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Abstract

Insect population numbers and biodiversity have been rapidly declining with time, and moni-

toring these trends has become increasingly important for conservation measures to be

effectively implemented. But monitoring methods are often invasive, time and resource

intense, and prone to various biases. Many insect species produce characteristic sounds

that can easily be detected and recorded without large cost or effort. Using deep learning

methods, insect sounds from field recordings could be automatically detected and classified

to monitor biodiversity and species distribution ranges. We implement this using recently

published datasets of insect sounds (up to 66 species of Orthoptera and Cicadidae) and

machine learning methods and evaluate their potential for acoustic insect monitoring. We

compare the performance of the conventional spectrogram-based audio representation

against LEAF, a new adaptive and waveform-based frontend. LEAF achieved better classifi-

cation performance than the mel-spectrogram frontend by adapting its feature extraction

parameters during training. This result is encouraging for future implementations of deep

learning technology for automatic insect sound recognition, especially as larger datasets

become available.

Author summary

Insects are crucial members of our ecosystems. These often small and evasive animals

have a big impact on their surroundings, and there is widespread concern about possible

population declines. However, it can be difficult to monitor them in sufficient detail. We

investigated an under-used evidence stream for insect monitoring: their sounds. Combin-

ing recent advances in deep learning, with newly curated open datasets of insect sound,

we were able to train machine learning systems to identify insect species with encouraging

strong performance. Since insect sounds are very different from human sounds, a key part

of our investigation was to compare a standard (spectrographic) representation of sound

against an automatically-optimized representation called LEAF. Across three different

datasets we found LEAF led to more reliable species recognition. Our work demonstrates

that sound recognition can be effective as a new evidence stream for insect monitoring.
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Introduction

The insect order Orthoptera forms the animal clade with the most species capable of acoustic

communication, with about 16,000 species using acoustic signals for sexual communication,

and even more species displaying acoustic defensive signaling [1]. The main mode of sound

production in Orthoptera is stridulation, where body parts are rubbed against each other to

create audible vibrations, with one body part having a row of fine teeth and the other being

equipped with a plectrum that sets the teeth into vibration. Most of the 3200 species in the fam-

ily Cicadidae produce sound by rapidly deforming tymbal membranes, producing series of

loud clicking sounds that set the tymbals into resonance [2–4]. Many of these sounds are spe-

cies-specific, and in some cases are key criteria for species identification [5].

Declines in insect population numbers have been receiving wide attention in the scientific

community as well as the public, but many of these reports only sample a small number of rep-

resentative species or focus on limited geographic locations [6,7]. To implement effective con-

servation efforts, populations need to be monitored more closely and widely across species and

geographic locations [6]. Insects, and specifically Orthoptera and Cidada, are a difficult group

to detect with conventional monitoring methods such as visual surveys and various trapping

strategies [8]. This is mainly due to their small size, camouflage and cryptic lifestyles in often

inaccessible and difficult environments such as tropical rainforests [9]. Such species might be

detected much more easily by the sounds they produce. Acoustic monitoring methods focused

on Orthoptera have been successfully used for detection of presence and absence of species,

determining distribution ranges, detection of otherwise cryptic species [10] and evaluating

quality and deterioration of habitats, since they can function as indicator species [11]. Addi-

tionally, this method is mostly non-invasive, less elaborate than other common monitoring

approaches [8] and could be automated to a high degree [9]. Video monitoring in comparison,

is highly dependent on lighting conditions and direct visual contact with the subjects, and con-

sumes more energy as well as data storage [12].

In the present work, we develop a robust method for acoustic classification of orthopteran

and cicada species, using a deep learning method that can adapt to acoustic characteristics of

the targeted insects. Some previous attempts of identifying Orthoptera by their sounds have

focused on using manual extraction of sound features such as carrier frequency or pulse rates

[10,13]. These features must be manually selected and their parameters defined before use for

automatic classification. Selected features and parameters might not perform well in all situa-

tions however, such as when background noise disturbs waveform feature measurements,

when non-target species produce very similar sounds, or when target species show strong vari-

ation of certain parameters [14]. For example, ambient temperature during the recording can

influence the frequency of Orthoptera song as a result of being poikilothermic organisms [15].

Orthoptera regulate their speed of muscular contraction with the ambient temperature during

song production. This results in higher frequency sounds and especially increased pulse rates

with higher temperatures in most Orthoptera [15,16]. Auxiliary factors such as temperature

can be included as inputs to many classification algorithms; nevertheless, such variations com-

plicate the task of feature extraction. Hao et al. [14] explored an alternative way to avoid manu-

ally specifying acoustic features, by defining a "textural" similarity measure between

spectrogram patches, using a general compression-based distance calculation. But the

approach of automatically optimizing the representation parameters to the input data is still

unexplored to our knowledge, especially for use with neural networks.

Deep learning methods are a more recent promising approach for acoustic monitoring

tasks, as they can classify complex acoustic signals with high accuracy and little to no manual

pre-processing of the input data [17]. Combined with sound event detection (SED), long-form
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field recordings can be classified without any manual extraction of features or relevant clips to

be identified. There are however a number of challenges to overcome, some practical and

some related to the specific species traits. For applying machine learning methods, large,

diverse and balanced annotated datasets are needed to train and test the algorithms.

Before an audio recording can be fed into a neural network to be analyzed, the high-resolu-

tion waveform has to be reduced to a feature space that can be processed and interpreted by a

neural network [18,19]. The common approach for audio classification tasks has historically

been inspired by the human perception of frequency and loudness. This is in part due to the

focus of many of the early audio classification tasks that were heavily researched: speech or lan-

guage recognition, or music-based analysis tasks [19]. All the relevant acoustic information for

these tasks is contained in and optimized for human auditory perception, or vice versa.

Humans experience frequency and loudness on non-linear scales [20]. Linear changes in fre-

quency towards the lower frequency spectrum generally sound more obvious, while the same

difference in frequency applied to a higher register can be undetectable to the human ear. In

compressing the spectral energy of a signal for analysis in a neural network, these characteris-

tics of human perception are applied with the use of the so-called mel-filter banks.

First, the input audio waveform is transformed into a spectrogram using the short-time

Fourier transform (STFT), dissecting the signal into pure sine-wave frequencies and their

respective energies [18,20]. Then, the mel-filter banks are applied, consisting of triangular

bandpass filters, spaced along a logarithmic scale over the sampled frequency spectrum. These

filters pool the energy of all frequencies that lie within their range, using a windowing function.

This reduces the resolution from a high sample rate down to a number of frequency bins that

can be easily analyzed. Following this, loudness compression is applied, also based on the non-

linearity of human hearing [18], resulting in a mel-spectrogram, that can essentially be treated

like an image by a neural network. These processing methods, especially the filter banks, rely

on hand-crafted parameters that may not relate in any way to the sounds to be analyzed in a

specific task. The logarithmic frequency scaling for example results in high spectral resolution

in lower frequency ranges, but groups together larger and larger frequency ranges in higher

registers, thereby potentially obscuring relevant high-frequency information and focusing on

lower frequency bands when they do not necessarily contain relevant information (Fig 1).

Insect sounds are not generated using a source-filter mechanism as in mammals or birds,

but with stridulatory or tymbal mechanisms that create a different structure of frequencies and

overtones [2–4,16,21,22]. The sounds are often non-harmonic, broadband buzzing and chirp-

ing sounds with amplitude modulations and up to several minutes in length, or much shorter

clicking sounds of less than 1 ms [16,23]. Generally, insect sounds are much higher in fre-

quency than most mammal or bird sounds, with many species producing ultrasonic sounds,

some up to 150 kHz [2,23,24]. This emphasis on high-frequency sounds, sometimes entirely

and far outside of the human hearing range (~20 Hz—20 kHz) could have an impact on the

performance of audio classification networks, depending on their approach. It is likely that the

mel-filter bank approach based on human perception is not optimal to recognize and discrimi-

nate between subtle differences in high frequencies for many insect sounds, even if it works

well enough for other sounds such as birdsong. Despite this, many previous attempts of classi-

fying Orthoptera and Cicada by their sounds have used various versions of mel spectrograms,

sometimes in combination with other handcrafted features or spectrogram modifications

[25–27].

Recent work in deep learning has introduced adaptive, waveform-based methods such as

LEAF [18], replacing the predefined spectrogram calculation with a parametric transform

whose parameters are optimized at the same time as the rest of the network. These could

potentially optimize their extraction of audio features to better fit insect sounds. The LEAF
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frontend allows the adjustment of filter frequency and bandwidth as well as normalization and

time-pooling parameters during training to adapt to the data [18]. This frontend has been evalu-

ated on a diverse set of audio classification tasks involving human-centric sound such as lan-

guage, music, emotion, speaker recognition and more, and has shown improved performance

over the standard Mel spectrogram approach in many cases [18]. But so far, it has not been eval-

uated on classification tasks involving sound sources that are less fit to the human perception of

sound. For uses like insect species recognition that are much higher pitched and structured dif-

ferently than human sounds, this frontend could be especially advantageous. It could adapt to

the characteristics of insect sounds by learning increasing spectral resolution in higher fre-

quency ranges, selecting and focusing on meaningful frequency bands that are otherwise pooled

together, and learning how to ideally pool and compress these bands individually. Accordingly,

the high resolution in lower frequency ranges that is present in Mel-filter bank approaches

could be reduced or completely omitted, since it is rarely present in insect sounds [23].

The potential of deep learning methods for insect sound classification has not been studied

extensively yet, especially their performance with adaptive frontends and extended sample

rates/frequency ranges. In the present work, the performance of two different machine learn-

ing approaches will be tested in species classification of insect sound recordings, with only one

species present at once. Complicating environmental conditions like distance from the

recorder or background noise will be introduced by data augmentation methods to increase

the diversity of the data set and improve the generalizability of the networks. The goal is to

explore the potential for using deep learning methods to classify Orthoptera and Cicadidae

with sounds recorded by entomologists and citizen scientists, and to evaluate the potential

advantage of adaptive frontends for feature extraction of non-human, high-frequency sounds.

Fig 1. Two spectrograms of the same recording of Gryllus campestris. Spectrogram A displays the frequency axis linearly in Hz. Spectrogram B uses the mel

frequency scale, which compresses the frequency axis to show higher resolution in lower frequency bands than in higher bands, mimicking the human

perception of frequency. Both spectrograms display the same spectrum of frequencies. Due to the mostly high-frequency information and empty low

frequencies in this recording, the mel spectrogram B obscures a large amount of information compared to the linear spectrogram A.

https://doi.org/10.1371/journal.pcbi.1011541.g001
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Methods

We tested the performance of two audio feature extraction methods acting as frontends to a

convolutional neural network. We compared the classic mel-spectrogram frontend to the

adaptive and waveform-based frontend LEAF. It is initialized to function similarly to the mel

frontend before training, but its parameters can be adjusted during training [18]. As a backend

classifier, a convolutional neural network optimized for audio classification was implemented

and adapted [28]. The frontends were tested on three increasingly large datasets of insect

recordings.

InsectSet32

Since larger collections of insect recordings have only recently become publicly available, the

dataset used for initial tests (“InsectSet32”) was compiled from private collections of Orthop-

tera and Cicadidae recordings (Orthoptera dataset by Baudewijn Odé and Cicadidae dataset

by Ed Baker which includes recordings from the Global Cicada Sound Collection hosted on

Bioacoustica [29], including recordings published in [30,31]). These recordings were con-

ducted in the field as well as in laboratory settings on a variety of recording devices. Only files

in WAV audio format with sample rates of 44.1 kHz or higher were included. All files were

converted to mono and the sample rates were standardized to 44.1 kHz by down sampling

recordings with higher resolutions. The files were manually auditioned to exclude files that

contained strong noise interference, sounds of multiple species or other audio distortions and

artifacts. Many recordings included voice over commentary at the beginning of the recordings.

Only the last ten seconds of audio from these recordings were used, to automatically exclude

the commentary. Only species with at least four usable audio recordings were included in the

final dataset. Overall, 32 species were selected, with 335 files and a total recording length of 57

minutes and four seconds (Table 1). Between species, the number of files ranges from four to

22 files and the length from 40 seconds to almost nine minutes of audio material for a single

species. The files range in length from less than one second to several minutes.

For training and evaluating the two frontends, InsectSet32 was split into the training, vali-

dation and test sets [12]. Due to the low number of files in some classes, the split into the three

subsets was done for all classes individually to ensure that each class is represented in all three

Table 1. InsectSet32: 335 files from 32 species with a total recording length of 57 minutes and four seconds were selected from two different source datasets

(Orthoptera dataset by Baudewijn Odé and Cicadidae dataset by Ed Baker). Number of files (n) and total length of recordings (min:s) per species.

Baudewijn Odé—Orthoptera Ed Baker—Cicadidae

Species n min:s Species n min:s Species n min:s

Chorthippus biguttulus 20 3:43 Azanicada zuluensis 4 0:40 Platypleura divisa 6 1:00

Chorthippus brunneus 13 2:15 Brevisiana brevis 5 0:50 Platypleura haglundi 5 0:50

Gryllus campestris 22 3:38 Kikihia muta 6 1:00 Platypleura hirtipennis 6 0:54

Nemobius sylvestris 18 8:54 Myopsalta leona 7 1:10 Platypleura intercapedinis 5 0:50

Oecanthus pellucens 14 4:27 Myopsalta longicauda 4 0:40 Platypleura plumosa 19 3:09

Pholidoptera griseoaptera 15 1:54 Myopsalta mackinlayi 7 1:08 Platypleura sp04 8 1:20

Pseudochorthippus parallelus 17 2:01 Myopsalta melanobasis 5 0:43 Platypleura sp10 16 2:24

Roeseliana roeselii 12 1:03 Myopsalta xerograsidia 6 1:00 Platypleura sp11 cfhirtipennis 4 0:40

Tettigonia viridissima 16 1:34 Platypleura capensis 6 1:00 Platypleura sp12 cfhirtipennis 10 1:40

Platypleura cfcatenata 22 3:34 Platypleura sp13 12 2:00

Platypleura chalybaea 7 1:10 Pycna semiclara 9 1:30

Platypleura deusta 9 1:23

https://doi.org/10.1371/journal.pcbi.1011541.t001
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subsets (tr/val/te) and to prevent data leakage. The resulting split amounts to 62.7% of the files

being used for training, 15.2% for validation and 22.1% for testing. The dataset is publicly

available on zenodo.org [32].

InsectSet47

After initial tests on InsectSet32 were conducted, a large collection of high-quality Orthoptera

recordings by experts and citizen scientists was published on xeno-canto.org. From this collec-

tion, WAV files with sample rates of at least 44.1 kHz were downloaded and manually audi-

tioned to compile a more diverse dataset together with the recordings from InsectSet32. Many

recordings had been filtered or upsampled to 44.1 kHz by the uploaders, which was evident by

a lack of audio information in certain frequency areas (most commonly above 16 kHz due to

initially lower sample rates). Only full spectrum recordings were selected.

The files include sound snippets of single insect calls only seconds in length as well as long-

term recordings of insect songs reaching up to 20 minutes. Many of the longer files included

periods of silences without insect sounds. To exclude these silent periods, files that contained

periods without insect sound of more than five seconds were edited into one or more files that

contained only the insect sounds. The resulting edited snippets from one original recording

were treated as one audio example to prevent them from ending up in multiple data sub-sets

(train, test, validation) during the model training and evaluation process. Only species with at

least ten usable recordings were included in the dataset. The recordings from the source data-

sets used for InsectSet32 (by Baudewijn Odé and Ed Baker) were also included in this selection

process. Due to the more detailed editing process used for Dataset47, more audio material was

gathered this time, but fewer species were included due to the higher minimum number of

files per species. Therefore, InsectSet32 is only partially included in Insectset47. Overall, 47

species were selected for InsectSet47, with overall 1006 files and a total recording length of 22

hours (Table 2).

Table 2. InsectSet47: 1006 files from 47 species with a total recording length of 22 hours were selected mainly from xeno-canto.org, as well as two private collections

(Orthoptera dataset by Baudewijn Odé and Cicadidae dataset by Ed Baker). Number of files (n) and total length of recordings (min:s) per species.

Species n min:s Species n min:s Species n min:s

Chorthippus biguttulus 52 29:49 Acheta domesticus 23 55:38 Gomphocerus sibiricus 14 26:04

Stenobothrus stigmaticus 39 5:31 Oecanthus pellucens 22 28:38 Barbitistes yersini 14 19:59

Chorthippus mollis 38 27:35 Platypleura cf catenata 22 17:46 Pholidoptera aptera 13 10:31

Gryllus campestris 38 94:21 Omocestus rufipes 21 16:28 Pholidoptera littoralis 13 4:00

Conocephalus fuscus 34 53:06 Pholidoptera griseoaptera 21 11:46 Metrioptera brachyptera 13 20:29

Roeseliana roeselii 33 33:39 Chorthippus apricarius 20 28:27 Leptophyes punctatissima 13 26:47

Pseudochorthippus parallelus 33 24:36 Phaneroptera falcata 20 28:29 Pseudochorthippus montanus 12 11:29

Chorthippus brunneus 32 20:58 Myrmeleotettix maculatus 20 55:06 Platypleura sp13 12 7:01

Tettigonia cantans 32 57:15 Platypleura plumosa 19 14:41 Chorthippus albomarginatus 11 40:29

Decticus verrucivorus 31 71:30 Stenobothrus lineatus 18 32:41 Eupholidoptera schmidti 11 9:39

Ephippiger diurnus 29 39:33 Conocephalus dorsalis 18 23:07 Melanogryllus desertus 11 25:24

Gomphocerippus rufus 28 29:38 Chrysochraon dispar 17 15:35 Tylopsis lilifolia 11 3:30

Nemobius sylvestris 28 38:11 Gryllus bimaculatus 17 27:32 Omocestus petraeus 10 9:21

Gampsocleis glabra 26 55:01 Platypleura sp10 17 17:55 Chorthippus vagans 10 11:43

Omocestus viridulus 25 45:25 Phaneroptera nana 16 29:53 Platypleura sp12 cf hirtipennis 10 7:41

Tettigonia viridissima 24 25:30 Platycleis albopunctata 15 24:44

https://doi.org/10.1371/journal.pcbi.1011541.t002
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InsectSet66

InsectSet47 was expanded to include even more species and audio examples with citizen scientist

recordings from iNaturalist.org. More frequently than in the previous source collections, many

recordings had been filtered, data-compressed or heavily edited, including time-stretching and

pitch shifting. These files were not selected. Additionally, a substantial number of recordings were

submitted multiple times as separate observations. These recordings were only included once in

the final dataset, unless they were logged as multiple different species, in which case they were

completely excluded. Otherwise, the same selection process as before was used and the dataset

was expanded to include 66 species (“InsectSet66”), 1554 recordings and a total length of over 24

hours (Table 3). Between species, the number of files ranges from ten files and a minimum length

of 80 seconds to 152 files and almost 98 minutes of audio material for a single species.

InsectSet47 and InsectSet66 were split into the training, validation and test sets while ensur-

ing a roughly equal distribution of audio files and audio material for every species in all three

datasets. To achieve this, files were sorted by file length for each species separately. They were

then distributed into the three datasets by following a repeating pattern. The two longest files

were moved into the training set, the third largest into the validation set, the fourth largest into

the test set. The files at positions five and six were assigned to the training set again, the seventh

largest to the validation set, the eighth to the test set. The ninth and tenth files were moved into

the training set and the pattern was repeated for the remaining files if there were more than ten

(1: train, 2: train, 3: val, 4: test, 5: train, 6: train, 7: val, 8: test, 9: train, 10: train, 11: repeat from

1). This resulted in a 60/20/20 split (train/validation/test) by file number and a 64/19.5/16.5 split

by file length. InsectSet47 and InsectSet66 are publicly available on zenodo.org [33].

Table 3. InsectSet66: 1554 files from 66 species with a total recording length of 24 hours and 32 minutes were selected from five different source datasets (Orthop-

tera and Cicadidae datasets from iNaturalist, Orthoptera dataset from xeno-canto, Orthoptera dataset by Baudewijn Odé and Cicadidae dataset by Ed Baker).

Number of files (n) and total length of recordings (h:min:s) per species.

Species n h:min:s Species n h:min:s Species n h:min:s

Yoyetta celis 152 0:11:16 Aleeta curvicosta 23 0:04:04 Gomphocerus sibiricus 14 0:26:05

Gryllus campestris 57 1:37:39 Platypleura cfcatenata 22 0:17:47 Barbitistes yersini 14 0:19:59

Chorthippus biguttulus 53 0:30:25 Omocestus rufipes 22 0:16:34 Psaltoda plaga 14 0:04:21

Galanga labeculata 43 0:06:16 Chorthippus apricarius 21 0:28:35 Popplepsalta notialis 14 0:02:58

Yoyetta repetens 40 0:05:23 Myrmeleotettix maculatus 21 1:05:37 Pholidoptera littoralis 13 0:04:00

Chorthippus mollis 39 0:27:50 Cicada orni 21 0:06:50 Pseudochorthippus montanus 13 0:11:36

Stenobothrus stigmaticus 39 0:05:31 Phaneroptera falcata 20 0:28:30 Leptophyes punctatissima 13 0:26:48

Pseudochorthippus parallelus 37 0:25:08 Gryllus bimaculatus 20 0:28:44 Cyclochila australasiae 13 0:01:53

Roeseliana roeselii 37 0:34:34 Platypleura plumosa 19 0:14:42 Platypleura sp13 12 0:07:01

Tettigonia cantans 37 0:58:10 Stenobothrus lineatus 19 0:34:27 Chorthippus albomarginatus 11 0:40:29

Conocephalus fuscus 36 0:53:34 Clinopsalta autumna 19 0:04:16 Eupholidoptera schmidti 11 0:09:40

Chorthippus brunneus 35 0:21:57 Phaneroptera nana 18 0:30:50 Melanogryllus desertus 11 0:25:24

Decticus verrucivorus 34 1:15:04 Conocephalus dorsalis 18 0:23:07 Tylopsis lilifolia 11 0:03:30

Tettigonia viridissima 33 0:27:26 Platypleura sp10 17 0:17:55 Ruspolia nitidula 11 0:12:35

Ephippiger diurnus 31 0:39:51 Chrysochraon dispar 17 0:15:36 Diceroprocta eugraphica 11 0:05:07

Nemobius sylvestris 30 0:38:44 Pholidoptera aptera 16 0:10:55 Platypleura sp12cfhirtipennis 10 0:07:42

Oecanthus pellucens 29 0:30:32 Eumodicogryllus bordigalensis 16 0:10:56 Omocestus petraeus 10 0:09:22

Gomphocerippus rufus 28 0:29:38 Platycleis albopunctata 15 0:24:45 Stauroderus scalaris 10 0:20:43

Pholidoptera griseoaptera 27 0:14:07 Atrapsalta corticina 15 0:02:15 Chorthippus vagans 10 0:11:43

Omocestus viridulus 27 0:45:48 Neotibicen pruinosus 15 0:04:41 Bicolorana bicolor 10 0:09:19

Gampsocleis glabra 27 0:55:18 Atrapsalta encaustica 15 0:04:33 Popplepsalta aeroides 10 0:01:46

Acheta domesticus 24 0:56:48 Metrioptera brachyptera 14 0:20:56 Atrapsalta collina 10 0:01:20

https://doi.org/10.1371/journal.pcbi.1011541.t003
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Data augmentation

Since the recordings varied in duration, they had to be divided into segments of a fixed length

that could be fed into the network. A length of five seconds was chosen, as most calls were

either short and rhythmical or long and static. Repeating sequences of longer than five seconds

were not commonly observed in the dataset, therefore it was assumed that a length of five sec-

onds would not eliminate species-specific rhythmic characteristics in the calls. Short files were

looped until they reached five seconds in length. Longer files were sequentially spliced into

chunks of five seconds, with an overlap of 3.75 seconds. When the splitting window reached

the end of a file, the beginning of the recording was wrapped around to extend the chunk to

five seconds, as long as the minimum remaining time of a chunk was at least 1.25 seconds.

For deep learning, it is standard practice to expand modest-sized training data through a

synthetic process of audio augmentation, and we applied this to all three datasets. The training

set of InsectSet32 was expanded with ten generations of audio augmentations using the python

package “audiomentations” (github.com/iver56/audiomentations). The processing steps

included “FrequencyMask”, which erases a band of frequencies around a random center fre-

quency, with bandwidth as a parameter that can be randomized within a defined range (0.06–

0.22). This augmentation step was applied with a chance of 50%. After frequency masking, the

signal was mixed with Gaussian noise, using the “AddGaussianSNR” function. The ratio of sig-

nal to noise was randomized between 25 and 80 dB. This ratio was tuned to range from barely

noticeable addition of noise to heavy noise disturbance without obscuring the relevant audio

information in noisy source recordings. This was applied to every file. After mixing with noise,

the files were augmented with impulse responses (IRs) recorded in natural outside settings.

This introduces reverberations and absorption characteristics of outside environments to the

audio signal, simulating distance from the recording device. The IRs were selected from a data-

set of recordings made in various locations at high sample rates [34]. Eleven IRs from three dif-

ferent outside locations (two forest locations, one campus location) were selected from this

dataset and randomly applied during augmentation with a chance of 70%. The IR-processed

files were mixed with their original version at random mix ratios to achieve additional varia-

tion in the severity of the effect, simulating varying distance from the recorder to the sound

source.

For InsectSet47 and InsectSet66, online data augmentation was used, due to the vastly

increased amount of audio material. From the package “torch_audiomentations” (github.com/

asteroid-team/torch-audiomentations), the functions “AddColoredNoise” and “ApplyImpul-

seResponse” were used. Their parameters were tweaked to mimic the augmentations used in

the smaller dataset. Unfortunately, a functionally similar function to the frequency masking

used on the smaller dataset was not available in the package. As an alternative, the opportunity

to vary the frequency distribution of the noise augmentation was used as an alternative to fre-

quency masking. The frequency power decay was randomized between –2 and 1.5. The signal

to noise ratio was randomized between 25 and 40 dB, with an overall probability of augmenta-

tion of 90%. Impulse responses were applied with a probability of 70%, with delay compensa-

tion enabled. The same IR files as in the smaller dataset were used [34] and mixed at a

randomized mix ratio. Both augmentations were applied and randomized per example in a

batch (Fig 2).

Frontends

The frontends that were compared are the conventional mel spectrogram included in the

python package torchaudio (MelSpectrogram) and the adaptive, waveform-based frontend

LEAF [18]. The mel spectrograms were generated based on the audio waveforms before the
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files were input into the convolutional network. When using the LEAF frontend, the full wave-

forms were directly input to the network and then processed by the frontend, since many of its

parameters like filter frequency and bandwidth, per-channel compression and normalization,

and lowpass pooling can be learned and therefore need to be part of the network to benefit

from gradient descent learning. The initialization parameters of the two frontends were

defined as similarly as possible to create a fair comparison. The files were imported at a sample

rate of 44.1 kHz. They were transformed from an input shape of [1; 220500] (one channel

mono audio; 44.1 kHz for five seconds) to a representation shape of [1; 64; 1500] by the fron-

tends, with 64 filter bands on the frequency axis and 1500 steps dividing the time axis. The

window length was set at twice the length of the stride for both frontends (stride: 3.335 ms,

window size: 6.67 ms). The filter bank used in the LEAF frontend was initialized on the same

scale as the mel frontend, between 0 and 22.05 kHz. The inputs were combined into batches of

14 and fed into the network.

Additional tests were conducted to test the impact of the filterbank and PCEN components

that make up the LEAF frontend. The models were trained on InsectSet47 and InsectSet66

using the same model architecture and LEAF frontend configuration as before, but the adjust-

ment of either the filterbank or PCEN parameters during the training process were deacti-

vated. This means that in the test case “leafFB” the filterbank parameters were adjusted during

training, but the compression parameters of the PCEN component remained in the initialized

state. In the test case “leafPCEN”, the filterbank and temporal pooling parameters remained

frozen in their initialized state, while only the PCEN compression parameters of the frontend

were trained.

Fig 2. Example of the data augmentation workflow used on the training set (InsectSet47 and InsectSet66). Noise is added at a randomized signal-to-

noise ratio and frequency distribution. Then an impulse response from an outdoor location is applied at a randomized mix ratio.

https://doi.org/10.1371/journal.pcbi.1011541.g002
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Network

The network backend was adapted from a convolutional neural network created using

pyTorch that was optimized for audio classification [28]. It consists of four convolutional lay-

ers (Conv2d) with rectified linear units (ReLU) and batch normalization (BatchNorm2d).

After the convolutional layers, the feature maps were pooled (AdaptiveAvgPool2d) and flat-

tened, and finally input into a linear layer (Linear) that returns a prediction value for each of

the classes contained in the dataset. The highest prediction value was picked as the final pre-

dicted class for each training example. To avoid overfitting of the network on the small train-

ing dataset, dropout was implemented on the final linear layer (dropout rate of 0.4), as well as

L2 regularization of the weights (weight decay of 0.001). The dropout rate was decreased to

0.23 for InsectSet47 and InsectSet66 since the models were underfitting as a result of the

increased complexity of data. A fifth convolutional layer was added to the model for additional

tests. Overall, the main model with four layers contains 28,319 trainable parameters that are

adjusted during the training phase, with the inclusion of the LEAF frontend.

During the training process early stopping was employed, which evaluates the network perfor-

mance after each epoch by running an inference step on the validation set. The loss value of the

validation set was used to estimate how well the network would perform on the test set during

final evaluation. Each time the validation loss decreased, the current network state was saved. If

the validation loss did not decrease any further in eight consecutive epochs, the training was

stopped and the final test evaluation was performed on the last saved network state from eight

epochs earlier. The accuracy of the two approaches was determined by the percentage of correctly

classified items in the test set, as well as the f1-score, precision and recall [12]. Due to the random-

ness included in the training process from dataset shuffling and network initialization, the training

and evaluation outcomes can vary substantially between runs using the exact same parameters

and datasets. To achieve a stable and comparable result on the small dataset, both models were

computed five times each on InsectSet32 and three times each on InsectSet47 and InsectSet66.

The best performing runs trained on InsectSet47 and InsectSet66 were trained again with an

added fifth convolutional layer to test the effect of a larger model on the classification performance.

All scripts used for preparing and classifying the data are publicly available on GitHub [35,36].

Results

InsectSet32

The median classification accuracy score for five runs using the mel frontend model was 62%,

with scores for the different runs ranging between 57% and 67% (Table 4). The median classifi-

cation accuracy for the LEAF models was 76% with a range from 59% to 78% (Table 4). The

mel frontend achieved a median validation loss of 1.49, while the LEAF frontend had a lower

median validation loss of 1.24 (Table 4). When looking at the additional performance metrics

F1-score, recall and precision, even the worst performing LEAF run outperformed all of the

mel runs (Table 4).

The majority of misclassifications (Fig 3) lied within the two biggest genera represented in

InsectSet32, Myopsalta and Platypleura (5 and 14 species respectively, of 32 in total; Table 1).

Species in these genera were most often misclassified as other members of their own genus.

One particular species, M. leona, caused many misclassifications within its genus, despite

being correctly classified itself. Similarly, within the genus Platypleura, the species labels P. plu-
mosa and P. sp12cfhirtipennis were frequently assigned to other species of the same genus.

The confusion matrix showing the performance of the LEAF frontend reflects the overall

better performance since it displays a clearer diagonal line of accurate classifications, with
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fewer incorrect classifications around it (Fig 4). Both test files of the species Brevisiana brevis
were incorrectly classified as Platypleura haglundi. The species P. intercapedinis (two test files)

and P. sp11 cfhirtipennis (one file) were never correctly classified either but confused with dif-

ferent species of the same genus. The concentration of misclassifications in the two largest gen-

era Myopsalta and Platypleura is much less pronounced compared to the mel frontend run. In

particular, the performance within Myopsalta is substantially better (Figs 3 and 4).

The filters employed by the LEAF frontend were initialized on a scale closely matched to

the mel scale but were adjusted in center frequency and bandwidth during training on Insect-

Set32 (Fig 5). After sorting the filters by their center frequencies, they continue to largely

adhere to the initialization curve (Fig 5C and 5F). Without sorting however, it is clear that

many filters were adjusted from their original position (Fig 5B and 5E). Substantial changes in

the frequencies of several filters occurred around 2 kHz and above 15 kHz, where some filters

were adjusted by up to several kilohertz, especially with the highest filter at initialization being

shifted from 22.05 kHz down to approximately 13 kHz (Fig 5B). The ordering along the fre-

quency axis is heavily disturbed, since the center frequencies do not steadily increase with

increasing filter number, as was the case on the initialized scale (Fig 5B and 5E). This means

that in the LEAF output matrices, adjacent values on the axis containing frequency informa-

tion do not necessarily represent adjacent frequency bins, which is usually the case when using

hand-crafted representations such as mel filter banks. Filter density increased around 0.85 kHz

(see Fig 5D, � 900 mel) and between roughly 14–15 kHz (Fig 5B), but slightly decreased

between 18 and 20 kHz (Fig 5B) and around 2.4 kHz (see Fig 5D, � 1700 mel). Four filters are

located close to zero mel/kHz after training, leaving a gap up to approximately 500 mel (� 0.4

kHz), where the very lowest insect sound frequencies occur in this dataset (Fig 5D).

InsectSet47

On the expanded InsectSet47, the median classification performance achieved with the mel

frontend was 77% and a median loss of 0.98 on the validation set. This is a substantial

Table 4. Test and validation scores for all trained models with mel and LEAF frontends on insect sound datasets of three different sizes. The median as well as the

lower and upper limits are reported from training multiple runs of the same model with different randomization seeds and four convolutional layers (five runs each for

InsectSet32, three runs each for InsectSet47 and InsectSet66). The best performing models were also trained with an additional convolutional layer, indicated by the num-

ber in the model name.

Test Validation

Dataset Model Accuracy F1-score Recall Precision Accuracy Loss

InsectSet32 mel-4 0.62

0.57–0.67

0.52

0.47–0.56

0.53

0.49–0.58

0.61

0.52–0.64

0.60

0.57–0.65

1.49

1.37–1.68

LEAF-4 0.76

0.59–0.78

0.66

0.61–0.69

0.68

0.60–0.71

0.70

0.67–0.73

0.71

0.61–0.76

1.24

1.00–1.40

InsectSet47 mel-4 0.77

0.70–0.77

0.66

0.56–0.67

0.66

0.57–0.67

0.69

0.63–0.74

0.75

0.71–0.77

0.98

0.92–1.14

LEAF-4 0.81

0.79–0.83

0.71

0.71–0.77

0.72

0.71–0.76

0.77

0.74–0.83

0.84

0.83–0.86

0.72

0.72–0.74

mel-5 0.85 0.78 0.79 0.81 0.83 0.69

LEAF-5 0.86 0.81 0.81 0.85 0.88 0.58

InsectSet66 mel-4 0.78

0.75–0.78

0.66

0.65–0.69

0.66

0.64–0.69

0.73

0.73–0.74

0.76

0.76–0.76

0.98

0.97–0.98

LEAF-4 0.80

0.79–0.81

0.68

0.67–0.71

0.68

0.67–0.70

0.77

0.74–0.77

0.83

0.80–0.84

0.81

0.79–0.86

mel-5 0.82 0.74 0.74 0.80 0.81 0.82

LEAF-5 0.83 0.76 0.77 0.81 0.85 0.73

https://doi.org/10.1371/journal.pcbi.1011541.t004
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improvement in performance compared to InsectSet32, despite the increased number of spe-

cies (Table 2). The LEAF frontend gained a less substantial increase in classification perfor-

mance, but still outperformed the mel frontend in all three runs with a median 81%

classification accuracy and substantially lower loss of 0.72 (Table 4). The difference between

the frontends was smaller overall however, compared to InsectSet32. The models trained with

an additional convolutional layer improved even further in performance. The mel frontend

gained a larger increase in classification performance from this, reaching 85%, while LEAF

performed only slightly better at 86% (Table 4).

Fig 3. Classification outcome for all 32 species in the test set using the best run of the mel frontend performing at 67% classification accuracy. The

vertical axis displays the true labels of the files, the horizontal axis shows the predicted labels, sorted alphabetically. Classifications within the two biggest genera

Platypleura (green) and Myopsalta (red) are highlighted for comparison to the LEAF confusion matrix.

https://doi.org/10.1371/journal.pcbi.1011541.g003
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Using both frontends, misclassifications between the groups of Orthoptera and Cicadidae

were negligible (S1 and S2 Figs). In general, classification errors appeared more frequently

with closely related species. The LEAF frontend was able to improve performance over the mel

frontend by reducing the large number of misclassifications in the genus Acrididae (S1 and S2

Figs). In the genus Playtpleura, nearly all audio examples of two species (P. sp12cfhirtipennis
and P. sp13) were classified as P. plumosa by the mel frontend (S1 Fig). The LEAF frontend

managed to reduce the incorrect classifications to P. plumosa roughly by half, by compromis-

ing half of the correct classifications of that species (S2 Fig).

Fig 4. Classification outcome for all 32 species in the test set using the best run of the LEAF frontend performing at 78% classification accuracy. The

vertical axis displays the true labels of the files, the horizontal axis shows the predicted labels, sorted alphabetically. Classifications within the two biggest genera

Platypleura (green) and Myopsalta (red) are highlighted for comparison to the mel confusion matrix.

https://doi.org/10.1371/journal.pcbi.1011541.g004
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InsectSet66

The models trained on InsectSet66 showed similar results to InsectSet47, again despite the

increase in the number of classes. The mel frontend slightly improved its median classification

performance from 77% to 78% on this larger dataset, while the LEAF performance decreased

from 81% to 80% (Table 4). The median loss stayed on the same level as on InsectSet47 for the

mel frontend with 0.98, but increased for the LEAF frontend from 0.72 on InsectSet47 to 0.81

on InsectSet66 (Table 4). The performance, when trained with five convolutional layers,

improved again for both frontends, where the LEAF frontend only had a small advantage with

83% compared to the 82% reached with the mel frontend (Table 4). For both frontends, incor-

rect classifications of Orthoptera species as Hemiptera are almost non-existent. Classifications

of Hermiptera as Orthoptera do appear, but are rare (S3 and S4 Figs). In general, misclassifica-

tions appear most often within the genera. The confusion matrices of LEAF and mel do not

show obvious differences or trends, likely since the overall classification performance is

similar.

leafPCEN

The training of the leafPCEN frontend, which retains the trainable PCEN part of LEAF, but

freezes its filterbank and pooling parameters, did not succeed. The validation accuracy and

Fig 5. Center frequencies of all 64 filters used in the best performing LEAF run on InsectSet32. Plots A and D show the initialization curve before training,

which is based on the mel scale. Plots B and E show the deviation of each filter from their initialized position after training. Plots C and F show the filters sorted

by center frequency, and demonstrate the overall coverage of the frequency range, but do not represent the real ordering in the LEAF representations. Violin

plots show the density of filters over the frequency spectrum, the orange line shows the initialization curve for comparison.

https://doi.org/10.1371/journal.pcbi.1011541.g005
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loss values showed large spikes and did not converge effectively. Three runs were trained on

InsectSet47, but a median classification accuracy on the test set of only 71% was reached,

which is substantially worse than the standard LEAF or even mel frontends performances

(Table 4). Because of this, the frontend was not trained on InsectSet66.

leafFB

The leafFB frontend, which employed a trainable filterbank, but used the initialized PCEN

component of the LEAF frontend, performed better than the leafPCEN frontend, and con-

verged despite occasional spikes of the accuracy and loss values during training. On Insect-

Set47, leafFB reached a median classification accuracy of 81% and a median loss value of 0.74

(Table 5), performing slightly better than the standard LEAF frontend (Table 4). On Insect-

Set66, the performance decreased to a median of 79% classification accuracy and a median loss

of 0.79 (Table 5), which is slightly worse than the LEAF frontend (Table 4). On both datasets,

more variation in performance between the runs was observed, meaning that some leafFB

runs did perform substantially worse than LEAF (Tables 4 and 5).

Discussion

The focus of this work was mostly to compare a traditional handcrafted feature extraction

method (mel) against an adaptive and waveform-based method (LEAF), while also testing the

viability of deep learning methods to classify insect sounds, specifically of Orthoptera and

Cicadidae. Three datasets were used for this comparison, with increasing number of audio

files, as well as numbers of species. In all settings, the adaptive frontend LEAF outperformed

the mel frontend (Table 4), by adjusting its filter bank and compression parameters to fit the

data (Fig 5). This effect was most pronounced on the smallest dataset InsectSet32, where LEAF

reached a classification accuracy of 78%, compared to 67% using mel (Table 4). On the

expanded dataset InsectSet47, the performance of both frontends improved in comparison to

InsectSet32, despite the increased number of species. This is likely due to the much higher

number and length of audio examples, allowing the models to generalize better on unseen

data. The difference in performance between the frontends decreased however. The perfor-

mance of the mel frontend on largest dataset InsectSet66 overall remained roughly on the

same level as on InsectSet47, even though a substantial number of species was added, but not a

large amount of audio material (Table 3).

Since the performance seemed to plateau at this level, we hypothesized that the complexity

of the backend classifier was reaching a limit and was not able to process the full amount of

information contained in the larger datasets. This could have obscured an advantage in the fea-

ture extraction performance by the frontends. To rule this out, more tests were conducted on

InsectSet47 and InsectSet66 by adding an additional convolutional layer to the models, with

the expectation that this would allow the LEAF performance to increase more than the mel

performance. This modification led to increased classification performance in all cases, but

Table 5. Test and validation scores for the trained models using the leafFB frontend. The median as well as the lower and upper limits are reported from training

three runs of the same model with different randomization seeds and four convolutional layers.

Test Validation

Dataset Model Accuracy F1-score Recall Precision Accuracy Loss

InsectSet47 leafFB-4 0.81

0.72–0.83

0.73

0.60–0.75

0.73

0.60–0.75

0.79

0.74–0.82

0.84

0.73–0.86

0.74

0.71–1.14

InsectSet66 leafFB-4 0.79

0.70–0.81

0.67

0.59–0.69

0.67

0.59–0.68

0.72

0.69–0.76

0.82

0.72–0.84

0.79

0.79–1.22

https://doi.org/10.1371/journal.pcbi.1011541.t005
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actually decreased the difference between the frontends (Table 4). On InsectSet47, the mel

frontend improved substantially from 77% to 85%, while the LEAF frontend only improved

from 83% to 86% (Table 4). On InsectSet66, the mel frontend improved from 78% to 82% and

LEAF from 81% to 83% (Table 4). This could mean that the ability of the LEAF frontend to

adjust feature extraction parameters might be more relevant when there is only a limited num-

ber of audio examples. But the characteristics of the audio data could also affect how LEAF

performs in comparison to mel.

In similar comparisons on more human-centric audio classification tasks (language, emo-

tion, birdsong, music etc.), LEAF outperformed mel spectrograms on a diverse range of tasks,

but not all, and in many cases by smaller margins than in this comparison [18]. Since the

sounds in this application are very different in structure and frequency content from human-

associated sounds, the difference in performance between LEAF and mel was expected to be

larger than in the previous comparisons. LEAF can learn a large number of parameters and

adapt to the input data, while the mel frontends parameters are completely fixed and not nec-

essarily ideal when not used with human sounds. The relevant information in insect sound is

largely located in the higher frequency spectrum (above 5 kHz), where mel spectrograms are

more imprecise due to increasingly wider pooling of frequencies. The LEAF frontend adjusted

filter center frequencies and bandwidths, as well as compression and time-pooling parameters

to better fit the data and reveal details that could be obscured by the mel frontend fixed param-

eters (Fig 5).

The confusion matrices generated from InsectSet32 shed some light on where the differ-

ences in performance lie between the two approaches (Figs 3 and 4). Using the mel frontend,

the majority of incorrect classifications was found between species of the genus Platypleura,

which represents almost half of the species included in the dataset with 14 out of 32, and in the

second largest genus Myopsalta, with five species (Table 1). These two groups make up the

majority of the species in InsectSet32 and it is therefore more likely for them to contain a

majority of the misclassifications. However, the fact that many of their false classifications

were within species of the same genus suggests that their sounds could be similar in structure

and hard for the network to distinguish. The trained parameters of the LEAF frontend led to

much better performance in these two genera than the mel frontend, since there were fewer

false predictions within these genera while false predictions outside of these genera remained

roughly the same (Figs 3 and 4). The confusion matrices generated from InsectSet47 and

InsectSet66 did not reveal clear differences between mel and LEAF, since the overall perfor-

mance of the frontends was much more similar compared to InsectSet32 (Figs 1–4). It is possi-

ble that due to the larger diversity of species and genera, the LEAF frontend did not fine-tune

its parameters to distinguish between specific sound characteristics of closely related species to

the same extent as observed in InsectSet32. In this dataset, especially the species in the largest

genus Platypleura produce very similar sounds. They are generally noisy with most spectral

energy between 7 and 10 kHz and contain subtle frequency modulations with rates of roughly

20 to 50 Hz. Overall, the Platypleura songs in InsectSet32 are very static in frequency content

and volume, and are not easily distinguishable. Additionally, some of the labels included in

this dataset are from populations that have not fully been determined to the species level,

which could mean that some of them represent subpopulations of the same species or very

closely related, undescribed species. The adaptive nature of the LEAF frontend with its multi-

ple tunable parameters might have been especially advantageous for this task. The mel front-

end might have been able to form strong enough representations for the more diverse range of

species included in InsectSet47 & 66. This would explain the decreased advantage LEAF had in

combination with the larger model (Table 4): Increased detail in the audio representations was

not specifically needed, but more complexity in the model as a whole, which LEAF also
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provides. Repeating these experiments with datasets that contain groups of insects that pro-

duce very similar sounds and datasets with a diverse selection of species could shed some more

light on these findings.

The overall coverage of filters over the frequency spectrum was not substantially changed

during training of the LEAF frontends. When looking at the filter distribution after training,

the filters still mostly lie close to the initialization curve that was based on the mel scale (Fig 5C

and 5F). While changes in filter density occurred in some frequency bands, a dramatic shift of

all filters shifting to higher frequencies or a change to a completely different curve was not

observed. When considering the changes of every individual filter however, it is clear that

many filters changed position quite substantially, sometimes by several thousand Hertz

(Fig 5B and 5E). The ascending order of filter bands along the frequency axis is heavily dis-

turbed after training, meaning that adjacent rows in the LEAF output matrices do not neces-

sarily contain adjacent bands in the frequency domain. Interestingly, this was not observed in

the original paper introducing the LEAF frontend [18] nor in a paper improving the perfor-

mance of the frontend [37]. In these studies, LEAF frontends were trained on the AudioSet

[38] and SpeechCommands datasets [39] at sample rates of 16 kHz. The resulting filter bank

configurations still closely followed the initialization curve after training and the ordering

along the frequency axis was conserved [18,37]. This was interpreted as a demonstration that

the mel scale is a strong initialization curve for these tasks, with the learnable filter parameters

in the LEAF frontend mostly providing an opportunity for adapting to a slightly more appro-

priate frequency range [18,37].

The AudioSet dataset contains many human-centric sounds such as speech and music, as

well as a diverse set of environmental sounds, animal sounds and more, with 527 classes and

multiple labels per recording [38]. The SpeechCommands dataset contains over 100,000 sam-

ples of spoken words [39]. Perhaps such a diversity of sounds and classes, as well as the use of a

much lower sample rate of 16 kHz [18] constrained the adjustment of filter frequencies com-

pared to the much smaller datasets used in our comparison which focused on a more fine-

grained classification task. It is also possible that ordering along the frequency axis is more

important for classifying sounds that contain defined harmonic structures such as human

speech, music, instruments or birdsong. The often noisy and inharmonic sounds produced by

Orthoptera and Cicadidae might not require this due to their more uniform and comparably

undefined sonic structure over the spectrum.

Since the LEAF frontend is a combination of a learnable filter bank and learnable PCEN

compression, we wanted to determine the influence of the individual components on the

improved performance over the mel frontend. Especially since the overall filter bank curve was

not adjusted as strongly as expected and because PCEN as a replacement for the conventional

log-compression has been shown to be advantageous in some, but not all cases for classifying

environmental sounds [40–42]. A modification of the LEAF frontend with disabled training of

the filterbank and temporal pooling parameters, but trainable PCEN parameters was tested,

called leafPCEN. This frontend should essentially function like a standard mel frontend with

an added trainable PCEN component since the initialized LEAF filterbank functions like a mel

filterbank. Surprisingly, leafPCEN did not train successfully and even performed worse than

the normal mel frontend (Table 5). It has been observed in previous work that in some applica-

tions, depending on the signal and background noise characteristics, trainable PCEN parame-

ters can fail to converge on ideal values and lead to suboptimal feature extraction [40,42]. It

appears that in the LEAF frontend, without the trainable filterbank, the PCEN component can

be unstable and collapse into poor configurations. The leafFB frontend, which retains the

trainable filterbank and pooling of LEAF, but disables training on the PCEN compression

parameters, performed at roughly the same level as the standard LEAF frontend, although
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with more variation between the runs (Tables 4 and 5). This suggests that the adjustment of

the filterbank parameters specifically lead to a better configuration than the standard mel

frontend and increased the classification performance.

The high occurrence of adjustments and shuffling of individual LEAF filters could justify

testing different initialization curves than the mel scale. While this scale has been shown to be

robust and advantageous for classifying human-centric sounds [18], it might not be the ideal

initialization curve for insect sounds. The theoretical justifications for the use of the mel-scale

do not apply to the much higher frequency ranges and faster temporal patterns of insect

sounds. Perhaps the filter distributions learned in this study are local optima that could be

reached from the mel curve as a starting point, but expert-designed initialization curves could

allow the frontend to reach a better and more generalizable filter distribution for insect sounds

in a shorter amount of training time, which would be advantageous. One experiment testing a

different initialization curve was conducted with randomized center frequency values that

were sorted in ascending order [37]. During training, the filter values were adjusted to a more

appropriate frequency range for the data, but the overall performance was lower than when

using a mel initialization curve, when tested on the SpeechCommands dataset [37,39]. This,

again, shows that the mel scale is very robust and useful for human sounds, but also that LEAF

can learn useful filter distributions even when not initialized on an ideal scale [37]. This further

justifies the exploration of alternative initialization scales for usage of the LEAF frontend with

non-human sounds.

To achieve further improvement of classification performance, especially if machine learning

methods are going to be implemented in species conservation efforts, larger and more diverse

datasets should be the focus. In this work, up to 66 species were represented, with a minimum

of 10 recordings per class. This could be a realistic number of species for monitoring specific

environments or even larger geographic areas. But for future implementations, existing datasets

are not sufficient and have to represent all species that occur in the environments where auto-

matic classification methods are going to be deployed. The number and length of recordings

per species should also be increased to achieve better representations of the natural variations in

the insects sounds. If datasets with higher sample rates are going to be used for classification,

conventional mel spectrogram frontends may prove to be even less useful compared to adaptive

frontends. Especially for species that produce sounds entirely within the ultrasonic range, which

are common in Orthoptera and some Cicadidae [43], the lower resolution in high-frequency

bands would be increasingly disadvantageous compared to adaptive frontends.

While compiling the datasets for this work, special attention was paid to exclude recordings

with low audio quality and especially recordings that contain sounds from multiple insect spe-

cies, even if other species were barely noticeable in the background. Since many of the record-

ings from the source databases are submissions from citizen-scientists that did not meet the

quality standards for this work, a large amount of audio material was not included in these

datasets. Lowering the quality standards would allow the inclusion of many more species and

audio examples. Whether this would be beneficial remains to be tested, since the added

amount of audio material could offset the negative effects of lower quality recordings.

Considering the relatively simple network architecture and small datasets, these results are

encouraging for future applications with high potential for further improvements through opti-

mizing model parameters and diversifying datasets. The advantage in performance by using

LEAF, despite being small in some cases, identifies adaptive frontends as a potentially valuable

replacement for approaches with hand-crafted parameters to extract features for insect audio clas-

sification. Before these methods can be applied in conservation efforts, datasets need to be

increased in size and species diversity, and the networks that are used must be improved to reach

higher overall accuracy. These methods also need to be integrated with sound-event detection
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methods to automatically identify relevant clips from longer automatic recordings. This work

presents a first step for optimizing an important part of the classification network and shows

encouraging results and methods for successful future implementations of this technology.

Supporting information

S1 Fig. Classification outcome for all 47 species in the test set using the best run of the mel

frontend performing at 77% classification accuracy. The vertical axis displays the true labels

of the files, the horizontal axis shows the predicted labels, grouped into order, family and

genus.

(TIFF)

S2 Fig. Classification outcome for all 47 species in the test set using the best run of the

LEAF frontend performing at 83% classification accuracy. The vertical axis displays the true

labels of the files, the horizontal axis shows the predicted labels, grouped into order, family and

genus.

(TIFF)

S3 Fig. Classification outcome for all 66 species in the test set using the best run of the mel

frontend performing at 78% classification accuracy. The vertical axis displays the true labels

of the files, the horizontal axis shows the predicted labels, grouped into order, family and

genus.

(TIFF)

S4 Fig. Classification outcome for all 66 species in the test set using the best run of the

LEAF frontend performing at 81% classification accuracy. The vertical axis displays the true

labels of the files, the horizontal axis shows the predicted labels, grouped into order, family and

genus.

(TIFF)

S5 Fig. Center frequencies of all 64 filters used in the best performing LEAF run on Insect-

Set47. Plots A and D show the initialization curve before training, which is based on the mel

scale. Plots B and E show the deviation of each filter from their initialized position after train-

ing. Plots C and F show the filters sorted by center frequency, and demonstrate the overall cov-

erage of the frequency range, but do not represent the real ordering in the LEAF

representations. Violin plots show the density of filters over the frequency spectrum, the

orange line shows the initialization curve for comparison.

(TIFF)

S6 Fig. Center frequencies of all 64 filters used in the best performing LEAF run on Insect-

Set66. Plots A and D show the initialization curve before training, which is based on the mel

scale. Plots B and E show the deviation of each filter from their initialized position after train-

ing. Plots C and F show the filters sorted by center frequency, and demonstrate the overall cov-

erage of the frequency range, but do not represent the real ordering in the LEAF

representations. Violin plots show the density of filters over the frequency spectrum, the

orange line shows the initialization curve for comparison.

(TIFF)
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