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Abstract  
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of 
the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity 
to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the 
Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across 
the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and 
diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model 
species by establishing a “model clade.” These Brassicales-wide traits are discussed in the context of both the model species 
Arabidopsis and the family Brassicaceae. We promote the utility of such a “model clade” and make suggestions for building 
global networks to support future studies in the model order Brassicales. 

Introduction 
Model species are essential in plant biology. For example, 
Barbara McClintock carefully tracked corn (Zea mays) kernel 
variation to characterize transposable elements and chromo-
some segregation (McClintock 1941, 1950). The genome of 
Arabidopsis thaliana (The Arabidopsis Genome Initiative 
2000) and foundational mutant and germplasm collections 
like the Arabidopsis T-DNA Insertional Mutant Collection 
(O’Malley et al. 2015) have driven our understanding of 
gene function in all plants. However, the plant kingdom is 
vast, comprising nearly 500,000 species and spanning a billion 
years of evolutionary time (Nic Lughadha et al. 2016). 
Collaborations among systematists, herbaria, and botanical 
gardens continue to drive advances in building the plant 
tree of life (Johnson et al. 2019; One Thousand Plant 
Transcriptomes Initiative 2019), in part due to rapid ad-
vances and the decreasing cost of genome and transcriptome 
sequencing technologies. These technological advancements 
enable us to build resources that complement and elevate 
the usefulness of a model species, encompassing larger taxo-
nomic groups to now produce “model clades” of plants. As 
species relationships become clearer, the plant biology com-
munity is in an ideal position to leverage comparative gen-
omics across these clades to unravel the evolution and 
function of genes, regulatory networks, repetitive elements, 
and noncoding DNA. Comparative biologists and phylogen-
eticists have long been interdisciplinarily working on these 
problems, for example, to examine floral organ evolution 
across the order Ranunculales (Damerval and Becker 2017) 
and the grasses (Schrager-Lavelle et al. 2017). The develop-
ment of accessible comparative genome and gene family 

evolution platforms like Phytozome (Goodstein et al. 
2012), CoGE (Lyons 2008), Ensembl Plants (Yates et al. 
2022), and GENESPACE (Lovell et al. 2018, 2022) allow the 
placement of stand-alone genome assemblies in a larger evo-
lutionary and phylogenetic context, creating an opportune 
time for plant biologists to identify clades with diverse phe-
notypes that can be anchored to a closely related model 
species. 

The order Brassicales exhibits extensive diversity of species, 
traits, and environmental adaptations across a broad geo-
graphical distribution and includes several crops like canola, 
caper, broccoli, kale, papaya, rapeseed, and saltwort. Within 
the Brassicales, one can find recurrent evolution and diversi-
fication of complex traits involving genomics (e.g. hybridiza-
tion, polyploidy, repeat sequence turnover, speciation, and 
reproductive systems), physiology (e.g. extremophytism, 
photosynthesis modes), morphology (e.g. woodiness, tuberi-
zation), metabolomics (e.g. oil production, secondary metab-
olite diversification), and environment (e.g. wet and hyperarid 
habitats). To understand the genetic underpinnings of these 
traits, the predicted functions of orthologous genes in any 
understudied Brassicales species can be anchored to the 
massive mutant collections in the Brassicaceae “model spe-
cies” A. thaliana. In this review, we highlight the utility of all 
Brassicales for benefiting from comparative genomics to 
understand trait variation and evolution in the context 
of producing a “model clade” of plants that builds out from 
a “model species.” We frame each major section with 3 key 
points. First, we describe what is known about a given trait 
from studying the family Brassicaceae, often derived from re-
search using A. thaliana. Second, we describe what is known  
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about the diversity or variation of a given trait across the or-
der Brassicales. Third, we discuss how leveraging comparative 
genomics across the order will lead to a better understanding 
of gene, genome, and trait evolution. 

Systematics and diversification of the 
Brassicales 
Systematics across the Brassicaceae 
The Brassicales comprise ca. 4,700 species in 18 families 
(Table 1; Magallon et al. 1999; Swanepoel et al. 2020), with 
the Brassicaceae, by far the largest family, comprising ca. 
4,140 species in 349 genera (Koch et al. 2018; Walden et al. 
2020a; German et al. 2023; Hendriks et al. 2023; Table 1). 
Brassicaceae systematics has long been complicated by 
high levels of parallel and convergent evolution of morpho-
logical characters, likely reflecting recent and rapid radiations 
(Huang et al. 2016; Guo et al. 2017; Walden et al. 2020a; Zuo 
et al. 2022). Nearly all species are assigned to 1 of 58 mono-
phyletic tribes (German et al. 2023; Hendriks et al. 2023), 
which in turn are assigned to 2 subfamilies: the small mono-
generic Aethionemoideae and the large Brassicoideae (98.6% 
of species; German et al. 2023). Additionally, the 5 main 
lineages within Brassicoideae recently received supertribe 
status (German et al. 2023). While assignment of tribes to 
supertribes is more or less consistent between reconstruction 
methods, relationships among supertribes vary. For instance, 
in plastid phylogenies, the Camelinodae (formerly lineage I) 
consistently diverges first (Fig. 1; Huang et al. 2016; Guo 
et al. 2017; Mabry et al. 2020; Walden et al. 2020a;  
Hendriks et al. 2023), whereas nuclear phylogenies show 
the Hesperodae (formerly lineage III) diverging first (Fig. 1;  
Huang et al. 2016; Nikolov et al. 2019; Mabry et al. 2020;  
Hendriks et al. 2023). With the availability of whole genome 
sequences from all main lineages and advances in synteny 
and coalescent-based methods for phylogenetic inference, 
additional evolutionary hypotheses have been proposed re-
cently (Walden et al. 2020b; Zou et al. 2020). For example, 
the similarity of the Arabis alpina genome structure with 
that of Aethionema (Aethionemeae) may indicate an earlier 
diverging position of the lineage leading to Arabideae 
(Walden et al. 2020b) and potentially Alysseae (both super-
tribe Arabodae, formerly lineage IV; Hendriks et al. 2023). 
Such contrasting gene and species tree topologies suggest 
complex evolutionary histories and lead to natural complica-
tions in achieving a stable classification based on the prin-
ciple of monophyly at many taxonomic levels (Forsythe 
et al. 2020). 

Systematics across the Brassicales 
The morphological, biochemical, and diverse genomic com-
position across the Brassicales permits comparative investiga-
tion of evolutionary novelties and macroevolutionary patterns 
(Fig. 2). However, these approaches rely on first constructing a 
well-supported species tree. Most of the families across the 

Brassicales, including Borthwickiaceae (Zhao et al. 2015) and 
the recently described Tiganophytaceae (Swanepoel et al. 
2020), are only minimally sampled at the species level. 
Relationships across the order have been established with 
phylotranscriptomics (Edger et al. 2015, 2018a; Mabry et al. 
2020), target sequence capture (Baker et al. 2022), and 
more traditional molecular systematic approaches based on 
fewer genes and larger taxonomic sampling (Rodman et al. 
1993, 1996; Cardinal-McTeague et al. 2016). Many relation-
ships among the Brassicales are well supported (Hall et al. 
2002, 2004; Ronse De Craene and Haston 2006; Hall 2008;  
Edger et al. 2015, 2018a; Cardinal-McTeague et al. 2016;  
Mabry et al. 2020); however, some key nodes remain unre-
solved, which may be the consequence of rapid diversification 
and/or introgression (Edger et al. 2018a). Due to a large num-
ber of extant Brassicales species, building a high-resolution 
species tree requires both a unified research community ef-
fort as well as creative approaches to integrating multiple 
types of data. 

The future of Brassicales systematics research 
A complete tree of all Brassicales species, with multiple rep-
resentative sampling for each species, is desirable and tract-
able, especially given the growing popularity of reduced 
representation methods such as targeted sequence capture 
(Dodsworth et al. 2019; Baker et al. 2021). Targeted sequence 
capture can be applied very effectively even to degraded 
DNA obtained from herbarium specimens (Brewer et al. 
2019), which vastly increases opportunities for extensive 

Table 1. The distribution of families within the Brassicales, along with 
the noted genera and species numbersa 

Family Genera/Species Geographical Distribution  

Akaniaceae 2/2 Akania – Australia 
Bretschneidera – Asia 

Bataceae 1/2 Tropical America, Austral-Asia 
Brassicaceae 349/4,140 Cosmopolitan (mostly temperate) 
Capparaceae 16/480 Cosmopolitan (mostly tropical) 
Caricaceae 6/34 Tropical Africa and America 

(mostly New World) 
Cleomaceae 26+/270 Cosmopolitan 
Emblingiaceae 1/1 Southwest Australia 
Gyrostemonaceae 5/18+ Australia 
Koeberliniaceae 1/2 North, Central, and South 

America 
Limnanthaceae 2/8 North America 
Moringaceae 1/12 Africa, Madagascar, and Asia 
Pentadiplandraceae 1/1 Western Africa 
Resedaceae 8/96 North Africa, Eurasia, North 

America 
Salvadoraceae 3/11 Africa to Southeast Asia 
Setchellanthaceae 1/1 Mexico, North America 
Tiganophytaceae 1/1 Namibia, Africa 
Tovariaceae 1/2 Tropical America 
Tropaeolaceae 1/105 North and South America 

aGenera and species numbers from the Angiosperm Phylogeny Website (Stevens 
2001). The recently proposed family Borthwickiaceae (found in China and 
Myanmar) is included within Resedaceae.   
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species sampling. These methods have proven useful for un-
derstanding species relationships at the order level across an-
giosperms (Antonelli et al. 2021; Lee et al. 2021; Maurin et al. 
2021; Thomas et al. 2021; Zuntini et al. 2021), and efforts are 
already underway to build comprehensive phylogenomic 
datasets across the Brassicales by employing a universal se-
quence capture toolkit (Johnson et al. 2019; Baker et al. 
2022). The combination of universal and lineage-specific 
toolkits (Nikolov et al. 2019; Eserman et al. 2021; Hendriks 
et al. 2021) offers great promise for a complete species phyl-
ogeny of the order. Further, a Department of Energy Joint 
Genome Institute Community Sequencing Project (https:// 
jgi.doe.gov/csp-2021-brassicales-genome-initiative/) is cur-
rently funded to assemble and annotate chromosome-scale 
assemblies for at least 26 species, spanning every family in 
the order. The future for the phylogenomic community 
studying the Brassicales likely resides in a dual approach, in-
tegrating reduced representation genomic data with high- 
quality, chromosome-scale genomes and annotations. 

Polyploidy and Diploidization Dynamics 
Polyploidy across the Brassicaceae 
Whole-genome duplications (WGDs) are prevalent through-
out plant evolution and are often associated with the origin 
of novel traits and shifts in diversification (Schranz et al. 2012;  
Van de Peer et al. 2021). Early studies suggested that Brassica 
species (Brassiceae) were hexaploids relative to A. thaliana 
(Arabidopsideae) and that their genomes experienced 
chromosomal rearrangements during their return to the dip-
loid state (Lagercrantz 1998; Babula et al. 2003). These results 
were confirmed by later studies and the sequencing of 

Brassica genomes (Lysak et al. 2005, 2007; Parkin et al. 
2005; Schranz et al. 2006; Brassica rapa Genome Sequencing 
Project Consortium 2011; Fig. 3). This hexaploidy or whole- 
genome triplication (WGT) occurred through 2 successive 
hybridizations creating first an allotetraploid and eventually 
an allohexaploid (Cheng et al. 2012; Tang et al. 2012). 
However, the timing and placement of the hexaploidy on a 
resolved phylogeny remains elusive (Lysak et al. 2007;  
Brassica rapa Genome Sequencing Project Consortium 
2011; Arias and Pires 2012; Cardinal-McTeague et al. 2016;  
Huang et al. 2016). More than 13 other independent, genus- 
or tribe-specific, polyploidy events have been identified 
across the Brassicaceae (Mandáková et al. 2017; Huang 
et al. 2020; Walden et al. 2020b; Hendriks et al. 2023). A study 
of nearly one-half of all Brassicaceae species found that 50% 
of these are recent polyploids (i.e. still recognized as poly-
ploids based on cytological data) with at least 1 hidden state 
(characters that are not observed for the purpose of the 
model but influence the diversification rate (Beaulieu and 
O’Meara 2016), which impacts the net diversification of dip-
loid and polyploid species (Román-Palacios et al. 2020). 
Another study by Walden et al. (2020a) suggests these unas-
sessed traits from Román-Palacios et al. (2020) may be asso-
ciated with morphological diversity. 

Polyploidy across the Brassicales 
Multiple studies have found ancient WGDs spread more 
broadly across the Brassicales (e.g. At-β event; Fig. 2; Barker 
et al. 2009; Edger et al. 2015, 2018a; One Thousand Plant 
Transcriptomes Initiative 2019; Mabry et al. 2020). Many fam-
ilies have also experienced family-specific WGDs, including 
the Brassicaceae (At-α; Barker et al. 2009; Haudry et al. 2013;  

Figure 1. Phylogeny indicating the lineage relationships of the Brassicaceae using nuclear and plastid data. Placed tribes are noted with correspond-
ing color and numbering. Summary, classification, and relationships based on Hendriks et al. (2023).   
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Edger et al. 2015, 2018a; One Thousand Plant Transcriptomes 
Initiative 2019; Mabry et al. 2020), Cleomaceae (Cs-α or Th-α;  
Schranz and Mitchell-Olds 2006; Barker et al. 2009; Bayat et al. 
2018; Mabry et al. 2020; Hoang et al. 2023), and Resedaceae 
(Rs-α; Lysak 2018; One Thousand Plant Transcriptomes 
Initiative 2019; Mabry et al. 2020). Family-specific WGDs have 
also been identified in Gyrostemonaceae, Koeberliniaceae, 
and Tropaeolaceae (One Thousand Plant Transcriptomes 
Initiative 2019). 

The future of Brassicales polyploidy research 
Understanding polyploidy and diploidization in the Brassicales 
is highly relevant and impactful for several reasons. Firstly, the 
Brassicales are ideal for studying these processes due to their 

relatively small genomes (N = 342 taxa, mean = 761.0 Mb/1C, 
median = 537.0 Mb/1C, mode = 392.0 Mb/1C; based on data 
from the Plant DNA C-values database release 7.1 together 
with additional data not yet incorporated; Pellicer and 
Leitch (2020) and Leitch et al., release 7.1, April 2019). We 
can also produce high-quality genomes that allow for 
fine-scale comparisons (Kreiner et al. 2017), making them 
well-suited for in-depth genomic analysis. This relevance stems 
from the potential insights that can be gained into broader 
biological phenomena. 

The impact of this research extends to various areas. Firstly, 
resolving the current struggles in understanding gene loss 
and retention after polyploidy in Brassicales can provide crit-
ical insights into the evolution of complex genomes. While 

Figure 2. Phylogeny of 17 families in the Brassicales and character trait matrix. The presence of a given trait is marked by a filled dark-green square. 
Traits that are unknown or absent are in light green. Possible locations of At-β are marked in blue stars, with family-specific whole-genome duplica-
tions in orange. Traits displayed are: A) C4, B) extremophytism, C) glucosinolates, D) ancestral woodiness, and E) dioecy. Additional proposed fam-
ilies, which are not included here, still need to be analyzed using multiple single-copy nuclear genes (e.g. Tiganophytaceae and Borthwickiaceae). 
Areas of the phylogeny with no or low support are indicated by thin branch lines. Topology and support based on Edger et al. (2018a).   
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gene loss after polyploidy is common, it is not random, and 
the fate of duplicated genes is determined by the interplay 
of many forces, including dosage-induced constraints 
(Birchler and Veitia 2007, 2012; Conant 2014; Conant et al. 
2014; Hao et al. 2022), differentially methylated transposable 
element (TE) density patterns among subgenomes (Hollister 
and Gaut 2009; Freeling et al. 2012), changes in regulatory 
networks (Blischak et al. 2018; Hu and Wendel 2019), and epi-
genetic changes after hybridization (Cheng et al. 2016; Zhao 
et al. 2017). These processes yield diploidized genomes with 
genes retained in different copy numbers and patterns of 
variation (Li et al. 2021). This understanding is not only sig-
nificant for advancing our knowledge of plant genetics but 
also has implications for broader evolutionary biology. 

Secondly, the knowledge gained from studying polyploidy 
and diploidization in Brassicales can have practical applica-
tions in agriculture. Genes retained after polyploidy harbor 
more genetic diversity than other genes and were important 
during the domestication of Brassica rapa (Qi et al. 2021). 
Therefore, a better understanding of the processes involved 
can lead to more efficient breeding strategies and the devel-
opment of improved crop varieties. 

Thirdly, resolving these struggles can open up new avenues 
for future research. It can enable the development of advanced 
tools and methods, such as POInT (the Polyploid Orthology 
Inference Tool), a likelihood method for modeling subgenome 

partitioning and biased fractionation (Conant and Wolfe 
2008), which can then be applied not only to Brassicales but 
also to other polyploid systems. Inferring the biased pattern 
of gene loss has been challenging for several reasons, including 
genomic rearrangement and homoeologous exchanges (Xiong 
et al. 2011; Mandáková et al. 2017; Edger et al. 2018b; Bird et al. 
2020, 2023). Orthology inference using gene synteny can reli-
ably differentiate subgenomes in polyploids (Lyons et al. 2008;  
Haug-Baltzell et al. 2017). POInT has been used to confirm that 
biased fractionation cannot be attributed to artifacts in syn-
teny block inference (Conant 2020). Integrating tools like 
POInT and GENESPACE (Lovell et al. 2022) can incorporate 
synteny into phylogenetically robust models of evolution. 
These approaches are promising for studying the diploidiza-
tion process, particularly as the wider Brassicales community 
generates more chromosome-scale genome assemblies from 
across the order. 

Epigenetics, small RNAS, and repetitive 
elements 
Epigenetics, small RNAs, and transposable elements 
across the Brassicaceae 
Much of our knowledge of small RNA (sRNA) biology has 
been derived from mutant screens in A. thaliana, including 

1 2 3 4 5

40 Mbp

Arabidopsis thaliana

Arabidopsis arenosa

Camelina sativa

Cardamine hirsuta

Brassica rapa

Arabis alpina

Chromosomes scaled by physical position

Figure 3. Whole-genome synteny of chromosome-scale Brassicaceae genomes. The synteny plot was generated using GENESPACE v0.9.1 (Lovell 
et al. 2022) with “diamondMode” and “orthofinderMode” set to fast, using A. thaliana (Arabidopsideae; Lamesch et al. 2012), A. arenosa 
(Arabidopsideae; Barragan et al. 2021), B. rapa (Brassiceae; v1.3; downloaded from Phytozome), Camelina sativa (Camelineae; Kagale et al. 2014), 
Cardamine hirsuta (Cardamineae; Gan et al. 2016), and A. alpina (Arabideae; Willing et al. 2015) genome annotations. The 4 diploid genomes 
(A. arenosa, A. thaliana, A. alpina, and C. hirsuta) show 1:3 syntenic relationships with the younger hexaploid C. sativa genome (n = 20) and evo-
lutionarily older hexaploid genome of B. rapa (n = 10).   
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studies of TE mobilization and repression pathways (Miura 
et al. 2001; Gendrel et al. 2002; Lippman et al. 2004; Martinez 
et al. 2017). Plant genomes are typically dominated by TEs 
that can move throughout the genome using a variety of me-
chanisms (Wicker et al. 2007). Although cycles of TE turnover 
are crucial for shaping plant genomes, most TEs are kept 
in a transcriptionally repressed state via DECREASED DNA 
METHYLATION 1 (DDM1) and RNA-directed DNA methyla-
tion pathways (Zemach et al. 2013; Matzke and Mosher 
2014; Li et al. 2015; Gallego-Bartolomé et al. 2019). The loss 
of DDM1 leads to loss of DNA methylation, accompanied by 
TE mobilization and developmental defects (Kakutani et al. 
1999; Miura et al. 2001). The A. thaliana genome, which was 
the first plant genome to be sequenced (The Arabidopsis 
Genome Initiative 2000), has been paramount to the dissection 
of these pathways; however, there is immense variation in DNA 
methylation levels within the Brassicaceae (Seymour et al. 2014;  
Bewick et al. 2016), such as the loss of gene body methylation 
in Eutrema salsugineum (Eutremeae) due to a loss of the 
CHROMOMETHYLASE 3 gene (Bewick et al. 2016). A recent 
study by Lu et al. (2019) investigated epigenetic variation across 
13 angiosperm species, 2 of which are in the Brassicaceae 
(A. thaliana and E. salsugineum). They found that species- 
specific accessible chromatin regions were strongly enriched 
for TE sequences. Therefore, species-specific TEs may regulate 
gene expression across the order, emphasizing the importance 
of sequencing across the clade. 

Epigenetics, sRNAs, and TEs across the Brassicales 
In the Brassicales, sRNAs have been poorly sampled in 
non-Brassicaceae species, though there are several emerging 
studies related to classes of sRNAs. One example is research 
on phased, secondary, small interfering RNAs (phasiRNAs), 
which display an intriguing pattern of loss in the Brassicales. 
In A. thaliana, phasiRNAs are expressed in vegetative tissues 
(Fei et al. 2013); additionally, 21-nt and 24-nt reproductive 
phasiRNAs, triggered by miR2118 and miR2275, respectively, 
have been found broadly across monocots (Kakrana et al. 
2018; Patel et al. 2018) and eudicots (Xia et al. 2019) and 
shown to play a role in anther fertility in corn and rice 
(Teng et al. 2020). Intriguingly, miR2275 is not present in 
any of the sampled Brassicales (Polydore et al. 2018; Xia 
et al. 2019). The loss of miR2275 has been reported in several 
other lineages, including legumes and Solanaceous species, al-
lowing us to place the Brassicales in a larger context of sRNA 
loss, thus enabling comparisons across the tree of life to under-
stand the anther fertility phenotype compared with other 
monocots and eudicots. Other floral-related microRNAs in 
the Brassicales are implicated in sex determination and sexual 
dimorphism in papaya (Aryal et al. 2014). Further examples of 
lineage-specific sRNA evolution in the Brassicales are tandem 
microRNA loci, miR826, and miR5090, involved in nitrogen 
starvation adaptation (He et al. 2014). 

With multiple documented WGDs, the Brassicales are a 
model clade for testing the interplay between polyploidy, 
genome size, and repetitive element proliferation. A recent 

study characterized TE abundances from low-coverage gen-
ome shotgun data in 71 phylogenetically diverse taxa across 
the order, placing transposon content in the context of WGD 
and phylogeny (Beric et al. 2021); surprisingly, little connec-
tion was found between phylogeny and TE expansion or con-
traction, nor was there any correlation between patterns of 
WGD and TE abundance. Although WGDs might be ex-
pected to lead to global TE reactivation, TE purging mechan-
isms seem to work efficiently in the Brassicales (Hawkins et al. 
2009). Interestingly, the elimination of TEs is less effective in 
some Brassicales clades, resulting in large diploid genomes 
(1,500–4,200 Mb) that exceed the modal C-value of the 
Brassicales by 4- to 10-fold (Hloušková et al. 2019; Zuo 
et al. 2022). 

The future of Brassicales epigenetics, sRNA, and TE 
research 
The future of epigenetics, sRNA, and repetitive element studies 
within the Brassicales hinges on our ability to generate diverse 
sRNA and methylome sequencing datasets and anchor analyses 
onto chromosome-scale assemblies in a comparative genomic 
context. Genomes from across the order will provide opportun-
ities for investigation of how sRNA biogenesis and methylation 
pathways of A. thaliana function in phylogenetically distant re-
latives, as well as provide insight into polyploidy, transposon 
biology, and lineage-specific sRNA emergence and loss. 

Reproductive biology 
Reproductive biology across the Brassicaceae 
Thirty years ago, homeotic genes discovered in A. thaliana 
formed the foundation of the “ABC model” (Bowman et al. 
1991a, 1991b; Drews et al. 1991). A. thaliana is also a model 
for understanding the evolutionary genetic underpinnings 
of the loss of self-incompatibility (SI) which promotes out-
crossing. SI is a widespread trait found in 40% of flowering 
plant species and is based on recognition of self-pollen 
(e.g. Brassicaceae, Papaveraceae), or non–self-pollen (e.g. 
Solanaceae; Igic et al. 2008; Fujii et al. 2016). The mechanisms 
underlying sporophytic SI in the Brassicaceae were discovered 
in Brassica and involve a pollen-specific ligand (S-LOCUS 
PROTEIN 11; or S-LOCUS CYS-RICH PROTEIN, SCR) and pistil- 
specific receptor (S LOCUS RECEPTOR KINASE) tightly linked 
at the S-locus (Stein et al. 1991; Schopfer et al. 1999; Takasaki 
et al. 2000; Takayama et al. 2000). The loss of SI arose in 
A. thaliana at least 3 times (Shimizu et al. 2008; Tsuchimatsu 
et al. 2017) through loss-of-function mutations in SCR, followed 
by rearrangements of the S-locus (Shimizu et al. 2008;  
Tsuchimatsu et al. 2010, 2017). The loss of SI in the 
Brassicaceae has occurred independently in at least 5 other spe-
cies (Shimizu and Tsuchimatsu 2015; Nasrallah 2017). Further, 
there is an epigenetic component to SI plasticity. In Brassica, 
both DNA methylation (Shiba et al. 2006) and 24-nt sRNAs 
(Tarutani et al. 2010) target recessive alleles in allelic pollen 
S-determinants. Both genomic and ecological factors can  
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influence the repeated evolution and breakdown of SI, so un-
derstanding the diversity of pathways leading to SI loss can 
be gained by studying systems across the Brassicales, although 
to date most involve the primary loss of the male-specific de-
terminant of SI (Shimizu and Tsuchimatsu 2015). 

Reproductive biology across the Brassicales 
Most species in the Brassicales are hermaphroditic or monoe-
cious (Renner 2014). However, roughly 1% are dioecious, 
where unisexual flowers develop on separate plants (Renner 
2014). Dioecy has evolved in 7 different families, representing 
at least 5 origins (Fig. 2; Renner 2014; Soza et al. 2014). 
Although structurally hermaphroditic, Cleomaceae commonly 
vary the ratio of functionally male to functionally female flow-
ers according to environmental conditions (Zohoungbogbo 
et al. 2018). 

In some Brassicales, sex chromosomes have been identified, 
with the most detailed studies in papaya (Caricaceae). The 
papaya Y is defined by the presence of an approximately 
10-Mb nonrecombining sex-determining region that is only 
a fraction (approximately 10%) of the entire sex chromo-
some (Liu et al. 2004; Na et al. 2012; Wang et al. 2012; Yue 
et al. 2022); this is similar to other plant sex chromosomes 
like asparagus and kiwifruit (Akagi et al. 2018; Harkess et al. 
2020). The closely related genus Vasconcellea also has evi-
dence of XY chromosomes; however, evidence suggests this 
is an independent origin (Wang et al. 2012; Carvalho and 
Renner 2015). Although papaya is almost exclusively dioe-
cious in the wild, it is often described as trioecious because 
most cultivars are essentially gynodioecious (Brown et al. 
2012; Fuentes and Santamaría 2014). 

The Brassicales are also an excellent model for the evolution 
of diverse fruit structures. The Brassicaceae fruits exhibit the 
greatest diversity in size and shape (Ronse De Craene and 
Haston 2006); however, fruit characters are highly homoplas-
tic (Franzke et al. 2011), with clear evidence of parallel evolu-
tion of indehiscent fruits (Mühlhausen et al. 2013) and 
independent origins of dehiscence in Capparaceae and 
Cleomaceae (Hall et al. 2002). Moreover, the diverse fruit 
characters in the Brassicaceae play major ecological roles in 
fruit/seed dispersal (Sperber et al. 2017; Arshad et al. 2019;  
Bhattacharya et al. 2019a; Nichols et al. 2020). The recent evi-
dence of plasticity in Aethionema in response to stress, with 
corresponding glucosinolate allocation to fruit tissues 
(Bhattacharya et al. 2019b), demands a holistic evo-devo ana-
lysis among other members of the Brassicales to understand 
the genetic and epigenetic basis of diversity in fruit characters. 

The future of Brassicales reproductive biology 
research 
The repeated evolution of dioecy, SI, and diverse fruit types 
across the Brassicales makes it a powerful model order for 
comparative developmental and genomic analyses. For in-
stance, are the same sterility genes or pathways involved in 
dioecious flower development across the Brassicales? Do 

the same genes control fruit shape and dehiscence? These 
comparisons will be valuable because they may be potential 
targets for controlling sex and fruit characteristics in breed-
ing programs for the many economically important traits 
found across the order. Moreover, the many origins of sex 
chromosomes will provide further insight into their early 
evolution from ancestral autosomes (Carey et al. 2021). 

Specialized metabolite diversity 
Specialized metabolite diversity across the 
Brassicaceae 
Glucosinolates, or mustard oils, are a clade-defining 
characteristic of plants in the Brassicales. The presence of 
major ecological model systems within this group, 
including Arabidopsis, Boechera (Boechereae), Brassica, and 
Streptanthus (Thelypodieae), has allowed mechanistic ecology 
studies to identify the forces shaping specialized diversity in the 
Brassicaceae. Competition experiments between A. thaliana 
accessions from central and northern Europe in the presence 
of multiple herbivores showed structural variation in the glu-
cosinolate METHYLTHIOALKYLMALATE (MAM) locus linked 
to the presence or absence of 2 different aphids across the con-
tinent (Kroymann et al. 2003; Züst et al. 2012). Recreating nat-
ural variation in isogenic lines with field trials in both 
Arabidopsis and Boechera showed specialized metabolism is 
under strong selective pressure that fluctuates locally, creating 
local bet-hedging (Schranz et al. 2009; Manzaneda et al. 2010;  
Kerwin et al. 2015, 2017). Manipulating glucosinolates within 
Brassica showed how intraspecific glucosinolate variation 
shaped inter- and intraspecific competition and enabled sto-
chastic variation in species occupancy across a landscape 
(Lankau and Strauss 2007). Combining ecological parameters, 
biochemistry, and phylogenetics within Streptanthus has been 
used to understand how specialized metabolism is shaped 
within the family in relation to serpentine soils (Cacho et al. 
2015, 2021). Interestingly, the above ecological model systems 
and other less studied Brassicales can co-occur within the same 
or similar environments. This raises the potential to develop 
studies investigating how specialized metabolism within one 
species may influence the specialized metabolism within 
another. 

Specialized metabolite diversity across the Brassicales 
Extending the ecology work via the combination of genomics 
and chemistry across the entire order Brassicales has begun 
to illustrate how specialized metabolite pathways evolve. 
Glucosinolates are estimated to have first occurred at the 
base of the Brassicales approximately 108 MYA and span 
the phylogeny from the leafy greens of the Brassicaceae to 
the seeds of the Caricaceae, where they co-occur with the hy-
pothesized evolutionary progenitor cyanogenic glycosides 
(Olafsdottir et al. 2002). Glucosinolates then diversified fur-
ther approximately 43 MYA with the evolution of the ali-
phatic glucosinolates (Beekwilder et al. 2008; Zhang et al.  
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2015; Czerniawski et al. 2021). Some glucosinolates, like 
2-hydroxy-2methylbutyl glucosinolate (glucocleomin), are 
family-specific innovations (e.g. Cleomaceae), and others 
like 3-benzoyloxybutyl glucosinolate (glucomalcomiin) ap-
pear to be relatively species specific (e.g. A. thaliana). In con-
trast, glucosinolates like methyl glucosinolate (glucocapparin) 
are found in the Cleomaceae and the Capparaceae but not in 
the Brassicaceae, suggesting a loss or replacement in the 
Brassicaceae that has yet to be characterized genetically. 

Although some of these innovations in glucosinolate ami-
no acid substrate types have been mapped on the phylogeny 
(Edger et al. 2018a; Kumar et al. 2019; Petersen et al. 2019), 
the underlying genomic mechanisms influencing these tran-
sitions have yet to be phylogenetically characterized. What is 
clear is that the evolution of the glucosinolate pathway has 
involved whole-genome, local duplication, and gene trans-
position events, each at different levels. In the glucosinolate 
pathway, whole-genome duplications gave rise to variation 
in the CYP79 family that determines the specific amino 
acid used for the glucosinolate backbone (Edger et al. 2015,  
2018a) and the origin of the MAM locus derived from pri-
mary metabolism (Abrahams et al. 2020). In contrast, local 
structural diversity, duplications, and inversions create en-
zymatic variation leading to novel enzymes that create the 
structural modifications to the glucosinolate backbone, de-
termining the ultimate biological activity (Kroymann et al. 
2003; Hansen et al. 2008; Chan et al. 2010). 

The future of Brassicales specialized metabolite 
diversity research 
Moving beyond glucosinolates to other specialized pathways, 
the identified diversity and innovations at different time scales, 
both within and between metabolic pathways, allow for un-
ique comparisons using the Brassicales. For example, is there 
a difference in how older and younger genes evolve within a 
pathway and is this difference consistent across pathways? 
In addition to investigating how pathways are gained, the 
Brassicales provide the ability to study how pathways can 
be lost and independently recreated (Haribal et al. 2001;  
Rajniak et al. 2015). Additional questions related to specialized 
metabolism can also be addressed when sampling across the 
Brassicales. For example, does the evolution of cardiac glyco-
sides within the Erysimum lineage (Erysimeae) influence the 
selective pressure on specialized metabolism in other species 
when they coexist or within the same species when the 2 path-
ways coexist (Züst et al. 2020)? Developing extensive function-
al, biochemical, genetic, and genomic resources within the 
Brassicales will allow testing these questions about how specia-
lized metabolism is driven to novelty. 

The evolution of woodiness 
Woodiness across the Brassicaceae 
The initiation and activation of a vascular cambium can lead 
to massive secondary growth in woody plants, in which the 

wood cylinder is the main component in stems and roots 
of shrubs, trees, and lianas. The herbaceous A. thaliana is 
an excellent model for elucidating the genetic controls of 
wood formation. Woody mutants show that the genetic 
mechanism turning on the wood pathway in stems can be 
simple, for example by knocking out 2 flowering control 
genes (Melzer et al. 2008; Lens et al. 2012; Davin et al. 
2016) or by overexpressing a single gene that is downstream 
of these 2 flowering control genes (Rahimi et al. 2022). 
Interestingly, about 10% of Brassicaceae species have devel-
oped into woody shrubs, treelets, and even lianas under nat-
ural conditions, and these approximately 400 woody species 
are the result of nearly 100 independent transitions from 
herbaceousness toward phylogenetically derived woodiness 
(e.g. Mohammadin et al. 2017; Zizka et al. 2022; Lens et al., 
unpublished dataset). This makes the Brassicaceae a perfect 
model to better understand why flowering plants became 
woody during evolutionary history. 

Woodiness across the Brassicales 
Woodiness represents the ancestral state in the Brassicales 
(Figs. 2 and 4). Across the order, evolutionary transitions 
from ancestral woodiness toward herbaceousness and rever-
sals back to phylogenetically derived woodiness have repeat-
edly occurred. Transitions toward herbaceousness evolved 
at least 7 times, leading to, among others, the predominantly 
herbaceous sister families Brassicaceae (Al-Shehbaz 1984;  
Franzke et al. 2011) and Cleomaceae (Byng 2014; Patchell 
et al. 2014) that include by far the majority of perennial or 
annual herbaceous species within the order. Other families 
including herbs are Emblingiaceae (Hall et al. 2004; Byng 
2014), Gyrostemonaceae (Byng 2014), Limnanthaceae 
(Meyers et al. 2010; Edger et al. 2018a), Resedaceae 
(Martín-Bravo et al. 2007), Tovariaceae (Hall et al. 2004), 
and Tropaeolaceae (Andersson and Andersson 2000). 
Within the predominantly herbaceous Brassicales clades, 
we also identified approximately 100 evolutionary reversals 
from herbaceousness toward derived woodiness (e.g. Lens 
et al., unpublished dataset), accounting for about 15% of 
the total number of reversals within flowering plants. 
Nearly all of these independent reversals are in the 
Brassicaceae, but they also occurred in Cleomaceae (at least 
4 transitions; Patchell et al. 2014) and Resedaceae (at least 3;  
Martín-Bravo et al. 2007). 

Although the tallest Capparaceae trees reach 40 m in 
height, other trees in the order are typically much smaller 
(e.g. Akaniaceae, other Capparaceae; Bayer and Appel 2003;  
Mercado Gómez and Escalante 2018). Across the 
entire order, multiple invasions into seasonally dry 
(Brassicaceae, Gyrostemonaceae, Resedaceae), (hyper)arid 
(Brassicaceae, Cleomaceae, Gyrostemonaceae, Koeberliniaceae, 
Moringaceae, Salvadoraceae, Setchellanthaceae, Tiganophytaceae), 
and temperate habitats (Brassicaceae, Cleomaceae, 
Limnanthaceae) gave rise to a general reduction in plant 
size, leading to small shrubs and herbs in many lineages 
(Al-Shehbaz 1984; Martín-Bravo et al. 2007; Byng 2014;   

Utility of model clades                                                                                                         THE PLANT CELL 2023: Page 1 of 22 | 9 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koad260/7310837 by guest on 28 D

ecem
ber 2023



Salariato et al. 2016; Swanepoel et al. 2020). It is noteworthy 
that woody Gyrostemonaceae, which may reach 10 m, re-
main relatively short-lived (usually <10 years) in arid areas 
(Baker et al. 2005). The successful attempts to establish and 
diversify into (hyper)arid habitats is unusual across the largely 
tropical rosids, making the Brassicales in general and the 
species-rich Brassicaceae, in particular, stand out as ecologic-
ally distinct lineages (Cornwell et al. 2014). 

The future of Brassicales woodiness research 
Ongoing efforts to start building a species-dense Brassicales 
phylogeny (Nikolov et al. 2019; Hendriks et al. 2023), required 
to identify all the species pairs with contrasting life forms, 
makes the Brassicales a new, representative model clade to 

investigate the environmental and genetic drivers of the mul-
tiple woodiness shifts. The emerging phylogenetic framework 
will inform the first step toward reconstructing the evolution 
of niche dimensions and allow for solid statistical testing of 
hypotheses explaining why plants became woody (Lens 
et al. 2013; Dória et al. 2018; Zizka et al. 2022). Moreover, 
identification of the approximately 100 contrasting life 
form pairs in the Brassicales will serve as a great tool to 
help discover key regulatory genes controlling wood forma-
tion and subsequently validate these results in A. thaliana 
(Melzer et al. 2008; Lens et al. 2012; Davin et al. 2016;  
Rahimi et al. 2022). Using newly developed approaches 
such as phylogenetic inter-species genome-wide association 
studies (Kiefer et al. 2019), we will be able to assess whether 

Figure 4. Light microscope cross sections through Brassicales stems showing the difference between: herbaceous A) and woody stems B–D). 
Double-pointed arrows indicate the wood cylinder. All images are at the same magnification (scale bar = 500 µm). A) Basal inflorescence stem 
part of A. thaliana (Brassicaceae). B) Reseda sp. (Resedaceae). C) C. spinosa (Capparaceae). D) Sinapidendron angustifolium (Brassicaceae).   
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the same genes are involved in the independent transitions, 
thereby contributing to our general understanding of parallel 
and convergent evolution as a principal evolutionary phe-
nomenon (Elmer and Meyer 2011). 

Photosynthesis 
Photosynthesis across the Brassicaceae 
Modifications to C3 photosynthesis have repeatedly oc-
curred in angiosperms and typically are characterized by spa-
tial (C4) or temporal (crassulacean acid metabolism) 
sequestration of CO2 fixation (Edwards 2019). Within the 
Brassicaceae, so far only Moricandia (Brassiceae) has been re-
ported to include 5 C3-C4 intermediate species as well as 3 C3 

species, whereas no species has been shown to have C4 

photosynthesis (Apel et al. 1997; Schlüter et al. 2017).  
Schlüter et al. (2017) suggest various constraints on the 
path to C4, including anatomical limitations to efficient me-
tabolite exchange, limitation in nutrients other than carbon, 
and limited pressure to reduce photorespiration as these 
species inhabit cooler climates than those occupied by C4 

species. Other Brassicaceae lineages deviate from typical C3 

physiology (e.g. carbon isotope ratios not typical of C3), in-
cluding Diplotaxis tenuifolia (Brassiceae; Apel et al. 1997;  
Ueno et al. 2003, 2006), Brassica gravinae (Brassiceae; Ueno 
2011), and Hirschfeldia incana (Brassiceae; Garassino et al. 
2022). Such species and close relatives need detailed analysis 
to understand how C3 photosynthesis has been modified. 

Photosynthesis across the Brassicales 
In the Brassicales, at least 4 instances of partial- or full-C4 

photosynthesis have evolved. In Cleomaceae, C4 NAD-de-
pendent malic enzyme (NAD-ME) photosynthesis has been 
extensively characterized in Gynandropsis gynandra 
(Marshall et al. 2007; Voznesenskaya et al. 2007; Bräutigam 
et al. 2011; Brown et al. 2011; Koteyeva et al. 2011, 2014;  
Kajala et al. 2012; Williams et al. 2016; Huang et al. 2021). 
This research indicates that C4 photosynthesis has evolved 
from components found in C3 species. Identification of a bi-
partite transcription factor module driving gene expression 
in the A. thaliana bundle sheath provides insight into trans- 
factors important for C4 photosynthesis (Dickinson et al. 
2020). Significant natural variation of C4 traits exist in 
Gynandropsis (Reeves et al. 2018), and the G. gynandra gen-
ome has gene families retained in duplicate following poly-
ploidy that facilitated C4 evolution (Hoang et al. 2023). The 
Coalisina clade (Cleomaceae; Roalson and Hall 2017) includes 
C3, intermediate, and C4 species (Voznesenskaya et al. 2007). 
Coalisina angustifolia has NAD-ME C4, whereas Coalisina para-
doxa has been characterized as intermediate/C2 (Koteyeva 
et al. 2011). Only 1 taxon within the C. angustifolia complex 
has been fully characterized (C. angustifolia subsp. angustifolia;  
Voznesenskaya et al. 2007). Denser sampling of this clade 
would inform us about the C3 to C4 transition as it appears 
to include C3, C3-C4 intermediate, and fully C4 species 

and would provide an interesting comparative lineage to 
Moricandia, where there are C3 and C3-C4 intermediates but 
no known C4 species. Areocleome is the least studied of 
Cleomaceae C4 lineages and includes at least 1 species re-
stricted to arid Australia (Barrett et al. 2017). Areocleome 
oxalidea has NAD-ME-type C4 physiology (Voznesenskaya 
et al. 2007; Koteyeva et al. 2011), but the underlying C4 genet-
ics remain unstudied. The sister genus Arivela may have 
C3-C4 intermediate characteristics as it is sympatric with 
Areocleome and more widespread in the monsoonal tropics. 
Other Cleomaceae lineages, including Cleomella sparsifolia, 
Tarenaya siliculifera, Sieruela allamanii, and S. gallaensis, ap-
pear to deviate from typical C3 physiology (Voznesenskaya 
et al. 2007; Parma et al. 2021). These species significantly differ 
in their distributions from dry southwestern North America 
to tropical Brazil, and tropical to subtropical Africa, providing 
opportunities to consider C3 pathway modifications across 
environments. 

The future of Brassicales photosynthesis research 
Understanding the modifications in photosynthetic path-
ways and carbon-concentrating mechanisms holds signifi-
cant relevance and impact in several key aspects. Gaining 
insights into these fundamental physiological processes is 
crucial for advancing our comprehension of plant biology 
and evolution. This knowledge helps us unravel the intrica-
cies of how plants have adapted to various environmental 
conditions, contributing to a deeper understanding of the 
natural world. 

Photosynthetic pathway modifications occur in numerous 
lineages and in some cases co-occur and shift between the 2 
major modification types (Holtum et al. 2017; Edwards 2019;  
Winter et al. 2019). Further, C4 photosynthesis has multiple 
biochemical forms (Sage 2004). As our understanding of 
these basic physiological processes has expanded, 4 founda-
tional hypotheses have solidified: (1) there have been mul-
tiple independent origins of C4/CAM (Sage et al. 2011); (2) 
independent origins of carbon-concentrating mechanisms 
can occur through the co-option of similar molecular com-
ponents (Christin et al. 2007; Brown et al. 2011), and these 
components exist in the ancestral C3 state (Brown et al. 
2011; Williams et al. 2016; Reyna-Llorens et al. 2018); (3) pre-
cursor anatomical modifications that appear unrelated to 
photosynthesis act as facilitators of biochemical adaptations 
(Christin et al. 2013; Williams et al. 2013); and (4) a number of 
carbon-concentrating mechanisms do not fully fit our con-
cepts of C4/CAM (e.g. C2; Lundgren 2020). Our understand-
ing of carbon-concentrating adaptations has become better 
attuned to these nuances as knowledge on independent ori-
gins has accumulated. 

Resolving the current struggles in this field would open up 
exciting future directions for research. Access to genomes 
and a comprehensive understanding of photosynthetic path-
way modifications would enable researchers to explore the 
genetic and molecular underpinnings of these processes in 
even greater detail. This, in turn, could lead to the discovery  
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of novel molecular components and mechanisms that drive 
photosynthetic adaptations. The relevance of this research 
extends to agriculture and environmental conservation. By 
understanding the multiple independent origins of C4/ 
CAM photosynthesis and the co-option of molecular com-
ponents, we can potentially engineer crops to be more 
efficient in photosynthesis and better adapted to changing 
environmental conditions. This has implications for food 
security and sustainable agriculture, particularly in the face 
of climate change. Additionally, the recognition of carbon 
concentrating mechanisms that do not fit traditional C4/ 
CAM concepts, such as C2, presents an intriguing avenue for 
further investigation. Unraveling the molecular basis of these 
mechanisms could challenge and expand our current under-
standing of photosynthesis and carbon fixation in plants. 

Extremophytism and stress tolerance 
Extremophytism across the Brassicaceae 
Many Brassicaceae (and Brassicales) species thrive in extreme 
environments including desert, arctic, and saline ecosystems. 
To survive in such habitats, extremophytes possess genetic 
adaptations for tolerating severe abiotic stresses. Such 
adaptations are exemplified in 2 halophytic Brassicaceae, 
Schrenkiella parvula (Schrenkielleae) and Eutrema salsugi-
neum (Eutremeae), quintessential models (Zhu 2015) 
for studying tolerance to ionic and nutrient stresses 
(Kazachkova et al. 2018; Pantha et al. 2021; Tran et al. 2021;  
Wang et al. 2021). Curated genomes, multiple tissues, and en-
vironmental response “omics” datasets have been generated 
for both species as well as transformation protocols that facili-
tate independent genetic analyses (Oh et al. 2010, 2014;  
Dassanayake et al. 2011; Wu et al. 2012; Wang et al. 2019;  
Pantha et al. 2021; Tran et al. 2022; Wijesinghege et al. 
2022a, 2022b; Sun et al. 2022). 

Because multiple evolutionary paths can provide unique so-
lutions to different environmental challenges, the Brassicaceae 
from various extreme environments are being studied 
including: (1) the desert species Anastatica hierochuntica 
(Anastaticeae), which is tolerant to heat, low nutrient, and 
salt stress (Eshel et al. 2017, 2022); (2) the metal hyperaccumu-
lator Arabidopsis halleri (Arabidopsideae; Briskine et al. 
2017; Honjo and Kudoh 2019); and (3) 3 Arctic species, 
Cardamine bellidifolia (Cardamineae), Cochlearia groenlandica 
(Cochlearieae), and Draba nivalis (Arabideae; Birkeland et al. 
2020). Together, these models should provide a window into 
evolutionary adaptations that confer stress tolerance and fa-
cilitate an extremophyte lifestyle. 

Extremophytism across the Brassicales 
Beyond the Brassicaceae, only a few studies have examined 
extremophyte Brassicales. For instance, Batis maritima 
(Bataceae), a perennial, succulent halophytic shrub that inha-
bits mangrove swamps, salt marshes, and salt flats (Marcone 
2003; Debez et al. 2010), tolerates up to 1 M NaCl and has 

evolved different salt tolerance mechanisms compared 
with the 2 annual Brassicaceae halophyte models, E. salsugi-
neum and S. parvula. For example, B. maritima accumulates 
high levels of shoot Na+ while E. salsugineum minimizes entry 
of Na+ (Kant et al. 2006; Debez et al. 2010). 

Drought responses were investigated in the stress-tolerant, 
evergreen, African tree species, Dobera glabra (Salvadoraceae). 
When compared with co-occurring non-Brassicales species, 
D. glabra displayed the lowest water potential, illustrating its 
ability to thrive in drought-prone areas (Gebrekirstos et al. 
2014). 

Molecular studies of non-Brassicaceae Brassicales are ex-
tremely sparse. Mercati et al. (2019) reported a de novo tran-
scriptome assembly from the drought-tolerant, xerophytic 
crop, Capparis spinosa (Capparaceae), and they generated 
the first set of SSR markers distinguishing subspecies of C. spi-
nosa. A chromosome-level C. spinosa var. herbacea genome 
assembly showed expansion of gene families involved in 
photosynthesis and response to abscisic acid (Wang et al. 
2021). Phylogenetic analysis of a Brassicales-specific gene en-
coding PROTEIN PHOSPHATASE7-LIKE (PP7L) involved in 
chloroplast development and abiotic stress tolerance sug-
gested that PP7L evolved about 43–92 MYA, after the diver-
gence of Caricaceae from the other Brassicales families but 
before the separation of Cleomaceae from Brassicaceae 
(Xu et al. 2019). 

The future of Brassicales extremophyte research 
Core stress response pathways exist in all land plants. Yet, 
selective pressures imposed by extreme environments have 
driven novel evolutionary innovations to modify these core 
pathways or add alternatives. These evolutionary innovations 
are being revealed by comparative analyses of the premier 
model species A. thaliana (“stress-sensitive”) with the 
Brassicaceae extremophyte models. Yet these Brassicaceae 
species are all annuals, and alternative stress tolerance strat-
egies could be found in perennial extremophytes that survive 
harsh stresses over multiple years. Thus, the gap in the adap-
tive trait space left by the Brassicaceae models can be nar-
rowed by studies of perennial Brassicales extremophytes, 
which possess the added advantage of shared ancestry with 
A. thaliana, many of whose core stress response pathways 
have been identified. 

The lack of genomic resources for the Brassicales extremo-
phytes has limited research into their adaptations to extreme 
environments. Emerging technologies in large-scale and 
single-molecule/cell sequencing offer unprecedented mo-
lecular tools that require little prior genetic information to 
produce primary genomic resources. Single-molecule/ 
hyperspectral imaging and phenomics can then facilitate 
linkage of novel genomic variation to unique extremophyte 
traits. Thus, the broader phylogenetic footprint capturing 
the life history strategies of the Brassicales extremophytes 
could facilitate new discoveries for sustainable crop produc-
tion, land reclamation, and biodiversity conservation in this  
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era of climate change and global threats to the environment 
and food insecurity. 

Supporting model orders with global 
communities 
Issues identified not only in the determination of relation-
ships among or within the Brassicales but also in analysis of 
all the phenotypes discussed here create many opportunities 
to leverage the trait diversity across the order. To fully take 
advantage of these opportunities for both those currently 
investigating this diverse plant order and those who wish 
to, there must be a cohesive development of a global net-
work for plant material, data generated, and researchers.  
Turner-Hissong et al. (2020) highlight ways to curate com-
munity efforts in organizing not only germplasm and data 
but also outreach and broader impacts. Although these sug-
gestions are primarily directed at crop systems, many ideas 
are useful here too. For example, there is a need to develop 
reliable stock sources or live genetic material, which research-
ers can both order and submit samples, to increase reprodu-
cibility across studies. Some examples of this exist, such as 
the Arabidopsis Biological Resource Center (ABRC; https:// 
abrc.osu.edu/), the Universidad Politécnica de Madrid 
Plant Germplasm Bank (UPM-PGB; which includes the 
César Gómez Campo Collection), the USDA Germplasm 
Resources Information Network (GRIN), and the Royal 
Botanic Gardens (Kew) Millennium Seed Bank and its DNA 
and tissue bank collections. However, one must first know 
about these resources to utilize them. However, even with 
these resources available, cultivating them demands substan-
tial time, effort, funding, and space. Numerous species lack 
established protocols, particularly those accessible to the 
public, on optimizing plant growth for generating sufficient 
seeds for trait-focused studies. It is essential to meticulously 
document the origins of genetic resources and acknowledge 
the knowledge's source by returning it to the country of 
origin. 

Following germplasm curation, data curation of all types is 
crucial for continual progress. As we generate these large, 
multi-omic datasets, there is an increasing need for scalable, 
systematic community efforts to organize these resources, all 
of which will require standards for data collection and cur-
ation and ideally utilize established open-access repositories. 
Fortunately, there are already databases in existence, such as 
BrassiBase (Koch et al. 2018), which consolidate information 
encompassing taxonomy, systematics, evolution, available 
germplasm resources, and specimen collections and could 
be expanded to include all of the Brassicales in the future. 
Furthermore, networks like the Multinational Brassica 
Genome Project (MBGP; brassica.info) could play a pivotal 
role if expanded to Brassicales. Currently, MBGP organizes 
annual meetings at international conferences and is dedi-
cated to establishing a Brassica Information System, which 
includes the formulation of standards for describing data 

entities and experimental resources. Additionally, platforms 
like Phytozome, which serves as a central hub for accessing, 
visualizing, and analyzing JGI-sequenced plant genomes, 
along with the recently published and updated JGI Gene 
Atlas (Sreedasyam et al. 2023), can greatly contribute to 
the development of a cohesive community focused on the 
Brassicales model clade. These types of databases provide a 
place where not only data can be accessed, but researchers 
can also keep others updated on current projects, results, 
and future plans. Centralizing access to these plant materials 
and data generated would significantly decrease the barriers 
for scientists, especially early career scientists and those with 
less access to modern resources, and ultimately encourage 
equity and recruit new and diverse researchers to study the 
model order Brassicales. Nonetheless, persistent challenges 
exist, including a decline in taxonomic expertise, restricted 
access to materials from several small endemic families, 
and a noticeable bias toward collaboration with researchers 
primarily from the global North. 

Greater accessibility to plant genomics at lower costs has 
expanded global collaboration opportunities. However, it is 
important to acknowledge that the discovery of genes and 
pathways in plant species can have significant economic im-
plications, so these initiatives must also address the growing 
complexity surrounding genetic resources and intellectual 
property rights. There are growing calls for decolonization 
of science in the global North that extracts materials 
and knowledge from the global South and Indigenous groups 
without reciprocity (Radcliffe 2017; Armstrong and McAlvay 
2019; Baker et al. 2019; Carroll et al. 2020; The First Nations 
Information Governance Centre 2022). Within the order 
Brassicales, Pentadiplandra brazzeana was at the center of 
a biopiracy controversy when scientists from the University 
of Wisconsin patented a protein, brazzein, extracted from 
the berries of Gabonese plants as a sweetening agent with 
no benefit-sharing agreement with Gabon or Gabonese peo-
ple (Blakeney 2019; Dwivedy et al. 2019). A growing number 
of countries have implemented the Nagoya Protocol on 
Access and Benefit-sharing (Buck and Hamilton 2011) and 
other measures to govern the exchange and use of biological 
materials. Moving forward, we urge all researchers working 
on Brassicales collection and sequencing efforts to consider 
genuine collaboration with Indigenous groups and scientists 
in the global South to work to align project goals with local 
interests (Baker et al. 2019). We understand the need to build 
a foundation of respect, reciprocity, and accountability with-
in our growing collaborative efforts in keeping with the prin-
ciples of Indigenous data sovereignty and equitable benefit 
sharing. The authors here commit to these core principles 
throughout our contacts and research. 
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