‖
	U(ρI − T)−2V�

	U(ρI − T)−1 (54a)

= ‖(I − ρ−1T)−1V�‖
	U(I − ρ−1T)−2V�

	U(I − ρ−1T)−1. (54b)
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With the same reasoning as in the previous subsection, we can now interpret the j-th com-
ponent of U(I − ρ−1T)−2V� in the denominator of (54b) as ρ−1 times the expected age
of the parent of a newborn individual with i-state j when we sample parents according to
� and take into account an additional, state-independent, death probability 1 − ρ−1.

Again, one easily verifies that

(i) F+T has dominant eigenvalue ρ with the stable distribution�r as the corresponding
right eigenvector and the vector of reproductive values 	r as the corresponding left
eigenvector.

(ii) 	r is also a left eigenvector of the scaled NGM with large domain

L(ρ)
L := F(ρI − T)−1 = ρ−1F(I − ρ−1T)−1

corresponding to eigenvalue 1. That is, it is also the vector of (generation-based)
reproductive values when we discount fertilities and transition probabilities by ρ−1.

Note that the conditions A6 and A7 imposed on the resolvent can be interpreted bio-
logically. Indeed, by definition the kernel K = {K(t)}∞t=1 contains information about the
expected numbers of daughters produced by one female at various ages. The matrixK2∗ =
K ∗ K yields the expected numbers of granddaughters (i.e. second generation offspring)
and the j-th convolution ofK with itself,Kj∗, yields the expected number of j-th generation
offspring. Summing over all generations of offspring we obtain the clan kernel,

K(c) :=
∞∑
j=1

Kj∗.

Since clan members of every female are either her daughters or clanmembers of one of her
daughters, or, alternatively, either her daughters or daughters of a member of the clan, we
must have

K(c) = K + K ∗ K(c) = K + K(c) ∗ K.

That is, the clan kernelK(c) is the resolvent ofK. The assumptionsA6 andA7 can therefore
be interpreted as follows:

(A6) Consider a newborn individual. At some time t0 after her birth, clan members with
any state-at-birth will be born, irrespective of the birth state of the focus individual.

(A7) Consider two newborn individuals. There exist t1, t2 with greatest common divisor
one, such that it is possible to choose the birth states of the focus individuals so that
at times t1 and t2 after their birth, clan members of at least one of them will be born.

As a summary of the results, we provide at the end of this Section an algorithm for
deducing the large time behaviour of (discrete time) structured-population models (SPM)
via the renewal equation formulation (and for an application see the example below).

Example 3.2: Consider a population in which individuals are characterized by both age a
and some indicator of size s (for example, both age and size are important determinants of
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population dynamics of Rhododendron maximum shoots, see [3, 23]) and let

{(a, s) : a ∈ {1, 2, 3}, s ∈ {1, 2}}

be the set of i-states. We enumerate the i-states in the following way:

(a,s) (1,1) (2,1) (3,1) (1,2) (2,2) (3,2)

label 1 2 3 4 5 6
.

Let

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
t21 0 0 0 0 0
0 t32 0 0 0 0
0 0 0 0 0 0
t51 0 0 t54 0 0
0 t62 0 0 t65 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 f12 f13 0 f15 f16
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 f45 f46
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(55)

describe the survival & state transitions and fertility rates, respectively (see Figure 4 for a
schematic representation of the model). There are two states at birth, i.e. (1, 1) and (1, 2),
corresponding to labels 1 and 4, respectively. Then F = V U for

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
0 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and U =
[
0 f12 f13 0 f15 f16
0 0 0 0 f45 f46

]
. (56)

Figure 4. A schematic representation of (a) the state transitions and (b) fertilities in themodel described
in Example 3.2.
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The next-generation matrix is

L = U(I − T)−1V

=
[
f12t21 + f13t32t21 + f15t51 + f16(t62t21 + t65t51) f15t54 + f16t65t54

f45t51 + f46(t62t21 + t65t51) f45t54 + f46t65t54

]

andR0 is the dominant eigenvalue of L.
Let us first consider the case where all the t′s and the f ′s are strictly positive. Using (31a)

we find

K(1) = 0,

K(2) =
[
f12t21 + f15f51 f15t54

f45t51 f45t54

]
	 0

K(3) =
[
f13t32t21 + f16(t62t21 + t65t51) f16t65t54

f46(t62t21 + t65t51) f46t65t54

]
	 0

K(t) = 0 for t ≥ 4

and using (31b) that G(t) = 0 for t ≥ 3. Therefore

R(1) = K(1) = 0,

R(2) = K(2) 	 0

R(3) = K(3) 	 0

R(t) ≥ K(2)R(t − 2) 	 0 for t ≥ 4.

The positivity of the resolvent for t ≥ 2 can also be deduced by interpretation. Indeed, if all
the t’s and the f ’s are strictly positive then individuals with either birth state will produce
offspring of either size at ages 2 and 3. For t ≥ 2 there will therefore be born clan members
with any state-at-birth, irrespective of the birth state of the mother.

All the assumptions of Theorem 2.5 are therefore satisfied. We have

K̄(z) =
∞∑
s=1

K(s)z−s = K(2)z−2 + K(3)z−3.

Let’s assume thatR0 > 1. We can then compute the growth rate ρ > 1 as the unique real
solution z of the Euler-Lotka equation

rσ (K̄(z)) = 1.

As a concrete example consider

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0.3 0 0 0 0 0
0 0.3 0 0 0 0
0 0 0 0 0 0
0.3 0 0 0.5 0 0
0 0.3 0 0 0.5 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Figure 5. The plots of (a) z �→ spectral radius of K̄(z), (b) the asymptotic i-state distribution and (c)
the reproductive values for (the specific example of) the age-size structured-population model in
Example 3.2.

Then

K̄(z) =
[
0.6z−2 + 0.33z−3 0.5z−2 + 0.25z−3

0.3z−2 + 0.24z−3 0.5z−2 + 0.25z−3

]
.

We can find the solution of the Euler-Lotka equation numerically and get ρ = 1.18, while
R0 = 1.48 (see Figure 5(a)). The asymptotic distribution of states-at-birth is found as the
( normalized) positive eigenvector of K̄(ρ) corresponding to eigenvalue 1. We obtain

� =
[
0.578
0.422

]

and then from (51b) conclude that the asymptotic population distribution is given by

�r =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.343
0.087
0.022
0.251
0.193
0.104

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We furthermore find that the left eigenvector of K̄(ρ) corresponding to eigenvalue 1
(normalized such that 	� = 1) is

	 = [0.986, 1.02],

from which we conclude using (54b) that the normalized vector of reproductive values is

	r = [
0.713 1.067 0.603 0.737 1.745 1.226

]
(see also panels (b) and (c) of Figure 5).

Note that the condition of strict positivity of t’s and f ’s can be relaxed somewhat. For
example, if we assume that (i) individuals of size 1 only reproduce at age 3 (and then only
produce offspring of size 1) and (ii) individuals of size 2 reproduce at age 2 (then producing
size 1 individuals) and 3 (when they produce offspring of either size) then it is clear that
R(t) is strictly positive for t ≥ 3.
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In some situations, a further reduction of the NGM and the RE system is possible. Such
is the case when we assume that (i) small individuals do not reproduce (i.e. f12 = 0 = f13)
and that (ii) large individuals produce size 1 and size 2 offspring at a given ratio p : (1 − p),
regardless of the age of the parent. That is, f15 = pf5, f16 = pf6 and f45 = (1 − p)f5, f46 =
(1 − p)f6 for some 0<p<1 and f5, f6 > 0, leading to

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 pf5 pf6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 (1 − p)f5 (1 − p)f6
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In this case, F (orU in (56)) has rank 1. There are still two states-at-birth in the literal sense.
However, if we interpret the term state-at-birth in the stochastic sense then all individuals
are identical at birth in the sense that they are all born with i-state distribution

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

p
0
0

1 − p
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then F = V U for

U = [
0 0 0 0 f5 f6

]
and the NGM with the small domain amounts to the scalar

LS = U(I − T)−1V = p(f5t51 + f6(t62t21 + t65t51)) + (1 − p)(f5t54 + f6t65t54) = R0.

In this special case, the basic reproduction number R0 can also easily be deduced from
interpretation (and we invite the reader to do so).

We now have

k(1) = 0,

k(2) = pf5t51 + (1 − p)f5t54 > 0

k(3) = pf6(t62t21 + t65t51) + (1 − p)f6t65t54
k(t) = 0 for t ≥ 4

and the scaler Euler-Lotka equation takes the form

k̄(z) =
∞∑
s=1

k(s) = k(2)z−2 + k(3)z−3 = 1. (57)

If R0 > 1 we can then first find the growth rate ρ as the unique real solution of the
Euler–Lotka equation (57) and then use (42) and (47) to determine the asymptotic i-state
distribution and the asymptotic reproductive values, respectively.
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Deducing the asymptotic behaviour in (linear discrete time) SPM from the corre-
sponding RE

Starting with a structured-population model

X(t + 1) = (F + T)X(t), X(t) ∈ R
n,

the recipe is as follows.

Step 1. Identify states-at-birth and write the fertility matrix in the form F = V U for some
normalised n × m birth-state matrixV and them × n fertility matrixU. IfV has rank
1 proceed with the (a) part of the algorithm, otherwise follow the (b) part.
Remark. For practical purposes, it may be handy to order the i-states such that the
birth states come first. Then in the case of m states-at-birth (in the literal sense) V
is the matrix with columns e1, . . . , em and U is obtained by taking the rows 1, . . . ,m
from F.

Step 2. (a) Derive k(t) and g(t) using (37a) and check that the assumptions of Theorem 2.1
hold. Furthermore, check that the spectral radius of T is below one 1.

(b) Derive K(t) andG(t) using (31a) and check that the assumptions of Theorem 2.5
hold. Furthermore, check that the spectral radius of T is below one1.

Step 3. (a) ComputeR0 in (39). IfR0 < 1 conclude that the population dies out. IfR0 ≥ 1
compute the growth rate ρ ≥ 1 as the unique real solution of the E-L Equation (4)
with k̄ in (38) (with ρ = 1 wheneverR0 = 1). Conclude that:
• the population grows geometrically with rate ρ and the asymptotic i-state

distribution is given by

�r = 1
‖(ρI − T)−1V‖ (ρI − T)−1V ,

• the (real time) reproductive values are collected in

	r = ‖(ρI − T)−1V‖
U(ρI − T)−2V

U(ρI − T)−1.

(b) Compute R0 in (49). If R0 < 1 conclude that the population dies out. If
R0 ≥ 1 compute the growth rate ρ ≥ 1 as the unique real solution of the E-L
Equation (11) with K̄ in (48) (with ρ = 1 whenever R0 = 1). Determine the
asymptotic state-at-birth distribution � and the asymptotic (generation-based)
reproductive values 	 as, respectively, the right and the left positive normalised
eigenvectors of K̄(ρ) corresponding to eigenvalue 1. Conclude that:
• the population grows geometrically with rate ρ and the asymptotic i-state

distribution is given by

�r = 1
‖(ρI − T)−1V�‖ (ρI − T)−1V�,

• the (real time) reproductive values are collected in

	r = ‖(ρI − T)−1V�‖
	U(ρI − T)−2V�

	U(ρI − T)−1.

1 A sufficient condition is that all column sums of T are strictly below 1.
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4. The caseR0 = 1 = ρ

We now show directly that in the special case whenR0 = 1 = ρ we can compute

(i) the asymptotic distribution (i.e. the right eigenvector) and
(ii) the reproductive values (i.e. the left eigenvector)

in the real time setting from those obtained in the generation-bookkeeping frame-
work. Note that the former result has been demonstrated in a more general setting
in [10, 12].

Suppose that there are m states-at-birth in the literal sense and as before write F = V
U for some normalized n × m birth-state matrix V and them × n fertility matrixU. Then
L = U(I − T)−1V is the next-generation matrix.

Let �g and �r denote the normalized positive right eigenvector in, respectively, gener-
ation and real time framework, corresponding to eigenvalue 1. That is

U(I − T)−1V�g = �g , ‖�g‖ = 1 (58a)

and

(VU + T)�r = �r, ‖�r‖ = 1. (58b)

Now apply V from the left on both sides of (58a) and write

VU(I − T)−1V�g = (I − T)(I − T)−1V�g .

If we now denote� = (I − T)−1V�g then clearly (VU + T)� = �. We thus find that the
asymptotic distributions in real time and in the generation setting are related by

�r = 1
‖(I − T)−1V�g‖ (I − T)−1V�g , (59)

as indeed follows from (51b) when we observe that with R0 = 1 = ρ, K̄(ρ) is the NGM
and� = �g . When using the l1 norm, the denominator in (59) is the expected duration of
life of a newborn when we sample newborns according to �g . As observed before, V�g is
the asymptotic distribution in the generation-bookkeeping framework when we consider
the NGM with large domain LL = F(I − T)−1.

Now let 	g and 	r denote the normalized positive left eigenvector in, respectively,
generation and real time framework, corresponding to eigenvalue 1, i.e.

	gU(I − T)−1V = 	g , 	g�g = 1 (60a)

and

	r(VU + T) = 	r, 	r�r = 1. (60b)

Acting with U from the right on both sides of (60a) we find that

	gU(I − T)−1VU = 	gU(I − T)−1(I − T).
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Then for � = 	gU(I − T)−1 we have �(VU + T) = �. We thus find that the repro-
ductive values in the real time setting relate to the ones in the generation-bookkeeping
by

	r = c	gU(I − T)−1,

where the constant c is chosen such that with �r in (59) we have 	r�r = 1. We obtain

	r = ‖(I − T)−1V�g‖
	gU(I − T)−2V�g

	gU(I − T)−1. (61)

Alternatively, we can deduce this from (54b) by taking into account that withR0 = 1 = ρ

we have	 = 	g . The j-th component ofU(I − T)−2V�g in the denominator of (61) is the
expected age of the parent of a newborn individual with i-state j when we sample parents
according to�g . As observed before,	r is also the vector of generation-based reproductive
values when we consider the NGM with large domain LL = F(I − T)−1.

5. Concluding remarks

The specification of a linear physiologically structured population model involves two
rules, one for reproduction and one for development/maturation/movement and survival.
Once these ingredients are specified, one can constructively define next-population-state
operators. For constant environments, i.e. autonomous dynamics, a first question is: will
the population ultimately grow exponentially (in which case one has to ponder the issue of
density dependence) or decline and go extinct? As emphasized by Jim Cushing and Zhou
Yicang [7], an efficient way of answering the question is to adopt a generation perspec-
tive, by focusing on expected lifetime offspring production by newborn individuals, and
to characterize the appropriate average as the dominant eigenvalue of the next-generation
matrix. On the other hand, people familiar with the Perron+-Frobenius theory of posi-
tive dynamical systems (as presented in, for instance, Berman and Plemmons [2], Bátkai
et al. [1]) will be inclined to compute the spectral bound of the generator of the real time
dynamics. Here, in the spirit of the elegant Li-Schneider paper [22], we have uncovered
how these two approaches relate to each other. Our main contribution has been to high-
light the connecting role of the Renewal Equation and to revive the powerful results of
Feller and Thieme that describe the asymptotic large time behaviour of its solutions. As a
one sentence summary of the present paper we offer: use the ingredients to formulate the
RE, apply Feller/Thieme, and everything you might be interested in can next be computed
explicitly.
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Appendix. Concise summary of the continuous time formalism

As the analogue of (20) we consider the linear ODE system

dX
dt

= (F + T)X, (A1)

where X takes values inRn, F is a positive n × nmatrix describing reproduction and T is a positive-
off-diagonal n × nmatrix describing survival and development. We assume that the spectral bound
s(T) is negative, allowing us to write

− T−1 =
∫ ∞

0
eaTda. (A2)

The variation-of-constants version of (A1) reads

X(t) = etTX(0) +
∫ t

0
eτTFX(t − τ) dτ . (A3)

Putting

Y(t) = FX(t) (A4)
and applying F to both sides of (A3) we obtain the RE

Y(t) = F etTX(0) +
∫ t

0
FeτTY(t − τ) dτ (A5)

and, once we have constructed Y by solving this RE, we can interpret (A3) as an explicit expression
for X:

X(t) = etTX(0) +
∫ t

0
eτTY(t − τ) dτ . (A6)

Whenever F has the form (21), we can introduce B(t) = UX(t). Then Y(t) = VB(t) and we can
rewrite (A5) as

B(t) = U etTX(0) +
∫ t

0
U eτTVB(t − τ) dτ . (A7)

The translation invariant version of (A7) is

B(t) =
∫ ∞

0
U eτTVB(t − τ) dτ . (A8)

http://webarchive.iiasa.ac.at/Research/ADN/Metz2Book.html
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Solutions of (A1) and (A8) defined for all times, i.e. for t ∈ R, are related to each other by

B(t) = UX(t),

X(t) =
∫ ∞

0
eτTVB(t − τ) dτ . (A9)

Clearly (A1) has a solution of the form

X(t) = ert�r (A10)

if and only if r is an eigenvalue of F+T and �r is a corresponding eigenvector, i.e.

(F + T)�r = r�r. (A11)

By substitution we see that (A8) has a solution of the form

B(t) = ert� (A12)

if and only if U(rI − T)−1V has eigenvalue 1 and � is a corresponding eigenvector, i.e.

� = U(rI − T)−1V�. (A13)

According to (A9) we have

� = U�r ,

�r = (rI − T)−1V�. (A14)

We recall how this can be used in practice:

Step 1. Find the real number r for which the spectral radius of U(rI − T)−1V equals one, by
exploiting that the spectral radius is a monotone decreasing function of r (see [19–21]).

Step 2. Find � as the dominant positive eigenvector of U(rI − T)−1V .
Step 3. Compute �r by using (A14); if desired, renormalize to obtain the multiple of �r that has

norm one.

For the corresponding left eigenvectors we have

	r(F + T) = r	r ,

	 = 	F(rI − T)−1. (A15)

Rewriting the first of these as follows:

	rF = 	r(rI − T)−1 ⇐⇒ 	rF(rI − T)−1 = 	r

we see that, modulo normalization, 	r and 	 are identical. Note that the NGM with large domain
is now given by

LL := −FT−1 (A16)
and that, withR0 defined as the spectral radius of L, the relation

sign(R0 − 1) = sign r (A17)

holds. In the special caseR0 = 1, r = 0,	 and� are, respectively, the left and the right eigenvector
of L corresponding to its dominant eigenvalue.

The formalism easily extends to an i-state space that is a continuum and to measures see [10, 19,
20, 26]. A convenient starting point is the following generalization of (A9):

b(t,ω) =
∫



β(η,ω)x(t, dη),

x(t,ω) =
∫ ∞

0

∫


u(a, ξ ,ω)b(t − a, dξ)da. (A18)
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By substituting the second of these identities into the first we obtain the RE

b(t,ω) =
∫ ∞

0

∫


K(a, ξ ,ω)b(t − a, dξ)da (A19)

with

K(a, ξ ,ω) :=
∫



β(η,ω)u(a, ξ , dη). (A20)

Clearly, (A19) has a solution of the form

b(t,ω) = ert�(ω) (A21)

if and only if

�(ω) =
∫



(∫ ∞

0
K(a, ξ ,ω) e−rada

)
�(dξ). (A22)

We refer to [19] for a detailed analysis.
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