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A B S T R A C T   

Visitation by wild bee species alongside managed pollinators is necessary to ensure consistent yields and fruit 
quality in apple fields. Wild bee species are vulnerable to several environmental changes. Climate change is 
expected to lead to broad-scale changes to wild bee distributions that will impact the service they provide as crop 
pollinators. We modelled selected wild bee species known to be important for apple production in Europe and we 
quantified the shifts in distribution range for these key apple-pollinating bee species (KABS) under three climate 
change scenarios (RCP 2.6, 4.5 and 8.5) for 2041–2060 and 2061–2080. We compared species distribution maps 
(after the expected range changes) to the distribution of areas with suitable habitat for apple orchards and with 
national apple production statistics to estimate potential pollination service at the landscape scale. Overall, KABS 
are widespread species found across Europe and while most species have projected range contractions, these 
contractions are limited (~10% loss). Only under the worst-case climate change scenario (RCP8.5) do we project 
range contractions over 50% and only under RCP8.5 is the average loss of overlap between suitable apple 
conditions and KABS likely to decrease by over 10%. However, range contractions at the southern limit of many 
species’ ranges mean that the potential impact of climate change on apple pollination is not evenly shared be
tween apple producing countries; France and Italy for example are projected to have high range loss of KABS and 
loss in potential pollination service. Climate change is not the only threat to apple pollination and future 
pollination deficits will also depend on local orchard intensification and ecological infrastructure. Key changes to 
intensive, commercial apple orchards towards a more agroecological approach are needed to maintain a diverse 
wild bee community and apple production in areas that may become climatically unsuitable in the future.   

1. Introduction 

Insect pollination is a key agro-ecosystem service (Klein et al., 2007) 
and one which is increasing over the long-term, as the global area 
dedicated to pollinator-dependent crops has increased by over 300% 

since 1961 (Aizen et al., 2019). Apple (Malus domestica Borkh., 1803) is 
globally one of the most economically important crops, worth a reported 
US$45 billion in 2019 (FAO, 2019). Apple production relies on insect 
pollinators as apple flowers are, in general, self-incompatible (Pardo & 
Borges, 2020). The absence of efficient pollination can lead to a 
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pollination deficit, whereby fruit production requiring cross-pollination 
is limited because of insufficient receipt of pollen (Vaissière et al., 2011). 
For apples, the presence and extent of pollination deficits because of 
suboptimal pollination varies between regions and even between or
chards within regions, ranging from severe deficits all the way to over- 
pollination (Garratt et al., 2021). Apple production is often (over-) 
reliant on honey bees, but numerous wild bee species are also partially 
responsible for their pollination (Hutchinson et al., 2021; Kleijn et al., 
2016; Russo et al., 2015; Allen-Perkins et al., 2022; Weekers et al., 
2022a). In Europe an overreliance on a single pollinator, in this case the 
western honey bee, is unlikely to be a resilient, long-term strategy (Potts 
et al., 2010; but see Prendergast et al., 2021). Increased diversity of wild 
bee pollinators, both taxonomic and functional, is beneficial for crop 
production (Garibaldi et al., 2013; Roquer-Beni et al., 2022; Weekers 
et al., 2022b), improving apple yield and quality (Garratt et al., 2014; 
Woodcock et al., 2019). In addition to such benefits, the local avail
ability of a diverse community of wild bee pollinators also increases crop 
stability (Garibaldi et al., 2011; Senapathi et al., 2021), likely offering a 
safeguard when other managed pollinators are limited (Osterman et al., 
2021). 

In well-studied areas with long-term data, a wide taxonomic range of 
wild bees have been shown to be declining (Bartomeus et al., 2013a; 
Biesmeijer et al., 2006; Carvalheiro et al., 2013; Nieto et al., 2014; Potts 
et al., 2016; Powney et al., 2019), because of several intertwined causes 
(Potts et al., 2010; Vanbergen and The Insect Pollinators Initiative, 
2013). One driver of decline expected to increase in severity over the 
coming decades is climate change (Potts et al., 2016). Increasing tem
peratures, changes to precipitation and increased occurrence of extreme 
weather events are expected to affect the spatial distribution of biodi
versity (Bellard et al., 2012) and to drive species to higher elevations and 
latitudes (Lenoir & Svenning, 2015; Parmesan & Yohe, 2003). Current 
evidence suggests that future climate and land use changes will affect 
bumblebee distributions (Marshall et al., 2018; Prestele et al., 2021; 
Rasmont et al., 2015) and that their capacity to shift their distribution 
with the climate is limited (Kerr et al., 2015). While in certain regions, 
some bumblebee species have been shown to shift to higher elevations in 
line with changes in local climates (Marshall et al., 2020; Ornosa et al., 
2017; Pyke et al., 2016), the response of bumblebees to environmental 
conditions and changes at a broad scale is likely to be highly species 
specific (Ghisbain et al., 2020; Marshall et al., 2021; Maebe et al., 
2021a). This is also likely the case for non-bumblebee wild bees. 

Alongside changes in biodiversity, present-day and future climate 
changes are expected to fundamentally alter agricultural practices by 
shifting suitable conditions, altering the availability of inputs and water 
regimes, changing disease and pest dynamics and changing the yields 
and quality of products, among many others (Myers et al., 2017). 
Concurrently, climate change will impact the distribution and diversity 
of wild species (Araújo & Rahbek, 2006). The intersection of these two 
phenomena can lead to substantial impacts on crop pollination, since it 
can disrupt spatial and temporal overlap between crops and their pol
linators (Potts et al., 2016; Settele et al., 2016; Schweiger et al., 2008). 

Assessing changes in crop and pollinator distributions and the po
tential for pollination deficits because of climate change is a key goal in 
understanding the potential impacts of pollinator loss (Vanbergen and 
The Insect Pollinators Initiative, 2013). The Intergovernmental Science- 
Policy Platform on Biodiversity and Ecosystem Services (IPBES) assess
ment report on pollinators, pollination and food production cites climate 
change driven disruptions of apple pollination as an ‘established but 
incomplete’ fact (Potts et al., 2016), as, until now, only national level 
assessments have been conducted. These previous studies project sig
nificant mismatches between fruit trees and their pollinators in the UK 
(Polce et al., 2014), for a variety of crops and crop pollinators across 
Brazil (Giannini et al., 2017, 2020) and for key tomato producing re
gions of the US (Carrasco et al., 2020). Here, we assess the potential for 
future mismatches between apple crops and their wild bee pollinators at 
a continental scale (Europe). We use a species distribution modeling 

approach (Elith & Leathwick, 2009) to project suitable habitat condi
tions for apple pollinating wild bee species and European apple orchards 
in 2060 and 2080 under three climate change scenarios (IPCC, 2014). 
We use the resulting projections to determine whether there will be 
spatial mismatches between apple crops and their pollinators under 
projected climate change in Europe. We additionally link the results to 
apple production statistics in Europe to determine countries most at risk 
and discuss other factors which are likely to interact with climate to 
determine the availability of wild bee pollinators for apple crops in 
Europe in the future. 

2. Methods 

2.1. Study area 

The study area included the known distribution area of all European 
bees registered in our database, the extent ranging from approximately 
17 W to 35E and 20S to 72 N. This extent included northwestern Africa 
(Morocco) and western Asia in order to cover the full distribution of the 
species. This allowed us to estimate the full climatic niche range of 
species as completely as possible and avoid truncation effects (Thuiller, 
2004). The extent for the projections of habitat suitability was smaller 
and defined as the European Union (EU) and all other countries included 
within the geographical bounds of the EU (Fig. S1). Species occurrences 
and environmental data were aggregated into 25 x25km cells within the 
study area. 

2.2. Species data 

We selected key apple-pollinating bee species (KABS) using two 
methodologies. Using the CliPS (Climate change and its effect on Polli
nation Services) study conducted in 2019 across 88 commercial apple 
orchards in fifteen European countries (Belgium, Bosnia and Herzego
vina, Czech Republic, Estonia, France, Germany, Ireland, Italy, Latvia, 
Netherlands, Norway, Serbia, Slovenia, Spain and the United Kingdom) 
(see Table S1, Leclercq et al. (2022) and Leclercq et al., (2023), for site 
information and the methodology behind their selection). Any species 
that was found within the top 5% of species visiting the apple blossoms 
in two or more sites was classified as a KABS. We did not include species 
for (i) which the literature indicated would not have Rosaceae as part of 
their diet (Wood & Roberts, 2017), or (ii) which are managed within the 
orchards or (iii) parasitic species which do not collect pollen. Therefore, 
Andrena ferrugineicrus Dours, 1872, Andrena humilis Imhoff, 1832, Apis 
mellifera Linnaeus, 1758, Bombus terrestris/Bombus lucorum agg., Osmia 
bicornis (Linnaeus, 1758), O. cornuta (Latreille, 1805) and Nomada fab
riciana (Linnaeus, 1767), were removed for the following analyses. 
Osmia cornuta, while often an abundant native pollinator in Southern 
parts of Europe, was excluded because its potential to be managed 
makes it complicated to exclude the human impact on its future distri
bution and because the available distribution data in its Southern Eu
ropean range was poor in comparison to other species. For more details 
on the CliPS methodology, see (Prendergast et al. 2021; Leclercq et al. 
2022; Weekers et al., 2022a, 2022b). We also expanded on this selection 
of species using relevant literature to identify other species as KABS 
besides those observed in the CliPS study (Hutchinson et al., 2021; Kleijn 
et al., 2016). In total, we selected 33 KABS (Table S2). 

The occurrence records for these 34 KABS were in the most part 
compiled from data collated as part of EU FP7 project STEP (Potts et al., 
2011), and the full dataset is aggregated and available on the Atlas 
Hymenoptera webpage (atlashymenoptera.net). The database was sup
plemented with occurrences from (i) the Bees, Wasps & Ants Recording 
Society (BWARS; https://www.bwars.com/) program for the United 
Kingdom; (ii) the National Biodiversity Data Centre program for Ireland 
(NBDC; https://biodiversityireland.ie/) and (iii) for Colletes cunicularius 
(Linnaeus, 1761) alone, the Colletes spp. databases collated and 
managed by Dr. M. Kuhlmann. Due to an ongoing lack of taxonomic 
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clarity in the literature, some species occurrence records were aggre
gated together; these include Andrena scotica Perkins, 1916, and 
A. carantonica Perez, 1902, (hereafter A. scotica) (Wood et al., 2022). We 
selected only occurrence records collected since 1980 to match the 
‘present’ period as defined by the climate data. Some of the Andrena data 
is obtained from Klaus Warncke’s manuscript conserved at the Oberö
sterreichishes Landesmuseum, and includes collections from before 
1980; however, these data are necessary to demarcate the southern 
limits of many Andrena species and were therefore retained. To limit the 
spatial sampling bias towards northern and western countries in Euro
pean bee records, we first randomly sampled/thinned adjacent occur
rence records (within 25 km) for each species using the ‘thin’ function 
from the spThin package, v0.2.0 (Aiello-Lammens et al., 2015). A 
random starting occurrence was selected, and adjacent cells were 
removed iteratively. This was repeated five times and we selected the 
repetition that maximized the number of occurrence records. The final 
dataset was reduced to a single point per species per grid cell to equalize 
the weight of each cell where species were present. 

2.3. Apple data 

The apple data used consisted of occurrence records of apple or
chards and national level statistics of apple production. The occurrence 
records of apple orchards in Europe were sourced from Land Use/Cover 
Area frame Survey (LUCAS), a survey providing statistics on land use 
and land cover across the whole of the EU (EUROSTAT, 2021). The 
survey data of apple orchards from 2009, 2012, 2015, and 2018 were 
used to model the habitat suitability of apple orchards at the European 
scale. National level statistics on apple yield (t/ha), and apple produc
tion (tonnes) were extracted for 2019 from the Food and Agricultural 
Organization of the United Nations (FAO, 2019) for all countries in the 
projected study area (Table S3). 

2.4. Climate data 

Climate data was sourced from CHELSA (Climatologies at high res
olution for the earth’s land surface areas) climate dataset at 30 arc 
seconds resolution (Karger et al., 2017). We started with 19 bioclim 
variables, as well as the minimum, mean and maximum temperatures 
per month, and mean precipitation per month for the period 1980–2010. 
Using the monthly values, we calculated the 18 Environmental Rasters 
for Ecological Modeling (ENVIREM) variables, which include climatic 
and topographic variables specifically designed for spatial modeling 
(Title & Bemmels, 2018). Before beginning modeling we trimmed the 
list of 37 climate variables (19 bioclims, 18 ENVIREM) to only those that 
had been shown to be ecologically relevant when modeling wild bee 
diversity. We followed the findings of Orr et al. (2021) and selected 18 
variables relevant for wild bees (see Table S4 for full details and justi
fication), from which we would later conduct species specific model 
selection. Future climate projections of each of these 18 variables were 
also sourced from CHELSA (Karger et al., 2017). We extracted modeled 
projections (General Circulation Models [GCMs]) for 2041–60 and 
2061–2080 for three climate change scenarios, RCP 2.6, 4.5 and 8.5 
(IPCC, 2014). To account for variability and uncertainty in CMIP5 
models, for each variable we took the average of the following 8 GCMs; 
ACCESS1-0, CESM1-BGC, CESM1-CAM5, GFDL-ESM2G, GISS-E2-H, 
HadGEM2-AO, IPSL-CM5A-MR and MPI-ESM-MR. We used GCMeval 
to select these 8 GCMs. They accurately represented the present Euro
pean climate and were uncorrelated (Parding et al., 2020). 

2.5. Land use and soil data 

Due to the extent of the model training area and the availability of 
accurate future projections of land use change at the global scale, we 
chose to use land use variables that remain static in the future pro
jections. Land use data was sourced from the 2015 Copernicus Global 

Land Cover at 100 m × 100 m resolution (Buchhorn et al., 2020). We 
selected shrubland, herbaceous vegetation, cropland, urban, open forest 
and closed forest as relevant land use habitats for modeling wild bee 
species. We aggregated each of these variables to percentage cover 
within 25 × 25 km grid cells. Soil data was obtained from the global soil 
regions classification from the USDA Natural Resources Conservation 
Service Soils (USDA, 2005). We used the percentage cover of each ‘soil 
region’ that was found in at least 3% of gridcells as the input variables. 
Eight soil regions were included, alfisols, aridsols, entisols, gelisols, 
histosols, inceptisols, mollisols, and spodosols. 

2.6. Species & apple distribution modeling 

We modeled the distribution for each KABS using Maximum Entropy 
(MaxEnt) (Phillips et al., 2006). We chose to use MaxEnt because it has 
previously performed well for wild bees (Marshall et al., 2015) and other 
flying insects (Aguirre-Gutiérrez et al., 2013) for a variety of evaluation 
measures and is robust against overfitting (Aguirre-Gutiérrez et al., 
2013; Phillips et al., 2006). We used target-group sampling to select our 
background grid cells (Mateo et al., 2010). We specified that the back
ground samples could only be selected from grid cells where at least two 
other wild bee species have been recorded since 1980 and that had been 
sampled in at least three separate years. The background cells were 
thinned using the same methodology as for the KABS occurrence 
records. 

Firstly, we conducted variable selection of the 24 climate and land 
use variables (Table S4), for each species, by running multiple series of 
ten MaxEnt models per species. After each set of ten models, the vari
ables that contributed less than 1% to the best model (lowest AICc) were 
removed and where two variables were correlated with a Pearson’s r >
0.7 then the variable contributing less was removed. These steps of ten 
models were repeated until all variables contributed > 1% and no var
iables were highly correlated (r > 0.7) (Jueterbock et al., 2016). These 
selected variables were then used to run MaxEnt models with multiple 
parameter options using the ‘ENMevaluate’ function from the 
‘EMNeval’ package, v2.0.0 (Kass et al., 2021). For species with less than 
100 records, we ran models with both linear and quadratic features and 
for species with>100 records, more complex hinge features were also 
included, these models were run in combination with regularization 
multipliers from one to five. We determined model performance using a 
spatially independent cross-validation where species were grouped into 
two, three, or five spatially distinct clusters based on their coordinates. 
Species with fewer than 20 records were clustered into two spatial 
blocks, with fewer than 50 in three blocks, and those with>50 records 
into five blocks. The average of different performance metrics was taken 
for each block for each EMNeval model run. 

The best model from each run was selected as the model which met 
three criteria. (i) The 10% training omission rate, which indicates the 
number of the occurrences in the training dataset incorrectly projected 
to be unsuitable above a 10% threshold. (ii) Area under the curve (AUC) 
of the receiver operating characteristic (Fielding & Bell, 1997), which 
measures a model’s capacity to correctly distinguish between presences 
and the background samples (Jiménez-Valverde, 2012). And (iii) sample 
size, corrected Akaike information criteria (AICc) (Akaike, 1998; Burn
ham & Anderson, 2003) which, for SDMs, assesses model fit while also 
selecting for appropriate complexity (Warren & Seifert, 2011). The 
following criteria were applied sequentially: (i) the lowest average test 
omission rate (rounded to two decimals); (ii) the highest average AUC 
value (rounded to two decimal places); and, if there were still ties be
tween models, (iii) the lowest AICc. 

For each ‘best model’, its AUC value was compared to average AUC 
values from 100 null models (randomized occurrence points) with the 
same model parameters and blocking structure as the original ‘best 
model’ (Raes & ter Steege, 2007). Models were only used for future 
analyses when the average AUC value was higher than a one-sided 95% 
confidence interval of the null distribution of average AUC values. This 
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indicates that the KABS had specific niche requirements that were 
captured by the predictors. The contribution of a variable to the model 
was measured as the percentage increase in gain as the predictors are 
added to the model (Phillips et al., 2006). Each best model was used to 
project onto the present and three future scenarios (RCPS 2.6, 4.5, 8.5) 
for the periods 2041–2060 and 2061–2080. Each projection was then 
converted into a binary presence/absence map using the largest 
threshold that would leave out a maximum of 10% of the occurrence 
records. This method is robust to problems assessing true absences in 
presence only modeling (Merow et al., 2013) and is also stricter and less 
affected by extreme localities (Radosavljevic & Anderson, 2014). The 
preceding modeling protocol, from the first variable selection process to 
the binary map creation, was repeated ten times for each species to allow 
us to account for model variability and uncertainty. 

The models of apple orchard distribution followed a similar protocol 
as above. Yet, as replacement of natural and urban areas by crop land is 
unlikely to happen at large extent in the study region, we limited the 
predictions of suitable habitat to only climate variables and additionally 
added in soil classes. The projected distributions of apple orchard 
habitat suitability were then constrained to areas known to be agricul
tural habitats to produce two separate distribution maps (i) all areas 
designated as agriculture and (ii) areas known to be fruit crops, in the 
present. For full model details see Appendix A for an ODMap description 
of all parameters (Zurell et al., 2020). 

2.7. Post-Modeling analysis 

Change in the spatial extent of species distributions was measured by 
comparing binary map outputs per species, per scenario, and per period. 
Species distributional range change was a percentage measured as dis
tribution gain minus loss. Percentage loss and gain were measured as the 
total number of cells lost or gained between the present and future 
projections divided by the number of cells occupied in the present. 
Range gain was determined for three different dispersal scenarios: (i) no 
dispersal, resulting in no range gain, (ii) full dispersal, including all 
range change, and (iii) intermediate dispersal, limited to a 250 km buffer 
for 2060 and 500 km buffer for 2080. The actual dispersal capacity for 
most species is unknown, and it is unclear to what extent the data 
available can be generalized to remaining species, therefore the goal was 
not to provide an accurate dispersal limit for all species but to provide a 
middle point for comparison between no dispersal and full dispersal. 
Change in the spatial extent of species distributions was calculated using 
the ‘Biomod2’ package in R, v3.4.6 (Thuiller et al., 2020). Species 
richness maps were made using consensus maps for each species based 
on all model runs better than a null distribution. 

Spatial overlap with apple orchards was measured using the model 
outputs per species and for apple orchards. We tested two hypotheses of 
the distribution of apple orchard habitat suitability in time; (i) apple 
orchard habitat suitability was constrained by the distribution of agri
culture within the 25 km grids (minimum 10% agriculture within the 
grid cells) as measured from CORINE Land Cover data from 2009 to 
2018 (Büttner, 2014), and (ii) apple orchard habitat suitability was 
constrained by the distribution of fruit trees within the 25 km grids 
(presence/absence) as measured from CORINE Land Cover data from 
2009 − 2018. Apple orchard distribution maps were based on 100% 
consensus of all runs better than a random null distribution. For each of 
the apple distribution hypotheses we compared overlap (%) between 
habitat suitability for each species for each of the three dispersal hy
potheses by intersecting the binary projection maps. We then compared 
how overlap changed over time per scenario and for each species to 
determine the potential and extent of future spatial mismatches. 

To test whether changes in broad-scale habitat suitability will impact 
apple production in Europe, we compared production and yield statistics 
at the national level to changes in species richness and projected range 
change. We visualized these comparisons with bivariate maps, using the 
‘biscale’ package, v0.2.0 (Prener et al., 2020) and following a simplified 

example of Carrasco et al. (2020). We further compared these measures 
by using a linear model to test if areas of high production and or yield are 
more likely to be experiencing declines in KABS. All modeling and post- 
modeling analyses were conducted in R, v4.0.2 (R Core Team, 2020). 

3. Results 

3.1. Model performance and variable contribution 

The average AUC value per model across the spatial blocks, that were 
determined to be better than a random null model, ranged from 0.52 to 
0.95 with a mean of 0.70 ± 0.08. All species had model runs better than 
the 95% confidence interval of a null distribution, except A. nitida 
(Müller, 1776), which was excluded from further analyses. Of the 33 
species in the final analysis, 24 had all ten model runs better than 
random. Only two species had fewer than five runs, both with three, 
A. dorsata (Kirby, 1802), and L. laticeps (Schenck, 1869). All 24 variables 
were selected in at least three model runs (Fig. 1). On average the var
iable with the greatest permutation importance across all species was 
annual potential evapotranspiration (24.9), followed by maximum 
temperature of warmest month (20.2) and number of growing degree 
days (>5℃) (19.1). The most important land use variable on average 
was the percentage cover of herbaceous vegetation (9.1), although this 
was the 13th most important variable overall. Climate variables (mean 
of 11.8) were significantly more important overall than land use (6.1) 
variables (95% CI = 3.6 and 7.8, t = 5.3, df = 451.58, p = less 
than0.0001; Fig. 1). See Appendix C for records and spatial blocking for 
all species and Appendix D for response curves for all species and 
variables. 

3.2. Overall projected range changes for key apple pollinating species 

Under the intermediate dispersal hypothesis, we observed an overall 
mean difference of paired estimates with the full dispersal hypothesis of 
0.2% (p-value = 1). This value is ecologically irrelevant and therefore, 
we focus our results on the full dispersal hypothesis (Fig. S2). Overall, 
under the three climate change scenarios, the 33 KABS are projected to 
experience average range reductions of (i) 8.2% ±11.3 in 2060 and 
7.3% ±9.5 in 2080 under RCP2.6, (ii) 12.3% ±15.3 in 2060 and 
−14.8% ±18.6 in 2080 under RCP 4.5, and (iii) 16.3% ±20.4 in 2060 
and 24.9% ±30.5 in 2080 under RCP 8.5 (Fig. 2). A one-way ANOVA 
and post-hoc test indicated that the three scenarios were significantly 
different from each other based on average projected range change (df 
= 2, f = 40.4, p less than 0.0001). The majority of these range changes 
are driven by the loss of suitable environmental conditions, 76% ±35 of 
the total range change on average. 

Seven species are predicted to lose more than half of their range by 
2080 but only under RCP 8.5; B. hypnorum (Linnaeus, 1758), (72.4%±

12.3) and Seladonia tumulorum (Linnaeus,1758), (61.1% ±6.6) are the 
two species with the most severe predicted range losses. The same two 
species are mostly affected under RCP 4.5, and under RCP 2.6 it is 
S. tumulorum and B. jonellus (Kirby, 1802), (Fig. 2). Conversely, only five 
species are expected to increase in range across all three scenarios, 
namely A. bucephala Stephens, 1846, A. dorsata, A. flavipes Panzer, 
1799, Eucera nigrilabris Lepeletier, 1841, and L. marginatum (Brullé, 
1832). Only E. nigrilabris is projected to increase>25% under both 
RCP4.5 (26.7%± 9.59) and RCP8.5 (50.4%± 15.0). Species richness in 
the present and all scenarios peak at 23 species (Fig. 3). However, if we 
take ten species as a proxy for a diverse community of KABS, then the 
number of 25 × 25 km cells with at least ten species (4500 in the pre
sent) decreases by 16% (RCP2.6), 32% (RCP4.5) and 55% (RCP8.5) by 
2080 (Fig. 3). Increases in diversity were almost completely absent from 
the projections with only a few cells in Northern Europe showing an 
increase of up to five species. 
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3.3. Spatial mismatch with apple orchards 

We identified consistent decreases in overlap between KABS and 
apple orchards only under the worst-case scenario of climate change 
(RCP8.5). Across all species, the mean overlap with apple orchard 
habitat suitability is presently 73% ±12 and is projected to decrease 
down to 70% ±14 (RCP2.6), 67% ±16 (RCP4.5), and 60% ±20 
(RCP8.5). Only a single species, B. jonellus, decreased by>10% of its 
overlap range under RCP2.6, and this increased to five species under 
RCP 4.5 and 17 species under RCP8.5 (Fig. 4). For all three scenarios, we 
found a clear positive statistical relationship (p less than 0.001) between 
loss of overlap by 2080 and overlap in the present day. In other words, 
species with less overlap in the present were projected to lose more 
absolute overlap in the future. When we limited apple orchards to only 

areas where apples are currently expected to grow, we observed the 
overall percentage overlap decreases although the trends per species 
remain the same (Fig. S3). 

3.4. National level patterns 

According to FAO statistics (FAO, 2019), Poland, Italy, and France 
produce the most apples in tonnes in Europe. When measuring yield 
(tonnes per hectare), Switzerland, Belgium, and the Netherlands make 
up the top three (none of which are in the top ten of production in 
tonnes); Italy (4th) and France (6th) are still in the top ten. When we 
combined this information with range change projections of KABS, we 
clearly observed that certain regions will suffer more (Fig. 5; RCP8.5 
2080; for other scenarios see Figs S4 & S5). France is predicted to lose on 

Fig. 1. Proportional variable permutation importance for all species. Proportional contribution of selected variables per species for every run (n = 10) better than a 
95% quantile of a 100 null model distribution. Permutation importance is calculated as the decrease in predictive performance when a variable is removed from the 
model. Species are ordered by descending order of the, overall, most important variable Annual PET. ‘PET’ stands for potential evapotranspiration, a measure of the 
ability of the atmosphere to remove water. 

Fig. 2. Overall species range change in 2080 under 
three climate change scenarios. Range change is a 
combination of grid cells lost and gained between the 
present period and 2080. Error bars show the uncer
tainty in the predictions across all models better than 
a random null distribution. A one-way ANOVA and 
post-hoc test indicated that the three scenarios were 
significantly different from each other based on 
average projected range change (df = 2, f = 49.5, p 
less than 0.0001). Results shown are under the full 
dispersal hypothesis with no spatial limitations to 
range change in the future.   
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average 36% of the distributional range of each species, although this is 
highly variable (SD = 27%), the average range overlap between KABS 
and the habitat suitability of apple orchards is also expected to decrease 
by 48% (Fig. 5). Italy is not projected to experience great loss of species 
richness (18% ±14) but will experience the greatest average loss of 
overlap of 54%. Of the high yielding countries, Belgium is also projected 
to be at risk with average range losses per species of 30% ±29 but a 
projected loss of average range-overlap of only 18% (Fig. 5). The pro
jected risks to Switzerland and the Netherlands are also potentially 
worrisome, with highly variable predicted range losses of 21%±23 and 
20%±26 and the loss of range overlap with apple crops projected at 18% 
and 43% (Fig. 5). The loss of range and overlap of KABS was not only 
high in areas with important apple production, and there was not a 

statistically clear relationship between the distribution change metrics 
and the apple production at the country level. We cannot reject the null 
hypothesis that countries which produce a greater absolute quantity of 
apples are not at a greater risk of losing KABS (p > 0.1). 

4. Discussion 

In this study, we show that under projected climate change scenarios 
we expect an increased spatial mismatch between wild bees that polli
nate apple crops and the area most suitable for cultivating apple crops. 
However, the spatial mismatch is dependent on the severity of the 
projected climate change and in all scenarios, it is unlikely to lead to a 
complete absence of wild pollinators. Furthermore, the projected 

Fig. 3. Species richness changes of key apple pollinating species under three climate scenarios in 2080. (A) projected species richness in the present. (B-D) species 
richness projections under three climate change scenarios (RCP2.6, 4.5 and 8.5). (E-G) change in species richness (Δ) projections under three climate change sce
narios (RCP2.6, 4.5 and 8.5). All maps are based on a conservation 10% consensus between binary prediction maps. Map projections are in EPSG:3035. 

Fig. 4. Change in overlap between suitable habitat for apple orchards and suitable habitat for key apple pollinating species in the present, 2060 and 2080. Apple 
habitat suitability is based on a consensus binary prediction of all 10 runs. (A) RCP2.6 (B) RCP4.5 (C) RCP8.5. Species colored in red are those predicted to lose more 
than an absolute 10% of range overlap. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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mismatches and range losses are not equally distributed across Europe 
and certain countries with high apple production are at greater risk. 

We classified 33 species of wild bees as key apple pollinating species, 
which is only a tiny subset of the ~ 2050 species which represent the full 
diversity of wild bees in Europe (Nieto et al., 2014; Rasmont et al., 
2017). This finding is supported by Kleijn et al. (2016) which found that 
only a small number of common species make up the majority of crop 
visiting species. While our study focuses specifically on bees, which are 
likely the most common pollinators of apple crops, it is worth noting that 
other insects, such as Syrphidae and some Coleoptera, may also be 
important pollinators for apples (Rader et al., 2016; Roquer-Beni et al., 
2021). All of the KABS are common species, and none are at risk ac
cording to the European red list; all species are listed as “Least Concern”, 
except for seven Andrena spp., which are data deficient (Nieto et al., 
2014). Furthermore, in general, the KABS are broadly spread across 
Europe and therefore we did not project large range contractions; if we 
treat RCP 4.5 as a “business as usual” scenario, then there is little risk 
that any of the KABS will lose>50% of their range. This is similar to 
results from Giannini et al. (2020) who found that potential crop polli
nating wild bees with restricted or medium range sizes were projected to 
be more severely affected by climate change than widespread species. 
There was a longer tail of species that were found to be visiting apple 
orchards across Europe that did not meet the KABS classification 
(Weekers et al., 2022b). Additionally, southern Europe was compara
tively less well sampled than western, central and northern Europe, 

meaning that some KABS may have been overlooked. Given that the 
number of wild bee species necessary for successful crop pollination 
increases with area (Winfree et al., 2018), it is possible that species not 
included in this model may have future range expansions and become 
important apple pollinators. This indicates that maintaining high bee 
diversity, even for species that do not currently provide pollination 
services, is a resilient strategy in the long term (Garibaldi et al., 2013). 

Overall, our results suggest that continental extinctions of important 
apple pollinators are highly unlikely, however some species may expe
rience severe range contractions (>50% range contractions) under RCP 
8.5, and this will lead to depleted communities of KABS at the southern 
limit of apple production in Central Europe. Conversely, the models do 
not predict range increases into Scandinavia. Apple production is 
currently limited in Scandinavia in comparison to more southern 
countries (FAO, 2019), this is not projected to change with our modeling 
approach, unless there are significant land use changes not accounted 
for in our model. This failure to shift the northern limit in conjunction 
with the southern limit has already been shown to be the case for 
bumblebees (Kerr et al., 2015). These limited northern shifts may be 
driven by our choice of static land use variables, which means that we 
assume that land use is not shifting with climate change. While including 
dynamic land use change can have a significant effect on certain species’ 
future distribution ranges, the differences do not seem to change the 
overall patterns of range contractions or expansions and are expected to 
be more accurate than climate-only models (Marshall et al., 2018; 

Fig. 5. Bivariate plots of per country changes in wild 
bee distributions and apple production statistics. (A) 
Average percentage loss of overlap with apple or
chard habitat suitability per species under RCP8.5 in 
2080 vs. national apple production in tonnes (t). (B) 
Average percentage loss of overlap with apple or
chard habitat suitability per species under RCP8.5 in 
2080 vs. national apple yield in tonnes per hectare (t/ 
ha). (C) Average percentage loss of range per species 
under RCP8.5 in 2080 vs. national apple production 
in tonnes (t). (D) Average percentage loss of range per 
species under RCP8.5 in 2080 vs. national apple yield 
in tonnes per hectare (t/ha). Average overlap loss 
percentage per country ranges from an increase of 8% 
to a decrease of 54%. Average range loss percentage 
per country ranges from −4% to −49%. Average 
production in tonnes per country ranges from 1,490 t 
to 3,080,600 t. Average yield in tonnes per hectare 
per country ranges from 30.2 t/ha to 507.8 t/ha. Map 
projections are in EPSG:3035. The bivariate classes 
were made using Fisher breaks. In Fig. 5A and 1B 
North Macedonia has been removed as it represents 
an outlier (>4 standard deviations from the mean) 
because of a large increase in overlap of 57%.   
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Thuiller et al., 2004). Here, we prioritized minimizing range truncation 
over having dynamic land use change variables. The absence of a tem
poral aspect to the land use included in the model could explain why we 
see an overall greater importance of climate variables, and may, in part, 
explain why we saw no significant effect of limiting the dispersal ca
pabilities of species. Relevant changes to land use in the North of Europe 
may provide more suitable habitat for wild bees in the future (Marshall 
et al., 2018, Prestele et al., 2021). Although, for a robust modelling 
approach, high thematic resolution land use change scenarios would be 
needed for the whole range of the species (Marshall et al., 2021). 

In terms of spatial mismatches under RCP2.6 and 4.5, we project that 
climate change will not bring about significant spatial mismatches in the 
time periods considered, and that the proportion of shared habitat 
suitability between KABS and apple orchards will not vary by>10% for 
most species. This gap increases under RCP 8.5, but full spatial mis
matches are never projected and the species with the greatest overlap in 
the present maintain a significant overlap under all scenarios in 2080. 
Our results for the UK, a country in the top 10 of apple producers for 
both yield and total production where we expect a minimal impact of 
KABS range contractions and spatial mismatch, are in marked contrast 
with a previous report by Polce et al. (2014) who projected a clear 
geographical mismatch between apple pollinating wild bees and apple 
orchards in 2050. One explanation for this discrepancy is due to the 
truncation of the climate niche of the different species, none of the 
species that pollinate apples in the UK are endemic to the UK (Nieto 
et al., 2014) and most of the apple varieties grown in the UK are also 
grown widely on the continent. Many of the species in our study have 
very large ranges and avoiding the impacts of truncation of the climate 
niche at the boundaries of Europe was important. Therefore, we 
included species’ full distribution ranges into southern Morocco and 
towards the Ural Mountain range in the East in the training dataset. 
Truncation at national borders can lead to an underestimation of the 
temperature and rainfall extremes that these species can occur in and 
project more extreme impacts of climate change (El-Gabbas & Dormann, 
2018; Sánchez-Fernández et al., 2011; Thuiller, 2004). The significant 
assumptions of this approach is that phenotypic plasticity in terms of the 
climate niche is consistent in populations in different areas, or that 
populations will be able to disperse with their niche. Without these as
sumptions the future contractions may be more severe than projected 
here (Valladares et al., 2014). Conversely, it may be possible that the 
climate range underestimates the plasticity of the species and future 
habitat predicted as unsuitable may actually be within the scope of 
adaptation (Maebe et al., 2021a). Only species-specific testing of these 
wild bee species’ climatic limits will reveal this possibility (see e.g. 
Martinet et al., 2015; Maebe et al., 2021b). 

The absence of plastic and adaptive responses to climate change may 
in part explain the limited range expansions we predict for KABS. 
Another explanation may be due to the classification of the present-day 
habitat suitability. The habitat suitability of the species is defined only 
by its relationship to climate and land use and may lead to broader 
projections of the present-day extent for many species. We can see from 
our models that areas of northern UK and coastal Scandinavia have 
higher predicted species richness in the present than are seen from 
occurrence records alone. Therefore, if a species’ northern range is 
already projected to occur in these areas, even if the species is not 
currently observed there, then future range expansion predictions will 
be limited. We observe a clear example of this with the species Lasio
glossum malachurum (Kirby, 1802), and L. pauxillum (Schenck, 1853). 
They are both obligately eusocial bees (Smith and Weller, 1989) that are 
currently limited in their expansion by the length of the season in order 
to complete their social life cycle. In the UK, during the 1990–2010 
period their range expanded substantially towards the north (Else and 
Edwards, 2018). Therefore, we would hypothesize that this range 
expansion would continue in the future into the north as seasons become 
longer. However, our models do not project this expansion because the 
northern areas of the UK are already classified as suitable habitat in the 

present. It is therefore likely that the limiting factor is not the abiotic 
conditions but the lifecycle of the species which is not accounted for in 
our models. It is also worth noting that we do not include climatic 
variables that explicitly account for season length. The impact of these 
model limitations on our results is that we may be underestimating 
range expansion and potentially over-estimating range contraction. 
Detailed information on demography, behavior, dispersal, physiology as 
well as abiotic conditions would greatly improve both our present day 
and future range projections (Urban et al., 2016). While our focus here is 
on the presence of overlapping suitable conditions between bees and 
apple crops, it is important to note that warming conditions can affect 
bee development (Kierat et al., 2017), which may lead to weaker pop
ulations (Maebe et al., 2021a). As a result, climate change may have a 
negative impact on pollination services due to lower abundance of KABS 
resulting from population declines. 

In terms of apple production, the value of wild pollinators lies in their 
contribution to improving fruit set, yield and crop economic value 
(Garibaldi et al., 2013; Garratt et al., 2014; Pérez-Méndez et al., 2020). 
Our results suggest that certain European countries are more at risk from 
climate change than others: wild pollinator declines will have a much 
greater impact on crop production in areas where these crops are 
economically important (Giannini et al., 2017). For example, yield and 
production of apples are highest in certain western European countries, 
including France, Italy, Netherlands, Germany, Belgium, and 
Switzerland. In contrast to the findings of Carrasco et al. (2020) for to
mato pollination in the USA, we did not find that range contractions and 
loss of overlap were more likely in areas with high apple production. 
Indeed, the range losses and potential spatial mismatches are not evenly 
distributed across the top apple producing countries in terms of both 
yield and total production, with France, Belgium, Poland and Italy being 
at a greater risk. Although not all major apple-producing countries were 
considered in the calculation of KABS, it is anticipated that the KABS for 
countries like Poland and Switzerland would be similar to those of the 
surrounding sampled countries. Pollinator conservation initiatives in 
Belgium and France are under development (Schatz et al., 2021), and 
apple is a well-studied crop in terms of crop pollinators, making it a good 
candidate for targeted wild pollinator conservation. However, at the 
broadest scale, consistent actions at the governmental level to limit 
greenhouse gas emissions and restricting climate conditions to those 
seen in RCP2.6 will have the greatest benefit to maintaining agricultural 
pollination services (IPCC, 2014). In that sense, the problem of polli
nator loss due to climate change is a global problem and concerns 
biodiversity loss in general (Cardinale et al., 2012). 

Whilst climate change will act at the global scale changing species 
distributions (Parmesan & Yohe, 2003), the actual occurrence of a 
diverse community of wild pollinators at the orchard level is dependent 
on many other factors (Potts et al., 2016). These include the surrounding 
local landscape (Feon et al., 2010; Kammerer et al., 2016), the soil 
conditions (Carvalheiro et al., 2021), atmospheric pollution (Rollin et al 
2022; Ryalls et al., 2022), the dominance of honey bees (Weekers et al., 
2022a), neighboring agricultural crops (Osterman et al., 2021); local 
intensification (Deguines et al., 2014) and management decisions 
(Roquer-Beni et al., 2021). It is possible that species from northern Af
rica (for example, carpenter bees; Ghisbain et al. 2021) may also move to 
Europe and mitigate the loss of European populations. Furthermore, 
even more complex and uncertain is the extent to which range con
tractions and spatial mismatches could lead to pollinator deficits. 
Pollinator deficits in apple crops appear to be dependent on spatial 
context, management and crop variety (Garratt et al., 2021). Finally, the 
spatial mismatches as presented here are not the only potential impact of 
climate change on crop pollination. Climate change has the potential to 
strongly disrupt plant-pollinator networks (Memmott et al., 2007). 
Certain European wild bee species already show shifts to becoming 
active early in the year (Duchenne et al., 2020) and if this is true for the 
KABS, and apple flowering does not shift similarly, then phenological 
mismatches are also possible. The evidence for disruptive asynchrony in 
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apple-pollinator relationships is relatively scarce in the literature at the 
moment, with apple crops in the USA and Romania showing similar 
trends in earlier flowering (Chitu & Paltineanu, 2020; Wolfe et al., 2005) 
and communities of wild bees in New York (USA) showing strong syn
chronicity with apple blooming times (Bartomeus et al., 2013b). In the 
UK, Wyver et al., (2023) also found evidence that both Bramley apple 
flowering and peak pollinator flight periods had advanced alongside 
warming spring temperatures. Therefore, we believe the greater risk of 
climate change for crop production is potential spatial mismatches as 
projected here. These forecasts of climate change impacts on pollinators 
can help to inform present day conservation efforts through a greater 
understanding of the key areas at risk (Giannini et al., 2015). We show 
that the additive effect of climate change on species occurrence has the 
potential to impact the availability of key wild pollinators to a globally 
important crop, and that this is not geographically equal. 

Our results suggest that future climate niches of orchards and wild 
bee pollinators may become spatially distinct, therefore threatening 
pollination services. By and large, commercial and intensive apple 
production systems are designed as perennial monocrops with an almost 
obligate dependence upon external inputs such as water, fertilizers and 
synthetic pesticides. Diverse and robust pollinator communities may be 
able to be maintained in agricultural habitats that become climatically 
unsuitable, if specific approaches to mitigate and adapt to the impacts of 
intensive agriculture and climate change are made (Potts et al., 2016). 
Ecological intensification within and around orchards, through agro
forestry practices (Alam et al., 2014), maintaining natural and semi- 
natural habitat in the surroundings (Marini et al., 2012; Ricketts et al., 
2008), and limiting agricultural inputs (Park et al., 2015) increases 
landscape heterogeneity and connectivity and can ensure suitable hab
itats for many species and not only, highly mobile, wide-spread, gen
eralists (Potts et al., 2016). Furthermore, diversified and extensive 
orchards also tend to provide a better spread of the flowering season, 
allowing a longer interaction with diverse communities of pollinators 
(Heller et al., 2019). In the case of strawberries for example, their 
sharing of pollinators with apple trees and a delayed timing of their 
blooming period drive higher yields than when they are cultivated on 
their own or when their flowering period is not adjusted (Grab et al., 
2017). The effectiveness of these measures, much like the impacts 
themselves, is likely to vary significantly between regions and will 
depend on an area’s current vulnerability and development status (Potts 
et al., 2016). However, adaptations at the local orchard scale will be 
required to maintain pollinator diversity and the service this provides, 
and in turn limit the impacts of expected climate changes. 
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Bogusch, P., Bontšuťsnaja, A., Bortolotti, L., Cabirol, N., Vereecken, N.J., 2023. 

L. Marshall et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0959-3780(23)00108-5/h0045
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0045
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0045
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0050
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0050
https://doi.org/10.1126/science.1127863
https://doi.org/10.1126/science.1127863
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0065
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0065
https://doi.org/10.1007/978-94-007-7969-3_5
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0075
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0075
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0075
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0075
https://doi.org/10.1002/eap.2259
https://doi.org/10.1111/ele.12121
https://doi.org/10.1098/rstb.2020.0171
https://doi.org/10.1007/s00484-020-01903-2
https://doi.org/10.1890/130054
https://doi.org/10.1038/s41559-019-1062-4
https://doi.org/10.1002/ece3.3834
https://doi.org/10.1146/annurev.ecolsys.110308.120159
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0125
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0125
http://ec.europa.eu/eurostat/web/lucas/data/database
http://ec.europa.eu/eurostat/web/lucas/data/database
https://search.library.wisc.edu/catalog/999890171702121
https://search.library.wisc.edu/catalog/999890171702121
https://doi.org/10.1016/j.agee.2010.01.015
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0145
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0145
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0150
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0150
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0150
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0150
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0150
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0150
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0150
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0155
https://doi.org/10.1016/j.agee.2013.10.032
https://doi.org/10.1002/eap.2445
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0175
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0175
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0175
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0175
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0180
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0180
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0185
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0185
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0185
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0185
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0190
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0190
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0190
https://doi.org/10.1007/s10113-020-01611-y
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0200
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0200
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0200
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0205
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0205
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0205
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0210
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0210
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0210
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0210
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0210
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0210
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0210
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0210
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0210
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0215
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0215
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0215
https://doi.org/10.1111/j.1466-8238.2011.00683.x
https://doi.org/10.1111/j.1466-8238.2011.00683.x
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0225
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0225
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0225
https://doi.org/10.1007/s10980-016-0416-4
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1111/2041-210X.13628
https://doi.org/10.1126/science.aaa7031
https://doi.org/10.1126/science.aaa7031
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0250
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0250
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0250
https://doi.org/10.1038/ncomms10841
https://doi.org/10.1038/ncomms10841
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0260
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0260
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0260
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0260
https://doi.org/10.1016/j.agee.2022.107871
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0265
http://refhub.elsevier.com/S0959-3780(23)00108-5/h0265


Global Environmental Change 83 (2023) 102742

11

Global Taxonomic, Functional, and Phylogenetic Biogeography of Bees in Apple 
Orchards. Sci. Total Environ. 165933. 

Lenoir, J., Svenning, J.C., 2015. Climate-related range shifts—A global multidimensional 
synthesis and new research directions. Ecography 38 (1), 15–28. https://doi.org/ 
10.1111/ecog.00967. 

Maebe, K., Hart, A.F., Marshall, L., Vandamme, P., Vereecken, N.J., Michez, D., 
Smagghe, G., 2021a. Bumblebee resilience to climate change, through plastic and 
adaptive responses. Glob. Chang. Biol. 27 (18), 4223–4237. https://doi.org/ 
10.1111/gcb.15751. 

Maebe, K., De Baets, A., Vandamme, P., Vereecken, N.J., Michez, D., Smagghe, G., 
2021b. Impact of intraspecific variation on measurements of thermal tolerance in 
bumble bees. J. Therm. Biol 99, 103002. 

Marini, L., Quaranta, M., Fontana, P., Biesmeijer, J.C., Bommarco, R., 2012. Landscape 
context and elevation affect pollinator communities in intensive apple orchards. 
Basic Appl. Ecol. 13 (8), 681–689. 

Marshall, L., Carvalheiro, L.G., Aguirre-Gutiérrez, J., Bos, M., de Groot, G.A., Kleijn, D., 
Potts, S.G., Reemer, M., Roberts, S., Scheper, J., Biesmeijer, J.C., 2015. Testing 
projected wild bee distributions in agricultural habitats: Predictive power depends 
on species traits and habitat type. Ecol. Evol. 5 (19), 4426–4436. https://doi.org/ 
10.1002/ece3.1579. 

Marshall, L., Biesmeijer, J.C., Rasmont, P., Vereecken, N.J., Dvorak, L., Fitzpatrick, U., 
Francis, F., Neumayer, J., Ødegaard, F., Paukkunen, J.P.T., Pawlikowski, T., 
Reemer, M., Roberts, S.P.M., Straka, J., Vray, S., Dendoncker, N., 2018. The 
interplay of climate and land use change affects the distribution of EU bumblebees. 
Glob. Chang. Biol. 24 (1), 101–116. https://doi.org/10.1111/gcb.13867. 

Marshall, L., Perdijk, F., Dendoncker, N., Kunin, W., Roberts, S., Biesmeijer, J.C., 2020. 
Bumblebees moving up: Shifts in elevation ranges in the Pyrenees over 115 years. 
Proc. R. Soc. B Biol. Sci. 287 (1938), 20202201. https://doi.org/10.1098/ 
rspb.2020.2201. 

Marshall, L., Beckers, V., Vray, S., Rasmont, P., Vereecken, N.J., Dendoncker, N., 2021. 
High thematic resolution land use change models refine biodiversity scenarios: a 
case study with Belgian bumblebees. J. Biogeogr. 48 (2), 345–358. https://doi.org/ 
10.1111/jbi.14000. 

Martinet, B., Lecocq, T., Smet, J., Rasmont, P., López-Martínez, G., 2015. A Protocol to 
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B., Mezghani, A., Gregow, H., Räty, O., Viktor, E., El Zohbi, J., Christensen, O.B., 
Loukos, H., 2020. GCMeval – an interactive tool for evaluation and selection of 
climate model ensembles. Clim. Serv. 18, 100167 https://doi.org/10.1016/j. 
cliser.2020.100167. 

Pardo, A., Borges, P.A.V., 2020. Worldwide importance of insect pollination in apple 
orchards: a review. Agr Ecosyst Environ 293, 106839. https://doi.org/10.1016/j. 
agee.2020.106839. 

Park, M.G., Blitzer, E.J., Gibbs, J., Losey, J.E., Danforth, B.N., 2015. Negative effects of 
pesticides on wild bee communities can be buffered by landscape context. Proc. R. 
Soc. B Biol. Sci. 282 (1809), 20150299. 

Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts 
across natural systems. Nature 421 (6918), 37–42. 
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