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INTRODUCTION

Dermatophytes (Ascomycota: Onygenales) are keratinophilic 
fungi studied mainly due to the pathogenicity of some species. 
Dermatophytes in human and domestic animals are of high 
scientific and medical interest whereas those associated with 
wild animals are less well-studied. However, small wild mam-
mals are known to be reservoirs of diverse dermatophyte spe-
cies, including those capable of infecting humans and domestic 
animals (Mantovani 1978, Hubálek et al. 1979, Hubálek 2000). 
In particular, wild rodents are occasional hosts of Trichophy
ton mentagrophytes and T. quinckeanum, two species with 
significant zoonotic potential (Menges et al. 1957, McKeever 
et al. 1958, Mantovani et al. 1982, Gallo et al. 2005, Papini et 
al. 2008, Chollet et al. 2015, Uhrlaß et al. 2018, Lysková et al. 
2021). Wild rodents (e.g., North American porcupine, Erethizon 
dorsatus) are also known to be natural reservoirs of emerging 
pathogens from the T. benhamiae complex (Needle et al. 2019, 
Čmoková et al. 2020). Fungal infections contracted from wild 
animals are uncommon, perhaps because direct contact is 
rare. However, infections contracted from contaminated envi-

ronments (such as soil) have been more frequently described 
(Umnova & Fomenko 1960, Chmel et al. 1967, 1975, Moretti 
et al. 2013).
A substantial number of dermatophytes isolated from rodents 
belong to the genus Arthroderma (Mantovani et al. 1982, 
Chabasse et al. 1987, Gallo et al. 2005, Papini et al. 2008), 
which also represents the most diverse genus of dermato-
phytes. Recently, several novel species were described (Brasch 
& Gräser 2005, Hubka et al. 2015, Lorch et al. 2015, Brasch 
et al. 2019, Hainsworth et al. 2021) and phylogenetic relation-
ships in the genus were resolved by Hainsworth et al. (2021).
Soil is widely considered to be the natural reservoir of fungi in 
the genus Arthroderma (De Hoog et al. 2017, Hainsworth et al. 
2021). However, Arthroderma species are frequently isolated 
from hairs, nests, and burrows of animals and occasionally 
from human clinical material as well (Dawson 1963, Hubálek 
et al. 1979, Hubka et al. 2014a, Hainsworth et al. 2021). The 
degree to which Arthroderma flourishes in soil in the absence 
of animal-derived keratin is unknown. The importance of the 
soil environment as a habitat for these fungi was experimentally 
investigated by testing their ability to actively grow in unsterilised 
soil (Pugh 1964, Ibbotson & Pugh 1975). However, investigated 
strains showed rather low competitiveness in the soil envi-
ronment containing other soil microorganisms (Pugh 1964). 
Furthermore, the genus is rarely recovered from soil samples 
(Grin & Ožegović 1963, Chabasse et al. 1987, Hamm et al. 
2020). Taken together, these findings indicate that Arthroderma 
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species are not soil generalists but rather fungi closely associ-
ated with animals and their surrounding environments. The 
pathogenic potential, although frequently discussed (Brasch &  
Gräser 2005, Nenoff et al. 2014, Brasch et al. 2019), is contro-
versial and poorly understood for Arthroderma. A notable 
exception is the species A. redellii, which causes skin infec-
tions in hibernating bats (Lorch et al. 2015). Thus, the debate 
is ongoing about the role of Arthroderma species as soil fungi, 
keratin-dependant commensals or pathogens.
Knowledge about geographical distribution and host affinity 
of Arthroderma species would be valuable in understanding 
their ecological niches. Zoophilic dermatophytes have complex 
geographic distributions that mirror those of their hosts (Hubka 
et al. 2018, Čmoková et al. 2020, 2021). In contrast, soil fungal 
generalists might be expected to be more widely distributed and 
limited primarily by climatic and soil parameters (e.g., acidity, 
moisture) and less by other factors (e.g., plant communities, 
dispersal barriers) generally affecting the distribution of soil 
fungi (Gams 2007, Větrovský et al. 2019).
Research of geographic distribution patterns of fungi has tra- 
ditionally relied on cultivation-based studies but is increasingly 
complemented with molecular data mining approaches. Public  
nucleotide sequence databases such as NCBI GenBank 
(Sayers et al. 2019) and UNITE (Nilsson et al. 2019) enable 
searching (BLASTn search) against fungal barcodes generated 
by Sanger technology. Recently, the GlobalFungi Database tool 
(Větrovský et al. 2020) was introduced to enable searching 
against millions of sequences generated from massively paral-
lel (next generation) sequencing technologies. Such tools and 
datasets provide a means by which to study dermatophyte spe-
cies distribution and habitat affiliations. Specifically, soil is one 
of the most abundant substrates represented in the GlobalFungi 
Database and offers an opportunity to test the hypothesis that 
Arthroderma species are ubiquitously distributed in soil rather 
than being closely associated with animal hosts.
In this study, we aimed to 1) survey Arthroderma diversity as-
sociated with wild rodents in the Czech Republic; 2) determine 
the substrate affinity and geography of newly proposed species 
by comparing them with published fungal datasets from envi-
ronmental samples; and 3) expand this bioinformatics survey to 
the entire Arthroderma genus, to better understand the ecology, 
diversity, and biogeography of the genus. We aimed to compare 
diversity detected in environmental DNA data obtained through 
next generation sequencing (mostly from soil and plant material) 
with those recovered by traditional approaches (e.g., cultiva-
tion of isolates) from various sources. This is the first study on 
dermatophyte diversity, ecology, and geography conducted 
using data mining of environmental DNA data.

MATERIALS AND METHODS

Source of isolates
Individuals of three rodent species: house mouse (Mus mus
culus), yellow-necked mouse (Apodemus flavicollis), and bank 
vole (Myodes glareolus) were captured in Longworth live traps 
(Flowerdew et al. 2004) at several localities in the Czech Re-
public during 2019 (Matějková et al. 2020, Moudra et al. 2021). 
These rodent species differ in the amount of contact they have 
with humans. Bank voles are an exoanthropic species, living in 
wild areas and having little contact with humans; yellow-necked 
mice are a hemisynanthropic species that often live in proxim-
ity to humans and may have occasional contact with humans; 
and house mice are an eusynanthropic species, frequently 
occupying human abodes (Chmel et al. 1975). Material for 
isolation of fungi was acquired by brushing the fur of the rodent 
on the dorsal and ventral surfaces of the body and on the head  

using a sterile toothbrush or a sterile flocked swab FLOQSwabs 
(Copan, Murrieta, CA, USA). Collected material was stored in 
individual sterile plastic bags at -20 °C.

Ethical standards
All animal procedures were carried out in strict accordance with 
the law of the Czech Republic paragraph 17 no. 246/1992. This 
study was, in accordance with accreditation no. 27335/2013-
1721 and no. 13060/2014-MZE-17214, approved by the local 
ethics committee of the Faculty of Science, Charles University 
in Prague chaired by Stanislav Vybíral, Ph.D.

Isolation
Material collected from rodents was inoculated onto Sabouraud 
dextrose agar (SDA; HiMedia, Mumbai, India) with antibiotics 
(500 mg/L cycloheximide, 40 mg/L chloramphenicol) and incu-
bated at 25 °C, 30 °C, and 37 °C. Petri dishes were incubated 
for 1 month and morphotypically distinct colonies were isolated 
using malt extract agar (MEA; HiMedia, Mumbai, India) to iso-
late individual clones. Pure isolates were cultivated at 25 °C and 
dermatophyte strains were identified based on a combination 
of molecular and phenotypic methods. Isolates were deposi-
ted into the Culture Collection of Fungi (CCF), Department of 
Botany, Charles University, Prague, Czech Republic; dried 
herbarium specimens were deposited into the herbarium of the 
Mycological Department, National Museum in Prague, Czech 
Republic (PRM).

Molecular studies
DNA was extracted from colonies using the DNeasy UltraClean 
Microbial Kit (Qiagen, Hilden, Germany) following manufac-
turer’s instructions. The ITS rDNA region was amplified using 
forward primer ITS1F and reverse primers ITS4 or NL4 (White 
et al. 1990, Gardes & Bruns 1993, O’Donnell 1993); a portion 
of the tubb gene, encoding β-tubulin, and portion of the tef1α 
gene, encoding translation elongation factor 1-α, were amplified 
using primers Bt2a and Bt2b (Glass & Donaldson 1995) and 
EF-DermF and EF-DermR (Mirhendi et al. 2015), respectively. 
Newly designed primers were used for the amplification of 
mating-type gene idiomorphs. Primers ART-MAT1F1 and ART-
MAT1R1 were developed to amplify a portion of the MAT1-1-1 
gene and primers ART-MAT2F1 and ART-MAT2R1 were devel-
oped to amplify MAT1-2-1. All primer combinations are listed 
in Appendix 1. Each 20-µL reaction contained 1 µL (50 ng) of 
DNA, 0.3 µL of each primer (25 µM), 0.2 µL of MyTaq Polymer-
ase, and 4 μL of 5 × MyTaq PCR buffer (Bioline, London, UK). 
PCR conditions and PCR product purification was conducted 
as described by Sklenář et al. (2021). Automated sequencing 
was performed using the respective forward and reverse prim-
ers at Microsynth (Balgach, Switzerland). Sequences were 
inspected and assembled using BioEdit v. 7.2.6 (Hall 1999). All 
DNA sequences were deposited into the GenBank database; 
accession numbers are listed in Table 1.

Phylogenetic analysis
Alignments of the ITS rDNA, tubb and tef1α loci were performed 
using the online tool MAFFT v. 7 (Katoh et al. 2019). Alignments 
were trimmed and concatenated using the online tool Fasta 
alignment joiner (Villesen 2007), then analysed using maximum 
likelihood (ML) and Bayesian inference (BI) analyses.
A suitable partitioning scheme and substitution models (Baye-
sian information criterion) for analyses were selected using the 
greedy strategy implemented in PartitionFinder 2 with settings 
allowing introns and exons as independent partitions (Lanfear et 
al. 2017). The optimal partitioning scheme for ML analysis divi-
ded the dataset into six partitions with the following substitution  
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models: K80+I+G substitution model was proposed for the 
tubb introns; HKY+G model for tef1α introns; TrNef+I+G model 
for tubb and tef1α exons; TrNef+G model for the ITS1 region; 
K80+I+G model for the 5.8S region; and TrNef+I+G model for 
the ITS2 region. The ML tree was constructed with IQ-TREE 
v. 1.4.4 with nodal support determined by non-parametric 
bootstrapping (BS) with 1 000 replicates (Nguyen et al. 2015). 
Pectinotrichum llanense CBS 882.71 was used as outgroup.
Bayesian posterior probabilities (PP) were calculated using 
MrBayes v. 3.2.6 (Ronquist et al. 2012). The optimal partitioning 
scheme and substitution models were selected as described 
above. The optimal partitioning scheme divided the dataset into 
five partitions with the following substitution models: K80+I+G 
substitution model was proposed for the tubb introns; HKY+G 
model for tef1α introns; SYM+I+G model for tubb and tef1α 
exons; SIM+I+G for the ITS1 and ITS2 regions; and K80+I+G 
for the 5.8S region. The analysis ran for 107 generations; two 
parallel runs with four chains each were used, every 1000th 
tree was retained, and the first 25 % of trees were discarded 
as burn-in. Convergence was assessed by examining the likeli-
hood plots in Tracer v. 1.7 (Rambaut et al. 2018).

Phenotypic studies
Macromorphological characters of colonies were observed 
on SDA, MEA, potato dextrose agar (PDA; HiMedia, Mumbai, 
India) and oatmeal agar (OA; HiMedia, Mumbai, India). Petri 
dishes were inoculated using three-point inoculation and incu-
bated at 25 °C in darkness. Colour codes and names followed 
the conventions described by Kornerup & Wanscher (1978). 
Growth at 30 and 37 °C was tested on MEA plates. Colonies 
were observed and photographed using a Canon EOS 500D. 
Preparations for light microscopy were made from material 
harvested from 14-d-old cultures on MEA plates and stained 
with lactic acid with cotton blue. Microphotographs were taken 
with an Olympus BX51 microscope and Olympus DP72 camera. 
Micromorphological characters were measured using Quick-
PHOTO MICRO v. 3.0 (PROMICRA, Prague, Czech Republic).
For the purposes of comparing closely related species, the fol-
lowing isolates were also examined: A. cuniculi: CBS 492.71, 
CBS 495.71; A. insingulare: CBS 521.71, CBS 522.71, UAMH 
754, UAMH 2922, UAMH 2923, UAMH 2925, UAMH 3439, 
UAMH 3440; A. phaseoliforme: CBS 364.66; A. tuberculatum: 
CBS 473.77.

Induction of sexual morph
Induction of the sexual morph for some of the heterothallic spe-
cies was done on Guizotia abyssinica agar (GAA) (De Vroey 
1964, Symoens et al. 2013). Isolates of different mating-type 
gene idiomorphs were inoculated on the same plate approxi-
mately 10 mm apart. Inoculated plates were incubated at 17 °C 
for 7 wk and were checked once per wk for the presence of 
ascomata.

Statistical analysis
Micromorphological data were statistically analysed in R v. 3.6.3 
(R Core Team 2020) using ANOVA and Tukey’s HSD test. The 
curves of individual rarefaction of species richness (Krebs 1989) 
for Artthroderma strains isolated in this study were generated 
in PAST v. 4.03 (Hammer et al. 2001) to estimate expected 
species richness.

Phylogeny of environmental sequences and biogeography
Principally, we followed the workflow of Réblová et al. (2021a, b).  
To study Arthroderma diversity among environmental se-
quences, the full-length ITS1+5.8S and ITS2 sequences of all 
Arthroderma species from Hainsworth et al. (2021) (hereafter 
referred to as the ‘reference dataset’) were searched against A
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the GlobalFungi Database release 3 (data from 36 684 sam-
ples, 367 studies and 582 264 149 ITS1 and 526 638 147 ITS2 
sequences; the list of studies queried is provided in Table S1) 
using the BLAST algorithm. For each sequence, the first 500 
top matches, representing haplotypes with 85–100 % sequence 
similarity, were downloaded and the dataset was dereplicated 
(i.e., identical sequences were removed) (Table S2). The se-
quences ascribable to Arthroderma deposited in the NCBI 
GenBank database were obtained using a BLASTn search 
(25 July 2021) of ITS sequences from the reference dataset 
and downloading sequences with similarity ≥ 85 % (hereafter 
referred to as the ‘NCBI GenBank dataset’). This selection con-
tained sequences of Arthroderma and related genera. Finally,  
two datasets were assembled consisting of either 1) full length 
ITS1; or 2) ITS2 metabarcoding data, each supplemented 
with the full length ITS reference and NCBI GenBank datasets 
together with outgroup sequences. The datasets were aligned 
using MAFFT v. 7 (Katoh et al. 2019), and Arthroderma genus 
boundaries were inferred from ML trees computed in Phyml 
v. 3.1 (Guindon et al. 2009) using the GTR model and SH-based 
–aLRT statistics for branch support statistics. The datasets 
were pruned by removing sequences not within the genus 
Arthroderma, and most of the singletons (i.e., haplotypes repre-
sented in the database by a single read) from metabarcoding 
data were also removed. The only metabarcoding singletons 
retained were those that clustered with the newly described 
species. The sequence manipulations were done in SEED2 
(Větrovský et al. 2018). In the final ML trees, the phylotypes 
were defined as terminal, well supported clades containing 
strains of single species or having similar genetic similarity. For  
known species, genetic variation within clades ranged from 
97 % (A. crocatum) to 98–100 % (others) (Table S1), and we  
therefore used a sequence similarity of 98 % for defining phy-
lotypes consisting entirely of metabarcoding data. For each 
phylotype, data about occurrence across environmental sam-
ples and metadata (location, substrate, biome, climatic data, 
pH) were recorded (Table S1).

RESULTS

Phylogeny
Of the 63 rodents sampled, we obtained 29 Arthroderma strains  
(Table 1). Based on our culture results, the prevalence of 
Arthroderma in captured rodents were 15 % (5/33) in house 
mice, 56 % (9/16) in yellow-necked mice, and 71 % (10/14) in 
bank voles (Table 2).
The study was further supplemented with genetically related 
strains representing identical or sister species to those ob-
tained from rodents to acquire a more robust phylogeny and 
to strengthen taxonomic conclusions. For the phylogenetic 
analysis, the final alignment contained 94 combined ITS, tubb, 
and tef1-α sequences with 1 880 positions of which 988 were 
variable and 798 were parsimony informative.

The topology of the Bayesian tree (Fig. 1) was nearly identi-
cal to the best scoring ML tree. The phylogeny supported the 
recognition of all 27 Arthroderma species previously accepted 
by Hainsworth et al. (2021) and revealed an additional four well-
supported clades corresponding to the four newly described 
species in this study: A. rodenticum, A. zoogenum, A. simile, 
and A. psychrophilum (see section Taxonomy). 
These newly proposed species were resolved in three different 
clades/species complexes sensu Hainsworth et al. (2021): 
  – The A. uncinatum clade encompassed A. rodenticum and 

A. simile spp. nov. In phylogenetic trees, A. rodenticum 
formed a well-supported subclade with A. insingulare 
(Bayesian PP of 0.95 and an ML BS of 90 %). Arthroderma 
simile sp. nov. was sister to this subclade. All three species 
together formed a clade sister to the clade consisting of 
A. gloriae, A. gertleri, A. lenticulare, and A. uncinatum. 

  – The A. silverae clade was composed of three species, in-
cluding A. psychrophilum sp. nov. In our analysis, the clade 
gained full statistical support. Arthroderma psychrophilum 
was placed sister to the subclade formed by A. silverae and 
A. oceanitis.

  – The A. tuberculatum clade encompassed four species in-
cluding A. zoogenum sp. nov., A. cuniculi, A. tuberculatum, 
and A. phaseoliforme. Arthroderma zoogenum clustered 
with A. cuniculi with high support (0.98 / 97 %). 

 Captured Number and prevalence (%) of  Number of Arthroderma species
 individuals Arthroderma positive individuals Arthroderma strains

house mouse 33 5 (15 %) 5 A. psychrophilum sp. nov., A. quadrifidum

yellow-necked mouse 16 9 (56 %) 9 A. rodenticum sp. nov.

bank vole 14 10 (71 %) 15 A. rodenticum sp. nov., A. zoogenum 
    sp. nov., A. simile sp. nov., A. curreyi, 
    A. cuniculi, A. crocatum

Total 63 24 (38 %) 29

Table 2   Prevalence and diversity of Arthroderma in captured individuals of three rodent species.

Fig. 2   Individual rarefraction curve (with 95-percent confidence intervals) 
for Arthroderma species occurring on the hair of all rodent individuals sam-
pled in the study. The curve shows dependence of the increasing estimated 
number of new taxa on increasing sampling effort. The estimated number 
of new taxa expected to be isolated from the same material using the same 
approach but with a larger sample size. Around 25 species of Arthroderma 
are predicted when collecting more than 250 Arthroderma isolates using the 
same methodology. This indicates that the number of Arthroderma species 
were likely not saturated by sampling in this study.
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Fig. 1   Phylogenetic relationships of Arthroderma species inferred from maximum likelihood analysis of the combined, 3-gene data set: ITS region of the 
rDNA, β-tubulin (tubb) gene and translation elongation factor 1-α (tef1α) gene. Bayesian posterior probability (PP) and maximum likelihood bootstrap support 
(BS) values are appended to nodes; only PP ≥ 0.90 and BS ≥ 70 % are shown, whereas asterisks indicate full support (1.00 PP or 100 % BS); lower supports 
are indicated with a hyphen; ex-type strains are designated by a superscript ‘T’, in instances where the dried type specimen included two opposite mating 
type strains, these strains are designated ‘MT’ (mating type), authentic strains are designated by superscript ‘AUT’. The tree is rooted with Pectinotrichum 
llanense CBS 882.71.
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Fig. 3   Phylogenetic relationships among Arthroderma strains based on data from NCBI GenBank and the GlobalFungi Database. Data from the GlobalFungi 
Database include only non-singleton ITS2 sequences (i.e., those presented in the database with at least two reads). The titles of environmental sequences 
contain the sequence and sample codes taken from the GlobalFungi Database. Terminal clades have been collapsed using FigTree v. 1.4.4 (Rambaut 2020). 
The tree was rooted with Shanorella spirotricha, its branch is shown as one-quarter of the actual length. Phylotypes are differentiated by colours: those ob-
tained from culture-dependent methods are shown in black, those detected by culture-independent methods are shown in red, and those detected by both 
methodologies are displayed in orange.
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Fig. 4   Geographical distribution and substrate affinity of newly described Arthroderma species based on the ITS1 and ITS2 data from the GlobalFungi Data-
base. See Table S1 for primary data. a. New taxa described herein are represented as large circles with unique numbers (1–3) and are coloured according to 
the substrate in which they were detected (as indicated in (b)). Locations represented in the GlobalFungi Database for which the new taxa were not detected 
are shown as grey dots. The uneven representation of individual habitats and sites in the GlobalFungi database is demonstrated by the following graphs:  
b. pie chart displaying the substrates/habitats sampled for the various datasets in the GlobalFungi Database and c. the geographic locations of all sample 
sets deposited in the GlobalFungi  Database.

Arthroderma species diversity in rodents
Considerable Arthroderma species richness was found in all 
three rodent host species sampled. The highest Arthroderma 
species richness (n = 6) was observed in bank voles (n = 14) 
from a single locality near Karlovy Vary in Czech Republic. 
These were identified as three new (A. rodenticum, A. zoo
genum, and A. simile) and three previously described species 
(A. curreyi, A. cuniculi, and A. crocatum). Some individual 
voles were carriers of more than one Arthroderma species. 
All individual bank voles were from the same locality as 16 
yellow-necked mice. However, the yellow-necked mice from 
this location hosted only one Arthroderma species, A. roden
ticum. The lowest Arthroderma species richness occurred in 
house mice (n = 33) sampled from three localities in the Czech 
Republic; these mice hosted only two Arthroderma species: 
A. psychrophilum sp. nov. and A. quadrifidum (Table 2). To 
demonstrate the species diversity in the various rodent hosts, 
the cumulative species count against number of studied Arthro
derma strains isolated from all rodent species was plotted 
(Fig. 2). The individual rarefaction curve showed that we did not 
capture the likely diversity of Arthroderma present at our study 
sites. Specifically, we recovered eight taxa, well below the 25 
Arthroderma species predicted to occur at the sites (Fig. 2).

Environmental data mining
The data from massive parallel sequencing technologies show-
ed poor presence of Arthroderma in screened environmental 
samples (bulk soil, roots, plant shoots, and deadwood). From 
the environmental, non-singleton sequences, 5 057 reads in 
the ITS2 (0.001 % of all sequences) and 65 (0.0001 % of all 
sequences) in the ITS1 dataset could be ascribed to Arthro
derma (Fig. 3, Appendix 2).
For the ITS2 dataset (Fig. 3), phylotypes corresponded to clades  
of sequences with a similarity ≥ 97 % (A. crocatum), ≥ 98 % 
(A. quadrifidum/A. redellii and A. insingulare) or ≥ 98.8 %  
(others). Out of the total number of 63 ITS2 phylotypes, 41  
(i.e., 65 %) were found by cultivation-based studies only (Fig. 3, 
black), 12 by both cultivation dependent and independent stud-
ies (Fig. 3, orange), and nine originated from environmental 

samples only (Fig. 3, red). Only four phylotypes exclusively 
found in environmental samples could be considered common 
(Fig. 3, Table S2). Inside the A. silverae /A. oceanitis clade, 
the phylotype ENV-ITS2-1 consisted of a rather heterogene-
ous set of haplotypes (similarity > 98.8 % in ITS2) from South 
America, Europe, and Asia. The second one, ENV-ITS2-9, 
belonged to the A. insingulare clade and was abundant in  
numerous soil samples across Australia. Phylotype ENV-ITS2-4 
(A. silverae /A. oceanitis clade) was found in Antarctica, and 
ENV-ITS2-6 (close to Arthroderma sp. NWHC 24729) was 
found in Australia and South America. The other less abundant 
phylotypes were found in Europe (ENV-ITS2-2), Antarctica 
(ENV-ITS2-5), Australia (ENV-ITS2-7), and North America 
(ENV-ITS2-8) (Table S1). Of the 48 clades represented in the 
ITS1 dataset (Appendix 2), five were found by both culture-
dependent and culture-independent approaches, and these 
clades overlapped with those found in the ITS2 dataset 
(A. curreyi, A. quadrifidum/A. redellii, A. silverae, A. crocatum, 
A. uncinatum). The rest of the phylotypes were represented by 
environmental DNA detections only.
Concerning geographical distribution, some of the phylotypes 
were globally distributed (A. crocatum, A. quadrifidum, A. unci
natum). The A. insingulare phylotype was found in Europe, North 
America, Australia, and Antarctica, and the A. oceanitis phylo-
type was found in Europe, East Asia, and Antarctica (Table S1).  
Others appeared to be more restricted in their geographic 
distributions, being detected only in Europe (A. curreyi, A. mul
tifidum), Eurasia (A. silverae), or the Northern Hemisphere 
(Chrysosporium keratinophilum, A. uncinatum).
The biogeography of the new species was evaluated in more 
detail using data mining of both ITS1 and ITS2 data (Fig. 4, 
Table S1). Three of the four newly described species were 
found in environmental samples generated by next-generation 
sequencing (A. simile, A. zoogenum, and A. rodenticum) from 
Central and Northern Europe or North America (Fig. 4, Table S1; 
see Taxonomy for detailed data). All environmental sampling 
locations were in forest, grassland, or tundra habitats with 
relatively cold climates (mean annual temperature 0–7.8 °C).
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Fig. 5   Asexual morph of Arthroderma rodenticum sp. nov. a–b. Colonies after 2 wk at 25 °C on malt extract agar (a), Sabouraud’s dextrose agar (b), oatmeal 
agar (c) and potato dextrose agar (d); e–f. spiral hyphae; g–i. sparsely branched conidiophores; j. microconidia and macroconidia; k. smooth-walled, cigar-
shaped to cylindrical macroconidia with two to three cells; l. smooth-walled, clavate microconidia. — Scale bars: 10 μm.
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TAXONOMY

Arthroderma rodenticum Moulikova, Kubátová & Cmokova, 
sp. nov. — MycoBank MB 845979; Fig. 5, 6

 Etymology. Latin, rodenticus a um, referring to the high prevalence in 
rodents.

 Typus. CzeCh RepubliC, forest near Sedlečko, Karlovy Vary region, fur of 
Apodemus flavicollis, 2019, Š. Moulíková (holotype PRM 954603, culture 
ex-type CCF 6383 = AFS11-3, mating-type gene idiomorph MAT1-2-1).

Vegetative mycelium consists of hyaline, smooth-walled, sep- 
tate hyphae; spiral hyphae not observed on vegetative mycelium, 
only rarely in association with peridial hyphae. Conidio phores 
simple, conidiogenous hyphae unbranched or laterally branched 
max. two times. Microconidia hyaline, smooth-walled, non-sep-

tate, clavate, 2–11.5 (4.8 ± 1.3) × 1.5–4 (2.3 ± 0.4) μm. Macro 
conidia hyaline, smooth-walled, septate with two to four cells, 
cigar-shaped to cylindrical, 6.5–29.5 (11.3 ± 3.4) × 2–4.5 (3.1 ± 
0.4) μm. Pseudoascomata consisting of clusters of conidio-
phores, peridial hyphae and occasionally spiral hyphae. Peridial 
hyphae hyaline, hooked; peridial cells dumbbell-shaped, finely 
echinulate compared to coarsely echinulate peridial hyphae 
on true ascomata. Heterothallic species. Ascomata produced 
on GAA medium, 300–600 μm diam; peridial hyphae hyaline, 
hooked; peridial cells dumbbell-shaped, coarsely echinulate 
with distinct constrictions, 6.5–13 (9.1 ± 1.3) μm long with 3–7 
(5 ± 0.8) μm diam at the enlarged ends and 2–5.5 (3.2 ± 0.5) μm 
diam at constrictions. Asci ovate to globose, 4.5–6.5 (5.3 ± 
0.4) × 3–5.5 (4.3 ± 0.4) μm; ascospores hyaline, smooth-walled, 
non-septate, oval, 2–3 (2.3 ± 0.2) × 1–2.5 (1.7 ± 0.2) μm.

Fig. 6   Sexual morph of Arthroderma rodenticum sp. nov. a. Crossed strains after 6 wk at 17 °C on Guizotia abyssinica agar (upper subfigure: isolates AFS8-
1 × CCF 6383, lower subfigure: isolates AFS8-1 × CGS2-4); b–c. detail of ascomata; d–e. echinulate peridial hyphae, dumbbell-shaped peridial cells with 
distinct constrictions; f. smooth-walled, oval ascospores; g–h. asci; i–k. scanning electron microscopy (SEM) photographs of ascospores (i), peridial hyphae 
(j) and ascoma (k). — Scale bars: d = 50 μm, e–h, j = 10 μm, i = 5 μm, k = 100 μm.
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Fig. 7   Arthroderma simile sp. nov. a–b. Colonies after 2 wk at 25 °C on malt extract agar (a), Sabouraud’s dextrose agar (b), oatmeal agar (c), and potato 
dextrose agar (d); e. detail of colony with exudate on oatmeal agar; f–g. sparsely branched conidiophores; h. smooth-walled, cylindrical to clavate microco-
nidia; i. smooth-walled, cylindrical to clavate microconidia and smooth-walled, cylindrical macroconidia consisting of three cells; j. smooth-walled, cylindrical 
macroconidia consisting of two to four cells. — Scale bars: 10 μm.
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 Culture characteristics (after 14 d) — Colonies on MEA at 
25 °C 36–47 mm diam, velvety to granular, centrally raised with 
filamentous margins, white to yellowish white (3A2), reverse yel-
lowish white (3A2) with yellowish orange centre (4B8). Colonies 
on SDA at 25 °C 30–47 mm diam, velvety to granular, centrally 
raised with concentric pattern, white to light yellow (1A6, 2A5), 
reverse yellow (2A7) with brown centre (6D7). Colonies on OA 
at 25 °C 28–43 mm diam, floccose to velvety, centrally raised 
with filamentous margins, white to yellowish white (3A2), re-
verse yellow (3A6) with yellowish brown centre (5E6). Colonies 
on PDA at 25 °C 25–41 mm diam, velvety to cottony, centrally 
raised with concentric pattern, white to pastel yellow (1A8, 2A4), 
reverse yellow (2A6) with brown centre (6E5). Colonies on MEA 
at 30 °C 14–24 mm diam, colony centre raised and velvety, 
surrounded by filamentous mycelium, concentric pattern, white 
to sulphur yellow (1A5, 2A4), reverse yellowish white with light 
yellow to yellowish brown centre (3A5, 5E7). No growth on MEA 
at 37 °C.
 Ecology — The prevalence of A. rodenticum in the examined 
rodents was very high: ~64 % (9/14) in bank voles and 50 % 
(8/16) in yellow-necked mice. Besides rodents, the species was 
also reported from human clinical material in Switzerland (iso-
late bM 128, ITS sequence accession JX122382) (De Respinis 
et al. 2013). Based on metabarcoding data, the species is rather 
common in temperate Europe: Czech Republic (Baldrian et al. 
2016, Mašínová et al. 2017), Denmark (Frøslev et al. 2019), 
Estonia (Oja et al. 2017, Bahram et al. 2020), Hungary (Geml 
2019), Germany (Purahong et al. 2018) and Poland (Prada- 
Salcedo et al. 2021). It was also detected in the forest soil in 
Kansas and Massachusetts (Anthony et al. 2017). The en-
vironmental samples originated mostly from soil, rarely from 
deadwood or litter collected in forest or shrubland habitats with 
mean annual temperatures ranging from 7 to 12 °C (average 
7.9 °C) (Table S1, Fig. 4).

 Additional isolates examined. CzeCh RepubliC, forest near Sedlečko, 
Karlovy Vary region, fur of Apodemus flavicollis, 2019, Š. Moulíková (CCF 
6490 = AFS13T-2), MAT1-1-1; ibid. (CCF 6491 = AFS16-1ZN), MAT1-2-1; 
ibid. (AFS1-4B), MAT1-1-1; ibid. (AFS2-3), MAT1-1-1; ibid. (AFS7-1), MAT1-
2-1; ibid. (AFS8-1), MAT1-1-1; ibid. (AFS12-3), MAT1-2-1; ibid. (AFS15-3), 
MAT1-2-1; forest near Sedlečko, Karlovy Vary region, fur of Myodes glareo
lus, 2019, Š. Moulíková (PRM 954604, CCF 6492 = CGS14-2), MAT1-1-1; 
ibid. (CCF 6384 = CGS13-1), MAT1-2-1; ibid. (CGS1-3), MAT1-2-1; ibid. 
(CGS2-4), MAT1-2-1; ibid. (CGS5-1), MAT1-1-1; ibid. (CGS6-3), MAT1-2-1; 
ibid. (CGS8-7), MAT1-1-1; ibid. (CGS9-1), MAT1-1-1.

 Notes — Arthroderma rodenticum can be differentiated from  
closely related species, A. insingulare and A. simile, by con-
centric pattern of colonies on MEA, SDA and PDA. Arthro
derma rodenticum and A. insingulare (MEA: 31–40 mm, SDA: 
32–40 mm, OA: 28–37 mm, PDA: 29–36 mm) grow faster at 
25 °C on all cultivation media compared to A. simile, which is 
also unable to grow at 30 °C in contrast to the first two men-
tioned species. Arthroderma rodenticum produces statistically 
significantly (Tukey’s HSD test, p < 0.05) shorter and broader 
micro- and macroconidia compared to A. simile.

Arthroderma simile Moulikova, Hubka, J.M. Lorch & Cmokova,  
sp. nov. — MycoBank MB 845980; Fig. 7

 Etymology. Latin, similis e, referring to the morphological similarity with 
sister species.

 Typus. CzeCh RepubliC, forest near Sedlečko, Karlovy Vary region, fur 
of Myodes glareolus, 2019, Š. Moulíková (holotype PRM 954727, culture 
ex-type CCF 6387 = CGS12-4, mating-type gene idiomorph MAT1-2-1).

Vegetative mycelium consists of hyaline, smooth-walled, sep-
tate hyphae; spiral hyphae not observed. Conidiophores simple, 
conidiogenous hyphae unbranched or laterally branched max. 
two times. Microconidia hyaline, smooth-walled, non-septate, 

cylindrical to clavate, 3.5–17.5 (5.8 ± 2.4) × 1.5–2.5 (2 ± 0.2) μm.  
Macroconidia hyaline, smooth-walled, septate with two to four 
cells, cylindrical, 8.5–22 (14.5 ± 3.5) × 2–3.5 (2.4 ± 0.3) μm. 
Ascomata and pseudoascomata not observed.
 Culture characteristics (after 14 d) — Colonies on MEA at 
25 °C 25–26 mm diam, floccose, submerged margins, white to 
yellowish white (2A2), reverse yellowish white (4A2) with brown-
ish orange centre (5C5). Colonies on SDA at 25 °C 28–30 mm 
diam, centre velvety to granular, surrounded by fine cottony 
mycelium with irregular margins, white to yellowish white (1A2), 
reverse yellowish white (4A2) with reddish yellow centre (4A6). 
Colonies on OA at 25 °C approximately 25 mm diam, centre 
granular, surrounded by cottony filamentous mycelium, white 
to yellowish white (2A2), with amber yellow (4B6) exudate in 
the centre, reverse yellowish white (4A2) with brownish orange 
centre (6C4). Colonies on PDA at 25 °C 21–24 mm diam, centre 
granular, surrounded by cottony mycelium, irregular margins, 
white to yellowish white (2A2), reverse greyish yellow (4B4) 
with light brown centre (5D5). No growth on MEA at 30 °C.
 Ecology — The species was isolated from soil in a bat hiber-
naculum (Lorch et al. 2013) in the USA and rodents in the Czech 
Republic. Concerning the environmental samples, it was found 
only in one soil sample from a forest habitat in British Columbia 
(Canada) (Sukdeo et al. 2018) and in two soil samples from 
tundra in Colorado (USA) (Porazinska et al. 2018, Farrer et al. 
2019).

 Additional isolate examined. uSA, Massachusetts, soil from bat hiber-
naculum, 2008/2009, J.M. Lorch (CCF 6281 = 07MA15).

 Notes — Arthroderma simile is phylogenetically related to 
A. insingulare and A. rodenticum. For distinguishing characters 
see description of A. rodenticum.

Arthroderma psychrophilum Moulikova, Hubka, J.M. Lorch, 
Kubátová & Cmokova, sp. nov. — MycoBank MB 845986; 
Fig. 8

 Etymology. Greek, psy - chro´- phil  um, referring to psychros (cold) and 
philos (loving), cold-loving (psychrophilic) growth.

 Typus. uSA, Wisconsin, Grant County, wing skin of hibernating Myotis 
lucifugus, 2013, J.P. White & J.M. Lorch (holotype PRM 955279, culture 
ex-type CCF 5960 = NWHC 44738-022_I3 (44738-22-I1-SD)).

Vegetative mycelium consists of hyaline, smooth-walled, sep-
tate hyphae; spiral hyphae not observed. Conidiophores simple, 
conidiogenous hyphae unbranched or laterally branched max. 
two times. Microconidia hyaline, non-septate, sessile on the 
conidiogenous hyphae, often on the lateral protrusions of the 
hyphae, solitary, obovate to pyriform, smooth-walled, a part 
of conidia becoming verrucose at maturity, 4–7 (5.4 ± 0.7) × 
3–4.5 (3.8 ± 0.5) μm. Macroconidia absent. Ascomata, pseudo
ascomata and peridial hyphae not observed.
 Culture characteristics (after 14 d) — Colonies on MEA at 
15 °C 13–29 mm diam, cottony to floccose (submerged in 
strain CCF 6136), margins filamentous to submerged, white, 
yellowish white (3A2) to light orange (5A5) with white to yellow 
(3A6) margins, reverse light orange (5A5) to dull yellow (3B3) 
with greyish yellow (4B4) to yellow (3A6) margins. Colonies on 
SDA at 15 °C 12–30 mm diam, cottony to floccose (velvety in 
strain CCF 6136), margins filamentous, yellowish white (3A2), 
pale yellow (2A3) to yellowish orange (4A7) with white margins, 
reverse greyish yellow (4B4), reddish yellow (4A6) to deep 
orange (5A8) with light yellow (4A4) to yellow (3A6) marginal 
parts. Colonies on OA at 15 °C 9–34 mm diam, cottony to floc-
cose (submerged in strain CCF 6136), margins filamentous, 
pale yellow (2A3) to deep orange (5A8) in the centre, marginal 
parts white to yellow (3A6), reverse greyish yellow (4B4, 4B6) 
to dark orange (5B8). Colonies on PDA at 15 °C 12–28 mm 
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Fig. 8   Arthroderma psychrophilum sp. nov. a–b. Colonies after 2 wk at 25 °C on malt extract agar (a), Sabouraud’s dextrose agar (b), oatmeal agar (c), potato 
dextrose agar (d); e–i. conidiophores; k. mature, verrucose, obovate to pyriform microconidia; j. smooth-walled, obovate to pyriform microconidia. — Scale 
bars: 10 μm.
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Fig. 9   Arthroderma zoogenum sp. nov. a–b. Colonies after 2 wk at 25 °C on malt extract agar (a), Sabouraud’s dextrose agar (b), oatmeal agar (c), potato 
dextrose agar (d); e–f. hyaline, hooked peridial hyphae occurring on pseudoascomata, with dumbbell-shaped, gently echinulate peridial cells; g–i. sparsely 
branched conidiophores; j– l. smooth-walled, cylindrical to clavate microconidia. — Scale bars: 10 μm.
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diam, cottony to floccose (velvety in strain CCF 6136), margins 
filamentous, light yellow (2A5), pale yellow (2A3) to yellowish 
orange (4A7) in the centre, marginal parts white, reverse pastel 
yellow (3A4), yellow (3A6, 3A7), greyish yellow (4B4) to deep 
orange (5A8). The colony diameters of the isolate CCF 6136 
were approximately half in comparison with other examined 
strains. The isolates lost their ability to grow at 25 °C after 
reinoculation.
 Ecology — Arthroderma psychrophilum is associated with 
small, free-living mammals (bats, rodents) in the Czech Repu-
blic and the USA. The GlobalFungi Database did not contain 
any sequences that could be assigned to this species.

 Additional isolates examined. CzeCh RepubliC, farm in Hartoušov, near 
Cheb, fur of Mus musculus, 2019, Š. Moulíková (CCF 6422); ibid. (CCF 
6424); farm in Loužek, near Cheb, fur of Mus musculus, 2019, Š. Moulíková 
(CCF 6423); Bohemian Karst, air in an underground tunnel of Velká Amerika 
quarry (tunnel is populated by abundant bat colony), 2014, A. Kubátová (CCF 
5856 = CCF 6136).

 Notes — Arthroderma psychrophilum is phylogenetically 
related to A. oceanitis and A. silverae. In contrast to A. psy
chrophilum, A. oceanitis is capable of growing at 25 °C and has 
larger conidia (7–17 × 4–10 μm), which are coarsely verrucose 
to asperulate (Crous et al. 2013). Arthroderma silverae is a 
homothallic species that is also capable of growing at 25 °C 
(Currah et al. 1996).

Arthroderma zoogenum Moulikova, Hubka, J.M. Lorch, Ovchin- 
nikov & Cmokova, sp. nov. — MycoBank MB 845987; Fig. 9

 Etymology. Latin, zoogenum, referring to the isolation of species from 
various animals.

 Typus. CzeCh RepubliC, forest near Sedlečko, Karlovy Vary region, fur 
of Myodes glareolus, 2019, Š. Moulíková (holotype PRM 955282, culture 
ex-type CCF 6382 = CGS2-5, mating-type gene idiomorph MAT1-1-1).

Vegetative mycelium consists of hyaline, smooth-walled, sep-
tate hyphae; spiral hyphae not observed on vegetative myce-
lium, only rarely in association with peridial hyphae. Conidio
phores simple, conidiogenous hyphae unbranched or laterally 
branched max. two times. Microconidia hyaline, smooth-walled, 
non-septate, clavate, 3–6 (4.1 ± 0.6) × 1.5–2.5 (2 ± 0.2) μm. 
Macroconidia not observed. Pseudoascomata consisting of 
clusters of conidiophores and peridial hyphae. Peridial hyphae 
hyaline, hooked; peridial cells dumbbell-shaped, echinulate.
 Culture characteristics (after 14 d) — Colonies on MEA at 
25 °C 41–49 mm diam, floccose to granular, white to yellow-
ish white (2A2 to 3A2), reverse yellowish white (4A2), reddish 
yellow (4A6) to light brown (5D6). Colonies on SDA at 25 °C 
52–61 mm diam, floccose to granular, centrally raised, white 
to yellowish white (3A2), reverse light yellow (4A4) to reddish 
golden (6C7) or reddish yellow (4B7). Colonies on OA at 25 °C 
43–48 mm diam, floccose to granular, white, pale yellow (3A3) 
to yellowish white (4A2), reverse pale yellow (4A3, 4A4) to red-
dish yellow (4A6) with brown centre (6D7). Colonies on PDA 
at 25 °C 44–51 mm diam, coarsely granular, centrally raised, 
white to pale white (3A3), reverse yellowish white (3A2) to 
reddish yellow (4A6). Colonies on MEA at 30 °C 35–38 mm 
diam, floccose, centrally raised, margins submerged, white to 
pale yellow, reverse pale yellow (4A3) with apricot yellow centre 
(5B6). No growth on MEA at 37 °C.
 Ecology — Aside from the studied material, the strains IFM 
41172 (Finland, from Meles meles, 1990, isol. R. Aho) and VMZ 
Sob1.1-19 (Russia, Siberia Region, skin lesions in wild Martes 
zibellina, 2019, isol. R.S. Ovchinnikov, MAT1-1-1) belong to 
this species phylogenetically. The species was isolated from 
various animals (badger, sable, timber rattlesnake, bank vole) 
in geographically distant places in the world (USA, Czech Re-

public, Finland, and Siberia). Concerning the metabarcoding 
data, A. zoogenum was found in two soil samples collected in 
forest habitat in Switzerland (Merges et al. 2018).

 Additional isolates examined. FinlAnd, Meles meles (badger), 1990, R. Aho 
(IFM 41172). – RuSSiA, Siberia Region, skin lesions in wild Martes zibellina 
(sable), 2019, R.S. Ovchinnikov (VMZ Sob1.1-19), MAT1-1-1. – uSA, Massa-
chusetts, skin of Crotalus horridus (timber rattlesnake), 2013, J. Condon & 
J.M. Lorch (CCF 5959 = NWHC 44736-13-C4-I1), MAT1-2-1. 

 Notes — This species is phylogenetically related to A. cuni
culi, A. tuberculatum, and A. phaseoliforme. In comparison 
with A. cuniculi and A. phaseoliforme, A. zoogenum does 
not produce macroconidia. Compared to A. phaseoliforme 
and A. tuberculatum, A. zoogenum produces smooth-walled, 
clavate microconidia, whereas microconidia of A. phaseoliforme 
are reniform and A. tuberculatum produces significantly larger, 
ovoid and echinulate microconidia: 5.5–21.5 (10.8 ± 2.9) × 
4–12 (7.4 ± 1.6) μm. Arthroderma zoogenum grows slower on 
OA at 25 °C and faster on MEA at 30 °C in comparison with 
A. cuniculi (OA: 50–61 mm, MEA at 30 °C: 20–30 mm), while 
faster on PDA at 25 °C and slower on MEA at 30 °C in com-
parison with A. tuberculatum (PDA: 40–41 mm, MEA at 30 °C: 
40–42 mm). By contrast, A. phaseoliforme grows the fastest 
on all cultivation media (MEA: 63–66 mm, SDA: 68 mm, OA: 
60–61 mm, PDA: 60–62 mm, MEA at 30 °C: 51–52 mm).

DISCUSSION

In this study, we focused on screening wild rodents for the 
presence of dermatophytes. A wide variety of dermatophytes, 
including geophilic Arthroderma and Nannizzia and zoophilic 
Trichophyton and Microsporum species, have been previously 
reported from rodents (Mantovani et al. 1982, Gallo et al. 2005, 
Papini et al. 2008). However, the taxonomy of dermatophytes 
has been revised numerous times and it is often problematic to 
reassign accurate species identifications to historical samples. 
Among our strains isolated from small wild rodents, we did 
not detect zoophilic Trichophyton and Microsporum species. 
Similarly, we did not isolate geophilic dermatophytes outside 
the genus Arthroderma.
Phylogenetic analyses revealed the presence of four previ-
ously described and four new species of Arthroderma among 
our 29 isolates recovered from wild rodents. Of the previously 
described species, three – A. quadrifidum (often referred to in 
the historical literature as T. terrestre) (Alteras 1966, Smith et al. 
1969, Knudtson & Robertstad 1970, Houin et al. 1972, Hubálek 
et al. 1979, Mantovani et al. 1982, Gallo et al. 2005, Papini et 
al. 2008), A. curreyi and A. cuniculi (Knudtson & Robertstad 
1970, Hubálek et al. 1979, Chabasse et al. 1987) – had been 
previously reported from various rodent species in Europe and 
North America, whereas we report A. crocatum from rodents 
for the first time.
Based upon our proposal of new species, species diversity 
within the genus Arthroderma increased from 27 (Hainsworth 
et al. 2021) to 31 recognised species (an increase of 13 %). 
The diversity we detected was unexpectedly high given that 
we sampled a single type of substrate (rodent fur) in a limited 
geographic area (Czech Republic) using a culture-based ap-
proach, and it is highly probable that we did not fully characterise 
the diversity of Arthroderma species from our study population 
(Fig. 2). When comparing rodent species, bank voles hosted 
the highest species diversity of Arthroderma in comparison with 
both house mice and yellow-necked mice (even those inhabit-
ing the same locality as the voles). The differences observed 
in Arthroderma species diversity can probably be explained by 
different ecological niches of these rodents. House mice live 
predominantly in association with human settlements (often in or 
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around buildings), yellow-necked mice occupy the undergrowth 
of forests and gardens, and bank voles occur in wild habitats 
and spend a considerable amount of time underground (in 
direct contact with soil).
Soil environments are relatively stable with respect to tempera-
ture fluctuations and surface changes, and soil is thought to be 
the primary habitat in which sexual recombination of dermato-
phytes takes place (Gräser et al. 2006). However, the role of 
different soil types, presence of a keratin source, and role of 
animals in the life cycle of dermatophytes warrants further inves-
tigation. To explore biogeography and ecological significance of 
the soil environment for Arthroderma, we searched published 
datasets originating from both the culture-based (NCBI Gen-
Bank database) and molecular-based (GlobalFungi) studies. 
Based on phylogenetic trees (generated from ITS1 or ITS2 
sequence data), most of the phylotypes contain the refer-
ence sequences of already known species, had relatively low 
intraspecific genetic variability (≥ 98.8 %) and corresponded to 
a single species. On the other hand, other phylotypes, such as 
A. quadrifidum, A. insingulare, and A. crocatum, can be con-
sidered as phylogenetic lineages of uncertain taxonomic level 
(i.e., potentially consisting of several cryptic species) due to high 
genetic variability within the taxa. Based on the metabarcoding 
data, we observed that some Arthroderma lineages/species 
were frequently detected in soil samples (Fig. 3, red and orange 
taxa) and thus soil may serve as an important reservoir for 
these taxa. Other taxa were poorly represented in datasets from 
soil studies (Fig. 3, black taxa), which may indicate that these 
species utilise other substrates as reservoirs. The GlobalFungi 
Database contained data primarily generated from molecular 
analyses of soil, root, shoot, and dead wood samples (Fig. 4b). 
Substrates relevant for Arthroderma spp., such as keratin rich 
soils (Dawson 1963, Weitzman & Summerbell 1995), bird 
nests (Otcenášek et al. 1967, Hubálek 1970), animal faeces 
(Kuehn 1960, Currah et al. 1996), or caves (Kajihiro 1965, 
Evolceanu & Alteraş 1967, Zeller 1970, Lorch et al. 2013, 
2015) were not well-represented in the GlobalFungi Database. 
Overall, the majority of Arthroderma diversity originated from 
strains/sequences associated with animal substrates, while 
the number of phylotypes identified from soil samples was low 
(Fig. 3). The relative rarity of Arthroderma in soil detected by 
molecular techniques is consistent with the infrequency in which 
some species of Arthroderma are cultivated from soil samples 
(Chabasse 1988, Nováková et al. 2012) and the finding that 
some species appear to be weak competitors in soil lacking 
keratin (Pugh 1964).
We noted that detections of some species of Arthroderma 
were geographically restricted. For example, A. rodenticum 
was absent in datasets from Western and Northern Europe 
(Scandinavian Peninsula), even though these regions are very 
well represented in the GlobalFungi Database (Fig. 4a, grey 
dots). Such a distribution pattern is unexpected for ubiquitous 
soil fungi but may be more consistent with fungi closely tied to 
particular animals. However, the geographical distribution of the 
bank vole does not mirror the detection pattern of A. rodenticum 
as this rodent is also distributed across Scandinavia (Cook et al. 
2004). Therefore, other factors, such as environmental condi-
tions, may play a role in the distribution of Arthroderma species.
In contrast to low abundance of Arthroderma in soil samples, pre- 
valence of Arthroderma in the rodents sampled for this study 
was high (15–71 %). Prevalence of the most common species, 
A. rodenticum, was around 57 % at the study site. The preva-
lence of A. rodenticum was comparable to or even higher than 
those reported for zoophilic dermatophytes such as T. erinacei, 
which has a prevalence 20–45 % in free living hedgehog popu-
lations (Smith & Marples 1964, Morris & English 1969, Gregory 

& English 1975, Gregory et al. 1978, Gnat et al. 2022, Le Barzic  
et al. 2021) and A. quadrifidum (T. terrestre), which has a pre-
valence of 6–42 % in rodents (Houin et al. 1972, Hubálek et 
al. 1979, Chabasse et al. 1987, Gallo et al. 2005). Such a high 
prevalence may indicate very close association with animal 
hosts and suggest that A. rodenticum is either a commensal or 
pathogen. However, pathogenic potential of Arthroderma spe-
cies in wild mammals has never been rigorously investigated. 
The one exception is A. redellii, which causes dermatophytosis 
in hibernating bats (Lorch et al. 2015).
Many Arthroderma species are thought to be non-pathogenic 
to mammals because they are incapable of growth at 37 °C 
(Robert & Casadevall 2009). Indeed, it is plausible that many 
Arthroderma species closely associated with animals are non-
pathogenic commensals that derive energy from dead skin cells, 
shed hair, and other keratinaceous material without actively 
infecting the host. However, the potential for Arthroderma spe-
cies to act as pathogens warrants further investigation. Fungi 
with optimal temperature below 37 °C may still be able to infect 
superficial tissues and distal body parts that have a significantly 
lower temperature, or infect animals during hibernation. This is 
true for the non-dermatophyte species Malbranchea ostravien
sis (syn. Auxarthron ostraviense), which is a well-documented 
cause of human infections but is unable to grow above 35 °C 
(Hubka et al. 2013). Moreover, pathogenic dermatophytes that 
have coevolved with their hosts are usually asymptomatic and 
do not cause clinical disease in healthy individuals (Drouot et 
al. 2009, Kupsch et al. 2017, Le Barzic et al. 2021). In addition, 
A. crocatum and A. quadrifidum (frequently misidentified as 
T. terrestre) that were isolated in this study from wild rodents 
have repeatedly been reported from human clinical material 
(L’Ollivier et al. 2013, Nenoff et al. 2013, Hubka et al. 2014b, 
Hainsworth et al. 2020, Brasch et al. 2021). Among the newly 
described species, A. rodenticum, reported as Arthroderma sp. 
bM 128 by De Respinis et al. (2013), was found on unspecified 
clinical material. Other Arthroderma species such as A. ebo
reum (syn. A. olidum), A. thuringiense, and A. chiloniense 
have also been occasionally reported from both substrates 
associated with animals (rodents and badger burrows), as well 
as clinical material (Brasch & Gräser 2005, Nenoff et al. 2014, 
Brasch et al. 2019). The importance of Arthroderma species as 
pathogens may be currently underestimated due to difficulties 
in isolating and identifying these organisms and a priori as-
sumptions by many clinicians that they are non-pathogenic 
or secondary pathogens. Awareness of these species in the 
clinical setting is growing with the increasing use of molecular 
methods for species identification (Hubka et al. 2014a, Brasch 
et al. 2021). However, histopathologic verification of human 
infections is rarely performed to confirm pathogenicity.
Investigation of the pathogenic potential for Arthroderma spe- 
cies that exhibit optimal growth at lower temperatures (20–
25 °C, e.g., newly described species A. psychrophilum) would 
be beneficial. Although the ecology of A. psychrophilum is poorly 
known, its isolation from environments occupied by hibernating 
bats could suggest it is capable of infecting torpid mammals, 
similar to the psychrophilic fungi A. redellii (Lorch et al. 2015) 
and Pseudogymnoascus destructans (Lorch et al. 2011).
In this study, we documented a high diversity of Arthroderma 
on wild rodents. For the first time, we also demonstrated the 
application of the GlobalFungi Database in studying habitat 
preferences and distributions of dermatophytic fungi. To fully un-
derstand the ecology and phylogeography of the genus Arthro
derma, material from certain keratin-rich (animal-associated) 
sources would need to be screened and soil environmental 
conditions (e.g., pH, composition, moisture, temperature, kera-
tin abundance) would need to be better documented.
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     Gardes & Bruns (1993)
   NL4 GGTCCGTGTTTCAAGACGG O’Donnell (1993)

tubb  Bt2a GGTAACCAAATCGGTGCTGCTTTC  Bt2b ACCCTCAGTGTAGTGACCCTTGGC Glass & Donaldson (1995)

tef1-α EF-DermF CACATTAACTTGGTCGTTATCG EF-DermR CATCCTTGGAGATACCAGC Mirhendi et al. (2015)

MAT111 ART-MAT1F1 TCAAGTCTGGACTGCTTCG ART-MAT1R1 ACAATTCCAATGAADGGCMCA This study

MAT121 ART-MAT2F1 TCCTTTGGCAGCATGCGATG ART-MAT2R1 ACGCTATCCTCAAACGCCAC This study

Appendix 1   Primers combinations used in this study to amplify target DNA loci and determine mating-type gene idiomorphs.
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Supplementary material
Table S1   The biogeography, substrate, and habitat affinity of newly de-
scribed Arthroderma species inferred from the GlobalFungi Database (ITS1 
and ITS2 data). The same information, based on the ITS2 marker only, is 
provided for phylotypes identified in Fig. 3. The summary of geographical 
location, substrate, and habitat type is provided as a list of all studies in the 
database. Table is available via https://doi.org/10.5281/zenodo.7579684 or 
upon request.

Table S2   List of sequences used in the construction of the phylogenetic 
trees in Fig. 3, Appendix 2. Table is available via https://doi.org/10.5281/
zenodo.7579684 or upon request.
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