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Wild rodents harbour high diversity of Arthroderma

S. Moulikova'2?, M. Kolafik?, J.M. Lorch?, D. Kolarczykova', V. Hubka'2,
A. Cmokova?

Key words Abstract Arthroderma is the most diverse genus of dermatophytes, and its natural reservoir is considered to be
Arthroderma soil enriched by keratin sources. During a study on the diversity of dermatophytes in wild small rodents in the Czech
geophilic dermatophytes Republic, we isolated several strains of Arthroderma. To explore the diversity and ecological significance of these
GlobalFungi isolates from rodents (n = 29), we characterised the strains genetically (i.e., sequenced ITS, tubb and tef1a), mor-
mating type genes phologically, physiologically, and by conducting mating experiments. We then compared the rodent-derived strains
new taxa to existing ITS sequence data from GenBank and the GlobalFungi Database to further investigate biogeography
polyphasic taxonomy and the association of Arthroderma species with different types of environments. In total, eight Arthroderma spe-
wild rodents cies were isolated from rodents, including four previously described species (A. crocatum, A. cuniculi, A. curreyi,

A. quadrifidum) and four new species proposed herein, i.e., A. rodenticum, A. simile, A. zoogenum and A. psychro-
philum. The geographical distribution of these newly described species was not restricted to the Czech Republic
nor rodents. Additional isolates were obtained from bats and other mammals, reptiles, and soil from Europe, North
America, and Asia. Data mining showed that the genus has a diverse ecology, with some lineages occurring rela-
tively frequently in soil, whereas others appeared to be more closely associated with live animals, as we observed
in A. rodenticum. Low numbers of sequence reads ascribed to Arthroderma in soil show that the genus is rare in
this environment, which supports the hypothesis that Arthroderma spp. are not soil generalists but rather strongly
associated with animals and keratin debris. This is the first study to utilise existing metabarcoding data to assess
biogeographical, ecological, and diversity patterns in dermatophytes.
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INTRODUCTION ronments (such as soil) have been more frequently described
(Umnova & Fomenko 1960, Chmel et al. 1967, 1975, Moretti

etal. 2013).

A substantial number of dermatophytes isolated from rodents
belong to the genus Arthroderma (Mantovani et al. 1982,
Chabasse et al. 1987, Gallo et al. 2005, Papini et al. 2008),
which also represents the most diverse genus of dermato-
phytes. Recently, several novel species were described (Brasch
& Graser 2005, Hubka et al. 2015, Lorch et al. 2015, Brasch
et al. 2019, Hainsworth et al. 2021) and phylogenetic relation-
ships in the genus were resolved by Hainsworth et al. (2021).

Dermatophytes (Ascomycota: Onygenales) are keratinophilic
fungi studied mainly due to the pathogenicity of some species.
Dermatophytes in human and domestic animals are of high
scientific and medical interest whereas those associated with
wild animals are less well-studied. However, small wild mam-
mals are known to be reservoirs of diverse dermatophyte spe-
cies, including those capable of infecting humans and domestic
animals (Mantovani 1978, Hubalek et al. 1979, Hubalek 2000).
In particular, wild rodents are occasional hosts of Trichophy-
ton mentagrophytes and T. quinckeanum, two species with
significant zoonotic potential (Menges et al. 1957, McKeever
et al. 1958, Mantovani et al. 1982, Gallo et al. 2005, Papini et
al. 2008, Chollet et al. 2015, UhrlaB et al. 2018, Lyskova et al.
2021). Wild rodents (e.g., North American porcupine, Erethizon
dorsatus) are also known to be natural reservoirs of emerging
pathogens from the T. benhamiae complex (Needle et al. 2019,
Cmokova et al. 2020). Fungal infections contracted from wild
animals are uncommon, perhaps because direct contact is
rare. However, infections contracted from contaminated envi-

Soil is widely considered to be the natural reservoir of fungi in
the genus Arthroderma (De Hoog et al. 2017, Hainsworth et al.
2021). However, Arthroderma species are frequently isolated
from hairs, nests, and burrows of animals and occasionally
from human clinical material as well (Dawson 1963, Hubalek
et al. 1979, Hubka et al. 2014a, Hainsworth et al. 2021). The
degree to which Arthroderma flourishes in soil in the absence
of animal-derived keratin is unknown. The importance of the
soil environment as a habitat for these fungi was experimentally
investigated by testing their ability to actively grow in unsterilised
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soil (Pugh 1964, Ibbotson & Pugh 1975). However, investigated
strains showed rather low competitiveness in the soil envi-
ronment containing other soil microorganisms (Pugh 1964).
Furthermore, the genus is rarely recovered from soil samples
(Grin & Ozegovi¢ 1963, Chabasse et al. 1987, Hamm et al.
2020). Taken together, these findings indicate that Arthroderma
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species are not soil generalists but rather fungi closely associ-
ated with animals and their surrounding environments. The
pathogenic potential, although frequently discussed (Brasch &
Graser 2005, Nenoff et al. 2014, Brasch et al. 2019), is contro-
versial and poorly understood for Arthroderma. A notable
exception is the species A. redellii, which causes skin infec-
tions in hibernating bats (Lorch et al. 2015). Thus, the debate
is ongoing about the role of Arthroderma species as soil fungi,
keratin-dependant commensals or pathogens.

Knowledge about geographical distribution and host affinity
of Arthroderma species would be valuable in understanding
their ecological niches. Zoophilic dermatophytes have complex
geographic distributions that mirror those of their hosts (Hubka
etal. 2018, Cmokova et al. 2020, 2021). In contrast, soil fungal
generalists might be expected to be more widely distributed and
limited primarily by climatic and soil parameters (e.g., acidity,
moisture) and less by other factors (e.g., plant communities,
dispersal barriers) generally affecting the distribution of soil
fungi (Gams 2007, Vétrovsky et al. 2019).

Research of geographic distribution patterns of fungi has tra-
ditionally relied on cultivation-based studies but is increasingly
complemented with molecular data mining approaches. Public
nucleotide sequence databases such as NCBI GenBank
(Sayers et al. 2019) and UNITE (Nilsson et al. 2019) enable
searching (BLASTn search) against fungal barcodes generated
by Sanger technology. Recently, the GlobalFungi Database tool
(Veétrovsky et al. 2020) was introduced to enable searching
against millions of sequences generated from massively paral-
lel (next generation) sequencing technologies. Such tools and
datasets provide a means by which to study dermatophyte spe-
cies distribution and habitat affiliations. Specifically, soil is one
of the most abundant substrates represented in the GlobalFungi
Database and offers an opportunity to test the hypothesis that
Arthroderma species are ubiquitously distributed in soil rather
than being closely associated with animal hosts.

In this study, we aimed to 1) survey Arthroderma diversity as-
sociated with wild rodents in the Czech Republic; 2) determine
the substrate affinity and geography of newly proposed species
by comparing them with published fungal datasets from envi-
ronmental samples; and 3) expand this bioinformatics survey to
the entire Arthroderma genus, to better understand the ecology,
diversity, and biogeography of the genus. We aimed to compare
diversity detected in environmental DNA data obtained through
next generation sequencing (mostly from soil and plant material)
with those recovered by traditional approaches (e.g., cultiva-
tion of isolates) from various sources. This is the first study on
dermatophyte diversity, ecology, and geography conducted
using data mining of environmental DNA data.

MATERIALS AND METHODS

Source of isolates

Individuals of three rodent species: house mouse (Mus mus-
culus), yellow-necked mouse (Apodemus flavicollis), and bank
vole (Myodes glareolus) were captured in Longworth live traps
(Flowerdew et al. 2004) at several localities in the Czech Re-
public during 2019 (Matéjkova et al. 2020, Moudra et al. 2021).
These rodent species differ in the amount of contact they have
with humans. Bank voles are an exoanthropic species, living in
wild areas and having little contact with humans; yellow-necked
mice are a hemisynanthropic species that often live in proxim-
ity to humans and may have occasional contact with humans;
and house mice are an eusynanthropic species, frequently
occupying human abodes (Chmel et al. 1975). Material for
isolation of fungi was acquired by brushing the fur of the rodent
on the dorsal and ventral surfaces of the body and on the head

using a sterile toothbrush or a sterile flocked swab FLOQSwabs
(Copan, Murrieta, CA, USA). Collected material was stored in
individual sterile plastic bags at -20 °C.

Ethical standards

All animal procedures were carried out in strict accordance with
the law of the Czech Republic paragraph 17 no. 246/1992. This
study was, in accordance with accreditation no. 27335/2013-
1721 and no. 13060/2014-MZE-17214, approved by the local
ethics committee of the Faculty of Science, Charles University
in Prague chaired by Stanislav Vybiral, Ph.D.

Isolation

Material collected from rodents was inoculated onto Sabouraud
dextrose agar (SDA; HiMedia, Mumbai, India) with antibiotics
(500 mg/L cycloheximide, 40 mg/L chloramphenicol) and incu-
bated at 25 °C, 30 °C, and 37 °C. Petri dishes were incubated
for 1 month and morphotypically distinct colonies were isolated
using malt extract agar (MEA; HiMedia, Mumbai, India) to iso-
late individual clones. Pure isolates were cultivated at 25 °C and
dermatophyte strains were identified based on a combination
of molecular and phenotypic methods. Isolates were deposi-
ted into the Culture Collection of Fungi (CCF), Department of
Botany, Charles University, Prague, Czech Republic; dried
herbarium specimens were deposited into the herbarium of the
Mycological Department, National Museum in Prague, Czech
Republic (PRM).

Molecular studies

DNAwas extracted from colonies using the DNeasy UltraClean
Microbial Kit (Qiagen, Hilden, Germany) following manufac-
turer’s instructions. The ITS rDNA region was amplified using
forward primer ITS1F and reverse primers ITS4 or NL4 (White
et al. 1990, Gardes & Bruns 1993, O’'Donnell 1993); a portion
of the tubb gene, encoding B-tubulin, and portion of the tef1a
gene, encoding translation elongation factor 1-a, were amplified
using primers Bt2a and Bt2b (Glass & Donaldson 1995) and
EF-DermF and EF-DermR (Mirhendi et al. 2015), respectively.
Newly designed primers were used for the amplification of
mating-type gene idiomorphs. Primers ART-MAT1F1 and ART-
MAT1R1 were developed to amplify a portion of the MAT1-1-1
gene and primers ART-MAT2F1 and ART-MAT2R1 were devel-
oped to amplify MAT1-2-1. All primer combinations are listed
in Appendix 1. Each 20-uL reaction contained 1 pL (50 ng) of
DNA, 0.3 pL of each primer (25 uM), 0.2 yL of MyTaq Polymer-
ase, and 4 pL of 5 x MyTaq PCR buffer (Bioline, London, UK).
PCR conditions and PCR product purification was conducted
as described by Sklenar et al. (2021). Automated sequencing
was performed using the respective forward and reverse prim-
ers at Microsynth (Balgach, Switzerland). Sequences were
inspected and assembled using BioEdit v. 7.2.6 (Hall 1999). All
DNA sequences were deposited into the GenBank database;
accession numbers are listed in Table 1.

Phylogenetic analysis

Alignments of the ITS rDNA, fubb and tef1a loci were performed
using the online tool MAFFT v. 7 (Katoh et al. 2019). Alignments
were trimmed and concatenated using the online tool Fasta
alignment joiner (Villesen 2007), then analysed using maximum
likelihood (ML) and Bayesian inference (BI) analyses.

A suitable partitioning scheme and substitution models (Baye-
sian information criterion) for analyses were selected using the
greedy strategy implemented in PartitionFinder 2 with settings
allowing introns and exons as independent partitions (Lanfear et
al. 2017). The optimal partitioning scheme for ML analysis divi-
ded the dataset into six partitions with the following substitution
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P orol 2228528388 w models: K80+I+G substitution model was proposed for the
2 LI $ IBBB®®® 2 tubb introns; HKY+G model for tef1a introns; TrNef+|+G model
5 % Soo2 ggogopsps” for tubb and tef1a exons; TrNef+G model for the ITS1 region;
s|=| 4440 ©0000O0O0OOJ K80+1+G model for the 5.8S region; and TrNef+I+G model for
2 ey PIRERRS T the ITS2 region. The ML tree was constructed with IQ-TREE
§ N § § '§ § § § § § § Q v.1.4.4 WiFh nodal ;upport dete.rmined by non-parametric
é 3 883 'g 'g g 'g 'g 'g g 'g 'g & boot§trap'p|ng (BS) with 1000 replicates (Nguyen et al. 2015).
R rrxrxs 5660000005 Pectinotrichum llanense CBS 882.71 was used as outgroup.
% Bayesian posterior probabilities (PP) were calculated using
2 % % e § § § § § § § 58 MrBayes v. 3.2.6 (Ronguist etal. 2012). The optimal partitioping
g 88 £ 83888883 3 scheme and substitution models were selected as described
§ o 1 5{ (s) g g (s) (s) g g (s) E.; % above. The optimal partitioning scheme divided the dataset into
five partitions with the following substitution models: K80+I+G

substitution model was proposed for the tubb introns; HKY+G
model for tefia introns; SYM+I+G model for tubb and tefla
exons; SIM+I+G for the ITS1 and ITS2 regions; and K80+I+G
for the 5.8S region. The analysis ran for 107 generations; two
parallel runs with four chains each were used, every 1000th
tree was retained, and the first 25 % of trees were discarded
as burn-in. Convergence was assessed by examining the likeli-
hood plots in Tracer v. 1.7 (Rambaut et al. 2018).

ic, farm in Hartou$ov (Cheb), fur of Mus musculus, 2019, S. Moulikovéa

ic, farm in Louzek (Cheb), fur of Mus musculus, 2019, S. Moulikova

Phenotypic studies

Macromorphological characters of colonies were observed
on SDA, MEA, potato dextrose agar (PDA; HiMedia, Mumbai,
India) and oatmeal agar (OA; HiMedia, Mumbai, India). Petri
dishes were inoculated using three-point inoculation and incu-
bated at 25 °C in darkness. Colour codes and names followed
the conventions described by Kornerup & Wanscher (1978).
Growth at 30 and 37 °C was tested on MEA plates. Colonies
were observed and photographed using a Canon EOS 500D.

ic, Bohemian Karst, air in an underground tunnel of Velka Amerika, 2014, A. Kubatova
ic, forest near Sedlec¢ko (Karlovy Vary), fur of Myodes glareolus, 2019, S. Moulikova

USA, Massachusetts, skin of Crotalus horridus, 2013, coll. J. Condon, isol. J.M. Lorch

ic, farm in Hartou$ov (Cheb), fur of Mus musculus, 2019, S. Moulikové
Russia, skin lesions in wild Martes zibellina, 2019, R.S. Ovchinnikov

USA, Wisconsin, Grant County, wing skin of hibernating Myotis lucifugus, 2013, coll. J.P. White,

Zaire, cave near Kibisi, intestinal content of the bat, 1971, C. de Vroey

Biodiversity Institute (formerly Centraalbureau voor Schimmelcultures), Utrecht, Netherlands; CCF, Culture Collection of Fungi, Prague, Charles University, Department of Botany, Czech Republic; CCM (F-), Czech Collection of Microorganisms, Brno, Czech Republic; CDC, Cent-
ers for Disease Control, Atlanta, Georgia, USA; DSM, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; FMR, Faculty of Medicine, Reus, Spain; IFM, Culture Collections for Pathogenic Fungi and Actinomycetes, Medical
Mycology Research Center, Chiba University, Chiba, Japan; IMI, CABI’s collection of fungi and bacteria, Wallingford, UK; NHL, National Institute of Hygienic Sciences, Tokyo, Japan; NRRL, Agricultural Research Service Culture Collection, Peoria, lllinois, USA; NWHC, identifier
of National Wildlife Health Center, Madison, Wisconsin, USA; RV, former collection of Raymond Vanbreuseghem (now incorporated in BCCM/IHEM); UAMH, UAMH Centre for Global Microfungal Biodiversity (formerly University of Alberta Microfungus collection and Herbarium),

' Culture collection acronyms: ATCC, American Type Culture Collection, Manassas, Virginia, USA; IHEM (BCCM/IHEM), Belgian Coordinated Collections of Microorganisms, Fungi Collection: Human and Animal Health, Sciensano, Brussels, Belgium; CBS, Westerdijk Fungal
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the GlobalFungi Database release 3 (data from 36684 sam-
ples, 367 studies and 582264 149 ITS1 and 526638 147 ITS2
sequences; the list of studies queried is provided in Table S1)
using the BLAST algorithm. For each sequence, the first 500
top matches, representing haplotypes with 85—100 % sequence
similarity, were downloaded and the dataset was dereplicated
(i.e., identical sequences were removed) (Table S2). The se-
quences ascribable to Arthroderma deposited in the NCBI
GenBank database were obtained using a BLASTn search
(25 July 2021) of ITS sequences from the reference dataset
and downloading sequences with similarity = 85 % (hereafter
referred to as the ‘NCBI GenBank dataset’). This selection con-
tained sequences of Arthroderma and related genera. Finally,
two datasets were assembled consisting of either 1) full length
ITS1; or 2) ITS2 metabarcoding data, each supplemented
with the full length ITS reference and NCBI GenBank datasets
together with outgroup sequences. The datasets were aligned
using MAFFT v. 7 (Katoh et al. 2019), and Arthroderma genus
boundaries were inferred from ML trees computed in Phyml
v. 3.1 (Guindon et al. 2009) using the GTR model and SH-based
—alLRT statistics for branch support statistics. The datasets
were pruned by removing sequences not within the genus
Arthroderma, and most of the singletons (i.e., haplotypes repre-
sented in the database by a single read) from metabarcoding
data were also removed. The only metabarcoding singletons
retained were those that clustered with the newly described
species. The sequence manipulations were done in SEED2
(Vétrovsky et al. 2018). In the final ML trees, the phylotypes
were defined as terminal, well supported clades containing
strains of single species or having similar genetic similarity. For
known species, genetic variation within clades ranged from
97 % (A. crocatum) to 98—100 % (others) (Table S1), and we
therefore used a sequence similarity of 98 % for defining phy-
lotypes consisting entirely of metabarcoding data. For each
phylotype, data about occurrence across environmental sam-
ples and metadata (location, substrate, biome, climatic data,
pH) were recorded (Table S1).

RESULTS

Phylogeny

Of the 63 rodents sampled, we obtained 29 Arthroderma strains
(Table 1). Based on our culture results, the prevalence of
Arthroderma in captured rodents were 15 % (5/33) in house
mice, 56 % (9/16) in yellow-necked mice, and 71 % (10/14) in
bank voles (Table 2).

The study was further supplemented with genetically related
strains representing identical or sister species to those ob-
tained from rodents to acquire a more robust phylogeny and
to strengthen taxonomic conclusions. For the phylogenetic
analysis, the final alignment contained 94 combined ITS, tubb,
and tef1-a sequences with 1880 positions of which 988 were
variable and 798 were parsimony informative.

The topology of the Bayesian tree (Fig. 1) was nearly identi-
cal to the best scoring ML tree. The phylogeny supported the
recognition of all 27 Arthroderma species previously accepted
by Hainsworth et al. (2021) and revealed an additional four well-
supported clades corresponding to the four newly described
species in this study: A. rodenticum, A. zoogenum, A. simile,
and A. psychrophilum (see section Taxonomy).

These newly proposed species were resolved in three different
clades/species complexes sensu Hainsworth et al. (2021):

— The A. uncinatum clade encompassed A. rodenticum and
A. simile spp. nov. In phylogenetic trees, A. rodenticum
formed a well-supported subclade with A. insingulare
(Bayesian PP of 0.95 and an ML BS of 90 %). Arthroderma
simile sp. nov. was sister to this subclade. All three species
together formed a clade sister to the clade consisting of
A. gloriae, A. gertleri, A. lenticulare, and A. uncinatum.

— The A. silverae clade was composed of three species, in-
cluding A. psychrophilum sp. nov. In our analysis, the clade
gained full statistical support. Arthroderma psychrophilum
was placed sister to the subclade formed by A. silverae and
A. oceanitis.

— The A. tuberculatum clade encompassed four species in-
cluding A. zoogenum sp. nov., A. cuniculi, A. tuberculatum,
and A. phaseoliforme. Arthroderma zoogenum clustered
with A. cuniculi with high support (0.98 / 97 %).
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Fig. 2 Individual rarefraction curve (with 95-percent confidence intervals)
for Arthroderma species occurring on the hair of all rodent individuals sam-
pled in the study. The curve shows dependence of the increasing estimated
number of new taxa on increasing sampling effort. The estimated number
of new taxa expected to be isolated from the same material using the same
approach but with a larger sample size. Around 25 species of Arthroderma
are predicted when collecting more than 250 Arthroderma isolates using the
same methodology. This indicates that the number of Arthroderma species
were likely not saturated by sampling in this study.

Table 2 Prevalence and diversity of Arthroderma in captured individuals of three rodent species.

Captured Number and prevalence (%) of Number of Arthroderma species
individuals Arthroderma positive individuals Arthroderma strains
house mouse 33 5 (15 %) 5 A. psychrophilum sp. nov., A. quadrifidum
yellow-necked mouse 16 9 (56 %) 9 A. rodenticum sp. nov.
bank vole 14 10 (71 %) 15 A. rodenticum sp. nov., A. zoogenum
sp. nov., A. simile sp. nov., A. curreyi,
A. cuniculi, A. crocatum
Total 63 24 (38 %) 29




S. Moulikova et al.: High diversity of Arthroderma in rodents

33

yellow-necked mouse

&

house mouse

bank vole

0.90/-

AFS12-3

AFS1-4B

0.95/90|

{CCF 6281
*I* *CCF 63877

UAMH

CBS 307.65M

CBs
CBs

CCF 6490
CCF 6491

CBS 1325517

CCF 63837

Lo

CCF 6492

| CBS 663.77MT
CBS 664.77MT

26207

" 1CBS 665.77

1

CBS 308.65MT

315.65MT
316.65MT

CCF 59607
cor 6azz IF
CCF 6423
Ly CCF 6424
099" ceF 5856
w: CBS 1415767

CBS 1325527

s [T VMZ Sob1.1-19

«o9[ IFM 41172
4| LCF 63827
0.98/97]

CCF 5959

MEBS 1171557

CBS 355.93T
CBS 1458587

0.92/- *I* [CBS 419.71

L cBs 420.71

- [ CGS12-1
o> {cBS 495711

L cBS 492.71MT

++ " CCF 6170
% UAMH 2831
" tcBs 473.777

CBS 364.66"

MT
MT
CBS 473.787

*I" [~ CBS 967.68T

CBS 221.75

CBS 1440737

. [ CCF 6388

CCF 6438
lrL CBS 130.70

IHEM 52517

A. quadrifidum

A. redellii

A. curreyi

A. magnisporum

A. rodenticum
Sp. hov

A. insingulare

A. simile sp. nov
A. gloriae

A. gertleri

A. lenticulare

A. uncinatum

A. ciferrii

A. terrestre

A. onychocola

A. melis

A. thuringiense

A. psychrophilum
Sp. nov

A. silverae
A. oceanitis

A. zoogenum
Sp. hov

A. cuniculi

A. tuberculatum

A. phaseoliforme
A. eboreum
A. vespertilii
A. melbournense

A. multifidum
A. flavescens
A. amazonicum
A. chiloniense

A. crocatum

Pectinotrichum llanense CBS 882.717

A. curreyi
clade

A. uncinatum
clade

A. terrestre
clade

A. silverae
clade

A. tubercu-
latum clade

A. multifidum
clade

0.02

Fig. 1 Phylogenetic relationships of Arthroderma species inferred from maximum likelihood analysis of the combined, 3-gene data set: ITS region of the
rDNA, B-tubulin (fubb) gene and translation elongation factor 1-a (tef1a) gene. Bayesian posterior probability (PP) and maximum likelihood bootstrap support
(BS) values are appended to nodes; only PP = 0.90 and BS = 70 % are shown, whereas asterisks indicate full support (1.00 PP or 100 % BS); lower supports
are indicated with a hyphen; ex-type strains are designated by a superscript ‘T’, in instances where the dried type specimen included two opposite mating
type strains, these strains are designated ‘MT’ (mating type), authentic strains are designated by superscript ‘AUT’. The tree is rooted with Pectinotrichum

llanense CBS 882.71.
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< ENV-ITS2-1 (19 samples, 705 reads) cultivations
and environmental samples

77aa787bcf2e34726417fcf5aebbf192 (2 samples, 7 reads) . environmental samples only

Arthroderma sp. CCF 5996 (unpubl.) L
) . cultivations only
Arthroderma psychrophilum sp. nov.

44f828baed9f4fd76b536c566ab720c0 (1 sample, 7 reads)
Arthroderma sp. CCF 5960 (unpubl.)

Arthroderma sp. AK 267/13 (unpubl.)
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42fe8e5f09ac0dacc06c24a6¢c958b2e2 (1 sample, 4 reads)
4|__| A.magnasporum

A. mellis

A. thuringiensis
A. thuringiensis

A. terestre

A. ciferrii

A. onychocola

Arthroderma sp. NWHC 24729

d47dd36d8f51942452f0636d97817e4e (5 samples, 39 reads)
c111d2f68e8ba20b8c80cbbeffff53bd (3 samples, 3 reads)
A. vespertillii

Arthroderma sp. KC008579

Arthroderma sp. CBS 292.93

A. eboreum

A. chiloniense
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—[Arthroderma sp. JN104519

Pectinotrichum llanense
Arthroderma sp. CCF 5987 (unpubl.)
Arthroderma chinense
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A. lobatum
—
Arthroderma sp. CCF 5888 (unpubl.)
A. flavescens
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Fig. 3 Phylogenetic relationships among Arthroderma strains based on data from NCBI GenBank and the GlobalFungi Database. Data from the GlobalFungi
Database include only non-singleton ITS2 sequences (i.e., those presented in the database with at least two reads). The titles of environmental sequences
contain the sequence and sample codes taken from the GlobalFungi Database. Terminal clades have been collapsed using FigTree v. 1.4.4 (Rambaut 2020).
The tree was rooted with Shanorella spirotricha, its branch is shown as one-quarter of the actual length. Phylotypes are differentiated by colours: those ob-

tained from culture-dependent methods are shown in black, those detected by culture-independent methods are shown in red, and those detected by both
methodologies are displayed in orange.
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Fig. 4 Geographical distribution and substrate affinity of newly described Arthroderma species based on the ITS1 and ITS2 data from the GlobalFungi Data-
base. See Table S1 for primary data. a. New taxa described herein are represented as large circles with unique numbers (1-3) and are coloured according to
the substrate in which they were detected (as indicated in (b)). Locations represented in the GlobalFungi Database for which the new taxa were not detected
are shown as grey dots. The uneven representation of individual habitats and sites in the GlobalFungi database is demonstrated by the following graphs:
b. pie chart displaying the substrates/habitats sampled for the various datasets in the GlobalFungi Database and c. the geographic locations of all sample

sets deposited in the GlobalFungi Database.

Arthroderma species diversity in rodents

Considerable Arthroderma species richness was found in all
three rodent host species sampled. The highest Arthroderma
species richness (n = 6) was observed in bank voles (n = 14)
from a single locality near Karlovy Vary in Czech Republic.
These were identified as three new (A. rodenticum, A. zoo-
genum, and A. simile) and three previously described species
(A. curreyi, A. cuniculi, and A. crocatum). Some individual
voles were carriers of more than one Arthroderma species.
All individual bank voles were from the same locality as 16
yellow-necked mice. However, the yellow-necked mice from
this location hosted only one Arthroderma species, A. roden-
ticum. The lowest Arthroderma species richness occurred in
house mice (n = 33) sampled from three localities in the Czech
Republic; these mice hosted only two Arthroderma species:
A. psychrophilum sp. nov. and A. quadrifidum (Table 2). To
demonstrate the species diversity in the various rodent hosts,
the cumulative species count against number of studied Arthro-
derma strains isolated from all rodent species was plotted
(Fig. 2). The individual rarefaction curve showed that we did not
capture the likely diversity of Arthroderma present at our study
sites. Specifically, we recovered eight taxa, well below the 25
Arthroderma species predicted to occur at the sites (Fig. 2).

Environmental data mining

The data from massive parallel sequencing technologies show-
ed poor presence of Arthroderma in screened environmental
samples (bulk soil, roots, plant shoots, and deadwood). From
the environmental, non-singleton sequences, 5057 reads in
the ITS2 (0.001 % of all sequences) and 65 (0.0001 % of all
sequences) in the ITS1 dataset could be ascribed to Arthro-
derma (Fig. 3, Appendix 2).

For the ITS2 dataset (Fig. 3), phylotypes corresponded to clades
of sequences with a similarity = 97 % (A. crocatum), =98 %
(A. quadrifidum/A. redellii and A. insingulare) or = 98.8 %
(others). Out of the total number of 63 ITS2 phylotypes, 41
(i.e., 65 %) were found by cultivation-based studies only (Fig. 3,
black), 12 by both cultivation dependent and independent stud-
ies (Fig. 3, orange), and nine originated from environmental

samples only (Fig. 3, red). Only four phylotypes exclusively
found in environmental samples could be considered common
(Fig. 3, Table S2). Inside the A. silveraelA. oceanitis clade,
the phylotype ENV-ITS2-1 consisted of a rather heterogene-
ous set of haplotypes (similarity > 98.8 % in ITS2) from South
America, Europe, and Asia. The second one, ENV-ITS2-9,
belonged to the A. insingulare clade and was abundant in
numerous soil samples across Australia. Phylotype ENV-ITS2-4
(A. silveraelA. oceanitis clade) was found in Antarctica, and
ENV-ITS2-6 (close to Arthroderma sp. NWHC 24729) was
found in Australia and South America. The other less abundant
phylotypes were found in Europe (ENV-ITS2-2), Antarctica
(ENV-ITS2-5), Australia (ENV-ITS2-7), and North America
(ENV-ITS2-8) (Table S1). Of the 48 clades represented in the
ITS1 dataset (Appendix 2), five were found by both culture-
dependent and culture-independent approaches, and these
clades overlapped with those found in the ITS2 dataset
(A. curreyi, A. quadrifidum/A. redellii, A. silverae, A. crocatum,
A. uncinatum). The rest of the phylotypes were represented by
environmental DNA detections only.

Concerning geographical distribution, some of the phylotypes
were globally distributed (A. crocatum, A. quadrifidum, A. unci-
natum). The A. insingulare phylotype was found in Europe, North
America, Australia, and Antarctica, and the A. oceanitis phylo-
type was found in Europe, East Asia, and Antarctica (Table S1).
Others appeared to be more restricted in their geographic
distributions, being detected only in Europe (A. curreyi, A. mul-
tifidum), Eurasia (A. silverae), or the Northern Hemisphere
(Chrysosporium keratinophilum, A. uncinatum).

The biogeography of the new species was evaluated in more
detail using data mining of both ITS1 and ITS2 data (Fig. 4,
Table S1). Three of the four newly described species were
found in environmental samples generated by next-generation
sequencing (A. simile, A. zoogenum, and A. rodenticum) from
Central and Northern Europe or North America (Fig. 4, Table S1;
see Taxonomy for detailed data). All environmental sampling
locations were in forest, grassland, or tundra habitats with
relatively cold climates (mean annual temperature 0—7.8 °C).
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Fig. 5 Asexual morph of Arthroderma rodenticum sp. nov. a—b. Colonies after 2 wk at 25 °C on malt extract agar (a), Sabouraud’s dextrose agar (b), oatmeal
agar (c) and potato dextrose agar (d); e—f. spiral hyphae; g—i. sparsely branched conidiophores; j. microconidia and macroconidia; k. smooth-walled, cigar-

shaped to cylindrical macroconidia with two to three cells; |. smooth-walled, clavate microconidia. — Scale bars: 10 pm.
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Fig. 6 Sexual morph of Arthroderma rodenticum sp. nov. a. Crossed strains after 6 wk at 17 °C on Guizotia abyssinica agar (upper subfigure: isolates AFS8-
1 x CCF 6383, lower subfigure: isolates AFS8-1 x CGS2-4); b—c. detail of ascomata; d—e. echinulate peridial hyphae, dumbbell-shaped peridial cells with
distinct constrictions; f. smooth-walled, oval ascospores; g—h. asci; i—k. scanning electron microscopy (SEM) photographs of ascospores (i), peridial hyphae
(j) and ascoma (k). — Scale bars: d = 50 ym, e—h, j=10 ym, i =5 um, k = 100 pm.

TAXONOMY

Arthroderma rodenticum Moulikova, Kubatova & Cmokova,
sp. nov. — MycoBank MB 845979; Fig. 5, 6

Etymology. Latin, rodenticus -a -um, referring to the high prevalence in
rodents.

Typus. CzecH RepusLic, forest near Sedlecko, Karlovy Vary region, fur of
Apodemus flavicollis, 2019, S. Moulikové (holotype PRM 954603, culture
ex-type CCF 6383 = AFS11-3, mating-type gene idiomorph MAT1-2-1).

Vegetative mycelium consists of hyaline, smooth-walled, sep-
tate hyphae; spiral hyphae not observed on vegetative mycelium,
only rarely in association with peridial hyphae. Conidiophores
simple, conidiogenous hyphae unbranched or laterally branched
max. two times. Microconidia hyaline, smooth-walled, non-sep-

tate, clavate, 2—11.5 (4.8 £ 1.3) x 1.5-4 (2.3 £ 0.4) ym. Macro-
conidia hyaline, smooth-walled, septate with two to four cells,
cigar-shaped to cylindrical, 6.5-29.5(11.3+3.4)x2-4.5(3.1 =
0.4) ym. Pseudoascomata consisting of clusters of conidio-
phores, peridial hyphae and occasionally spiral hyphae. Peridial
hyphae hyaline, hooked; peridial cells dumbbell-shaped, finely
echinulate compared to coarsely echinulate peridial hyphae
on true ascomata. Heterothallic species. Ascomata produced
on GAA medium, 300—600 um diam; peridial hyphae hyaline,
hooked; peridial cells dumbbell-shaped, coarsely echinulate
with distinct constrictions, 6.5-13 (9.1 + 1.3) ym long with 3—7
(5+0.8) um diam at the enlarged ends and 2—5.5 (3.2+ 0.5) ym
diam at constrictions. Asci ovate to globose, 4.5-6.5 (5.3 £
0.4) x 3—5.5 (4.3 £ 0.4) um; ascospores hyaline, smooth-walled,
non-septate, oval, 2—-3 (2.3 £ 0.2) x 1-2.5 (1.7 £ 0.2) ym.
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Fig. 7 Arthroderma simile sp. nov. a—b. Colonies after 2 wk at 25 °C on malt extract agar (a), Sabouraud’s dextrose agar (b), oatmeal agar (c), and potato
dextrose agar (d); e. detail of colony with exudate on oatmeal agar; f—g. sparsely branched conidiophores; h. smooth-walled, cylindrical to clavate microco-
nidia; i. smooth-walled, cylindrical to clavate microconidia and smooth-walled, cylindrical macroconidia consisting of three cells; j. smooth-walled, cylindrical
macroconidia consisting of two to four cells. — Scale bars: 10 pm.
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Culture characteristics (after 14 d) — Colonies on MEA at
25 °C 36—47 mm diam, velvety to granular, centrally raised with
filamentous margins, white to yellowish white (3A2), reverse yel-
lowish white (3A2) with yellowish orange centre (4B8). Colonies
on SDAat 25 °C 30—47 mm diam, velvety to granular, centrally
raised with concentric pattern, white to light yellow (1A6, 2A5),
reverse yellow (2A7) with brown centre (6D7). Colonies on OA
at 25 °C 28—-43 mm diam, floccose to velvety, centrally raised
with filamentous margins, white to yellowish white (3A2), re-
verse yellow (3A6) with yellowish brown centre (5E6). Colonies
on PDA at 25 °C 25-41 mm diam, velvety to cottony, centrally
raised with concentric pattern, white to pastel yellow (1A8, 2A4),
reverse yellow (2A6) with brown centre (6E5). Colonies on MEA
at 30 °C 14-24 mm diam, colony centre raised and velvety,
surrounded by filamentous mycelium, concentric pattern, white
to sulphur yellow (1A5, 2A4), reverse yellowish white with light
yellow to yellowish brown centre (3A5, 5E7). No growth on MEA
at 37 °C.

Ecology — The prevalence of A. rodenticum in the examined
rodents was very high: ~64 % (9/14) in bank voles and 50 %
(8/16) in yellow-necked mice. Besides rodents, the species was
also reported from human clinical material in Switzerland (iso-
late bM 128, ITS sequence accession JX122382) (De Respinis
et al. 2013). Based on metabarcoding data, the species is rather
common in temperate Europe: Czech Republic (Baldrian et al.
2016, Masinova et al. 2017), Denmark (Frgslev et al. 2019),
Estonia (Oja et al. 2017, Bahram et al. 2020), Hungary (Geml
2019), Germany (Purahong et al. 2018) and Poland (Prada-
Salcedo et al. 2021). It was also detected in the forest soil in
Kansas and Massachusetts (Anthony et al. 2017). The en-
vironmental samples originated mostly from soil, rarely from
deadwood or litter collected in forest or shrubland habitats with
mean annual temperatures ranging from 7 to 12 °C (average
7.9 °C) (Table S1, Fig. 4).

Additional isolates examined. CzecH RepusLic, forest near Sedlec¢ko,
Karlovy Vary region, fur of Apodemus flavicollis, 2019, S. Moulikové (CCF
6490 = AFS13T-2), MAT1-1-1; ibid. (CCF 6491 = AFS16-1ZN), MAT1-2-1;
ibid. (AFS1-4B), MAT1-1-1; ibid. (AFS2-3), MAT1-1-1; ibid. (AFS7-1), MAT1-
2-1; ibid. (AFS8-1), MAT1-1-1; ibid. (AFS12-3), MAT 1-2-1; ibid. (AFS15-3),
MAT1-2-1; forest near Sedlecko, Karlovy Vary region, fur of Myodes glareo-
lus, 2019, S. Moulikova (PRM 954604, CCF 6492 = CGS14-2), MAT1-1-1;
ibid. (CCF 6384 = CGS13-1), MAT1-2-1; ibid. (CGS1-3), MAT1-2-1; ibid.
(CGS2-4), MAT1-2-1; ibid. (CGS5-1), MAT1-1-1; ibid. (CGS6-3), MAT1-2-1;
ibid. (CGS8-7), MAT1-1-1; ibid. (CGS9-1), MAT1-1-1.

Notes — Arthroderma rodenticum can be differentiated from
closely related species, A. insingulare and A. simile, by con-
centric pattern of colonies on MEA, SDA and PDA. Arthro-
derma rodenticum and A. insingulare (MEA: 31-40 mm, SDA:
32—-40 mm, OA: 28—37 mm, PDA: 29-36 mm) grow faster at
25 °C on all cultivation media compared to A. simile, which is
also unable to grow at 30 °C in contrast to the first two men-
tioned species. Arthroderma rodenticum produces statistically
significantly (Tukey’s HSD test, p < 0.05) shorter and broader
micro- and macroconidia compared to A. simile.

Arthroderma simile Moulikova, Hubka, J.M. Lorch & Cmokova,
sp. nov. — MycoBank MB 845980; Fig. 7

Etymology. Latin, similis -e, referring to the morphological similarity with
sister species.

Typus. CzecH RepusLic, forest near Sedlecko, Karlovy Vary region, fur
of Myodes glareolus, 2019, S. Moulikovéa (holotype PRM 954727, culture
ex-type CCF 6387 = CGS12-4, mating-type gene idiomorph MAT1-2-1).

Vegetative mycelium consists of hyaline, smooth-walled, sep-
tate hyphae; spiral hyphae not observed. Conidiophores simple,
conidiogenous hyphae unbranched or laterally branched max.
two times. Microconidia hyaline, smooth-walled, non-septate,

cylindrical to clavate, 3.5-17.5 (5.8 £2.4) x 1.5-2.5(2+0.2) ym.
Macroconidia hyaline, smooth-walled, septate with two to four
cells, cylindrical, 8.5—-22 (14.5 £ 3.5) x 2—-3.5 (2.4 £ 0.3) ym.
Ascomata and pseudoascomata not observed.

Culture characteristics (after 14 d) — Colonies on MEA at
25 °C 25-26 mm diam, floccose, submerged margins, white to
yellowish white (2A2), reverse yellowish white (4A2) with brown-
ish orange centre (5C5). Colonies on SDA at 25 °C 28—30 mm
diam, centre velvety to granular, surrounded by fine cottony
mycelium with irregular margins, white to yellowish white (1A2),
reverse yellowish white (4A2) with reddish yellow centre (4A6).
Colonies on OA at 25 °C approximately 25 mm diam, centre
granular, surrounded by cottony filamentous mycelium, white
to yellowish white (2A2), with amber yellow (4B6) exudate in
the centre, reverse yellowish white (4A2) with brownish orange
centre (6C4). Colonies on PDA at 25 °C 21—-24 mm diam, centre
granular, surrounded by cottony mycelium, irregular margins,
white to yellowish white (2A2), reverse greyish yellow (4B4)
with light brown centre (5D5). No growth on MEA at 30 °C.

Ecology — The species was isolated from soil in a bat hiber-
naculum (Lorch et al. 2013) in the USA and rodents in the Czech
Republic. Concerning the environmental samples, it was found
only in one soil sample from a forest habitat in British Columbia
(Canada) (Sukdeo et al. 2018) and in two soil samples from
tundra in Colorado (USA) (Porazinska et al. 2018, Farrer et al.
2019).

Additional isolate examined. USA, Massachusetts, soil from bat hiber-
naculum, 2008/2009, J.M. Lorch (CCF 6281 = 07MA15).

Notes — Arthroderma simile is phylogenetically related to
A. insingulare and A. rodenticum. For distinguishing characters
see description of A. rodenticum.

Arthroderma psychrophilum Moulikova, Hubka, J.M. Lorch,
Kubatova & Cmokova, sp. nov. — MycoBank MB 845986;
Fig. 8

Etymology. Greek, psy - chro’- phil - um, referring to psychros (cold) and
philos (loving), cold-loving (psychrophilic) growth.

Typus. USA, Wisconsin, Grant County, wing skin of hibernating Myotis
lucifugus, 2013, J.P. White & J.M. Lorch (holotype PRM 955279, culture
ex-type CCF 5960 = NWHC 44738-022_13 (44738-22-11-SD)).

Vegetative mycelium consists of hyaline, smooth-walled, sep-
tate hyphae; spiral hyphae not observed. Conidiophores simple,
conidiogenous hyphae unbranched or laterally branched max.
two times. Microconidia hyaline, non-septate, sessile on the
conidiogenous hyphae, often on the lateral protrusions of the
hyphae, solitary, obovate to pyriform, smooth-walled, a part
of conidia becoming verrucose at maturity, 4—7 (5.4 £ 0.7) x
3-4.5(3.8 £ 0.5) um. Macroconidia absent. Ascomata, pseudo-
ascomata and peridial hyphae not observed.

Culture characteristics (after 14 d) — Colonies on MEA at
15 °C 13-29 mm diam, cottony to floccose (submerged in
strain CCF 6136), margins filamentous to submerged, white,
yellowish white (3A2) to light orange (5A5) with white to yellow
(3A6) margins, reverse light orange (5A5) to dull yellow (3B3)
with greyish yellow (4B4) to yellow (3A6) margins. Colonies on
SDA at 15 °C 12—-30 mm diam, cottony to floccose (velvety in
strain CCF 6136), margins filamentous, yellowish white (3A2),
pale yellow (2A3) to yellowish orange (4A7) with white margins,
reverse greyish yellow (4B4), reddish yellow (4A6) to deep
orange (5A8) with light yellow (4A4) to yellow (3A6) marginal
parts. Colonies on OA at 15 °C 9—34 mm diam, cottony to floc-
cose (submerged in strain CCF 6136), margins filamentous,
pale yellow (2A3) to deep orange (5A8) in the centre, marginal
parts white to yellow (3A6), reverse greyish yellow (4B4, 4B6)
to dark orange (5B8). Colonies on PDA at 15 °C 12—-28 mm
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Fig. 8 Arthroderma psychrophilum sp. nov. a—b. Colonies after 2 wk at 25 °C on malt extract agar (a), Sabouraud’s dextrose agar (b), oatmeal agar (c), potato
dextrose agar (d); e—i. conidiophores; k. mature, verrucose, obovate to pyriform microconidia; j. smooth-walled, obovate to pyriform microconidia. — Scale
bars: 10 ym.
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Fig. 9 Arthroderma zoogenum sp. nov. a—b. Colonies after 2 wk at 25 °C on malt extract agar (a), Sabouraud’s dextrose agar (b), oatmeal agar (c), potato
dextrose agar (d); e—f. hyaline, hooked peridial hyphae occurring on pseudoascomata, with dumbbell-shaped, gently echinulate peridial cells; g—i. sparsely
branched conidiophores; j—I. smooth-walled, cylindrical to clavate microconidia. — Scale bars: 10 ym.
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diam, cottony to floccose (velvety in strain CCF 6136), margins
filamentous, light yellow (2A5), pale yellow (2A3) to yellowish
orange (4A7) in the centre, marginal parts white, reverse pastel
yellow (3A4), yellow (3A6, 3A7), greyish yellow (4B4) to deep
orange (5A8). The colony diameters of the isolate CCF 6136
were approximately half in comparison with other examined
strains. The isolates lost their ability to grow at 25 °C after
reinoculation.

Ecology — Arthroderma psychrophilum is associated with
small, free-living mammals (bats, rodents) in the Czech Repu-
blic and the USA. The GlobalFungi Database did not contain
any sequences that could be assigned to this species.

Additional isolates examined. CzecH RepusLic, farm in HartouSov, near
Cheb, fur of Mus musculus, 2019, S. Moulikova (CCF 6422); ibid. (CCF
6424); farm in Louzek, near Cheb, fur of Mus musculus, 2019, S. Moulikova
(CCF 6423); Bohemian Karst, air in an underground tunnel of Velka Amerika
quarry (tunnel is populated by abundant bat colony), 2014, A. Kubéatova (CCF
5856 = CCF 6136).

Notes — Arthroderma psychrophilum is phylogenetically
related to A. oceanitis and A. silverae. In contrast to A. psy-
chrophilum, A. oceanitis is capable of growing at 25 °C and has
larger conidia (7—17 x 4—10 pym), which are coarsely verrucose
to asperulate (Crous et al. 2013). Arthroderma silverae is a
homothallic species that is also capable of growing at 25 °C
(Currah et al. 1996).

Arthroderma zoogenum Moulikova, Hubka, J.M. Lorch, Ovchin-
nikov & Cmokova, sp. nov. — MycoBank MB 845987; Fig. 9

Etymology. Latin, zoogenum, referring to the isolation of species from
various animals.

Typus. CzecH RepusLic, forest near Sedlecko, Karlovy Vary region, fur
of Myodes glareolus, 2019, S. Moulikové (holotype PRM 955282, culture
ex-type CCF 6382 = CGS2-5, mating-type gene idiomorph MAT1-1-1).

Vegetative mycelium consists of hyaline, smooth-walled, sep-
tate hyphae; spiral hyphae not observed on vegetative myce-
lium, only rarely in association with peridial hyphae. Conidio-
phores simple, conidiogenous hyphae unbranched or laterally
branched max. two times. Microconidia hyaline, smooth-walled,
non-septate, clavate, 3—6 (4.1 £ 0.6) x 1.5-2.5 (2 £ 0.2) ym.
Macroconidia not observed. Pseudoascomata consisting of
clusters of conidiophores and peridial hyphae. Peridial hyphae
hyaline, hooked; peridial cells dumbbell-shaped, echinulate.

Culture characteristics (after 14 d) — Colonies on MEA at
25 °C 41-49 mm diam, floccose to granular, white to yellow-
ish white (2A2 to 3A2), reverse yellowish white (4A2), reddish
yellow (4A6) to light brown (5D6). Colonies on SDA at 25 °C
52—-61 mm diam, floccose to granular, centrally raised, white
to yellowish white (3A2), reverse light yellow (4A4) to reddish
golden (6C7) or reddish yellow (4B7). Colonies on OAat 25 °C
43-48 mm diam, floccose to granular, white, pale yellow (3A3)
to yellowish white (4A2), reverse pale yellow (4A3, 4A4) to red-
dish yellow (4A6) with brown centre (6D7). Colonies on PDA
at 25 °C 44-51 mm diam, coarsely granular, centrally raised,
white to pale white (3A3), reverse yellowish white (3A2) to
reddish yellow (4A6). Colonies on MEA at 30 °C 35-38 mm
diam, floccose, centrally raised, margins submerged, white to
pale yellow, reverse pale yellow (4A3) with apricot yellow centre
(5B6). No growth on MEA at 37 °C.

Ecology — Aside from the studied material, the strains IFM
41172 (Finland, from Meles meles, 1990, isol. R. Aho) and VMZ
Sob1.1-19 (Russia, Siberia Region, skin lesions in wild Martes
zibellina, 2019, isol. R.S. Ovchinnikov, MAT1-1-1) belong to
this species phylogenetically. The species was isolated from
various animals (badger, sable, timber rattlesnake, bank vole)
in geographically distant places in the world (USA, Czech Re-

public, Finland, and Siberia). Concerning the metabarcoding
data, A. zoogenum was found in two soil samples collected in
forest habitat in Switzerland (Merges et al. 2018).

Additional isolates examined. FiNLaND, Meles meles (badger), 1990, R. Aho
(IFM 41172). — Russia, Siberia Region, skin lesions in wild Martes zibellina
(sable), 2019, R.S. Ovchinnikov (VMZ Sob1.1-19), MAT1-1-1. — USA, Massa-
chusetts, skin of Crotalus horridus (timber rattlesnake), 2013, J. Condon &
J.M. Lorch (CCF 5959 = NWHC 44736-13-C4-I1), MAT1-2-1.

Notes — This species is phylogenetically related to A. cuni-
culi, A. tuberculatum, and A. phaseoliforme. In comparison
with A. cuniculi and A. phaseoliforme, A. zoogenum does
not produce macroconidia. Compared to A. phaseoliforme
and A. tuberculatum, A. zoogenum produces smooth-walled,
clavate microconidia, whereas microconidia of A. phaseoliforme
are reniform and A. tuberculatum produces significantly larger,
ovoid and echinulate microconidia: 5.5-21.5 (10.8 + 2.9) x
4-12 (7.4 £ 1.6) ym. Arthroderma zoogenum grows slower on
OA at 25 °C and faster on MEA at 30 °C in comparison with
A. cuniculi (OA: 50—61 mm, MEA at 30 °C: 20—30 mm), while
faster on PDA at 25 °C and slower on MEA at 30 °C in com-
parison with A. tuberculatum (PDA: 40—41 mm, MEA at 30 °C:
40-42 mm). By contrast, A. phaseoliforme grows the fastest
on all cultivation media (MEA: 63—66 mm, SDA: 68 mm, OA:
60—-61 mm, PDA: 60—-62 mm, MEA at 30 °C: 51-52 mm).

DISCUSSION

In this study, we focused on screening wild rodents for the
presence of dermatophytes. A wide variety of dermatophytes,
including geophilic Arthroderma and Nannizzia and zoophilic
Trichophyton and Microsporum species, have been previously
reported from rodents (Mantovani et al. 1982, Gallo et al. 2005,
Papini et al. 2008). However, the taxonomy of dermatophytes
has been revised numerous times and it is often problematic to
reassign accurate species identifications to historical samples.
Among our strains isolated from small wild rodents, we did
not detect zoophilic Trichophyton and Microsporum species.
Similarly, we did not isolate geophilic dermatophytes outside
the genus Arthroderma.

Phylogenetic analyses revealed the presence of four previ-
ously described and four new species of Arthroderma among
our 29 isolates recovered from wild rodents. Of the previously
described species, three — A. quadrifidum (often referred to in
the historical literature as T. terrestre) (Alteras 1966, Smith et al.
1969, Knudtson & Robertstad 1970, Houin et al. 1972, Hubalek
et al. 1979, Mantovani et al. 1982, Gallo et al. 2005, Papini et
al. 2008), A. curreyi and A. cuniculi (Knudtson & Robertstad
1970, Hubalek et al. 1979, Chabasse et al. 1987) — had been
previously reported from various rodent species in Europe and
North America, whereas we report A. crocatum from rodents
for the first time.

Based upon our proposal of new species, species diversity
within the genus Arthroderma increased from 27 (Hainsworth
et al. 2021) to 31 recognised species (an increase of 13 %).
The diversity we detected was unexpectedly high given that
we sampled a single type of substrate (rodent fur) in a limited
geographic area (Czech Republic) using a culture-based ap-
proach, and it is highly probable that we did not fully characterise
the diversity of Arthroderma species from our study population
(Fig. 2). When comparing rodent species, bank voles hosted
the highest species diversity of Arthroderma in comparison with
both house mice and yellow-necked mice (even those inhabit-
ing the same locality as the voles). The differences observed
in Arthroderma species diversity can probably be explained by
different ecological niches of these rodents. House mice live
predominantly in association with human settlements (often in or
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around buildings), yellow-necked mice occupy the undergrowth
of forests and gardens, and bank voles occur in wild habitats
and spend a considerable amount of time underground (in
direct contact with soil).

Soil environments are relatively stable with respect to tempera-
ture fluctuations and surface changes, and soil is thought to be
the primary habitat in which sexual recombination of dermato-
phytes takes place (Graser et al. 2006). However, the role of
different soil types, presence of a keratin source, and role of
animals in the life cycle of dermatophytes warrants further inves-
tigation. To explore biogeography and ecological significance of
the soil environment for Arthroderma, we searched published
datasets originating from both the culture-based (NCBI Gen-
Bank database) and molecular-based (GlobalFungi) studies.
Based on phylogenetic trees (generated from ITS1 or ITS2
sequence data), most of the phylotypes contain the refer-
ence sequences of already known species, had relatively low
intraspecific genetic variability (= 98.8 %) and corresponded to
a single species. On the other hand, other phylotypes, such as
A. quadrifidum, A. insingulare, and A. crocatum, can be con-
sidered as phylogenetic lineages of uncertain taxonomic level
(i.e., potentially consisting of several cryptic species) due to high
genetic variability within the taxa. Based on the metabarcoding
data, we observed that some Arthroderma lineages/species
were frequently detected in soil samples (Fig. 3, red and orange
taxa) and thus soil may serve as an important reservoir for
these taxa. Other taxa were poorly represented in datasets from
soil studies (Fig. 3, black taxa), which may indicate that these
species utilise other substrates as reservoirs. The GlobalFungi
Database contained data primarily generated from molecular
analyses of soil, root, shoot, and dead wood samples (Fig. 4b).
Substrates relevant for Arthroderma spp., such as keratin rich
soils (Dawson 1963, Weitzman & Summerbell 1995), bird
nests (OtcenaSek et al. 1967, Hubalek 1970), animal faeces
(Kuehn 1960, Currah et al. 1996), or caves (Kajihiro 1965,
Evolceanu & Alteras 1967, Zeller 1970, Lorch et al. 2013,
2015) were not well-represented in the GlobalFungi Database.
Overall, the majority of Arthroderma diversity originated from
strains/sequences associated with animal substrates, while
the number of phylotypes identified from soil samples was low
(Fig. 3). The relative rarity of Arthroderma in soil detected by
molecular techniques is consistent with the infrequency in which
some species of Arthroderma are cultivated from soil samples
(Chabasse 1988, Novakova et al. 2012) and the finding that
some species appear to be weak competitors in soil lacking
keratin (Pugh 1964).

We noted that detections of some species of Arthroderma
were geographically restricted. For example, A. rodenticum
was absent in datasets from Western and Northern Europe
(Scandinavian Peninsula), even though these regions are very
well represented in the GlobalFungi Database (Fig. 4a, grey
dots). Such a distribution pattern is unexpected for ubiquitous
soil fungi but may be more consistent with fungi closely tied to
particular animals. However, the geographical distribution of the
bank vole does not mirror the detection pattern of A. rodenticum
as this rodent is also distributed across Scandinavia (Cook et al.
2004). Therefore, other factors, such as environmental condi-
tions, may play a role in the distribution of Arthroderma species.

In contrast to low abundance of Arthroderma in soil samples, pre-
valence of Arthroderma in the rodents sampled for this study
was high (15-71 %). Prevalence of the most common species,
A. rodenticum, was around 57 % at the study site. The preva-
lence of A. rodenticum was comparable to or even higher than
those reported for zoophilic dermatophytes such as T. erinacei,
which has a prevalence 20—45 % in free living hedgehog popu-
lations (Smith & Marples 1964, Morris & English 1969, Gregory

& English 1975, Gregory et al. 1978, Gnat et al. 2022, Le Barzic
et al. 2021) and A. quadrifidum (T. terrestre), which has a pre-
valence of 6—42 % in rodents (Houin et al. 1972, Hubalek et
al. 1979, Chabasse et al. 1987, Gallo et al. 2005). Such a high
prevalence may indicate very close association with animal
hosts and suggest that A. rodenticum is either a commensal or
pathogen. However, pathogenic potential of Arthroderma spe-
cies in wild mammals has never been rigorously investigated.
The one exception is A. redellii, which causes dermatophytosis
in hibernating bats (Lorch et al. 2015).

Many Arthroderma species are thought to be non-pathogenic
to mammals because they are incapable of growth at 37 °C
(Robert & Casadevall 2009). Indeed, it is plausible that many
Arthroderma species closely associated with animals are non-
pathogenic commensals that derive energy from dead skin cells,
shed hair, and other keratinaceous material without actively
infecting the host. However, the potential for Arthroderma spe-
cies to act as pathogens warrants further investigation. Fungi
with optimal temperature below 37 °C may still be able to infect
superficial tissues and distal body parts that have a significantly
lower temperature, or infect animals during hibernation. This is
true for the non-dermatophyte species Malbranchea ostravien-
sis (syn. Auxarthron ostraviense), which is a well-documented
cause of human infections but is unable to grow above 35 °C
(Hubka et al. 2013). Moreover, pathogenic dermatophytes that
have coevolved with their hosts are usually asymptomatic and
do not cause clinical disease in healthy individuals (Drouot et
al. 2009, Kupsch et al. 2017, Le Barzic et al. 2021). In addition,
A. crocatum and A. quadrifidum (frequently misidentified as
T. terrestre) that were isolated in this study from wild rodents
have repeatedly been reported from human clinical material
(L'Ollivier et al. 2013, Nenoff et al. 2013, Hubka et al. 2014b,
Hainsworth et al. 2020, Brasch et al. 2021). Among the newly
described species, A. rodenticum, reported as Arthroderma sp.
bM 128 by De Respinis et al. (2013), was found on unspecified
clinical material. Other Arthroderma species such as A. ebo-
reum (syn. A. olidum), A. thuringiense, and A. chiloniense
have also been occasionally reported from both substrates
associated with animals (rodents and badger burrows), as well
as clinical material (Brasch & Graser 2005, Nenoff et al. 2014,
Brasch et al. 2019). The importance of Arthroderma species as
pathogens may be currently underestimated due to difficulties
in isolating and identifying these organisms and a priori as-
sumptions by many clinicians that they are non-pathogenic
or secondary pathogens. Awareness of these species in the
clinical setting is growing with the increasing use of molecular
methods for species identification (Hubka et al. 2014a, Brasch
et al. 2021). However, histopathologic verification of human
infections is rarely performed to confirm pathogenicity.

Investigation of the pathogenic potential for Arthroderma spe-
cies that exhibit optimal growth at lower temperatures (20—
25 °C, e.g., newly described species A. psychrophilum) would
be beneficial. Although the ecology of A. psychrophilum is poorly
known, its isolation from environments occupied by hibernating
bats could suggest it is capable of infecting torpid mammails,
similar to the psychrophilic fungi A. redellii (Lorch et al. 2015)
and Pseudogymnoascus destructans (Lorch et al. 2011).

In this study, we documented a high diversity of Arthroderma
on wild rodents. For the first time, we also demonstrated the
application of the GlobalFungi Database in studying habitat
preferences and distributions of dermatophytic fungi. To fully un-
derstand the ecology and phylogeography of the genus Arthro-
derma, material from certain keratin-rich (animal-associated)
sources would need to be screened and soil environmental
conditions (e.g., pH, composition, moisture, temperature, kera-
tin abundance) would need to be better documented.
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Supplementary material

Table S1 The biogeography, substrate, and habitat affinity of newly de-
scribed Arthroderma species inferred from the GlobalFungi Database (ITS1
and ITS2 data). The same information, based on the ITS2 marker only, is
provided for phylotypes identified in Fig. 3. The summary of geographical
location, substrate, and habitat type is provided as a list of all studies in the
database. Table is available via https://doi.org/10.5281/zenodo.7579684 or
upon request.

Table S2 List of sequences used in the construction of the phylogenetic
trees in Fig. 3, Appendix 2. Table is available via https://doi.org/10.5281/
zenodo.7579684 or upon request.

Appendix 1 Primers combinations used in this study to amplify target DNA loci and determine mating-type gene idiomorphs.

Gene Forward primer ~ Sequence (5-3’) Reverse primer Sequence (5-3’) Reference
ITS rDNA ITS1F CTTGGTCATTTAGAGGAAGTA ITS4 TCCTCCGCTTATTGATATGC White et al. (1990),
Gardes & Bruns (1993)

NL4 GGTCCGTGTTTCAAGACGG O’Donnell (1993)

tubb Bt2a GGTAACCAAATCGGTGCTGCTTTC Bt2b ACCCTCAGTGTAGTGACCCTTGGC Glass & Donaldson (1995)

tef1-a EF-DermF CACATTAACTTGGTCGTTATCG EF-DermR CATCCTTGGAGATACCAGC Mirhendi et al. (2015)

MAT1-1-1 ART-MAT1F1 TCAAGTCTGGACTGCTTCG ART-MAT1R1 ACAATTCCAATGAADGGCMCA This study

MAT1-2-1 ART-MAT2F1 TCCTTTGGCAGCATGCGATG ART-MAT2R1 ACGCTATCCTCAAACGCCAC This study
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