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Evolutionary biologists have long been interested in understanding the factors
that promote diversification in organisms, often focussing on distinct and/or
conspicuous phenotypes with direct effects on natural or sexual selection
such as body size and plumage coloration.However, multiple traits that poten-
tially influence net diversification are not conspicuous and/or might be
concealed. One such trait, the dark, melanin-rich skin concealed beneath the
feathers, evolved more than 100 times during avian evolution, frequently in
association with white feathers on the crown and UV-rich environments,
suggesting that it is a UV-photoprotective adaptation. Furthermore, multiple
species are polymorphic, having both light and dark skin potentially aiding
occupation in different UV radiation environments. As such these polymorph-
isms are predicted to occur in species with large latitudinal variation in
their distribution. Furthermore, by alleviating evolutionary constraints on
feather colour, the evolution of dark skin may promote net diversification.
Here, using an expanded dataset on bird skin coloration of 3033 species we
found that more than 19% of species had dark skin. In contrast to our predic-
tion, dark skinned birds have smaller distribution ranges. Furthermore, both
dark skin and polymorphism in skin coloration promote net diversification.
These results suggest that even concealed traits can influence large scale
evolutionary events such as diversification in birds.
1. Introduction
Evolutionary biologists have long been interested in understanding the factors
that promote net diversification (i.e. speciation minus extinction) in organisms.
Such factors include traits involved in natural selection such as body size, nest
type and tooth complexity [1,2,3], but also traits involved in sexual selection
such as plumage [4,5]. Regardless of the underlying mechanism, most previous
work has focussed on distinct and/or conspicuous phenotypes with a clear link
with selection. How less conspicuous traits, with more indirect effects on
selection, influence net diversification remains unclear.

Previous work has shown that colours of birds vary not only in the plu-
mage, but also in other integumentary structures [6–9]. One such example is
skin melanization [9,10], which likely evolved over 100 times in birds from
an unmelanized ancestor [9]. As in other vertebrates, including humans, dark
skin is produced by the deposition of eumelanin [11,12]. UV irradiation (300–
400 nm) is normally absorbed by feathers with eumelanin, and thus passes
through to the skin when feathers are light-coloured or absent. Thus, that
dark-skinned birds inhabit high irradiation regions (including the tropics),
and tend to be bald and/or have white feathers, suggests that dark skin in
birds protects against harmful UV light. However, as in humans, dark skin
in low UV radiation environments may come at a cost, such as problems
with producing vitamin D [13]. For species with high latitudinal variation
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(and thus variation in UV radiation), conflicting selective
pressures might select for the evolution of polymorphisms,
where species can have both dark and light skin colours,
depending on the environment.

By protecting skin against UV damage, the evolution of
dark skin might alleviate selection against the evolution
of light feathers (and/or loss of feathers), and thereby enhance
the potential for lighter feathers to evolve in response to other
selective pressures such as predation, the need for sexual and
social signalling or establishment in a new niche. For example,
white crown feathers (where dark skin is most distinct), are
often used in display (e.g. in white-crowned manakins), and
camouflage (e.g. many desert birds) [14], but might come at
the cost of decreased UV protection. Similarly, the evolution
of naked skin helps vultures consuming carrion, but also
exposes them to UV irradiation [15]. Should dark skin provide
any release from selection against white feathers, then the
evolution of dark skinmight result in increased net diversifica-
tion rates. Similarly, polymorphism, i.e. having both dark
and light skin colour in the same species, might increase net
diversification as it allows more flexibility in heterogeneous
environments and/or distributions [16]. This is particularly
true when integumentary colour modification (i.e. in skin
and feathers) is independent and can change at different
times in function of different selective pressures. Indeed, in
lizards and birds, skin and plumage colour polymorphisms,
respectively, act as motors of diversification [17,18] but
see [19].

Here we use an expanded dataset of bird skin colours
comprising all but five genera and 3033 species (compared
to the 2247 before [9]) to investigate whether and how the
evolution of dark skin influenced net diversification.
2. Methods
(a) Data collection
Methods follow Nicolaï et al. [9]. We examined skin on the back of
the head, near the neck region (this time excluding ventral color-
ation as ventral dark skin is much rarer than dorsal dark skin).
To do sowe lifted, ormoved away, feathers to expose a skin section
and registered whether the skin was melanized (i.e. black) or not.
In species with large areas of naked skin (e.g. Cathartidae and
Threskiornithidae) we scored the skin colour based on the exposed
skin patch. Naked and exposed patches near the face (i.e. areas
around the eye and bill) were not used to assess skin colour. We
collected data from adult specimens when possible and tried
to collect data for at least one male and one female specimen.
We screened all available specimens of each species for poly-
morphism: when we sampled at least two specimens of a species
and found both dark and light skin (regardless of the sex), we
classified the species as polymorphic. This means that, in some
cases, polymorphism is the result of sexual dichromatism. Further-
more, this does not mean that a single specimen has to have both
dark and light skin (which sometimes happen, e.g. in Picathartes).
For polymorphic species we collected additional information from
all available specimens, with a maximum of five specimens per
sex, to investigate geographical influences on polymorphism.
However, the geographical information turned out to be too
incomplete or unspecific for analyses. All new data (i.e. excluding
data from [9]) are from the natural history collection of the Royal
Belgian Institute for Natural Sciences (RBINS, permission granted
by Olivier Pauwels) unless reported otherwise. In total we exam-
ined 11 702 specimens from 3033 (extinct and extant) species.
New specimens (relative to [9]) were collected following three
priority criteria: (1) sampling additional species from large
genera where previously only one or few species were sampled,
(2) species with white crown feathers and (3) sampling genera
with known dark-skinned species. This last criterion resulted in
a large increase in the number of species with dark skin (e.g. in
Icterus and Cinnyris).

(b) Choice of phylogenetic tree
All phylogenetic analyses were run on the complete Bayesian
maximum clade credibility species-level avian phylogeny from
the Bird Tree Project [20], built based on both genetic and taxo-
nomic information and the higher-order relationship backbone
from Hackett et al. [21]. Taxonomy follows Clements [22]. We
had an overlap between data and the phylogenetic tree of 2995
species for skin colour data and 2010 species for polymorphism
data (differences mostly being explained by extinct species and
recently split subspecies). For the reduced Jetz et al. [20] tree, i.e.
that for which taxa without genetic information were excluded.
Previously we showed that this phylogeny produced similar
results as using a genes-only tree, nonetheless we tested for phylo-
genetic robustness by re-running analyses on 100 different trees
randomly selected from the posterior distribution [9]. Further-
more, since this might influence state-dependent diversification
analyses in particular, we also ran a second set of analyses using
a MCC genes-only tree for these analyses. We had an overlap of
2319 species for skin colour data and 1854 species for polymorph-
ism data.

(c) State-dependent diversification analyses
To test for associations between dark skin/polymorphism and
diversification we used the HiSSE (Hidden State Speciation
and Extinction) package [23] in R v. 4.1 [24]. We ran two sets of
SSE models, one where the tested trait was dark skin and another
where the tested trait was skin colour polymorphism.More specifi-
cally, we used the Binary State Speciation and Extinction (BiSSE)
[25] and HiSSE framework. First, we implemented a BiSSE null
model that assumes that net diversification rates were similar in
lineages with or without dark skin, regardless of transition rates
associated with it. Next, we implemented a BiSSE model that
tests whether net diversification rates differ between lineages
when dark skin is absent/present. However, unmeasured and
co-distributed factors might influence net diversification as well.
As such we also implemented a character-dependent HiSSE
model which allows differential net diversification between the
absence/presence dark skin, but also differential net diversifica-
tion associated with a hidden, unobserved state. Finally, we
implemented two additional null-models CID-2 and CID-4 that
do not include skin colour but rather investigated whether or not
differential net diversification is associated with two (CID-2) or
four (CID-4) hidden states [23].

To exclude the potential that polymorphism was a third
state (in addition to dark and non-dark skin) we ran four Mk
models (implemented using fitMk in phytools) [26] to simulate the
evolution of skin colour: (1) ER (equal transition rates), (2) SYM
(symmetrical transition rates), (3) ARD (all transition rates different)
and (4) an intermediate model where there is no direct evolution
between dark and non-dark skin but where an intermediate
evolutionary state (i.e. polymorphism) is necessary.

(d) Phylogenetic comparative analyses
We previously found that dark skin is more prevalent at lower
latitudes with higher ambient UV radiation, while being less
frequent at higher latitudes [9]. Thus, species with wider geo-
graphical distributions encounter more diverse UV radiation
regimes across their range. Therefore, we predicted that species
occurring both in the tropics and at higher latitude, i.e. species



Table 1. Results of different SSE models show that both dark skin and polymorphic skin colour promote net diversification. We ran two sets of analyses, once
on the full Jetz et al. [20] and once on the genes only tree.

Lnl AICc Lnl AICc

dark skin (n = 2995) full tree dark skin (n = 2319) genes only tree

null −12251.08 24510.18 null −9676.818 19361.65

BiSSE −11769.95 23549.92 BiSSE −9166.562 18343.15

HiSSE −11391.87 22803.82 HiSSE −9092.124 18204.34

CID2 −11817.51 23647.05 CID2 −9258.008 18528.05

CID4 −11627.39 23270.84 CID4 −9062.651 18141.36

polymorphism (n = 2010) full tree polymorphism (n = 1584) genes only tree

null −8308.702 16625.42 null −6631.889 13271.8

BiSSE −7836.276 15682.58 BiSSE −6212.01 12434.06

HiSSE −7797.93 15615.97 HiSSE −6095.232 12210.6

CID2 −7998.589 16009.22 CID2 −6347.981 12708.01

CID4 −7866.933 15749.94 CID4 −6220.085 12456.26
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with larger latitudinal ranges, are more likely to be polymorphic.
To test this hypothesis, we used species’ latitudinal ranges,
collected from distribution data [27]. Since ranges are smaller
in tropical species [28], we used the mean breeding latitude as
a co-variable. We used a phylogenetically controlled logistic
regression implemented in the R package phylolm [29] to investi-
gate the relationship between the presence of polymorphism and
the latitudinal range of a species as well as the average breeding
latitudes. To test whether the number of samples might influence
the detection of polymorphisms we used a phylogenetically con-
trolled logistic regression to test for a correlation between
polymorphism and the number of samples.

(e) Global distribution of dark-skinned species
To illustrate the distribution of dark skin we imported bird
distribution data [27] using ‘sf’ [30] and made a SpatialPolygons-
DataFrame of all dark-skinned bird species samples, as well as
one containing only polymorphic species. Using ‘lets.presab’ [31],
we then estimated for each dataset which species are found in
which grids using distributions from resident and breeding species.
This resulted in twomaps: one showing the distribution of all black
skinned species and another showing the distribution of all poly-
morphic species. Colour intensity corresponds to the number
of species.
3. Results
Of the 3033 species investigated, we found dark skin in 660
species (compared to the 141 previously reported) from 21
novel families (86 in total), of which 229 species were poly-
morphic (electronic supplementary material, file S1–S3; figure
S1). We found that polymorphism was influenced by the
number of samples per species ( p-value < 0.05) suggesting
that the number of polymorphic (and dark skinned birds)
might be an underestimation. Evolutionary models showed
that the ARD model best explains the evolution of dark skin
(electronic supplementary material, table S1). Furthermore,
most of the changes occur between dark and polymorphic,
suggesting that polymorphism is not necessarily a required
evolutionary intermediate (electronic supplementary material,
table S2). Our SSE-models showed that both dark skin and
the polymorphisms promotes net diversification. However,
for dark skin this was only true for the full tree and not the
genes-only tree. As such, these results have to be interpreted
with care if not ignored. Furthermore, given that the best
model is the HiSSE model, other factors are involved as well
(table 1). This is expected, as the evolution of diverse
clades, such as birds, are affected by multiple factors (e.g.
nest type [2]).

Furthermore, polymorphism in skin colour seems to lar-
gely track the distribution of dark skin in general (figure 1
a,b), although larger proportions of species are polymorphic
in oceanic and/or marine-adjacent regions. Nonetheless,
colour polymorphism and distribution range (table 2) are
significantly negatively related, i.e. polymorphic species
tend to have small distribution ranges.
4. Discussion
Of the 660 black skinned species, some families have only
one dark skinned specimen (e.g. Strigopidae, generally not
having dark skin), one dark skinned species (Pelecanidae,
Pelecanus rufescens), many new families have multiple dark
skinned species (Cacatuidae, Psittacidae, Psittaculidae but
also Meropidae and Zosteropidae). Other families have
steep increases in the number of dark skinned species (e.g.
Icteridae, from 1 to 44 dark skinned species), likely the
result of re-sampling species-rich but genus-poor families.
These results show that at least 7% (sensu [9]), but potentially
up to 22% (this study), of bird species have dark skin.

We found that dark skin, together with an unknown trait,
increases net diversification but only when using the full tree
and not the genes-only tree. When the genes-only tree was
used, HiSSE produced the second-best model, with CID-4
being the best model. This might be because the sample
size reduction influences the diversification analyses, or
because the full tree introduces false signals because it intro-
duces unrealistic tips and branch lengths. It is unclear
whether this is a true signal since the sample size reduction
between the two trees used was not proportional between
dark-skinned and light-dark skinned species, as all species
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Figure 1. (a) The distribution of the number of species with dark skin across the globe. (b) The distribution of the number of species with skin polymorphism across
the globe.

Table 2. The results of the phylogenetically controlled logistic regression
between skin polymorphism and range size + average breeding latitude.
Results are shown for an MCC tree, as well as run on 100 random trees.

estimates over
(100 simulations) range size

average breeding
latitude

mean estimate −0.0182 −0.0172
range estimate −0.026,−9×10−04 −0.0355,0.0239
estimate MCC −0.0194197 0.263901

mean p-value 0.0189 0.0199

range p-value 0,0.7213 0,0.2057

p-value MCC 0 0

median p-value 0.0003 0.0047

number of

p-values > 0.05

6 10
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removed from the treewere light-skinned. Furthermore, HiSSE
still produces the second-best model. Future trees that have an
even higher number of species with more genetic information
could solve this outstanding question. In the case that the
observed pattern observed in the full tree is true, then this
might occur through increased speciation (e.g. when white
feathers are involved in sexual selection, or in camouflage),
or decreased extinction (e.g. through the protective abilities
of melanin). More than 65% of white-crowned birds investi-
gated have dark skin, suggesting that dark skin co-evolves
with the white feathers that are often used in sexual display
(electronic supplementary material, file S1) [9]. Allocating
resources toward elaboration of sexual ornamentation might
compromise an organism’s ability to track environmental
changes [32]. While unexposed and therefore not usually vis-
ible, dark skin may influence diversification through the
relaxation of other selective pressures allowing the evolution
of ornamentation while also tracking environmental changes.
Indeed, the evolution of dark skin allows birds to evolve
novel plumage that normally would render them vulnerable
to UV damage. However, this explanation relies on dark skin
evolving prior to, or (on an evolutionary timescale) almost
simultaneously, the evolution of white feathers, a prediction
that can be tested in future studies.

In addition to dark skin, the presence of both dark and light
skin within a species (i.e. polymorphism) promotes net diver-
sification, although other traits are likely involved as well.
How does polymorphism influence net diversification? In a
few cases (e.g. Xanthocephalus xanthocephalus), polymorphism
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is explained by sexual dichromatism of head feathers, where
females have dark and males have lighter feathers resulting
in light and dark skin colour, respectively. This is unlikely
the result of sexual selection on skin colour as the skin is not vis-
ible (except in for example tragopans), but rather follows the
general pattern of lighter feathers resulting in darker skin. In
others (e.g. Threskiornis molucca) specimens with feathers
have non-dark skin, while naked specimens have dark skin.
Similarly, in other cases polymorphisms are linked to distinct
subspecies that differ in plumage and/or occurrence (e.g.
Columbia livia targia, which has a lighter head and occurs in
the Central Sahara) although this is not generally the case. Fur-
thermore, polymorphism itself might be a result of the ability
of a species to change skin colour (i.e. labile skin colour) as a
function of time and place and across distributions that
might be heterogeneous in UV radiation. Indeed, the benefits
of melanin in UV rich regions are clear, but in regions with
little UV radiation melanin might come at a (metabolic) cost
[33]. These differences in time and space might be sufficient
to cause speciation. Furthermore, variation promotes net diver-
sification, and species with skin colour polymorphism are
more variable than monomorphic species.

Polymorphism is (significantly) more common in species
with small breeding ranges (table 2). We speculate that
increased net diversification rates and smaller range sizes of
polymorphic species are because these species recently
diverged. In this case, they might differ in feather, and thus
skin colour, but because of their recent divergence may not
have yet fixed one skin colour. Dark-skinned birds are gener-
ally found at lower latitudes and polymorphism seems to
follow this pattern, although this effect was not consistent
throughout the analyses (table 2). Proportionally, there are
many polymorphic species at higher latitudes, a pattern
with two potential explanations. First, these species are gen-
erally oceanic species that migrate long distances and thus
experience fluctuating UV conditions. Similarly, higher lati-
tudes experience a wide range of environmental conditions
throughout the year, potentially promoting polymorphism.
A potential caveat is that the probability of finding poly-
morphisms is related to the number of specimens sampled.
Since dark skin is also temporarily present in multiple species
during moult (e.g. jays [9]) it is possible that the polymorph-
isms observed are caused by sampling of birds during
different stages of moult (although we did not see any indi-
cation that any of the specimens were moulting crown
feathers). Future research could focus on whether specific
moulting strategies are related to polymorphism. In addition,
the presence of dark skin in juveniles, while known, has not
been studied thoroughly and remains an interesting avenue
for future research [9]. Regardless, the evolution of differences
in concealed skin colour remains intriguing, as they show that
even hidden traits can influence large scale evolutionary
events such as diversification in birds. This effect is likely
indirect through the relaxation of constraints placed by natural
selection on sexual selection, allowing the evolution of orna-
mentation while also tracking environmental changes.
Ethics. No ethic statement is required. No live animals were used.
Data accessibility. Scripts can be found at https://doi.org/10.5061/
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