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Summary – Results from comparative and ecological wood anatomy combined with a number of experimental studies on plant
hydraulics have led to a pervasive and longstanding assumption that wider-diameter vessels are more vulnerable to drought-
induced embolism than narrower vessels. Althoughwe agree that wider vessels tend to bemore vulnerable than narrower vessels
within stems and within roots across most species, our current understanding of the diameter-vulnerability link does not offer a
mechanistic explanation for why increased vessel diameter should consistently lead to greater vulnerability or vice versa. Causes
of drought-induced embolism formation and spread likely operate at the nano-level, especially at gas-liquid-surfactant interfaces
inside intervessel pit membranes. We evaluate here new perspectives on drought-induced embolism and its key anatomical
and physico-chemical drivers, of which vessel diameter is one of the parameters involved, although its linkage to embolism
vulnerability is likely indirect. As such, the diameter-vulnerability link does not imply that species with on average wider vessels
are consistently more susceptible to drought-induced embolism compared to species with narrower vessels. Scientific priorities
for future progress should focus on more accurate predictions of how water transport in plants is affected by drought, which
requires a better mechanistic understanding of xylem network topology and biophysical processes at the nano-scale level in
individual vessels that determine embolism formation and spread.
Keywords – drought, embolism, pit membrane thickness, plant hydraulics, vessel diameter, wood anatomy, xylem networks,
xylem sap.

Introduction

One of the most frequently measured xylem traits in angiosperms is vessel diameter, which ranges from 10–700
μm both across and within species (Hacke et al. 2017; Olson 2020). This trait is commonly measured for multiple
reasons, most notably because vessel diameter is easily measured from cross sections of xylem, and has proven to act
as an important functional trait regulating hydraulic conductivity (Sperry et al. 2006; Lachenbruch&McCulloh 2014)
and freeze-thaw-induced embolism (Sperry & Sullivan 1992; Davis et al. 1999; Sevanto et al. 2012; Lintunen et al. 2013,
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Role of vessel diameter on drought-induced embolism

2020; Charrier et al. 2014), among other plant functional traits. Broad accessibility to this trait with relatively simple
methods has also provided numerous opportunities for comparative anatomy studies that allowed for insights into
plant adaptation across various terrestrial habitats, many of which were initiated by Sherwin Carlquist and followed
by others (Carlquist 1966, 2001; Baas et al. 1983; Lens et al. 2004; Olson et al. 2023). These comparative studies show
that species from dry environments tend to have a narrower mean vessel diameter than closely related species from
wetter habitats, which provides evidence for the idea that species withwider vessels aremore susceptible to drought-
induced embolism than species with narrower vessels (Olson et al. 2018; Stovall et al. 2019). To further highlight the
role of vessel diameter in a plant’s drought response, Carlquist (1977) calculated indices for vulnerability (V ; vessel
diameter divided by vessel density) and mesomorphy (M = V multiplied by vessel element length) for species
native to habitats with contrasting levels of aridity, and found that drought-adapted species showed V - and M-
indices markedly below 1.0 and below 30, respectively (summarised in this special issue by Ewers et al. 2023). Yet,
despite several decadesof workonestablishing a linkbetweenconduit diameter andvulnerability todrought-induced
embolism, the current state of the underlyingmechanistic understanding remains largely uncertain (Lens et al. 2022;
Hacke et al. 2023).
In addition to the comparative studies of Carlquist (1966, 2001) and pioneers before him (see Olson 2020 for

a historical overview), part of the theoretical background regarding the functional role of conduit diameter finds
its root in the seminal work by Zimmermann (1983), which illustrates the effects of conduit diameter on idealised
Hagen-Poiseuille flow in cylindrical pipes. This theoretical framework was highly influential and set the stage for
many subsequent investigations to explicitly test the hypotheses presented in Zimmermann’s book. Emerging over
the following decades was the idea that some inherent trade off must exist between optimising the xylem for
hydraulic efficiency, structural support, and hydraulic safety. That hypothetical trade off ‘triangle’ (see Baas et al. 2004;
Brodersen 2015)was then critically evaluated based on large-scale data analyses, confirming (oftenweak) correlations
between efficiency and safety (measured as P50: xylem sap water potential leading to a 50% loss of conductivity;
Gleason et al. 2016), between support and safety (Hacke et al. 2001), and between conduit diameter and safety (Fig.
1 in Lens et al. 2022; Hacke et al. 2023). This latter diameter-vulnerability link was also confirmed in a number of
smaller-scale experimental studies (Hargrave et al. 1994; Cai & Tyree 2010; Nardini et al. 2017; Jacobsen et al. 2019;
Isasa et al. 2023). However, many other smaller-scale experimental publications did not find a diameter-P50 link in
either stems or petioles (Lens et al. 2011, 2016; Brodersen et al. 2013; Choat et al. 2016; Dória et al. 2018, 2019; Emilio et
al. 2019; Thonglim et al. 2020, 2022). This link was also not retrieved in some studies on conifers (Bouche et al. 2014;
Johnson & Brodribb 2023). Two conclusions can be drawn from these inconsistent experimental results: (1) even if a
correlation between vessel diameter and P50 exists, this correlation is of little use without critically interpreting what
it actuallymeans in relation to total-plant drought resilience, and (2) reporting a correlation between these traits does
little to inform our understanding of the mechanisms underlying drought-induced embolism formation and spread,
which is currently a priority for the field (Lens et al. 2022).
In this opinion paper, based on the ideas already published in detail in Lens et al. (2022) and inspired by earlier

comparative wood anatomy work by Carlquist and others, we further explore the idea of a potential mechanistic
relationship between vessel diameter and vulnerability to drought-induced embolism, and discuss how this impacts
the interpretationof thediameter-vulnerability link. A critical assessment of this link involves two researchquestions:
(1) Are wider vessels always more prone to drought-induced embolism than narrower vessels (and vice versa), and
(2) Are species with a higher mean vessel diameter consistently more vulnerable to embolism— and by extension
more vulnerable to drought— than species with narrower vessels? These two questions are often not separated, and
we believe disentangling them will lead to a more balanced and useful understanding of the role of vessel diameter
in drought-induced embolism.
Even when assuming the diameter-vulnerability link to be valid across a broad range of vascular plant species, we

echo the conclusion in our previous paper stating that (1) wider vessels are often (but not always) more vulnerable
to drought-induced embolism compared to narrower vessels when the same organs are taken into account (see also

Vol. 44(3-4), 2023 369Downloaded from Brill.com 12/21/2023 12:17:40PM
via Open Access. This is an open access article distributed under the terms

of the CC BY 4.0 license.
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/


F. Lens et al.

Fig. 2 in Hacke et al. 2023), and (2) that species with on average wider vessels are not necessarily more vulnerable
to drought-induced embolism than species with narrower vessels. The main reasons for these two statements
are that the mechanisms leading to drought-induced embolism involve a complex interaction among multiple
anatomical (including vessel diameter) and physico-chemical drivers operating at different scales (Lens et al. 2022).
Unfortunately, this complexity and the fact that we do not understand exactly how plants are able to transport
water under negative pressurewithout constant or even frequent embolism formation,makes it difficult to generalise
findings related to drought-induced embolism.
To reconcile this discrepancy, there is an urgent need to keep on critically assessing the methods used to generate

anatomical and experimental data, and to dive deeper into the mechanisms behind drought-induced embolism. In
addition, the vulnerability discussion concerningwide vessels contributes to debates about the frequency of drought-
induced embolism events in planta: (1) Does embolism formation occur in the vulnerablewide vessels on a daily basis
in the field also under normal conditions of precipitation, which indirectly may suggest frequent embolism repair
events (Salleo et al. 2004; Jacobsen et al. 2007; Hacke et al. 2009; Nardini et al. 2011; Jacobsen & Pratt 2012), or (2) Is
widespread embolism uncommon over relatively long periods in the field and limited to periods of severe drought in
narrow- as well as wide-vesseled species (Cochard&Delzon 2013; Lens et al. 2016;Wason et al. 2018; Guan et al. 2022)?
Answering these questions is crucial because embolism events could result in the loss of hydraulic conductance,
tissue desiccation, and/or dieback (Davis et al. 2002; Venturas et al. 2016; Pratt et al. 2020; Brodribb et al. 2021;Mantova
et al. 2022) and can therefore affect plant function and survival (McDowel et al. 2008; Allen et al. 2015; Anderegg et al.
2016; Adams et al. 2017; Choat et al. 2018; Brodribb et al. 2020).

Why are wider vessels not necessarily more vulnerable to drought-induced embolism than narrower
vessels?

A frequently cited argument from ecological studies on wood anatomy supporting the diameter-vulnerability link
is that earlywood vessels, which are often formed during the spring in temperate regions or during the wet season in
seasonally dry regions, are alwayswider than latewood vessels formed later in the season, oftenunder drier conditions
(Carlquist 2001; Olson et al. 2023).We agree that earlywood will be on average more vulnerable than latewood across
most of these species. However, this does not necessarily indicate that all earlywood and latewood vessels differ in
vulnerability todrought-inducedembolism, and it is evenplausible that someof the latewoodvessels are considerably
more vulnerable than most earlywood vessels. With respect to the tracheid-bearing conifer species Pseudotsuga
menziesii, Dalla-Salda et al. (2014) indeed found that the latewood ismore vulnerable to drought-induced embolism
compared to earlywood, probably due to inflexible interconduit pit membranes in the latewood tracheids that
facilitate embolism spread. Therefore, linking conduit diameter with vulnerability to embolism can be misleading
when not considering other traits that may play an equal or more important role in drought-induced embolism
formation than conduit diameter. In other words, all else being equal, wider vessels are likely more vulnerable than
narrower vessels within stems and roots, agreeing with the large body of literature (Lens et al. 2022; Hacke et al. 2023;
Olson etal. 2023).However, all else is typically not equal innature, implying thatwider vessels canalsobe considerably
more resistant to drought-induced embolism than narrower vessels.
Also, from the point of view of xylem physiology, there are three main explanations for why the impact of

vessel diameter on drought-induced embolism vulnerability should be treated in a broader perspective. First, the
mechanisms behind drought-induced embolisms are complex, poorly understood, and occur at much smaller scales
than whole-conduit dimensions. For example, gas bubble formation (and stabilisation), and bubble expansion
may arise from nano-scale interactions occurring among the multiple interfaces between liquids, gases, and solids
inside conduits. These interactions are further complicated by the presence of solutes and insoluble xylem sap
compounds that change the surface tension, aka surface-active agents or surfactants, which are hypothesised to
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stabilise very small gas bubbles (“nanobubbles”) and may result in xylem sap that is far more resilient to drought-
induced embolism than traditionally thought (Schenk et al. 2017, 2020; Yang et al. 2020; Jansen et al. 2022; Ingram
et al. 2021). However, the precise combination of surfaces (cell wall, pit border, pit membrane), xylem sap, and
gas properties/conditions that result in embolism formation and spread remain poorly understood but are likely
proximally related to embolism vulnerability. For example, it is possible that embolisms result from pre-existing gas
bubbles, including tiny nanobubbles or surface bubbles associated with hydrophobic vessel surfaces, which expand
in the xylem sapwhen these bubbles exceed a critical size threshold for a given pressure (Tyree et al. 1994; Hölttä et al.
2002; Lohse&Zhang 2015; Schenk et al. 2017), although experimental evidence for this idea is poor. Hownanobubbles
and the likelihood of embolism formation relate to vessel diameter (and length) remains to be studied. Either vessels
with a larger volume contain a higher total number of nanobubbles that may increase embolism risk, or these wider
and longer vessels could be more resistant if large neighbouring vessels during their initial stage of embolisation
would extract gas from their functional neighbours in order to reach atmospheric pressure at the final stages of
embolisation (Wang et al. 2015).
Second, correlation does not invoke causation, which obviously also applies to the diameter-vulnerability link.

There is no known direct, mechanistic link between conduit diameter and drought-induced embolism resistance
either at the whole-plant level or at the ultrastructural pit level. If such a mechanism were to exist, we should expect
it to affect the relative vulnerabilities of xylem in leaves (narrower conduits) and stems (wider conduits) similarly
within and across individuals and species, but it clearly has not. For example, although several authors have reported
leaf xylem to bemore resistant to embolism thanbranch or stemxylem (Zhu et al. 2016; Klepsch et al. 2018; Levionnois
et al. 2020b; Guan et al. 2022), this result is far from consistent across studies, despite leaves having consistently
narrower conduits than branches or stems. Likewise, several authors have reported that leaves are more vulnerable
than perennial shoots (Pivovaroff et al. 2014; Charrier et al. 2016; Johnson et al. 2016; Creek et al. 2018; Skelton et al.
2019), or else have found no meaningful difference in xylem vulnerability between leaves, stems and/or roots of the
same individuals (Skelton et al. 2017; Creek et al. 2018; Wason et al. 2018; Losso et al. 2019; Levionnois et al. 2020b;
Smith-Martin et al. 2020; Wu et al. 2020, Lübbe et al. 2022). Thus, if a causal mechanism between conduit diameter
and vulnerability was identified, it would need to account for the inconsistent vulnerability-diameter relationships
within and across individuals. Bearing this inmind, the recent study of Isasa et al. (2023) showed that a negative vessel
diameter-P50 relationship exists at the interspecific scale, but not at the intraspecific scale. In conclusion, a view that
considers the entire body of research on xylem vulnerability, rather than studies that only support a vulnerability-
diameter link within a single organ, does not support a mechanism operating at the scale of the whole plant.
At the pit level, researchers often cite the pit area hypothesis (Wheeler et al. 2005; Hacke et al. 2006, 2009;

Christman et al. 2009, 2012) to mechanistically explain the diameter-vulnerability link. This hypothesis assumes that
permeability to gas and embolism propagation among vessels increases with increasing intervessel pit area of a given
vessel with average dimensions (Ap). While the pit area hypothesis correctly emphasises the functional importance
of intervessel connectivity (Loepfe et al. 2007; Wason et al. 2021; Bouda et al. 2022), large pit membrane pores are
thought to be exceptionally rare and, if observed, are most likely the result of artefacts (Jansen et al. 2008, 2009;
Choat et al. 2008). Furthermore, the idea that a rare, single-layered pit membrane would be highly leaky due to a
single, unusually large pore, leading to embolism propagation, is not compatible with recent theoretical insights on
the three-dimensional, multi-layered nature of pit membranes with multiple pore constrictions that represent the
bottlenecks for water and gas transport (Kaack et al. 2019, 2021; Yang et al. 2020; Zhang et al. 2020). These insights,
based on 3D-modelling and hydraulic measurements, suggest that P50 has a stronger relationship with intervessel
pit membrane thickness than Ap (Kaack et al. 2021), although Isasa et al. (2023) showed that intervessel membrane
thickness alone cannot explain theP50 interspecific variability basedon 12 temperate tree species.What emerges from
these studies is that the pit area hypothesis should be further tested with respect to both length-diameter scaling of
conduits and connectivity among both vessels and adjacent tracheids (Carlquist 1984; Sperry et al. 2006) before it
can be used as a solid mechanistic explanation for a possible correlation between P50 and vessel diameter. Embolism
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spread is the result of a combination of different traits thatmay be related (e.g., vessel connectivity or Ap) ormay not
be related (e.g., sap composition, vessel wall chemistry, intervessel pit membrane thickness) to vessel diameter (Lens
et al. 2022). There is an urgent need to validate the theoretical pitmembranemodelswith ultrastructural observations
of intervessel pit membranes.
Third, several different methods have been used to quantify both mean vessel diameter and P50, thereby adding

noise to the diameter-vulnerability link (Brodersen et al. 2013; Cochard & Delzon 2013; Choat et al. 2016; Martin-
StPaul et al. 2017; Creek et al. 2018; Emilio et al. 2019; Smith-Martin et al. 2020; Barigah et al. 2021). With respect to
vessel diameter, there are multiple ways for a plant to arrive at the same mean vessel diameter (i.e., different vessel
diameter frequency distributions), and “mean” vessel diameter may not be the most meaningful quantification of
vessel width, as it relates to embolism vulnerability. In addition, mean vessel diameter is calculated in different ways
(e.g., tangential diameter, equivalent circle diameter), and is often hydraulicallyweighted based on either all vessels in
a cross-section or from a subset of these vessels (usually >100) (Scholz et al. 2013). Also, the pressure gradient driving
water transport through the xylemmay not be uniform across all vessels in a cross-section (Bouda et al. 2019), which
would likely result in errors in estimated vulnerability across vessels of different diameters within the same cross-
section. To further complicate matters, branch age, growth rate, number of growth rings, and seasonality may affect
the vulnerability curve (Charrier et al. 2018; Olson et al. 2018; Pratt et al. 2020; Sorek et al. 2020;Weithmann et al. 2022).
In summary, the interpretation of the diameter-vulnerability link will become clearer if we know the vulnerability
of individual vessels, and the determinants of this vulnerability, as well as the aggregate vulnerability across many
vessels.
The unexplained variation in the vulnerability-diameter correlation could also be explained by differences in P50

methods that may impact vulnerability curves (Cochard et al. 2013; Venturas et al. 2019; Gauthey et al. 2020; Hacke et
al. 2023). The open vessel artefact is noteworthy in this regard, especially in studies focusing on stems of long-vesseled
genera such as Quercus (Sperry et al. 2012; Martin-StPaul et al. 2014; Skelton et al. 2018, 2021; Percolla et al. 2021) and
Vitis (Choat et al. 2010; Jacobsen & Pratt 2012; McElrone et al. 2012; Charrier et al. 2018). Many studies showed that
this artefact occurs when embolism is artificially induced with the centrifugemethod in stem (or root) segments that
are considerably shorter than the maximum vessel length, thus resulting in vessels being cut at both ends (“open
vessels”). These longer (and often wider) cut-open vessels embolize quickly when they are subjected tomild negative
pressure, thus resulting in a rapid (exponential or “r”-shaped) decline in hydraulic conductivitywith increasing xylem
tension, and hence an overestimation of vulnerability (Alder et al. 1996; Cochard 2002; Choat et al. 2010; Cochard et
al. 2010, 2013; McElrone et al. 2012; Martin-StPaul et al. 2014; Torres-Ruiz et al. 2014; although see Tobin et al. 2012,
Jacobsen & Pratt 2012, Sperry et al. 2012, Hacke et al. 2014, and Jacobsen & Pratt 2023 for a different point of view).
Other factors that are known to affect the shape of a vulnerability curve are temporal variation in “native” embolism
(daily or seasonal) and the flushing of stems with water prior to taking an initial hydraulic measurement (Domec et
al. 2006; Jacobsen et al. 2007; Hacke et al. 2014, 2023). Considering all these potential sources of error in embolism
vulnerability measurements, a critical examination of methods and models used to estimate xylem vulnerability
remains a research priority (Cochard et al. 2013).

Why are species with wider vessels not necessarily more vulnerable to drought-induced embolism than
those with narrower vessels?

The mechanisms leading to drought-induced embolism involve several anatomical and physico-chemical drivers
of drought-induced embolism. This implies that natural selection may act on combinations of traits that affect the
susceptibility of xylem to drought-induced embolism at different scales, with vessel diameter only being one of these
traits that may or may not have a significant impact on the drought resistance of the entire individual. The potential
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xylem drivers of drought-induced embolism are discussed more in-depth in Lens et al. (2022) and are listed here in
alphabetical order (see also Box 1 in Lens et al. 2022).
(1)Macro-level (vessel) traits: 3D-conduit network (Loepfe et al. 2007; Brodersen 2013;Mrad et al. 2018, 2021;Wason

et al. 2021; Bouda et al. 2022), Ap (Wheeler et al. 2005; Kaack et al. 2021), and conduit diameter (this paper; Isasa et al.
2023).
(2) Nano-level xylem traits: intervessel pit membrane thickness (Jansen et al. 2009; Lens et al. 2011, 2013; Li et al.

2016; Dória et al. 2018; Levionnois et al. 2020a; Thonglim et al. 2020, 2022; Kaack et al. 2021), cell wall chemistry and
thickness (Lens et al. 2016; Greenwood et al. 2017; Pereira et al. 2018; Dória et al. 2018, 2019; Thonglim et al. 2020, 2022;
Frankiewicz et al. 2021; Liang et al. 2021; Zizka et al. 2022), wettability of the inner conduit wall (Lohse & Zhang 2015;
Zwieniecki&Holbrook 2000;McCully et al. 2014; Schenk et al. 2017, 2018, 2020; Brodersen et al. 2018), dynamic surface
tension of xylem sap and surfactant-coated nanobubbles (Schenk et al. 2015, 2017, 2020; Yang et al. 2020; Ingram et
al. 2021; Jansen et al. 2022), and gas movement and xylem sap oversaturation (Schenk et al. 2016; Pereira et al. 2020;
Guan et al. 2021).

Concluding remarks

From the above, it is clear fromboth ecological wood anatomy and experimental studies that aweak but significant
diameter-vulnerability link does exist when comparing all available data (mainly from stems; Fig. 1 in Lens et al. 2022).
This means that there is a large body of evidence that wider vessels tend to bemore vulnerable than narrower vessels
within stems and roots, confirming Carlquist’s ideas (1966, 2001). Consequently, we agree that vessel diameter likely
plays some role in drought-induced embolism formation inmany clades (Lens et al. 2022; Olson et al. 2023), but most
likely not within all clades (Lens et al. 2011, 2016; Brodersen et al. 2013; Choat et al. 2016; Dória et al. 2018, 2019; Emilio
et al. 2019; Thonglim et al. 2020, 2022), and definitely not at the whole-plant level (Skelton et al. 2017; Creek et al.
2018;Wason et al. 2018; Losso et al. 2019; Levionnois et al. 2020b; Smith-Martin et al. 2020;Wu et al. 2020, Lübbe et al.
2022). Even if we generally accept that there is a diameter-vulnerability link, not knowing themechanisms involved in
drought-induced embolismcan lead to subtle but important differences in the interpretation of what the link actually
means, i.e., how and why it has arisen and its consequences on plant function. Although we agree with Olson et al.
(2023) that the salient vessel diameter patterns in nature are valuable in directing our research questions to solve
how plants respond to environmental stress, we feel that this approach overemphasises the role of vessel diameter in
the drought stress debate and simplifies the relationship between vessel diameter and embolism vulnerability to the
point of being misleading. The diameter-vulnerability link does not imply that (1) wider vessels are necessarily more
susceptible to drought-induced embolism (and vice versa) or (2) that vessels with the same width (and length) are
equally vulnerable (see also Fig. 2 inHacke et al. 2023), and (3) it definitely does notmean that specieswith on average
wider vessels aremore vulnerable to drought-induced embolismor by extension aremore drought-sensitive. Aswe all
know, plants are famous for developing multiple solutions when it comes to drought response strategies (Pivovaroff
et al. 2015; McDowell et al. 2022). Placing a scientific premium on the study of vessel diameter as an important and
meaningful correlate of embolism vulnerability may not be the best way to prioritise future research, nor the best
way to inspire research that could potentially lead to a better understanding of drought-induced embolism (Lens et
al. 2022). Although pointing out that correlation does not imply causation may appear as a platitude, it is true that
scientists still commonly cite vessel diameter in discussions about drought responses without addressing why this
correlation represents a convincing argument, or not.
We suggest that a better understanding of the diameter-vulnerability link could be obtained by focusing our

research efforts on three broad objectives: (1) improve our understanding of the vulnerability of individual vessels,
rather than an aggregate measure of vulnerability across many vessels (although this is technically challenging, e.g.,
via microCT observations that span an axial segment length beyond the length of the longest vessels), and connect
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this information to other drought-associated traits in the xylem and beyond, (2) develop new and more powerful
non-invasive techniques to identify macro and nano-scale mechanistic driver(s) of embolism initiation and spread
across different environmental conditions and different plant organs, and (3) evaluate the relative importance and
timing of xylem embolism among the sequence of physiological failures that occur during drought, i.e. loss of turgor,
cessation of cell division and growth, plasma membrane instability, plant death (Mantova et al. 2022). Once a large
body of drought-associated xylem traits are investigated in different organs of carefully selected model species that
grow in contrasting environments, we can further test and fine-tune themechanisms involved in embolism formation
and spread through the development of a new family of integrative, process-based, xylemmodels linking nano- (Li et
al. 2020; Zhang et al. 2020; Kaack et al. 2021;Weishaupt et al. 2022) to macro-scale processes (Loepfe et al. 2007; Mrad
et al. 2018, 2021;Wason et al. 2021). Integrating nano- andmacro-scale xylem processes would allow the evaluation of
pit membrane traits, vessel network traits (e.g., connectivity among vessels and adjacent tracheids, vessel widening,
segmentation or sectoriality; Carlquist 1984; Olson et al. 2020; McElrone et al. 2021) and their interactions on whole-
plant transpiration, construction costs, and carbon income.This knowledgewill be important to reconcile our current
state-of-the-art knowledge of embolism formation and spreadwith observationsmade from comparative anatomical
studies, such as the empirical correlation between embolism vulnerability and conduit diameter. Moreover, it will
help us to understand how plants will respond to a warming climate, and how to manage natural and agricultural
systems under these novel environmental conditions (Choat et al. 2018; Brodribb et al. 2020).
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