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A mega diverse world 
Planet Earth hosts an overwhelming biological diversity. The term 
‘biodiversity’ may refer to genetic diversity, species diversity, ecosystem 
diversity, and even more, but commonly species richness is used as a 
representation of biodiversity (Gaston, 1996a). The exact number of 
species occurring on our planet remains unknown, but estimates range 
from 5 to 11 million eukaryotic species, including 400,000-450,000 
species of plants (Costello et al., 2013, Joppa et al., 2011, Mora et al., 
2011, Pimm et al., 2014). 

Ever since Europeans set out to explore the world, they noticed the 
overwhelming species richness of the Tropics. Throughout the past three 
centuries, living and dried plants, seeds, bulbs and tubers were sent to 
European scientists at universities and botanic gardens. This enabled the 
founders of modern taxonomy, including e.g. Linnaeus, to study, describe 
and name these species. In the 19th century, many of the great explorers 
and describers of natural science, such as Joseph Banks, Charles Darwin, 
Joseph Dalton Hooker, Alexander von Humboldt, and Alfred Russel 
Wallace, discussed the reason behind the exceptionally higher biodiversity 
in the Tropics compared to temperate regions (Wallace, 1876). This 
phenomenon is known as the latitudinal diversity gradient and has been 
documented for many taxonomic groups of plants and animals 
(Rosenzweig, 1995, Willig et al., 2003). In terms of vascular plants, the 
Neotropics harbour approx. 90,000 species (Paton, 2013, Thomas, 1999), 
41,000-42,500 species occur in the Malesian region (Malaysia, Singapore, 
Indonesia, Brunei, the Philippines and Papua New Guinea) (Paton, 2013, 
Roos, 1993) and 30,000-35,000 species of flowering plants in tropical 
Africa excluding Madagascar (Klopper et al., 2007). In contrast, only 
11,500 vascular plant species occur in Europe (Tutin, 1964-1980) and 
20,500 species in North America (1993+, Paton, 2013). The latitudinal 
diversity gradient appears to be mainly driven by higher energy levels in 
the Tropics (Brown, 2014), although other factors may play a role too, 
such as climatic stability, larger habitat heterogeneity, larger areas for 
each climate zone near the Equator, as well as the central position of the 
Tropics on the globe (Gaston, 2000, Lomolino et al., 2010). In addition to 
this unequal distribution of species richness on Earth, large differences 
exist between the range size or prevalence of individual species. 

Rarity of species 
In 1859, Charles Darwin noted “Who can explain why one species ranges 
widely and is very numerous, and why another allied species has a narrow 
range and is rare? Yet these relations are of the highest importance, for 
they determine the present welfare and, as I believe, the future success 
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and modification of every inhabitant of this world”. Since then, many 
researchers tried to answer this question for a wide array of taxa. Rarity 
can be defined in multiple ways, best summarized by Rabinowitz’s (1981) 
‘seven forms of rarity’, which are based on the following three criteria: a) 
species can be restricted to a small geographic area, b) species can have 
a narrow ecological niche, thus being restricted to rare biotopes, or c) 
species can have a low abundance, although being present in a large area. 
One of the most simple definitions of a geographic rare species is that of 
an ‘endemic’, a species that is restricted to a small area (Gaston, 1994). 
However, endemism is often defined using political boundaries, which 
often have limited ecological meaning. Moreover, the use of endemism is 
criticised as it is a qualitative classification: a species is either restricted 
to a specific area or not, hence its rarity is not quantified. Quantitative 
methods for describing the rarity of a species include applying discrete 
rarity classes (Marshall et al., 2016) or applying a continuous system of 
weighted endemism (Crisp et al., 2001). 

The geographic rarity of a species is often quantified by its range size. 
Out of several methods to measure the geographic range size of a species, 
two are widely applied, e.g. for the IUCN Red List assessment of species 
(IUCN, 2001, IUCN, 2014). The Extent Of Occurrence (EOO) is the area 
within the shortest polygon encompassing all known occurrences. The 
Area Of Occupancy (AOO), in contrast, is the area that is actually occupied 
by the species, for which commonly a standard buffer area is applied 
around each known occurrence (Gaston, 1991, Gaston & Fuller, 2009, 
Lomolino et al., 2010). Instead of known occurrences, predicted 
occurrences based on models can also be used to assess the range size 
(Syfert et al., 2014). 

Most species on Earth are rare and few are abundant, concluding from 
data based on e.g. plants (ter Steege et al., 2013), birds (Gaston, 1996b), 
mammals (Schipper et al., 2008), and fish (Magurran & Henderson, 
2003). In other words, when the number of species is plotted against the 
range size, this range size frequency distribution (RSFD) is generally 
strongly right-skewed, thus towards narrow-ranged species. The same 
skew is observed when the number of species is plotted against the 
abundance of individual species. 

African rainforests 
The tropical rainforests (TRFs) of the Neotropics (South America), Africa 
and South-East Asia are the most species-rich terrestrial biomes on Earth 
(Gentry, 1992). They fulfil crucial ecosystems services including storage 
of carbon and production of oxygen, as well as the provision of food, 
timber, construction materials, medicines, and other non-timber forest 
products (Hassan et al., 2005, Schulze & Mooney, 1994). 
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African rainforests are restricted to four phytogeographical regions: Upper 
Guinea (Liberia to Ghana), Lower Guinea (Nigeria to northern Angola), 
Congolia (the Congo Basin), and the Eastern Arc and coastal forests of 
Kenya and Tanzania (Linder, 2001, Sosef et al., 2017, White, 1979). The 
Dahomey Gap separates the Upper Guinean from the Lower Guinean 
forests and is mainly covered by savannah. The Sangha river interval 
consists of extensive swamp forests that separate Lower Guinea from 
Congolia. Africa has been termed the “Odd man out” as African rainforests 
contain far less species than South American and Asian rainforests 
(Richards, 1973). Exact numbers are lacking, but recent estimations 
based on tropical trees indicate a total of 4,500-6,000 tree species for 
Africa versus 19,000-25,000 tree species for each of both other regions 
(Slik et al., 2015). Based on plot data, tree alpha-diversity in Amazonian 
forests is twice as high compared to African forests, except for the driest 
and coolest African forests (Parmentier et al., 2007). From the many 
hypothesized causes of this difference, higher speciation rates in the 
Neotropics and South-East Asia seem a more likely explanation than 
higher extinction rates in Africa (reviewed in Couvreur, 2015). In addition, 
African rainforests are overall drier and have probably experienced a 
much stronger decrease in range size during Pleistocene glacial periods; 
the latter is explained below. 

In the past 2.5 million years, 21 cycles of global glaciations took place: 9 
major and 12 minor. From fossil pollen records and carbon isotope data 
of vegetation and soils it is concluded that, in response to these climate 
changes, rainforests contracted into forest refugia during drier and cooler 
glacials and expanded again during wetter and warmer interglacials 
(Maley, 1996, Pietsch & Gautam, 2013, Plana, 2004). Where contraction 
of the rainforests resulted in a reduction of surface by 54% for Amazonian 
rainforests, African rainforests were reduced by as much as 84% (Anhuf 
et al., 2006). The location of the forest refugia has been identified based 
on the composition of pollen in lake sediments (Maley, 1996), carbon 
isotope data (Pietsch & Gautam, 2013), and the presence of endemic 
species (White, 1979), or species that are known to be bad dispersers, 
such as e.g. Begonia species (Sosef, 1994), Caesalpinioid legume trees 
with ballistic seeds (Leal, 2004, Wieringa, 1999) and some Rubiaceae taxa 
(Robbrecht, 1996). The role of gallery forests as smaller but more 
widespread riverine forest refugia in addition to the larger montane forest 
refugia is illustrated by the restricted distribution of some of these plant 
species to gallery and montane forests (Leal, 2001, Robbrecht, 1996, 
Wieringa, 1999), as well as by the distribution of allelic endemism (Hardy 
et al., 2013). The distribution of primates also suggests the survival of 
patches of lowland rainforest during glacials (Colyn et al., 1991). During 
the last glacial period, the African rainforest reached its smallest size at 
the last glacial maximum (LGM) around 18,000 years BP. Around 12,000 
years BP, the forest rapidly expanded until it reached its maximum size 



General introduction 

11 

between 9,000 and 5,000 years BP, at that time even bridging the 
Dahomey Gap. Between 2,800 and 2,500 years BP, the Lower Guinean 
forest experienced a short but strong contraction due to increased 
precipitation seasonality and hence an extension of the dry season. Soon 
after, when precipitation increased again, the rainforest recovered and 
expanded to its current size that is slightly smaller than its previous 
maximum extent (Maley, 1996, Maley, 2002). Although some studies 
suggest an important role for humans in the Holocene rainforest 
contraction, following and reinforcing the climate-induced forest 
contraction around 2,800 years BP (Oslisly et al., 2013), other studies did 
not find proof for this (Ngomanda et al., 2009). Data on the distribution 
of forest pioneer species such as oil palm and Okoumé trees as well as 
comparison of air photos and satellite data show that the expansion of 
Central African rainforest to the costs of savannahs continues until today 
(Leal, 2004, Maley, 2002). 

This thesis focusses on the central African country of Gabon. It has a 
surface of 268,000 km2, is situated in the centre of the Lower Guinean 
phytogeographical region, and is a Central African biodiversity hotspot 
(Barthlott et al., 2007, Kier et al., 2005, Linder, 2014) hosting an 
estimated 7000-7500 species of vascular plants (Küper et al., 2004, Sosef 
et al., 2017, Sosef et al., 2006). The country has protected over 10% of 
its surface in 13 National Parks, and has an active conservation policy, 
supported by international organisations such as the Wildlife Conservation 
Society, the World Wildlife Fund and coordinated by the Agence Nationale 
des Parcs Nationaux, a national authority. Some 80% of the surface of 
Gabon is covered with what is believed to be the most species-rich lowland 
rainforest in Africa (Sayer et al., 1992). This high level of plant species 
richness and endemism has been, at least in part, attributed to the history 
of the region functioning as LGM forest refugia characterized by climatic 
stability and high levels of habitat heterogeneity (Maley, 1996, Sosef, 
1996). The high level of species richness and endemism, the postulated 
past dynamics in rainforest coverage, and the availability of an excellent 
dataset on plant species distributions render Gabon an excellent study 
area to assess the driving forces of species richness and endemism in a 
tropical rainforest. 

Global change 
Biodiversity is affected by human-induced changes that act on a global 
scale, including climate change, loss of habitat, the introduction of 
invasive species and diseases, as well as acidification of oceans, fresh 
water bodies and rain. Of these, loss of habitat, climate change, and 
invasive species form the largest threats to biodiversity and are driving a 
biodiversity tragedy, particularly in the Tropics (Bradshaw et al., 2009). 
The effect of climate change is likely to be particularly severe in tropical 
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ecosystems, as these contain by far the largest number of species and 
individual tropical species have much narrower thermal tolerances 
compared to temperate species (Deutsch et al., 2008). In addition to the 
direct effects, the extinction of species itself appears to accelerate 
changes in ecosystem processes leading to further loss of species and 
ecosystem functions (Hooper et al., 2012). Moreover, synergies in these 
extinction drivers further increase the extinction risk (Brook et al., 2008, 
Gilman et al., 2010). The predicted effects of global change on biodiversity 
are severe, but estimates vary and depend on the taxonomic group, 
spatial scale, temporal window, and applied biodiversity loss metrics 
(Bellard et al., 2012). For example, 81-97% of sub-Saharan species is 
estimated to loose parts or all of their suitable habitat by 2085 due to 
climate change (McClean et al., 2005). The effect of habitat loss on 
species extinction has been estimated e.g. for the Amazon region, ranging 
from 5-9% of plant species going extinct by 2050 (Feeley & Silman, 2009) 
to an extinction of 20-33% of all tree species by 2020 (Hubbell et al., 
2008). Effects on local scales are much stronger, with up to 76,5% species 
loss for the worst-affected habitats (Newbold et al., 2015). On a positive 
side, some studies showed that change of land use offers opportunities 
for species to expand their ranges when given the possibility to migrate 
in time (Feeley & Silman, 2010a). Individual species can respond to 
climate change either by colonizing newly suitable habitats, or trough 
changes in their phenology, morphology and genetic structure (Bellard et 
al., 2012, Parmesan, 2006). However, for many species, the speed of 
these global changes may be too high, driving them to extinction and 
leading the world towards the 7th mass extinction. 

Conservation priorities 
Limited availability of resources and the scale at which global change 
affects biodiversity forces governments and NGOs to set priorities in 
conservation (Margules & Pressey, 2000, Moilanen & Arponen, 2011). This 
is particularly important for species in tropical forests, where the risk of 
extinction escalates (Ricketts et al., 2005, Vamosi & Vamosi, 2008). Both 
species richness and endemism have been recommended and used as key 
criteria to set priorities in conservation (Brooks et al., 2006, Huang et al., 
2016, Myers et al., 2000). Consequently, the availability of accurate and 
sufficient information on the spatial distribution of species is crucial for 
making informed conservation decisions (Boitani et al., 2011, Whittaker 
et al., 2005). Similar, knowing which species are threatened and where 
these species occur now as well as in the future is crucial in order to spend 
conservation resources efficiently and effectively (Brooks et al., 2006). 
Unfortunately, precisely this knowledge on the distribution, rarity and 
threat status is lacking for most species (Pimm et al., 2014). This 
knowledge gap is worrying, because half of the world’s plant species may 
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well be qualified as threatened with extinction under the classification of 
the International Union for Conservation of Nature (IUCN, 2001, Pitman 
& Jorgensen, 2002), although sufficient data for a formal classification of 
these species are still lacking. 

Data availability 
The lack of detailed and often even basic distributional information for 
species is termed the Wallacean shortfall (Lomolino, 2004) and applies to 
most species worldwide, but particularly to species in the Tropics (Collen 
et al., 2008). The Linnaean shortfall (Brown & Lomolino, 1998), the 
difference between the number of species existing and the number 
actually described, causes an additional data gap. Fortunately, the 
availability of species occurrence data is increasing rapidly, notably due 
to the ongoing digitalisation of natural history collections, inventory data, 
and other observations (Graham et al., 2004) and online publishing of 
these in e.g. the Global Biodiversity Information Facility (www.gbif.org) 
and targeted projects such as the African RAINBIO project (Dauby et al., 
2016). These data are typically presence-only data, referring to the 
observed presence of a species at a particular time and location. Absence 
data are usually not available. Notwithstanding the increasing availability 
of these big data and the opportunities this offers to bridge the Wallacean 
shortfall, many species and habitats remain highly underrepresented 
(Feeley, 2015, Küper et al., 2006, Sosef et al., 2017, Stropp et al., 2016). 
These shortfalls, in addition to biases and uncertainties in the data, 
continue to hamper biodiversity research and conservation efforts (Meyer 
et al., 2016). The low availability of data on African TRFs is illustrated by 
Fig. 1 showing the number of vascular plant species known from Gabon 
plotted against the number of available records from either Gabon alone 
or from all African countries. Using only records from Gabon, out of the 
5,323 species documented from Gabon, 2512 are known from 5 or fewer 
records and 980 are known from only a single collection. When records 
from other African countries are included, 2047 species are known from 
5 or fewer records and 688 are known from only one collection. This low 
availability of distributional data is typical for tropical ecosystems. 
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Figure 1: Data availability of Gabonese vascular plant species. The 
number of species is plotted against the number of records representing 
the species when using only records from Gabon (yellow) as well as when 
including records from other African countries (blue). To increase 
readability, only the species with 100 or fewer records are shown. 

Species Distribution Models 
Species Distribution Models (SDMs) offer opportunities to infer the spatial 
distribution of species using a limited number of observation data. SDMs 
are correlative models that link known localities of species to high 
resolution environmental data, typically climate, soil and altitudinal data 
(Elith & Leathwick, 2009). The currently available suite of methods forms 
a pipeline (Fig. 2) through which significant SDMs can be generated 
rapidly and patterns of species richness and weighted endemism using 
these SDMs can be inferred for a large number of species including plants, 
animals, fungi and microbes. At the start of this pipeline, species 
occurrence data are retrieved, usually from online available resources 
such as GBIF <www.gbif.org> and Specieslink 
<http://splink.cria.org.br>. These are then combined with high resolution 
environmental data on climate, soil and altitude, recently also including 
remotely sensed climate data (Bookhagen & Strecker, 2008, Duan & 
Bastiaanssen, 2013, Platts et al., 2015). The pipeline returns spatially 
projected models visualising the predicted habitat suitability of each 
species in a specific study area under past, current or future climatic 
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conditions. By superimposing individual SDMs, patterns of species 
richness and weighted endemism can be inferred. 

The development of SDM techniques has resulted in a tremendous 
increase in knowledge on the distribution of individual species as well as 
an improvement of the quality of macroecological, biogeographical and 
conservation research (Franklin, 2009). As such, these techniques help to 
bridge the Wallacean shortfall described above (Anderson, 2012, Guisan 
& Thuiller, 2005). Nowadays, SDMs are widely used to study past, present 
and future distributions of individual species (Franklin, 2009, Wieringa et 
al., 2013), to assess the risk of invasive species (Jiménez-Valverde et al., 
2011), to infer patterns of species richness, identify biodiversity hotspots 
and assess the factors causing these patterns (Amaral et al., 2017, Raes 
et al., 2009, Zhang et al., 2016). In addition, the impact of climate change 
(Schweiger et al., 2012), and the effectiveness of protected areas in the 
light of conservation planning has been assessed using SDMs (Guisan et 
al., 2013, Zhang et al., 2012). 

 

 

Figure 2: Methodological pipeline to generate SDMs and infer 
biodiversity patterns such as of species richness and weighted 
endemism using SDMs. Parts of the pipeline addressed specifically in this 
thesis are marked red. 

Limitations of SDMs 
Notwithstanding the advantages of SDMs, each step in the pipeline has 
its own assumptions, limitations and uncertainties, including errors in 
specimen identification and geographic locality of occurrence records, 
inaccuracies of environmental data, stochastic effects, as well as the effect 
of model parameterization, model selection, model evaluation and 
variable selection methods (Araújo & Guisan, 2006, Araújo & Peterson, 
2012, Zimmermann et al., 2010), to name but a few. The exact effect of 
these matters on SDMs usually remains unknown, particularly when taken 
in concert, but warrant consideration, before jumping to conclusions 
based on the outcomes. The effect of some limitations has been addressed 
by others, e.g. the effect of the extent of study area in relation to the 
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species’ range size (Barve et al., 2011, McPherson et al., 2004, 
VanDerWal et al., 2009), the effect of multicollinearity of environmental 
variables (Dormann et al., 2013), the effect of using remotely sensed 
climate data with higher accuracy over data interpolated from scarce 
weather stations (Deblauwe et al., 2016), the effect of incomplete 
sampling of the species’ niche (Raes, 2012), the effect of using big data 
on species occurrence through massive digitalisation projects over 
smaller, expert-verified data sets (Beck et al., 2013), the effect of 
selection of modelling algorithm (Elith et al., 2006), the use of null models 
to assess model accuracy (Deblauwe et al., 2016, Raes & ter Steege, 
2007), as well as the effect of using different methods to infer species 
richness patterns from SDMs of individual species (Calabrese et al., 
2014). Transferability of the model in place and time, especially to non-
analogue environments is crucial, meaning that the model can be 
projected successfully to combinations of environmental variables not 
present in the training area (Randin et al., 2006). In addition, model 
performance can be seriously improved when data on dispersal limitations 
and biotic interactions are incorporated. Unfortunately, such data are 
available for only very few species (Anderson, 2017, Franklin, 2010). 
Another crucial, but often neglected matter is the dependency of model 
accuracy on the number of records used to train the model (van Proosdij 
et al., 2016b, Wisz et al., 2008). For rare species, which are most in need 
of analysis of their distribution and threat using predictive distribution 
modelling, the availability of species occurrence data is low, and hence 
their model accuracy (or reliability) is low, a contrast known as the “rare 
species modelling paradox” (Lomba et al., 2010). 

Collecting bias 
The vast majority of species occurrence data is not collected in a 
randomized way and hence contain taxonomic, geographical and temporal 
biases of different, often unknown sizes (Meyer et al., 2016). Such biases 
can result in less accurate SDMs as well as incorrect estimations of species 
richness (Schmidt-Lebuhn et al., 2012). Even smaller, unbiased data sets 
may generate more accurate models than larger, biased data sets (Beck 
et al., 2014). If bias is based on the preference of the collector, this 
collectors’ bias of the data is towards the species of interest. Botanical 
collectors, for example, are known for their effort to never collect the 
same species twice in the region they visit (ter Steege et al., 2011). In 
addition, many species may remain undetected in the field due to a 
variety of reasons including life form (geophytic, nocturnal, migratory), 
size, biotope, or training-level of the observer (Chen et al., 2013). 
Geographical and temporal biases originate from the inaccessibility of 
areas due to logistic or political reasons. Finally, differences in the effort 
spent to digitize and publish herbarium specimens data results in 
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differences in data accessibility. In general, species occurrence data are 
biased towards easy observable and collectable species and towards easy 
accessible areas such as near cities as well as along roads and rivers 
(Hortal et al., 2007, Reddy & Davalos, 2003). A geographical bias may 
result in an environmental bias with some environments in the study area 
being underrepresented by collections (Kadmon et al., 2004, Loiselle et 
al., 2008), although this is not necessarily always the case (McCarthy et 
al., 2012, Tessarolo et al., 2014). Many regions of the world are severely 
undersampled, including several large parts of Africa (Meyer et al., 2015, 
Meyer et al., 2016, Sosef et al., 2017, Stropp et al., 2016). 

A few methods have been developed to mitigate the negative effect of 
collecting bias on model accuracy. For example, spatial thinning or 
geographic filtering can be applied by excluding records from areas with 
high sampling density (Aiello-Lammens et al., 2015). Similarly, 
environmental filtering, applied in parameter space rather than 
geographic space, reduces environmental bias in data sets even better 
(Varela et al., 2014). However, for many species, the number of available 
occurrence records is simply too low to enable filtering. Alternatively 
target-group background sampling can be used, which applies the same 
bias present in the species occurrence records to the background data 
that are used to train the model with. Background records are then drawn 
from known collecting localities of a specified target-group, often localities 
where collections were made, but where the species itself was never 
collected (Phillips et al., 2009, Syfert et al., 2013). Similarly, bias-
corrected null models can be used to evaluate models by using null models 
that are trained on such target-group background localities instead of 
random localities (Raes & ter Steege, 2007). Finally, some recent studies 
on species occupancy models report to account for imperfect detection of 
the species (Dorazio, 2014, Guillera-Arroita, 2017). 

Biotic interactions 
The interaction with other species, either competitors, food sources, 
predators, hosts, pollinators, dispersers, or pests influences the 
distribution of species (Godsoe et al., 2015, Soberón & Peterson, 2005). 
These biotic interactions are affected by climate change, increasing their 
importance for the accurate prediction of species distributions under 
global climate change (Blois et al., 2013). Therefore, including biotic 
interactions in some stage of the modelling process is recommended 
(Anderson, 2017, Kissling et al., 2012). Biotic interactions have been 
shown to play an important role at high spatial resolutions, but their 
imprint rapidly vanishes with decreasing spatial resolution and is largely 
absent at resolutions typically used for species distribution modelling 
(Thuiller et al., 2015), although others found evidence for substantial 
impact at regional, continental and even global extents too (Wisz et al., 
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2013). Recently, new methods have been explored to incorporate species 
interactions directly in the modelling process (Boulangeat et al., 2012, 
Giannini et al., 2013) or to model the species interactions themselves 
(Kissling et al., 2012). However, for most species, interactions between 
species and their importance in shaping species distributions remain 
largely unknown (Godsoe et al., 2015, Wisz et al., 2013), leaving biotic 
interactions a challenging aspect of species distribution modelling. 

Model evaluation and the use of the AUC 
Testing the accuracy of SDMs or model evaluation is challenging, in 
particular when SDMs are trained on presence-only data. Commonly, a 
confusion matrix is used (Table 1), showing the numbers of correctly and 
incorrectly predicted presences and absences (Fielding & Bell, 1997, Metz, 
1978). Two types of errors are included: a commission error (or false 
positive, FP) when a real absence is predicted to be a presence and an 
omission error (or false negative, FN) when a real presence is predicted 
to be an absence. Sensitivity of a model or its power to correctly predict 
all presences, is computed by dividing the number of true positives (TP) 
by the total number of real presences (TP + FN). Model specificity is 
defined as its power to correctly discriminate between presences and 
absences and is computed by dividing the number of true negatives (TN) 
by the total number of real absences (TN + FP). Generally, higher 
sensitivity will come at the price of lower specificity and vice versa. A good 
model combines high sensitivity with high specificity. 

 

Table 1: Confusion matrix showing the number of correctly and 
incorrectly predicted presences and absences, by comparing the 
predictions with the actual situation. 

 Actual 
Presence Absence Total 

P
re

d
ic

te
d

 

Presence True 
Positives 

False 
Positives 
(Commission
) 

Predicted 
Presences 

Absence False 
Negatives 
(Omission) 

True 
Negatives  

Predicted absences 
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Model evaluation criteria derived from the confusion matrix include 
sensitivity, specificity, the True Skill Statistics (TSS), defined as sensitivity 
+ specificity – 1 (Allouche et al., 2006), and Cohen’s kappa which corrects 
for chance and accounts both omission and commission errors in one 
performance indicator value (Cohen, 1960). Each of these indicators apply 
a fixed threshold to convert the model’s continuous probability of 
occurrence into presences and absences. The level of this threshold 
strongly influences the balance between the number of presences and 
absences and hence between sensitivity and specificity. 

 

 

Figure 3: ROC curve of the SDM of the endemic legume species 
Gabonius ngouniensis, based on 46 training records showing sensitivity 
as a function of 1 – specificity, with the model AUC (0.991, red line) and 
the AUC of random chance (0.500, black line). 

 

The most widely used indicator of model performance in species 
distribution modelling is the Area Under the Curve (AUC) of the Receiver 
Operator Characteristic (ROC) (Metz, 1978). In the ROC curve, sensitivity 
is plotted as a function of commission error (1 – specificity) for every 
possible threshold value, which makes this indicator threshold-
independent (Fig. 3). Low values on the x-axis indicate low commission 
error rates and high values on the y-axis indicate low omission error rates. 
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When the curve approaches the upper left corner of the graph, the level 
of both omission and commission errors is minimised. The area under this 
ROC curve (AUC) is a measure of the discriminative power of the model 
and codes for the probability that a randomly taken presence has a higher 
predicted value than a randomly selected absence point (Jiménez-
Valverde, 2012). An AUC value of 0.5 indicates random model 
performance, a value of 1.0 perfect model fit. AUC values above 0.7 are 
generally regarded to represent a fit that is useful, while a value above 
0.9 represents high model accuracy (Pearce & Ferrier, 2000, Swets, 
1988). In addition to being threshold-independent, the AUC is the only 
indicator of model performance largely independent of sampling 
prevalence (McPherson et al., 2004), making it the only useful indicator 
for SDMs that are trained on small presence-only data sets. 

To compute omission and commission rates, independent evaluation data 
are required. However, these data are typically not available and to obtain 
them through collecting in the field is very time-consuming and costly. To 
overcome this problem, the available data can be partitioned into a 
training and test dataset, although at the cost of reducing the number of 
records used for model training.  

The use of AUC as indicator of model performance for models trained on 
presence-only data has been criticized (Jiménez-Valverde, 2012, Lobo et 
al., 2008, Raes & ter Steege, 2007). The problem is that, when using 
presence-only data, pseudo-absences are sampled from the study area. 
As the true distribution of the species is unknown, some pseudo-absences 
will be sampled from localities where the species actually is present. This 
results in lower values of the AUC. When pseudo-absences are sampled 
randomly, the maximum possible value of the AUC is 1 – a/2, where a 
represents the fraction of localities where the species is present (Phillips 
et al., 2006). Models for widespread species therefore will have a lower 
maximum achievable AUC than narrow-ranged species. In addition, the 
impact of bias in species records is usually ignored and rarely tested (but 
see Smith, 2013). When sampling of test sites is biased towards areas 
with higher prediction values, more test presence sites have a higher 
prediction than random absence sites, resulting in the maximum value of 
the AUC > 1 – a/2. On the other hand, if test sites have lower prediction 
values, the maximum achievable AUC is lower than 1 – a/2 (Smith, 2013). 
As the species’ distribution is typically unknown, it’s unclear if a higher 
AUC value is caused by an increased actual model performance or by a 
bias in sampling. In short, this makes the AUC an inappropriate indicator 
if used on presence-only data in a direct way. To overcome this problem, 
a null-model test has been developed to test if the SDM deviates 
significantly from random chance (Raes & ter Steege, 2007). In this null-
model test, an SDM performs significantly better than chance (p < 0.05) 
if its AUC value ranks > 95 when grouped with the 99 AUC values derived 
from the null models. The bias in species occurrence data discussed above 
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can be mitigated by using a bias-corrected null-model, where null-model 
records are drawn from a pool of target-group presence localities. 

Virtual ecologist approach 
To overcome the problem of not knowing the true distribution of species 
hampering quantitative assessments of different aspects of SDMs, 
simulated species can be used. The use of such simulations has been 
advocated as it offers opportunities to systematically assess the effect of 
individual aspects in a complex world (Saupe et al., 2012), a methodology 
termed ‘virtual ecologist approach (Zurell et al., 2010). Recently, software 
to generate simulated species distributions have become available (Duan 
et al., 2015, Leroy et al., 2016), although both not offering the wide 
variety of species definitions available in the method presented in Chapter 
2 (van Proosdij et al., 2016b). By simulating a species, its characteristics 
are fully controlled and its spatial distribution is known by definition. This 
enables an assessment of the role and importance of crucial aspects of 
species distribution modelling including data sampling strategy, model 
selection, model evaluation as well as biases and specific ecological 
characteristics of species (Austin et al., 2006, Hirzel et al., 2001, Meynard 
& Kaplan, 2012, Meynard & Kaplan, 2013). 

Outline of this thesis 
Back in 2005, ‘What determines species diversity?’ was discussed in 
Science as one of the 25 most important, but still unanswered questions 
in science (Kennedy & Norman, 2005, Pennisi, 2005). This question has 
been puzzling scientists for centuries. In this thesis, I address this 
question in the context of Gabon, Central Africa: “What determines 
botanical diversity in Gabon, Central Africa?”. The choice for Gabon is 
driven by its botanical richness, harbouring one of the most species-rich 
lowland rainforests in Africa, whereas at the same time, African TRFs are 
considerably more species-poor than their Neotropical and Asian 
counterparts. Therefore, understanding patterns of species richness and 
endemism in Gabon will contribute to a better understanding of the factors 
that determine species richness. I approach this question by using species 
distribution models. In particular, I investigate the effects on global 
climate change on the future of Gabonese plant species richness. In the 
process of doing so, I encountered two methodological and one biological 
question that are addressed first. 

In Chapter 2 I use simulated species to identify the minimum number of 
species occurrence records that is required to generate accurate SDMs 
(van Proosdij et al., 2016b). I show that this lower limit of sample size 
differs for species of different range sizes. The results show that larger 
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sample sizes are required for more widespread species. The method 
developed and presented here can be applied to any species group and 
study area. In addition, the behaviour of the AUC based on presence-only 
is compared with the behaviour of the AUC based on presence-absence 
data. 

In Chapter 3 I assess the accuracy of 11 methods, including a novel one 
presented in this chapter, to estimate the range size or prevalence of a 
species. The species’ range size or prevalence, defined as the fraction of 
raster cells in a study area where the species is (predicted to be) present, 
is an important characteristic of a species and one of the key variables 
used in IUCN Red List assessments. In addition, as is shown in Chapter 2, 
species’ prevalence influences the minimum required sample size for 
species distribution modelling. In Chapter 3, I apply the method to 
simulate species developed in Chapter 2. 

For Chapter 4 I created a large dataset with all available species 
occurrence data of Gabonese vascular plant species, supplemented with 
available data related to these species from other African countries. I use 
stacked SDMs of large numbers of species to compute for the first time 
patterns of plant species richness and of weighted endemism in Gabon. 
The methods developed and presented in Chapters 2 and 3 are used to 
generate the best possible SDMs, meaning to select those SDMs that meet 
the desired accuracy for species of each particular prevalence class. I then 
identify biodiversity hotspots and areas of exceptional levels of endemism. 
Specifically, I quantify the contribution of widespread and of narrow-
ranged species to patterns of species richness and weighted endemism 
and show that these groups of species contribute differently to these 
patterns. The question which subsets of species, narrow-ranged, 
widespread or randomly selected species, best represents patterns of 
species richness and of weighted endemism is addressed here (van 
Proosdij et al., 2016a). 

In Chapter 5 I again use SDMs based on real data, but now project the 
generated models to future climate scenarios for 2085. I infer future 
patterns of predicted species richness and describe the expected changes 
of the species richness patterns in Gabon in terms of species gain, loss 
and turnover. Second, I quantify the additional effect of dispersal 
limitations. Finally, I identify for each climate anomaly its unique 
explanatory power to species gain, loss and turnover. 

In the synthesis in Chapter 6 I bring together the results of the previous 
chapters and place these in a wider scientific and societal perspective. 
Future lines of research are discussed, specifically those that build on the 
here applied virtual ecologist approach. 
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Abstract 
Species Distribution Models (SDMs) are widely used to predict the 
occurrence of species. Because SDMs generally use presence-only data, 
validation of the predicted distribution and assessing model accuracy is 
challenging. Model performance depends on both sample size and species’ 
prevalence, being the fraction of the study area occupied by the species. 
Here, we present a novel method using simulated species to identify the 
minimum number of records required to generate accurate SDMs for taxa 
of different pre-defined prevalence classes. We quantified model 
performance as a function of sample size and prevalence and found model 
performance to increase with increasing sample size under constant 
prevalence, and to decrease with increasing prevalence under constant 
sample size. The Area Under the Curve (AUC) is commonly used as a 
measure of model performance. However, when applied to presence-only 
data it is prevalence-dependent and hence not an accurate performance 
index. Testing the AUC of an SDM for significant deviation from random 
performance provides a good alternative. We assessed the minimum 
number of records required to obtain good model performance for species 
of different prevalence classes in a virtual study area and in a real African 
study area. The lower limit depends on the species’ prevalence with 
absolute minimum sample sizes as low as 3 for narrow-ranged and 13 for 
widespread species for our virtual study area which represents an ideal, 
balanced, orthogonal world. The lower limit of 3, however, is flawed by 
statistical artefacts related to modelling species with a prevalence below 
0.1. In our African study area lower limits are higher, ranging from 14 for 
narrow-ranged to 25 for widespread species. We advocate identifying the 
minimum sample size for any species distribution modelling by applying 
the novel method presented here, which is applicable to any taxonomic 
clade or group, study area or climate scenario. 

Key words 
Simulated species, prevalence, AUC, minimum number of records, model 
performance, null model, Species Distribution Model 
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Introduction  
Despite globally increasing investments in biodiversity research, our 
knowledge of the biodiversity on our planet is still limited, especially for 
data-sparse areas like the tropics (Costello et al., 2013, Whittaker et al., 
2005). We can only guess at the total number of extant species, let alone 
that we know their spatial distribution (Mora et al., 2011). Rare species, 
those with either a small range or a low abundance (Rabinowitz, 1981), 
represent the vast majority of species (Longino et al., 2002, ter Steege 
et al., 2013) and are consequently represented by few samples in natural 
history collections, our primary source of distributional data. Typically, 
these collections have a long-tailed relative abundance distribution as 
illustrated by ter Steege et al. (2011) for the Guianas. Species distribution 
models (SDMs) have been developed to overcome this lack of information 
(Araújo & Peterson, 2012, Guisan & Zimmermann, 2000) as they are able 
to predict the probability of occurrence of species for non-sampled areas 
too. SDMs relate recorded species presences to abiotic factors that are 
thought to determine the species’ distribution (Araújo & Peterson, 2012). 
SDMs are thereby built on the assumption that the sample data cover the 
species’ full ecological range (Raes, 2012, Sánchez-Fernández et al., 
2011). 

The effect of sample size on model accuracy is an aspect that is often 
neglected (Mateo et al., 2010, Wisz et al., 2008). However, ignoring this 
effect results in increased levels of error in distribution models for species 
represented by (too) few records, which are mostly rare species. In 
addition to sample size, the species’ prevalence has a strong impact on 
model performance; species’ prevalence is defined as the fraction of the 
study area occupied by a species (McPherson et al., 2004). Model 
performance for ecologically and geographically narrow-ranged species is 
significantly better compared to widespread species found in a wider 
range of habitats (Hernandez et al., 2006, Lobo & Tognelli, 2011, Mateo 
et al., 2010, Tessarolo et al., 2014). Identifying the lower limit of the 
number of records that is required to develop accurate SDMs in relation 
to the species’ prevalence is therefore highly topical. Despite the large 
number of studies using SDMs and the results from recent studies on the 
negative effects of small sample sizes on SDM performance (Loiselle et 
al., 2008, Mateo et al., 2010, Tessarolo et al., 2014, Wisz et al., 2008), 
few studies actually address the minimum number of unique records 
required to generate an accurate SDM. Model performance is known to 
rapidly decrease for sample sizes smaller than 20 (Stockwell & Peterson, 
2002) or 15 (Papeş & Gaubert, 2007), and is dramatically poor for 
samples sizes smaller than 5 records (Pearson et al., 2007). Contrary to 
this, high model accuracy was observed using several modelling 
techniques for models based on samples as small as 5, 10 and 25 
compared to models based on 100 samples (Hernandez et al., 2006). 
Given that the true distribution of a species is unknown, model evaluation 
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in these studies is based on in-sample test data and not on independent 
test data. 

Standard evaluation parameters are based on a confusion matrix 
measuring both sensitivity (correctly predicted presences) and specificity 
(correctly predicted absences) (Fielding & Bell, 1997). Consequently, 
these metrics require absence data, which are typically not available when 
presence-only data from herbaria or zoological collections are used. To 
remedy the lack of absence data, random background data or pseudo-
absences are used instead (Phillips et al., 2009). Commonly, the number 
of background points is high compared to the number of presences, 
resulting in a low sampling prevalence; where sampling prevalence is 
defined as the number of presences relative to the entire sample. From 
the suite of model accuracy measures, the Area Under the Curve (AUC) 
of the Receiver Operator Characteristic (ROC) is the only one shown to be 
largely independent of sampling prevalence when applied to presence-
absence data (McPherson et al., 2004). This renders the AUC the only 
useful indicator of model accuracy applicable to SDMs based on low-
prevalence data, typical for presence-only data samples (Fielding & Bell, 
1997, Metz, 1978). The AUC value translates to the chance that a 
randomly chosen presence has a higher predicted probability of 
occurrence than a randomly chosen absence. However, when applied to 
presence-only data, the use of AUC values is strongly criticized for the 
above mentioned imbalance between presences and absences, where 
including more absences that are environmentally more distant from the 
species’ presences increases the fraction of correctly predicted absences 
(specificity), resulting in higher AUC values (Jiménez-Valverde, 2012, 
Lobo et al., 2008). In addition, when used on unbiased presence-only 
data, the maximum achievable value of the AUC is not 1, but 1 - a/2, 
where a represents the fraction of the area covered by the species’ true 
distribution, which is typically not known (Jiménez-Valverde, 2012, 
Phillips et al., 2006, Raes & ter Steege, 2007, Smith, 2013). Hence, when 
applied to presence-only data, the maximum AUC value is species’ 
prevalence sensitive after all, and the commonly applied AUC value of 0.7 
indicative for an SDM with acceptable accuracy is flawed (Raes & ter 
Steege, 2007). To overcome this problem, Raes and ter Steege (2007) 
developed a null-model test to assess whether the AUC value of an SDM 
deviates significantly from random expectation. However, a null-model 
test neither assesses how accurate the species’ real distribution is 
modelled, nor how many records are required to obtain high model 
accuracy. Here, we introduce the use of simulated species with defined 
occurrence probability to rigorously assess how many records are required 
to develop accurate SDMs. 

In a virtual environment using simulated species, the species’ response 
to environmental variables is fully controlled and thereby its reciprocal 
spatial distribution is defined and known (Austin et al., 2006, Duan et al., 
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2015, Hirzel et al., 2001, Zurell et al., 2010). The use of simulated species 
has been advocated to systematically evaluate how specific aspects of 
data, sampling strategy, model building and model evaluation affect SDMs 
(Miller, 2014, Saupe et al., 2012). Studies using simulated species offer 
unique opportunities to assess SDM accuracy for different sample sizes 
and species’ prevalence classes (Jiménez-Valverde et al., 2009, Meynard 
& Quinn, 2007). AUC values can be calculated on defined presence and 
absence data derived from a probability of occurrence distribution and 
compared with AUC values of SDMs based on presence-only and 
background data. In addition, the defined probability of occurrence 
distribution can be compared with the predicted probability of occurrence 
distribution using Schoener’s D and Hellinger distance I metrics 
(Schoener, 1970, Warren et al., 2008), which are widely used to measure 
niche overlap (Rödder & Engler, 2011). Once tested in a fully controlled 
virtual environment, the same method can be applied to a real 
environment. As a pilot we selected tropical Africa as the real 
environment, focusing on the country of Gabon, as we prepare a botanical 
diversity assessment using SDMs for this country. 

Specifically, we assess the effects of sample size and species’ prevalence 
on SDM accuracy using simulated species in a virtual as well as an African 
study area. We present a novel method to rigorously identify the minimum 
number of records relative to the species’ prevalence that is required to 
generate SDMs with high model accuracy. 

Material & methods 
We used the following procedures to define simulated species for different 
prevalence classes in a virtual as well as an African study area. To increase 
readability, ‘simulated species’ are referred to as ‘species’, unless stated 
otherwise. All analyses were performed in R (R Core Team, 2016) using 
functions described below and provided in six separate R scripts 
(Supplementary material Appendices 4-9) A brief manual explaining the 
application of the method presented here is provided (Supplementary 
material Appendix 3). 

Virtual study area and simulated species 

The virtual study area is defined as a square of 100 by 100 raster cells in 
which two orthogonal gradients of equal length shaped the ecological 
landscape: the first linearly increasing from west to east, the second 
linearly increasing from north to south with the mean value for both 
located in the center of the study area (0, 0) (Fig. 1a & b). We defined 
species’ prevalence as the fraction of raster cells where the species is 
present and used six prevalence classes: 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. 
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Recent studies on trees (Boucher-Lalonde et al., 2012) and on birds and 
mammals (Boucher-Lalonde et al. 2014) using temperature and 
precipitation, showed that in general a species’ niche can be described as 
a Gaussian function to these environmental variables. Based on these 
findings, we used a bivariate normal function as did others for the same 
reasons (Broennimann et al., 2012, Duan et al., 2015, Varela et al., 
2014). We defined our simulated species by computing their habitat 
suitability or probability of occurrence as a bivariate normal response to 
the two orthogonal gradients using the dmvnorm function of the R-library 
mvtnorm (Gentz et al., 2014). We assumed that the virtual species’ 
distribution is shaped by these two orthogonal factors only and that niche 
filling is complete. We defined the different prevalence classes by 
increasing the standard deviation (SD) of the bivariate normal response 
(Fig. 1c). This procedure resulted in a defined habitat suitability score for 
each raster cell for each species. In our virtual study area, the optimum 
of the ecological niche of each species was set at the center (0, 0). We 
defined a species to be present in raster cells whose environmental 
bivariate variables are within the central region of the bivariate normal 
density that has probability 68%. Here, this region is represented by a 
circle as the two axes represent fully orthogonal, normalized variables 
with the same variance. Hence, the 68% circle cuts the axes at the points 
(optimum – 1 SD, 0), (0, optimum + 1 SD), (optimum + 1 SD, 0), and 
(0, optimum – 1 SD) (Fig. 1d). For each prevalence class, a small initial 
SD was iteratively increased until the desired prevalence value was 
approximated by less than 1% difference (for details see Supplementary 
material Appendix 5). 

 

 

 

 

 

Figure 1 (next page). Methodological steps illustrated by 
examples of simulated species with prevalence 0.2 in the virtual (a-e) 
and in the real African study area (f-j): 2 orthogonal variables shaping the 
study area (a & b); defined habitat suitability (c); defined presence (green 
areas) and absence (white areas) of simulated species and sampled 
locations (blue dots, sample size 8) (d); predicted habitat suitability and 
sampled locations (e); 2 orthogonal variables (PCA1 & PCA2) shaping the 
study area (f & g); defined habitat suitability (h); defined presence (green 
areas) and absence (white areas) of simulated species and sampled 
locations (blue dots, sample size 8) (i); predicted habitat suitability and 
sampled locations (j). 
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African study area and simulated species 

Our real world study area encompassed most of tropical Africa ranging 
from 15°N to 19°S and from 18°W to 43°E. The African study area 
covered 179,994 raster cells with environmental data at 5 arc-minutes 
spatial resolution, excluding oceans and other large water bodies. Similar 
to our virtual study area following Broennimannn & al. (2012), we used 
two orthogonal gradients, that were constructed by means of a principal 
components analysis (PCA) on fifteen selected environmental variables. 
These included bioclimatic variables (worldclim.org) (Hijmans et al., 
2005), soil variables (Harmonized World Soil Database) 
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), and 90 m resolution elevation 
data (srtm.csi.cgiar.org) (Supplementary material Appendix 1). From 39 
original variables we selected fifteen variables that had a Spearman’s 
|rho| < 0.7 (Dormann et al., 2013) (for details see Supplementary 
material Appendix 4). We used the first two standardized PCA axes that 
together explained 43% of the variance in multivariate environmental 
parameter space (Figs. 1f & g). In our African study area, the niche 
optimum was different for each simulated species, reflecting that each 
species has a unique ecological niche (Aguirre-Gutiérrez et al., 2014). For 
each species, the species’ optimum was defined by randomly selecting 
one raster cell from the area delineating Gabon extended by a 5 degree 
buffer zone. The values of the two PCA-based predictors at this randomly 
selected location were used as the means of the species’ bivariate normal 
response curve, thus defining the species’ optimum (Fig. 1h, for details 
see Supplementary material Appendices 7). Again, we defined a species 
to be present in raster cells whose environmental bivariate variables are 
within the central region of the bivariate normal density that has 
probability 68% (Fig. 1i), following the same procedure as in the virtual 
study area. Species’ prevalence classes in the African study area were the 
same as in the virtual study area. 

Sampling and replications 

For both study areas and for each prevalence class we defined twenty-
four sample sizes: 3-20, 25, 30, 35, 40, 45 and 50. For each study area, 
species and sample size, presences were drawn from the defined presence 
cells. Sampling probability was equal to the defined habitat suitability 
score, reflecting higher abundance and therefore higher detectability of 
species in areas with optimal environmental values (Lomolino et al., 
2010). In our virtual study area, where the optimum of every species was 
(0, 0), we created six species (one for each of 6 prevalence classes). 
These species were sampled, with each sample size replicated 100 times 
(6 prevalence classes, 24 sample sizes, 100 replications each), summing 
to a total of 14,400 species samples from the virtual study area (Fig. 1d). 
For the African study area, where each species has a unique optimum, for 
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each of the prevalence classes the species definitions were replicated 100 
times, resulting in 600 species (6 prevalence classes, 100 replications 
each). Subsequently, we sampled each species for the 24 different sample 
sizes (Fig. 1i), also resulting in 14,400 species samples from the African 
study area. 

Species Distribution Modelling 

All SDMs were developed with MaxEnt (Phillips et al., 2006). MaxEnt 
estimates the species potential geographic distribution by finding the 
distribution of maximum entropy (closest to uniform) subject to the 
constraint that the expected value of each feature under this estimated 
distribution matches its empirical average. MaxEnt was developed to use 
presence-only data and has shown to outperform other algorithms, 
including when applied to small data sets (Aguirre-Gutiérrez et al., 2013, 
Elith et al., 2006, Hernandez et al., 2006). Default MaxEnt settings were 
adjusted to include linear and quadratic features for all sample sizes, while 
hinge, product and threshold features were excluded to prevent over-
parameterization of the models (Merow et al., 2013). Restricting MaxEnt 
to only use linear features for sample sizes smaller than 10, disables 
MaxEnt to fit a model on data that demonstrate other responses such as 
the bivariate normal response of our simulated species. This illustrates 
the need to adjust default MaxEnt settings based on biologically motivated 
modelling decisions (Merow et al., 2013). All above mentioned samples 
were subsequently modelled resulting in 28,800 SDMs (Figs. 1e & j, for 
details see Supplementary material Appendices 6 & 7). 

Testing model accuracy 

For each SDM, we calculated the real AUC value (real AUC) by cross-
validating the predicted MaxEnt habitat suitability scores with our defined 
presences and absences using the evaluate function of the R-library dismo 
(Hijmans et al., 2013). Due to computational limitations of R, the real 
AUC for the African study area was calculated using a 10% random 
subsample of the presences and absences. Second, for each SDM we 
obtained the internal AUC value calculated by MaxEnt (MaxEnt AUC), 
which is based on the predicted habitat suitability scores of the sampled 
presences and background sites. Third, for each sample size, null models 
were generated by randomly selecting the same number of background 
sites as sample size records from the entire study area, replicated 99 
times. These 99 sets of random points were treated as presences and 
modelled similarly as the species, resulting in 99 AUC values of MaxEnt 
models based on randomly drawn points for each sample size. The 
species’ SDM is regarded significantly better than random expectation if 
its AUC value exceeds rank number 95, when ranked with the 99 null 
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model AUC values, corresponding to a one-sided significance level of 0.05 
(Raes & ter Steege, 2007). Both the real AUC and MaxEnt AUC values of 
each SDM were tested against their corresponding 95th AUC value of the 
null-distribution (Supplementary material Appendix 6 & 7). Fourth, we 
calculated the Spearman rank correlation rho values between the defined 
and predicted habitat suitability based on a cell-by-cell comparison. 
Finally, for reasons of comparison, we included an analysis of Schoener’s 
D and Hellinger distance I (Schoener, 1970, Warren et al., 2008). Here, 
high overlap indicates that SDMs produce an accurate prediction of our 
defined species distribution. Both D and I were calculated with the 
niche.overlap function of the R-library phyloclim (Heibl & Calenge, 2013) 
applied to the defined and predicted habitat suitability for each sample. 

Identifying the required minimum number of records 

We used the upper 95% range values from the 100 replications for each 
combination of prevalence class and sample size of the real AUC, MaxEnt 
AUC, real AUC rank, MaxEnt AUC rank, Spearman rank correlation, 
Schoener’s D and Hellinger distance I values. This effectively excludes the 
5% worst performing SDMs. To mask out stochastic effects, the lower and 
upper limits of this upper 95% range values were smoothed by applying 
the loess function of the R-library stats (R Core Team, 2016) with default 
settings. 

To identify for each prevalence class the minimum number of records that 
is required to accurately model a species’ distribution, we evaluated model 
performance using three decision rules applied to the smoothed lower 
range limit values for both study areas separately. First, for each 
prevalence class, we identified the sample size for which the lower range 
limit of the SDM’s real AUC values exceeds 0.9. An AUC value of 0.9 is 
commonly used as indicative for a ‘very good model’ performance (Manel 
et al., 2001, Pearce & Ferrier, 2000), although the original author did not 
explicitly state so (Swets, 1988). Second, for each prevalence class, we 
identified the sample size for which the lower range limit of the SDM’s real 
AUC rank values exceeds 95, corresponding to a performance significantly 
better than random expectation based on a significance level of p < 0.05. 
Finally, for each prevalence class, we identified the sample size for which 
the lower range limit of the SDM’s Spearman rank correlation values 
exceeds 0.9, indicating strong correlation between defined and modelled 
species distributions. The behavior of the MaxEnt AUC, Schoener’s D, and 
Hellinger distance I values as a function of sample size and species’ 
prevalence are discussed in the context of identifying the required 
minimum sample sizes. 
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Results 
For both the virtual and the real African study area and for each 
prevalence class, model performance defined as the lower range limit of 
the upper 95% range values of the real AUC, MaxEnt AUC, real AUC rank, 
MaxEnt AUC rank, Spearman rank correlation, Schoener’s D, and Hellinger 
distance I increased with increasing sample sizes (Figs. 2-5). As expected, 
the mean and maximum MaxEnt AUC values of our simulated species 
decreased with increasing sample size, which is in line with the 
observations of others using real species (Merckx et al., 2011, Raes & ter 
Steege, 2007). 

 

 

Figure 2. Model performance as a function of species’ prevalence 
class and sample size in a virtual and in an African study area 
based on AUC values with separate panels for each prevalence class. 
Ribbons show the upper one-sided 95% range of the observed values, 
excluding the 5% worst performing models; darker lines show the lower 
range limit; dashed lines for the virtual study area; solid lines for the 
African study area. Red, horizontal lines show the AUC values of 1 – a/2 
(where a is the species’ prevalence). 

 

Our results show a strong effect of species’ prevalence on model 
performance: SDMs for species with a small prevalence perform better 
than SDMs for species with a large prevalence when using the same 



Chapter 2 

34 

number of records to train the model (Figs. 2-4), which is in line with 
results reported by others (Lobo & Tognelli, 2011, Manel et al., 2001, 
Mateo et al., 2010, McPherson & Jetz, 2007). In contrast, values for 
Schoener’s D and Hellinger distance I increase with increasing prevalence 
using the same number of records (Fig. 5). 

 

 

Figure 3. Model performance as a function of species’ prevalence 
class and sample size in a virtual and in an African study area 
based on rank numbers of AUC values with separate panels for each 
prevalence class. Ribbons show the upper one-sided 95% range of the 
observed values, excluding the 5% worst performing models; darker lines 
show the lower range limit; dashed lines for the virtual study area; solid 
lines for the African study area; red, horizontal lines show the critical AUC 
rank value of 95. 

 

Figure 2 shows that the MaxEnt AUC values approach an asymptote with 
increasing sample sizes for each prevalence class. The value to which this 
asymptote converges strongly decreases with prevalence (Fig. 2). This 
difference in maximum possible MaxEnt AUC value underlines the 
importance of being cautious when using the AUC value based on 
presence-only data (Jiménez-Valverde, 2012, Lobo et al., 2008, Phillips 
et al., 2006, Raes & ter Steege, 2007). In our results the MaxEnt AUC 
values slightly exceed the expected value of 1 - a/2, where a represents 
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the species’ prevalence (Fig. 2: red horizontal line), which is caused by 
our sampling strategy favoring locations with a higher given habitat 
suitability (Jiménez-Valverde, 2012, Smith, 2013). 

The large spread in AUC values at small sample sizes (Figs. 2 & 3) 
illustrates the low accuracy of SDMs based on small sample sizes. The 
spread in AUC values, rank AUC values and Spearman rank correlation 
values decrease with decreasing prevalence and with increasing sample 
sizes (Figs. 2-4). The spread in observed values was largest at small 
sample sizes and for widespread species, which illustrates the low 
accuracy of SDMs based on sample sizes smaller than the required 
minimum number of records to obtain an accurate SDM. 

 

 

Figure 4. Model performance as a function of species’ prevalence 
class and sample size in a virtual and in an African study area 
based on Spearman rank correlation values between defined and 
predicted habitat suitability with separate panels for each prevalence 
class. Ribbons show the upper one-sided 95% range of the observed 
values, excluding the 5% worst performing models; darker lines show the 
lower range limit; dashed lines for the virtual study area; solid lines for 
the African study area. Red, horizontal lines show the Spearman rank 
correlation value of 0.9. 
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Figure 5. Model performance as a function of species’ prevalence 
class and sample size in a virtual and in an African study area 
based on Schoener’s D and Hellinger distance I values with separate 
panels for each prevalence class. Ribbons show the upper one-sided 95% 
range of the observed values, excluding the 5% worst performing models; 
darker lines show the lower range limit; dashed lines for the virtual study 
area; solid lines for the African study area. 

 

The required minimum number of records or lower limits of sample size 
for each prevalence class were identified for both the virtual and the 
African study area based on our three pre-defined decision rules: the 
lower limit of the upper 95% range values of 1) real AUC > 0.9; 2) real 
AUC ranks > 95; 3) Spearman rank correlation > 0.9 (Table 1). Note that 
although we do show results for prevalence class 0.05 (Table 1, Figs 2-
5), we discuss minimum sample sizes for prevalence classes 0.1-0.5 only, 
as prevalences below 0.1 should be avoided (see Discussion). For the 
most ideal situation, that of our virtual study area with balanced, 
orthogonal gradients, we observed that for criterion 1 (real AUC > 0.9, 
Fig. 2), the minimum sample size ranged from 3 for narrow-ranged 
species (prevalence class 0.1) to 13 for widespread species (prevalence 
class 0.5). However, when using criterion 2 (real AUC rank > 95, Fig. 3), 
the required minimum numbers of records were substantially lower for 
species of larger prevalence classes: 3 for species in prevalence class 0.1 
to 8 for species in prevalence class 0.5. In contrast, based on criterion 3 
(Spearman > 0.9, Fig. 4), the required minimum numbers of records were 
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considerably higher and ranged from 10 for species of prevalence class 
0.1 to 30 for species in prevalence class 0.5. For the African study area, 
the minimum sample size based on criterion 1 (real AUC > 0.9) ranged 
from 14 for species with a prevalence of 0.1 to 25 for species with a 
prevalence of 0.5. When using criterion 2 (real AUC rank > 95), minimum 
sample sizes ranged from 6 for species in prevalence class 0.1 to 7 for 
species in prevalence class 0.5 (the observed sample size of 8 for 
prevalence class 0.3 might be caused by a stochastic effect). Here again, 
based on criterion 3 (Spearman > 0.9), minimum sample sizes were 
considerably higher and ranged from 20 for species with prevalence 0.1 
to 45 for species in prevalence class 0.5. 

 

Table 1. The minimum number of records required for building 
accurate Species Distribution Models for a virtual study area (a) and 
an African study area (b) based on critical minimal values of model 
performance using the following indicators of model performance: real 
AUC, real AUC rank, MaxEnt AUC rank, and Spearman rank correlation. 
Minimum sample sizes are based on the lower limit of the upper one-sided 
95% range of the model performance values. 

a: virtual study area 
Species 

prevalence 
Real AUC 

> 0.90 
Real AUC 
rank > 95 

MaxEnt AUC 
rank > 95 

Spearman 
rho > 0.90 

0.05 3 3 3 10 
0.10 3 3 3 10 
0.20 4 5 5 11 
0.30 5 6 7 14 
0.40 8 7 9 17 
0.50 13 8 12 30 

b: African study area 
Species 

prevalence 
Real AUC 

> 0.90 
Real AUC 
rank > 95 

MaxEnt AUC 
rank > 95 

Spearman 
rho > 0.90 

0.05 11 6 7 17 
0.10 14 6 7 20 
0.20 25 6 9 25 
0.30 25 8 12 30 
0.40 25 7 12 35 
0.50 25 7 15 45 
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Discussion 

Novel method to identify the required minimum number of 
presence records 

The novel method presented here enables users to rigorously identify the 
required minimum number of records to generate accurate SDMs for 
species of different species’ prevalence classes under ideal conditions. It 
does so by using simulated species for which presence and absence is 
defined and quantifies the effect of sample size and species’ prevalence 
on model performance. As such, this study supplies handles for anyone 
using SDMs to assess whether their data allows generating accurate 
SDMs. Our results (Table 1) corroborate two main aspects addressed by 
others before. First, model performance strongly depends on sample size 
and a small increase in the smallest sample sizes results in a large 
increase of model performance (Loiselle et al., 2008, Papeş & Gaubert, 
2007, Pearson et al., 2007, Stockwell & Peterson, 2002, Wisz et al., 
2008). Second, model performance decreases with increasing species’ 
prevalence when using the same number of records to train the model 
(Hernandez et al., 2006, Lobo & Tognelli, 2011, Mateo et al., 2010, 
Stockwell & Peterson, 2002, Tessarolo et al., 2014). 

Minimum sample sizes required for model calibration 

The minimum number of records required to generate accurate SDMs 
differs between our virtual and real African study areas (Table 1) and can 
be different for other study areas. Our virtual study area represents an 
ideal situation with balanced, orthogonal gradients, and the required 
minimum sample size for each species’ prevalence class should thus be 
regarded as a theoretical absolute lower limit. In our African study area 
the lower limits are considerably higher (Figs. 2-4; Table 1), as a result 
of the non-uniform frequency distribution of environments in this study 
area. For both study areas, the minimum required sample size is higher 
for widespread than for narrow-ranged species, as in general the 
ecological niche of the latter is comparatively better covered by the 
samples. Therefore, studies applying a generalized a priori defined 
minimum number of records (Algar et al., 2009, Raes et al., 2009, Raes 
et al., 2013, Schmidt et al., 2005) will lead to erroneous exclusion of 
models for narrow-ranged species when setting the limit too high and/or 
erroneous acceptance of those for widespread species for which too few 
records are used. Where scientists are usually concerned about data-
deficiency for rare, narrow-ranged species, data quantity for widespread 
species appears to be crucial too. Therefore, estimating the prevalence of 
a modelled species is essential to determine the required minimum 
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number of records. Although typically unknown, the species’ prevalence 
can be estimated e.g. by calculating the Extent Of Occurrence (EOO) or 
Area Of Occupancy (AOO) (IUCN, 2001) or by calculating the predicted 
presence fraction based on an exploratory SDM to which a threshold is 
applied (Syfert et al., 2014). 

The differences in required minimum number of records based on the 
indicators of model performance applied here are the result of the 
different nature of these indicators. At the top end of the scale of model 
performance are thresholds such as the real AUC value of 0.9 and a 
Spearman rank correlation value of 0.9, which both classify a model as 
‘good’. Note that a Spearman correlation test compares absolute ranks, 
whereas the AUC only compares the relative ranks between presence and 
absence. Testing an SDM against null models (rank AUC) informs us if the 
SDM is ‘significantly better than random expectation’, which is not the 
same as ‘good’. Obviously, the desired model accuracy strongly depends 
on the application (Guisan & Zimmermann, 2000, Jiménez-Valverde et 
al., 2011, Liu et al., 2011, Peterson, 2006). One may choose to accept a 
reasonably accurate model as an indication for where a species occurs, 
but rely exclusively on highly accurate models when more precise 
predictions are needed. 

Factors that increase the minimum required sample size 

We stress that the minimum numbers of records listed in Table 1 increases 
when working with real species and real spatial data related to factors 
addressed here. First, real species possibly correlate to a larger and more 
complex set of environmental predictors, whose signal is not fully 
represented by the two orthogonal PCA-based variables that were used 
as a proxy for environmental conditions here. To test the effect of the 
number of included variables on the required minimum number of 
records, we repeated our simulations using the first three and first four 
PCA axes, which together explained resp. 55% and 65% of the variance 
instead of the 43% explained by the first two PCA axes only. These 
analyses gave similar threshold values for the minimum required number 
of records, indicating that the thresholds will not substantially change by 
including more environmental variables (Supplementary material 
Appendix 2). Related to this and deserving future research is the question 
on the effect of including a variable important for the occurrence of a 
species that is not part of the model variables, e.g. a variable not included 
in global climate and soil data sets. In addition, multicollinearity of 
environmental predictors will have a negative effect on model accuracy 
(Dormann et al., 2013), which was not an issue in our study using 
orthogonal variables. Third, we defined all our simulated species to be in 
equilibrium with climate (Araújo et al., 2005), and therefore to 
demonstrate niche stability and complete niche-filling. The effects of time 
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scale and biotic interactions on niche stability, as well as the effects of 
dispersal limitations on niche-filling have serious impact on the 
correctness of an SDM considered to reflect a species’ distribution 
(Nogués-Bravo, 2009, Saupe et al., 2012). Fourth, natural history 
specimens are commonly subject to a collecting bias (Reddy & Davalos, 
2003, ter Steege et al., 2011), often representing a geographical bias 
(Kadmon et al., 2004, Loiselle et al., 2008). When a collecting bias 
translates into an environmental bias – an unbalanced or partial coverage 
of the ecological niche – models show falsely inflated AUC values, but are 
actually performing worse compared to models based on unbiased data 
sets (Bean et al., 2012, Merckx et al., 2011, Raes, 2012). Consequently, 
the minimum required number of records increases (Feeley & Silman, 
2011). Finally, other factors with a negative impact on model performance 
based on real data include misidentifications, incorrect georeferencing 
(Graham et al., 2008, Moudry & Simova, 2012), and uncertainty in 
environmental variables and accuracy of climate data (Hijmans et al., 
2005). Although these aspects warrant future research, we feel safe to 
ignore them here, when specifically addressing the questions of our 
current study working with simulated species under optimal orthogonal 
bivariate environmental conditions. 

AUC values based on presence-only data 

Our results show that MaxEnt AUC values based on sampled presence vs. 
background data, differ from real AUC values based on true presence vs. 
absence data (Fig. 2). This supports previous critics on the use of AUC as 
indicator of model performance without further analysis (Jiménez-
Valverde, 2012, Lobo et al., 2008). Applying a generalized AUC threshold 
value – commonly set at 0.7 – results in the erroneous acceptance of 
SDMs based on small sample sizes as these have inflated MaxEnt AUC 
values and dismissal of good SDMs for widespread species that 
theoretically can never reach an AUC of 0.7. The aspect of the unknown 
maximum value of the MaxEnt AUC due to its dependence on the unknown 
real species’ prevalence disqualifies the MaxEnt AUC as a reliable indicator 
of model accuracy if treated without further evaluation such as i.e. a null 
model test (Raes and ter Steege 2007). The exceptionally high values of 
both real AUC and MaxEnt AUC for models based on small sample sizes of 
narrow-ranged species (Fig. 2) should be treated with caution. Species 
with a prevalence of 0.05 show a strong imbalance between true 
presences and absences: 5% presences vs. 95% absences. The chance 
that a random presence has a higher probability of occurrence than a 
random absence for such species is high, resulting in high AUC values. 
These statistical artefacts inflate AUC values for SDMs of species with a 
prevalence below 0.1 (Lobo & Tognelli, 2011, McPherson & Jetz, 2007, 
McPherson et al., 2004), which is confirmed by our results. It is therefore 
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recommended to choose the study area proportionally to the presence 
area of the assessed species, so that a species’ prevalence between 0.1 
and 0.9 is achieved (McPherson et al., 2004). Note that the species’ 
dispersal capacity should be leading in defining the width of the border 
around the presence localities (Barve et al. 2011). Unfortunately, the true 
distribution and prevalence of a species is usually not known– after all, 
that is what we are trying to assess. In the current study, we assessed 
the reliability of an alternative: to evaluate SDMs using the MaxEnt AUC 
in a comparative way by testing it against a null model. For the virtual 
study area, our results show a strong congruence between the behavior 
of the real AUC and the MaxEnt AUC rank for species of all prevalence 
classes as well as required minimum sample sizes based on them (Figs. 2 
& 3; Table 1). In contrast, for the real African study area, the behavior of 
these indicators of model performance differs and the minimum sample 
sizes required to obtain an accurate SDM based on the lower limit of the 
upper 95% range values of real AUC > 0.9 are on average twice as high 
as those based on the lower range limit of MaxEnt AUC rank values > 95. 
This difference is the result of the different nature of these indicators of 
model performance as addressed above (‘good’ vs. ‘significantly better 
than random expectation’). We conclude that the use of a null model test 
(Raes & ter Steege, 2007) is an appropriate method to evaluate SDMs 
using the MaxEnt AUC value in a comparative way, provided that the 
nature of this indicator is respected: to identify SDMs that perform 
‘significantly better than random expectation’. 

Aspects of modelling narrow-ranged species 

The difficulties with accurate modelling of species with a narrow ecological 
niche are illustrated in our results by the very low Schoener’s D and 
Hellinger distance I values for narrow-ranged species in the African study 
area, indicating that SDMs for narrow-ranged species perform worse than 
those of widespread species when using the same sample size (Fig. 5). In 
contrast, AUC values for narrow-ranged species are high, although a large 
spread in values is visible for smaller sample sizes (Fig. 2). This contrast 
between low D and I values and high AUC values can be explained by the 
large number of absences of which many are correctly predicted as 
absences (high specificity), but small numbers of presences of which only 
few are predicted correctly as presences (low sensitivity). The above-
mentioned statistical artefact for species with a prevalence below 0.1 
should be noted too. Other explanations for the high AUC values and AUC 
rank values of these SDMs could be spatial autocorrelation (Merckx et al., 
2011) and collecting bias (Phillips et al., 2009) in the training samples, 
although the latter only applies to most situations when working with 
datasets of real species. Null models are based on randomly sampled 
records from the entire study area, with less or no spatial autocorrelation 
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and no sampling bias. Consequently, a random null-model test results in 
a too optimistic acceptance of SDMs based on few samples. To counter 
the effect of collecting bias in real datasets, we recommend evaluating 
SDMs by using bias-corrected null-models (Raes & ter Steege, 2007) 
based on target-group background sampling, which has been shown to be 
effective (Phillips et al., 2009). 

Conclusions 

We conclude that applying a lower limit to the sample size used in SDMs 
is essential for generating accurate SDMs. The lower limit strongly 
depends on the species’ prevalence and the specific features of the 
targeted study area. The required minimum numbers of records for 
species of different prevalence classes based on analyses in our virtual 
study area apply only to an ideal, balanced, orthogonal world. These 
numbers strongly increase for an irregular real study area like our African 
study area. MaxEnt AUC values cannot be used for model evaluation as 
such, but testing these against random or bias-corrected null models 
provides a reliable alternative method. Generating and evaluating SDMs 
for narrow-ranged species, those with a prevalence below 0.1, is difficult 
and should be avoided by selecting a study area proportionally to the 
species’ presence area and with respect to the species dispersal capacity. 

The novel method presented here is applicable to any taxonomic clade or 
other group, study area and past, current or future climate scenario. The 
R-scripts with detailed stepwise methodology and a brief manual on how 
to apply these scripts to given data are provided in the Supplementary 
materials. We advocate the use of our method as a routine procedure 
prior (or in retrospect) to any SDM study. This will aid in verifying if 
required levels of data quantity and quality are met and will improve the 
reliability of SDMs as well as the results of all future studies involving 
SDMs. 

Acknowledgements 
We thank the subject editor and two anonymous reviewers for their 
valuable comments on the manuscript. NR was supported by NWO-ALW 
grant 819.01.014. All authors declare to have no conflict of interest. 

Supplementary material 
All supplementary materials (appendices 1-9) can be found in the 
published version of this article online: Appendix ECOG-01509 at 
www.ecography.org/readers/appendix 



 

43 

 

Chapter 3 

 

Prevalence estimators put to the 
test 

 

 

 

André S.J. van Proosdij1,2, Jan J. Wieringa1,2, Niels Raes2, 
Marc S.M. Sosef1,3 

 

 

 

 

 

 

 

 

 

 

1 Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB 
Wageningen, the Netherlands 

2 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands 

3 Botanic Garden Meise, Nieuwelaan 38, 1860 Meise, Belgium



Chapter 3 

44 

Abstract 
1. Macroecological, biogeographical and conservation research depend on 
basic information about the geographic distribution and prevalence of a 
species: the fraction of the study area where the species is present. 
Typically, distributional data of most species is highly fragmented, 
especially for those occurring in the tropics. Therefore, accurate methods 
to estimate a species’ prevalence are highly wanted. 

2. Using simulated species, for which by definition the distribution and 
prevalence are known, we assess the accuracy and consistency of 10 
existing and one novel method to estimate species’ prevalence, which are 
based on different principles. Some methods use spatial data related to 
known occurrences, while others use ecological data linked to occurrences 
to quantify a species’ niche width as a proxy for prevalence. Our novel 
method estimates prevalence as the fraction of raster cells within the 
minimum convex hull of species’ samples, when all cells from the study 
area are plotted in normalized, 2-dimensional, environmental parameter 
space. We assess prevalence estimator’ consistency for different sample 
sizes of simulated species ranging from narrow-ranged to widespread at 
spatial resolutions ranging from 2.5 arc-minute to 0.25 degree. 

3. Our results show that prevalence estimators based on ecological data 
in general outperform those based on spatial data only. Our novel method 
is the most consistent estimator at all spatial resolutions for all but the 
smallest sample sizes, for which it ranks second best. Consistency of all 
prevalence estimators primarily depends on the used sample size. None 
of the estimators is accurate and can therefore be used as a direct 
estimator. However, by running simulations and using consistent 
estimators, accurate and consistent estimations of species’ prevalence 
can be obtained indirectly for which we provide a step-wise procedure. 

4. We recommend reconsidering the current use of the Extent Of 
Occurrence (EOO) and Area Of Occupancy (AOO) as estimators of the 
geographic range and actual occupied area respectively in macroecology, 
biogeography and conservation. Alternatively, we recommend to estimate 
the EOO from the predicted distribution based on a thresholded Species 
Distribution Model and to estimate the AOO by using the novel method 
presented here. 

Key words 
Geographic range, niche width, simulated species, Extent Of Occurrence, 
Area Of Occupancy, convex hull, IUCN Red List, rare, conservation 
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Introduction 
Knowledge on the spatial distribution of species and their prevalence – 
the fraction of the study area where the species is present (McPherson et 
al., 2004) – is crucial for research in many disciplines, including 
macroecology and biogeography (Gaston, 2003, Lomolino et al., 2010). 
Setting priorities in conservation, especially in the light of climate and 
land use change heavily depends on knowledge of species distributions 
(Brooks et al., 2006, Margules & Pressey, 2000). Yet, for many species, 
information on their distribution is scarce and highly fragmented, the so-
called ‘Wallacean shortfall’ (Bini et al., 2006, Lomolino, 2004, Whittaker 
et al., 2005). Species Distribution Models (SDMs), which predict the 
distribution of a species based on a limited number of observations, are 
widely used to overcome this lack of information (Franklin, 2009, Guisan 
& Zimmermann, 2000). In order to generate SDMs with a sufficient level 
of accuracy, the model needs to be trained on a minimum number of 
records. This number is not fixed, but increases with increasing species’ 
prevalence (Pearson et al., 2007, van Proosdij et al., 2016b). Hence, 
having knowledge of the species’ prevalence is essential to develop 
accurate SDMs. As exactly this knowledge is typically missing for most 
species, accurate and consistent estimators of species’ prevalence are of 
great value. Quantitative measures of prevalence are known to be 
sensitive to the applied spatial resolution, resulting in an increased 
prevalence for lower spatial resolutions (Azaele et al., 2012, Hartley & 
Kunin, 2003, Hurlbert & Jetz, 2007). Ideally, estimators of species’ 
prevalence should be accurate over a wide range of spatial resolutions. 

Many different estimators of species’ prevalence have been developed. 
Which estimate of prevalence best matches a species’ true prevalence can 
be tested quantitatively using simulated species, for which niche 
dimensions and prevalence are pre-defined. Simulated species definitions 
like these have been recommended and used as a method to 
systematically assess specific aspects of SDMs (Miller, 2014, van Proosdij 
et al., 2016b, Zurell et al., 2010). In the present study, we use simulated 
species to rigorously assess the accuracy and consistency of different 
prevalence estimators over four spatial resolutions ranging from 2.5 arc-
minute (~5 km) to 0.25 degree (~30 km, hereafter 15 arc-minute). 

Review of prevalence estimators 

We review and subsequently test 10 widely used prevalence estimators 
and present one novel method, ‘Fraction MCP PCA’, to estimate species’ 
prevalence (Table 1). These 11 methods build on different principles and 
are tested using simulated species. Prevalence estimators may use either 
spatial or ecological information derived from known presence localities 
of a species. Some estimators incorporate the distribution of samples over 
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environmental parameters (‘niches’). Few incorporate the density or 
availability of niche space in the study area; the number of raster cells in 
the study area that represents specific niches. Two classic and frequently 
used estimators using spatial information are the Extent Of Occurrence 
(EOO) and the Area Of Occupancy (AOO). EOO is the area limited by the 
geographically outermost known occurrences and as such quantifies the 
geographical range of the known occurrences, whereas AOO quantifies 
the area that is actually occupied by that species based on known 
occurrences and a buffer area around each presence locality (Gaston, 
1991, Gaston & Fuller, 2009, Lomolino et al., 2010). These two estimators 
are implemented in the Geospatial Conservation Assessment Tool 
(GeoCAT; (Bachman et al., 2011) and are the standard metric for IUCN 
Red List assessments (IUCN, 2014). 

1. EOO: The most straightforward and most commonly used 
definition of EOO is the area of the minimum convex polygon (MCP) 
or convex hull that includes all sampled localities without omitting 
obvious unsuitable areas (Gaston, 1991). 

2. AOO 2KM: The AOO is calculated by adding a buffer to the known 
presence localities and then summing the total area (Bachman et 
al., 2011, Edelsbrunner et al., 1983, IUCN, 2001). Although the 
spatial resolution strongly influences the value of the AOO (Hartley 
& Kunin, 2003, Willis et al., 2003), commonly a buffer of 2 km is 
applied, as recommended by the IUCN. 

3. AOO 10PCT: Alternatively, one can add a buffer of 10% of the 
minimum distance between the most distant pair of occurrences 
applying an equal area projection (Bachman et al., 2011, Willis et 
al., 2003). However, this approach is not accepted by the current 
IUCN Red List Criteria (IUCN, 2014). 

Analysing the predicted distribution based on an SDM offers opportunities 
for a retrospective approach to estimate the species’ prevalence. In a case 
study on Red Listing of Neotropical plants, the EOO was inferred using the 
predicted distributions (Syfert et al., 2014). 

4. EOO predicted: The EOO of a predicted distribution is computed by 
applying a convex hull to the predicted presence distribution 
(Syfert et al., 2014). Presence and absence predictions are derived 
from an SDM to which a threshold is applied. 

5. AOO predicted: Using presence/absence maps based on predicted 
distribution, the AOO of a predicted distribution is computed as the 
fraction of raster cells where the species is predicted to be present. 

Alternatively, prevalence can be estimated using the species’ niche width 
(or niche breadth). The niche is a concept defined in many different ways 
and subject of much debate, especially in the field of species distribution 
modelling and/or ecological niche modelling (Araújo & Peterson, 2012, 
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Peterson & Soberón, 2012, Warren, 2012). In general, species with a 
wider ecological niche have a larger prevalence (Kadmon et al., 2003, 
Pulliam, 2000, Slatyer et al., 2013). Several methods to measure species’ 
niche dimensions have been described and criticized (Chejanovski & 
Wiens, 2014, Colwell & Futuyma, 1971, Doledec et al., 2000, Feinsinger 
et al., 1981). We used the following methods as prevalence estimators 
based on niche width. The environmental variables are defined as the first 
two axes of a Principal Component Analysis of climatic, altitude and soil 
variables (Explained in detail under ‘Methods’). The following prevalence 
estimators operate in normalized 2-dimensional environmental parameter 
space defined by the first two PCA axes (hereafter ‘PCA space’). 

6. Fraction PCA1: Feeley & Silman (2011) used a simple method: 
climatic niche width defined as the fraction of an ecological 
gradient covered by the samples. We applied their method to the 
first PCA axis. 

7. Maximum Euclidean distance: A method using multiple gradients 
defining the study area is to measure niche width as the maximum 
Euclidean distance between samples plotted in PCA space (Merckx 
et al., 2011). 

8. 2SD PCA1: The method used by Thuiller et al. (2004) incorporates 
variation in ecological values of the sampled localities by taking 
the fraction of an ecological gradient in the study area covered by 
mean ± 1 standard deviation (SD), which we here apply to the first 
PCA axis. 

9. Inverse kernel height: Broennimann et al. (2012) fitted a standard 
normal density kernel on the samples plotted in normalized, 2-
dimensional, environmental parameter space and used that as a 
proxy for niche width. This method incorporates multiple gradients 
as well as information on the variation in ecological values of the 
sampled localities. The inverse of the height of the kernel serves 
as a proxy for niche width, as a narrower species’ niche results in 
a narrower and higher kernel. We apply this estimator in PCA 
space. 

10. Area MCP PCA: Beck et al. (2013) used a minimum convex polygon 
(MCP) on the samples plotted in PCA space and took the area of 
the MCP as a measure of niche width. 

Novel method 

11. Fraction MCP PCA: In addition to the methods above, we here 
present a novel method. We define niche width as the fraction of 
raster cells from the study area which are located inside the MCP 
encompassing all samples when these are plotted in PCA space. 
This method builds upon the method of Beck et al. (2013) (‘Area 
MCP PCA’), but corrects for the unequal density or availability of  
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niches in the study area; in PCA space, two equally large MCPs can 
represent different numbers of raster cells, hence have different 
values of Fraction MCP PCA. 

Our main research question is to assess which of the above prevalence 
estimators provides the best estimate of species’ true prevalence for 
spatial resolutions ranging between 2.5 and 15 arc-minute. We identify 
the most consistent estimators by comparing the estimated and 
predefined prevalence values of the simulated species. We provide a step-
wise procedure to correct for inaccuracy in the prevalence estimations. 
Finally, we address the importance of prevalence estimators for 
macroecology, biogeography and conservation. 

Material and methods 
All analyses were performed in R (R Core Team, 2016). Scripts used for 
this study are available as Supplementary Material Appendices 15-17 
which provide details on the applied R-functions. To enhance readability, 
‘simulated species’ are referred to as ‘species’, unless stated otherwise. 

Study area and simulated species 

Although universally applicable, we selected tropical Africa as a study area 
ranging from 15°N to 19°S and from 17.5°W to 43°E. Tropical Africa is 
illustrative for many tropical regions as quantity and quality of botanical 
specimens data strongly differ between areas due to (regional) 
undersampling or limited digital accessibility of data (Graham et al., 2004, 
Küper et al., 2006). 

Environmental variables included WORLDCLIM bioclimatic variables 
(Hijmans et al., 2005), soil variables (Harmonized World Soil Database; 
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and SRTM 90 m resolution 
elevation data (srtm.csi.cgiar.org) (Supplementary Material Appendix 1 & 
15). Variables were prepared at four spatial resolutions: 2.5, 5, 10, and 
15 arc-minutes. For each spatial resolution, we extracted two orthogonal 
gradients from the 39 variables by means of a Principal Component 
Analysis, explaining 40% of the total environmental variation (41% for 10 
and 15 arc-minute resolution). These two PCA-based variables shape the 
normalized, 2-dimensional, environmental parameter space (PCA space) 
and were used to define the simulated species. In general, a species’ 
response to environmental variables can be described as a multivariate 
normal function (Boucher-Lalonde et al., 2012), which has been applied 
in several other studies (Broennimann et al., 2012, Duan et al., 2015). 
Here, we defined habitat suitability of the species for each raster cell as a 
bivariate normal response to the two orthogonal PCA-based predictors 
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using the dmvnorm function of the R-library mvtnorm (Gentz et al., 
2014). This is similar to the ‘Artificial bell-shaped response method’ of 
Varela et al. (2014) and Duan et al. (2015) although they applied it 
directly to environmental variables. Our species were defined to be 
present in raster cells whose environmental bivariate variables are within 
the central circle of the bivariate normal density that has probability 68%. 
Here, using standardized, fully orthogonal PCA-based variables, this is 
represented by a circle cutting the PCA axes at the optima ± 1 standard 
deviation (SD). We defined the following ten species’ prevalence classes 
(fraction of presence cells): 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 
0.45, and 0.50. The defined prevalences were realized by varying the SD 
of the species to both PCA gradients simultaneously. Species’ optima were 
unique and were selected by taking the values of the two PCA-based 
predictors on a randomly selected locality in the study area 
(Supplementary Material Appendix 17). We assume that each species 
inhabits all environmentally suitable areas. 

Sample sizes and replications 

We used 12 sample sizes, 5-10, 15, 20, 25, 50, 75, and 100 records, 
which were based on sampling without replacement from the pre-defined 
presence localities. Sampling probability equalled the defined habitat 
suitability score of each raster cell. For each of the ten prevalence classes, 
we replicated species definitions 100 times, resulting in 1000 simulated 
species. Sampling of the 12 sample sizes was done for each simulated 
species, yielding a total of 12,000 individual samples. This procedure was 
replicated for each of the four spatial resolutions. 

Species Distribution Models 

We selected MaxEnt to generate the SDMs (Phillips et al., 2006) that were 
used to assess the performance of those prevalence estimators that are 
based on predicted presence localities (Table 1, #4-5). MaxEnt is widely 
used and has shown to outperform other methods, especially when 
dealing with presence-only data (Aguirre-Gutiérrez et al., 2013, Elith et 
al., 2006). We set MaxEnt to use linear and quadratic features only for all 
sample sizes following recommendations by Merow et al. (2013). All other 
settings were kept as default. As environmental variables the SDMs used 
the 2 PCA-based variables. To convert the continuous MaxEnt predictions 
into discrete predicted presence/absence maps, we applied the ‘maximum 
training sensitivity plus specificity’ rule as threshold value (Liu et al., 
2013). 
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Testing estimator performance 

Estimator performance depends on both consistency and accuracy. 
Consistency of the 11 prevalence estimators summarized in Table 1 was 
assessed by the fit of a linear regression between the estimated and the 
pre-defined prevalence values using the function lm of the R-library stats 
(R Core Team, 2016) with separate regressions for each sample size and 
each spatial resolution. To compensate for heteroscedasticity, estimated 
prevalence values of most estimators were arcsine transformed using the 
square-rooted values (asin sqrt) (Fowler et al., 1998)(Supplementary 
Material Appendix 16). Accuracy of the estimators and a step-wise 
procedure to compensate for inaccuracy is discussed. 

Results 
Analyses of the 12,000 individual samples per spatial resolution resulted 
in estimator values for each of the 11 assessed methods. Accuracy of the 
estimators at 5 arc-minute resolution is visualised in Figure 1 by showing 
the regression lines for selected sample sizes with facets for each 
estimator. All estimators show a significant, positive, linear relation with 
pre-defined prevalence of the simulated species, except AOO 2KM for 
which no significant relation was found for most sample sizes (Table 2). 
Intercept and slope of the regression lines depend on the choice of 
estimator, sample size and pre-defined prevalence (regression statistics 
for all sample sizes and estimators in Supplementary Material Appendix 
4). For some estimators, sample size influences the intercept and slope 
for fitted regressions. EOO, AOO 10PCT, Fraction MCP PCA and to a lesser 
extent Fraction PCA1, Maximum Euclidean distance and Area MCP PCA 
show a larger intercept and larger slope for increasing sample size, thus 
predicting a larger prevalence. In contrast, EOO predicted, AOO predicted, 
2SD PCA1 and Inverse kernel height are largely insensitive to sample size. 

Consistency of the assessed estimators at 5 arc-minute spatial resolution 
is presented in Figure 2 with separate panels for six selected sample sizes 
(results for all spatial resolutions in Supplementary Material Appendix 2). 
R2 values, intercept and slope for the regression based on the largest 
sample size (n = 100) are summarized in Table 2 for 5 arc-minute spatial 
resolution (results for other resolutions in Supplementary Material 
Appendix 3). Consistency of the estimators increases with increasing 
sample sizes for all estimators except AOO 2KM. 

The most consistent estimator is marked in bold and the second best 
estimator is underlined for each sample size in Table 2. The rank based 
on consistency for specific sample sizes differs, but rank differences are 
small. The novel method presented here, Fraction MCP PCA, is the most 
consistent for all but the smallest sample sizes (n = 5 and n = 6) for which 
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it closely ranks second after #9 Inverse kernel height. Consistency for 
Fraction MCP PCA at 5 arc-minute spatial resolution is visualized in Figure 
3 by showing the 95% range of the observed values and regression lines 
in separate facets for six selected sample sizes (other estimators at 5 arc-
minute spatial resolution in Supplementary Material Appendices 5-14). 
For all assessed estimators, the range in estimated prevalence values is 
larger for larger prevalence classes, although the effect on the fitted 
regressions is small and most of this heteroscedasticity is compensated 
for by the applied arcsine transformation on the square-rooted values. 

 

 

Figure 1. Accuracy of 11 prevalence estimators with estimated 
prevalence values (y-axis) as a function of pre-defined prevalence values 
(x-axis) at 5 arc-minute spatial resolution with facets for each assessed 
estimator and regression lines for selected sample sizes (n = 5, 10, 15, 
25, 50, 100). To facilitate visual comparison EOO, AOO 2KM, AOO 10PCT 
and EOO predicted were rescaled to (0-1). 
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Figure 2. Consistency of 11 prevalence estimators at 5 arc-minute 
spatial resolution with consistency defined as the R2 values of the linear 
regression fitted on the estimated and predefined prevalence values with 
facets for six different sample sizes (5, 10, 15, 25, 50, and 100). 

 

 

Figure 3. Consistency of the prevalence estimator ‘Fraction MCP 
PCA’ (y-axis) as a function of defined prevalence values (x-axis) at 5 arc-
minute spatial resolution with facets for six selected sample sizes (n = 5, 
10, 15, 25, 50, 100). Fraction MCP PCA is defined as fraction of raster 
cells located inside the minimum convex polygon encompassing all records 
plotted in normalized parameter space. In each facet, boxplots show the 
95% range of the observed values, regression lines are given in red, and 
R2 values of the regressions are provided. 
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Discussion 

Evaluating estimators of prevalence 

Our results show that prevalence estimators based on ecological 
information in general outperform estimators based on spatial information 
only (Figure 2 & Table 2). This can be explained by their insensitivity for 
patchiness of the species’ distribution, as well as their ability to include 
information on the unequal density or availability of niches in the study 
area (Broennimann et al., 2012), two aspects commonly mentioned as 
reasons of concern (Beck et al., 2013, Gaston & Fuller, 2009). The novel 
estimator introduced here, Fraction MCP PCA, is the most consistent at 
every applied spatial resolution and for all but the smallest sample sizes, 
with R2 values up to 0.98 (Table 2). This estimator is least sensitive for 
the two above-mentioned aspects. 

A few aspects should be considered. To test the effect of non-normal 
species’ responses to environmental variables, we repeated the analyses 
using a uniform sampling probability instead of a probability equal to the 
defined habitat suitability. A uniform sampling probability in our analyses 
mimics the situation where the species shows a thresholded response to 
environmental variables and, consequently, its abundance and 
detectability is uniform for all presence localities. The results were similar, 
confirming our conclusions. 

The use of a bivariate density kernel (Table 1, #9: ‘Inverse kernel height’) 
contains an aspect of circularity as the simulated species is defined using 
a bivariate normal response and the kernel is fitted with a bivariate normal 
response too. In general, however, real species show similar responses 
(Boucher-Lalonde et al., 2012) and the method was previously used in 
other studies based on simulated species (Broennimann et al., 2012, 
Varela et al., 2014). For the overall best performing estimator, Fraction 
MCP PCA, this potential pitfall is not an issue, as the method is insensitive 
to the type of the species’ response function to environmental predictors. 

The weak performance of EOO and AOO in our analysis supports earlier 
critics on their use for conservation purposes, especially for species with 
non-convex shaped spatial distributions (Burgman & Fox, 2003, Gaston & 
Fuller, 2009, Syfert et al., 2014). The alpha-convex hull and alpha shape 
have been suggested as alternatives (Burgman & Fox, 2003). Both use a 
Delauney triangulation where alpha defines the radius of the half-planes 
that limit the boundaries of the hull and hence the level of detail in the 
shape (Edelsbrunner et al., 1983). However, as the value for alpha 
strongly influences the outcome and conventions on its preferred value 



Prevalence estimators put to the test 

57 

are lacking, we regard the use of alpha shape and alpha-convex hull as 
not useful to estimate species’ prevalence. 

How to estimate the prevalence of real species? 

None of the assessed methods can directly estimate species’ prevalence 
accurately. Some methods, however, are highly consistent indirect 
prevalence estimators with R2 values as high as 0.98 (Table 2). By using 
the fitted regression equations based on simulations (Table 2 for n = 100, 
Supplementary Material Appendix 4 for other sample sizes) and the 
estimated prevalence values based on real species sample data, an 
accurate estimation of the true prevalence can be obtained. The following 
step-wise procedure can be used to obtain an accurate estimation of the 
species’ prevalence using the R scripts provided in Supplementary 
Material Appendix 15-17: 1) extract PCA-based environmental variables, 
2) run simulations with virtual species for different classes of species’ 
prevalence and sample sizes, 3) fit the linear regression to the estimated 
and pre-defined prevalence values, 4) apply the prevalence estimator to 
real species sample data, and 5) use the fitted regression equation and 
estimated prevalence value to compute an accurate estimation of the 
species’ real prevalence. When estimating the prevalence of real species, 
we recommend applying the Fraction MCP PCA estimator. However, when 
the relative contribution of each environmental variable to the species’ 
response is unclear, the AOO predicted might be applied to the original 
environmental variables, as MaxEnt will weigh environmental variables 
relative to their contribution to the model (Phillips et al., 2006). Two 
aspects should be considered: natural habitats loss and incomplete range 
filling, which both decrease a species’ real and estimated prevalence. 

Effect of spatial resolution 

Species’ prevalence is known to be sensitive to the spatial resolution 
(Azaele et al., 2012, Hartley & Kunin, 2003, Hurlbert & Jetz, 2007). 
However, we found only minor differences between estimator accuracy, 
consistency, regression intercept, and slope at four different spatial 
resolutions. This can be explained by the definition of our presence 
localities. We defined an entire raster cell to be either a presence or an 
absence locality. In reality, a species is represented by individuals who 
are commonly not evenly distributed, resulting in species-dependent 
scale-area curves (Hartley & Kunin, 2003). This is beyond the scope of 
this study, however, in which we assessed how accurate and consistent a 
suite of methods can estimate the prevalence of simulated species for 
which the prevalence is known. 
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Bias and errors in sample data 

Commonly, specimens data sets of natural history collections show a 
collecting bias caused by the tendency to collect close to villages, roads, 
rivers, and in national parks (Hortal et al., 2007, Kadmon et al., 2004, 
Reddy & Davalos, 2003). In addition, uneven effort in data mobilization 
causes large differences in availability of specimens data between 
countries (Beck et al., 2014). This bias influences estimations of 
prevalence based on spatial data including the EOO and AOO, nicely 
illustrated by Wieringa & Mackinder (2012). Collecting bias can result in 
ecological bias when parts of the species’ niche are underrepresented by 
the sampled records (Loiselle et al., 2008), although this is not necessarily 
the case (Kadmon et al., 2004). Incomplete niche coverage can lead to 
an underestimation of the species’ prevalence, even when estimators use 
ecological data (Raes, 2012). Errors in georeferencing and identification 
are typically present in real species data, but absent in samples in our 
analyses based on simulated species. When generating presence/absence 
maps from SDMs, commonly, the ‘ten percentile training presence’ 
threshold is applied. This forces 10% of the actual presence localities 
outside the predicted presence area, allowing that 10% of the records 
may be wrongly georeferenced or identified without serious consequences 
for the model. 

Implications for biogeography, macroecology and 
conservation 

Macroecology, biogeography and conservation build on reliable 
information on species’ prevalence. Here, we show that the use of 
commonly applied methods such as EOO and AOO may result in incorrect 
prevalence data, possibly leading to false conclusions. Particularly when 
conservation priorities are set and resources are allocated based on such 
incorrect prevalence data, this may jeopardize these exact priorities. In 
Red List assessments of species, EOO and AOO based on known 
occurrences are currently used as standard evaluation criteria (IUCN, 
2001). However, our results indicate that estimators based on ecological 
data clearly outperform them, and that AOO 2KM has no relation to 
species’ prevalence at all. On the other hand, the IUCN Red List Guidelines 
do allow alternatives and explicitly state that ‘‘Both AOO and EOO may be 
estimated based on known, inferred or projected sites of present 
occurrences of a taxon’’, where “projected” refers to “spatially predicted 
sites on the basis of habitat maps or models” (IUCN, 2001, IUCN, 2014). 
It therefore seems logical to adapt the IUCN Red List Guidelines and 
prescribe better performing estimators of the EOO and AOO. 
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Conclusions and recommendations 

We assessed the performance of prevalence estimators using simulated 
species in a tropical African study area at four different spatial resolutions. 
Our results show that estimators based on ecological information 
outperform those based on spatial information only. Particularly, the novel 
estimator presented here – the fraction of raster cells in the study area 
located inside the minimum convex polygon when plotted in normalized 
parameter space (‘Fraction MCP PCA’) – has shown to outperform all other 
assessed estimators at each spatial resolution for all but the smallest 
sample sizes. A more accurate estimation of a species’ prevalence, as 
achieved by this method in the here described step-wise procedure, will 
aid in a better understanding of the rarity of species. The default use of 
range and prevalence estimators based on spatial data only – the EOO 
and AOO – in the field of biogeography, macroecology and species 
conservation, including IUCN Red List assessments, should be 
reconsidered. We recommend to estimate the species’ range or EOO by 
the area of the minimum convex polygon that includes all presence 
localities based on its SDM to which the ‘ten percentile training presence’ 
threshold is applied (Table 1, #4: ‘EOO predicted’). To obtain a more 
accurate estimation of the species’ actual prevalence or AOO, we 
recommend using the Fraction MCP PCA. 

Supplementary material 
All supplementary materials (appendices 1-17) are available upon 
request. 
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Abstract 
In conservation studies, solely widespread species are often used as 
indicators of diversity patterns, but narrow-ranged species can show 
different patterns. Here, we assess how well subsets of narrow-ranged, 
widespread or randomly selected plant species represent patterns of 
species richness and weighted endemism in Gabon, tropical Africa. 
Specifically, we assess the effect of using different definitions of 
widespread and narrow-ranged and of the information content of the 
subsets. Finally, we test if narrow-ranged species are overrepresented in 
species-rich areas. Based on distribution models of Gabonese plant 
species, we defined sequential subsets from narrow-ranged-to-
widespread, widespread-to-narrow-ranged, and 100 randomly arranged 
species sequences using the range sizes of species in tropical Africa and 
within Gabon. Along these sequences, correlations between subsets and 
the total species richness and total weighted endemism patterns were 
computed. Random species subsets best represent the total species 
richness pattern, whereas subsets of narrow-ranged species best 
represent the total weighted endemism pattern. For species ordered 
according to their range sizes in tropical Africa, subsets of narrow-ranged 
species represented the total species richness pattern better than 
widespread species subsets did. However, the opposite was true when 
range sizes were truncated by the Gabonese national country borders. 
Correcting for the information content of the subset results in a skew of 
the sequential correlations, its direction depending on the range-size 
frequency distribution. Finally, we find a strong, positive, non-linear 
relation between weighted endemism and total species richness. 
Observed differences in the contribution of narrow-ranged, widespread 
and randomly selected species to species richness and weighted 
endemism patterns can be explained by the range-size frequency 
distribution and the use of different definitions of widespread or narrow-
ranged. We call for a reconsideration of the use of widespread species as 
an indicator of diversity patterns, and advocate using the full ranges of 
species when assessing diversity patterns. 

Keywords 
Diversity patterns, Species Distribution Models, centres of endemism, 
biodiversity hotspots, Gabon, widespread, narrow-ranged, weighted 
endemism, species richness 
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Introduction 
The current biodiversity crisis and limited availability of resources forces 
governments and NGOs to define conservation priorities (Margules & 
Pressey, 2000). Commonly, highly biodiverse regions (harbouring many 
species), centres of endemism (harbouring many narrow-ranged species), 
and crisis ecoregions (regions under threat of habitat conversion and 
climate change) are identified as priority areas for conservation (Brooks 
et al., 2006, Pitman & Jorgensen, 2002, Sala et al., 2000). Unfortunately, 
for many parts of the world, especially the tropics, little is known about 
the spatial distribution of most individual species or of the spatial 
distribution of diversity; a phenomenon known as the Wallacean shortfall 
(Lomolino, 2004). Most species are narrow-ranged, resulting in a right-
skewed range-size frequency distribution (Magurran & Henderson, 2003, 
ter Steege et al., 2013). Several studies have shown that species richness 
patterns based on narrow-ranged species differ from those based on 
widespread species and that most patterning in species richness is caused 
by a comparatively small subset of widespread species (Jetz & Rahbek, 
2002, Kreft et al., 2006, Lennon et al., 2004, Mazaris et al., 2008). 
Generally, the distribution of narrow-ranged species appears less 
correlated with climatic variables, but more strongly correlated with 
topographic and historical factors (Jetz & Rahbek, 2002, Kreft et al., 
2006). Therefore, using a subset of relatively common, widespread 
species as an indicator of species richness may well yield inappropriate 
conservation priorities for rare, narrow-ranged species. 

Consideration of endemism has also been suggested as a replacement for 
assessment of total species richness in the context of identifying 
conservation priorities (Loyola et al., 2007, Pitman & Jorgensen, 2002). 
Levels of endemism have been calculated in various ways including 
measures that weigh each species according to its rarity (Crisp et al., 
2001, Wieringa & Poorter, 2004). Several studies have shown a positive, 
non-linear relationship between the number of narrow-ranged species and 
the total number of species in an area, resulting in species-rich areas 
having a higher proportion of narrow-ranged species than average (Jetz 
et al., 2004, Raes et al., 2009). However, studies on vertebrates have 
shown that centres of endemism are not necessarily congruent with 
centres of species richness (Ceballos & Ehrlich, 2006, Grenyer et al., 
2006, Lamoreux et al., 2006, Orme et al., 2005, Villalobos et al., 2013). 

The contribution of each species to the pattern of species richness 
depends on the individual prevalence of species (Lennon et al., 2011, 
Lennon et al., 2004, Mazaris et al., 2013), with prevalence defined as the 
fraction of the study area where the species occurs (McPherson et al., 
2004). A species present in 50% of the study area has the highest 
contribution to the richness pattern, whereas species present in 10% or 
90% have an equally lower contribution of information to the pattern. This 
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effect is known as the information content of a set of species and is 
defined as Σ(p*(1-p)) with p being the fraction of presence cells of each 
species (Lennon et al., 2004). The difference between species richness 
patterns based on subsets of widespread and narrow-ranged species is 
only partly explained by differences in information content of these 
subsets (Kreft et al., 2006, Lennon et al., 2004, Mazaris et al., 2008, 
Vázquez & Gaston, 2004). Often, when assessing richness patterns, the 
range sizes or prevalences are calculated for areas defined by political 
boundaries, thus not encompassing the full ranges of species. This 
logically leads to patterns only applicable at a local scale, though these 
may be important for political reasons. However, those interested in 
global diversity patterns need to take into account the full ranges of 
species (2006), which is what we aim for in our present study of Gabonese 
plant species. 

For most species, preserved collections are not adequate reflections of 
species distribution patterns. By contrast, species Distribution Models 
(SDM) offer a solution as these predict the spatial distribution of species 
by linking a limited number of observations to environmental data with 
high spatial resolution (Franklin, 2009). Typically, the constantly growing 
body of digitized presence-only specimen data from natural history 
collections are used as observations (Graham et al., 2004). Diversity 
patterns can be inferred by stacking SDMs that are converted into binary 
presence/absence maps (Calabrese et al., 2014, Raes et al., 2009). This 
method offers unique opportunities to assess congruence between 
diversity patterns based on different subsets of species. 

Here, using SDMs of plant species from Gabon, central Africa, we infer 
patterns of species richness and weighted endemism for Gabon. More 
specifically, we address the following questions: 1) Do diversity patterns 
based on subsets of narrow-ranged or widespread plant species differ 
from those based on random subsets? 2) Are these differences still 
apparent when corrected for the information content of each subset? 3) 
Are these differences sensitive to the extent of the study area in which 
the range sizes are defined, here Gabon versus tropical Africa as a whole? 
4) Are narrow-ranged species overrepresented in species-rich areas? 

Materials and Methods 

Study area 

We selected Gabon to serve as a case study. Gabon is a highly biodiverse 
country in the Lower Guinean phytogeographical region (Kier et al., 2005, 
White, 1979) with around 80% of its 267,667 km2 covered by lowland 
rain forest and the remaining 20% mainly by savannahs and urban areas 
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(S1 Fig). It hosts an estimated number of 7000-7500 vascular plants 
species (Sosef et al., 2006), of which 5323 have been recorded so far. Of 
these, 13% are endemic or near endemic to Gabon and many more are 
native only in the Lower Guinean biogeographic region (Sosef et al., 
2006), showing the importance of the contribution of narrow-ranged 
species to diversity patterns. In contrast to most other species-rich, 
tropical African countries, the botanical diversity of Gabon is well-
documented with > 95% of the known herbarium collections digitally 
available through the Naturalis Biodiversity Center database. This renders 
Gabon an excellent study area to address the research questions 
formulated above. We defined our African study area from 15ºN to 19ºS 
and from 17.5ºW to 43ºE, encompassing the known range of the majority 
of Gabonese plant species and covering 180,399 raster cells at 5 arc-
minute spatial resolution (excluding oceans and large water bodies). 

Species distribution data 

To avoid the exclusion of species known to occur in neighbouring countries 
and possibly also to be found in Gabon, but not yet collected there, we 
selected all plant species recorded at least once from Gabon including a 
buffer area of five degrees (approx. 600 km). Species known to only occur 
in cultivation in Gabon were excluded. Subspecific taxa were combined in 
the germane species. From the species list so compiled, we used all 
available herbarium specimen data from Gabon and other tropical African 
countries to avoid modelling truncated niches of species (Raes, 2012) and 
to make use of all available data for model training (van Proosdij et al., 
2016b). Records comprising doubtful identifications as well as duplicate 
records from the same raster cell were excluded. Only records with 
latitude/longitude data accurate to at least five arc-minute spatial 
resolution were used. 

Environmental data and two model training areas 

We used WorldClim temperature data (Hijmans et al., 2005), CHIRPS 
precipitation data (Deblauwe et al., 2016, Funk et al., 2014), and 
quantitative soil data from the Harmonized World Soil Database 
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Environmental data layers were 
cropped to the extent of the study area (hereafter ‘African training area’) 
and, where necessary, aggregated to five arc-minute spatial resolution. 
As a measure of topographic heterogeneity we used the standard 
deviation of altitude based on the 90 m SRTM altitude data 
(<srtm.csi.cgiar.org>) within each five arc-minute raster cell. Out of the 
39 original variables we selected those correlated with Spearman’s 
|rho| < 0.7 (Dormann et al., 2013), to avoid overfitting of models due to 
multi-collinearity, resulting in 15 selected variables (S2 Table & S6 File). 
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We adjusted the extent of the training area of species with a prevalence 
< 0.1 or > 0.9 to avoid statistical artefacts in modelling these species 
(McPherson et al., 2004). The prevalence of species was estimated by 
using the fraction of raster cells where the species was predicted as 
present in tropical Africa based on a thresholded SDM (Syfert et al., 
2014). For species with a predicted prevalence < 0.1 in the African 
training area, we used the smaller training area of Gabon including a 
buffer area of five degrees (hereafter ‘Gabonese training area’) resulting 
in 18,144 5-arc minute raster cells and using the same selected 
environmental variables. No species had a prevalence > 0.9. 

Model building 

SDMs were generated using MaxEnt (Phillips et al., 2006), which has 
shown to outperform other methods when using presence-only data like 
ours, even when applied to small data sets (Elith et al., 2006). We 
modified the MaxEnt default settings by allowing only linear and quadratic 
features for all sample sizes, and excluding hinge, product and threshold 
features to prevent over-parameterization of the models (Merow et al., 
2013). To compensate for a potential collecting bias in our specimen data, 
possibly resulting in an ecological bias (Loiselle et al., 2008, Reddy & 
Davalos, 2003), we applied the same bias to the background data used 
to train the models by means of target background sampling (Phillips et 
al., 2009). Consequently, pseudo-absences were selected from raster 
cells with at least one herbarium record. The logistic MaxEnt output for 
each species was converted into a binary presence/absence map by 
applying the ‘ten percentile training presence’ threshold. This threshold 
forces 10% of the training records to fall outside the predicted suitable 
area, which is thought to allow for 10% of the records to contain 
identification, georeferencing or other errors without serious 
consequences for the model (Liu et al., 2013, Merow et al., 2013). A 
Multivariate Environmental Similarity Surface analysis (Elith et al., 2010) 
showed considerable areas with negative MESS values for models trained 
on the Gabonese training area (S3 Fig), which is why SDMs trained on the 
Gabonese training area were projected on the larger tropical African area 
without extrapolation to environmental conditions not present in the 
smaller training area. 

Model evaluation 

Models were evaluated using two criteria. First, each model was tested 
against a bias-corrected null model following Raes & ter Steege (2007) 
and accepted if its AUC value ranked > 95 when grouped with the 99 null 
model AUC values. This implies that the model performed significantly 
better than random expectation (p < 0.05). Second, from the significant 
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SDMs, a model was accepted when the number of unique training records 
equalled or exceeded the minimum number of records required to 
generate models significantly better than random expectation. This 
minimum number of records increases with increasing prevalence of the 
species (van Proosdij et al., 2016b). Following the procedure of van 
Proosdij et al. (van Proosdij et al., 2016b), we identified the following 
required minimum numbers of records for species of different prevalence 
classes for the models trained on the African training area and between 
brackets the minimum numbers for the Gabonese training area: 7 (5) for 
prevalence < 0.1, 7 (8) for prevalence 0.1-0.2, 9 (10) for prevalence 0.2-
0.3, 12 (11) for prevalence 0.3-0.4, 12 (14) for prevalence 0.4-0.5, and 
15 (17) for prevalence > 0.5. 

Patterns of species richness and weighted endemism 

Three types of diversity patterns were computed by stacking the selected 
thresholded SDMs. Firstly, total species richness was computed by 
summing the number of species predicted to be present in each raster 
cell. Secondly, weighted endemism was computed following Crisp et al. 
(2001) and Wieringa & Poorter (2004) by summing up the rarity values 
of the species present in a unit or raster cell, with rarity value defined as 
the inverse of the number of presence cells. Finally, residuals of weighted 
endemism were defined as the weighted endemism relative to the species 
richness of the raster cell (Raes et al., 2009), also termed corrected 
weighted endemism (Linder, 2001) (hereafter called ‘residual weighted 
endemism’). We computed the residual weighted endemism values by 
first fitting a curve to the values of weighted endemism plotted against 
total species richness. Akaike Information Criterion was used to select the 
best polynomial curve. Then, relative residuals were computed by taking 
for each cell the difference between the actual weighted endemism value 
and the fitted value, relative to the fitted value. The resulting three 
diversity patterns were cropped to the national borders of Gabon. 

Species sequences and correlation with species richness 
and weighted endemism 

Species with accepted SDMs were ranked according to their predicted 
prevalence in tropical Africa. We generated one narrow-ranged to 
widespread sequence, one widespread to narrow-ranged sequence, and 
100 random sequences (Evans et al., 2005, Lennon et al., 2004, Mazaris 
et al., 2013). This procedure was repeated by ranking the species 
according to their prevalence within Gabon. For subsets of n species, with 
increasing values of n along the sequences, species richness maps 
(‘n_richness’) and weighted endemism maps (‘n_weighted_endemism’) 
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were generated. Along the sequences we computed the Pearson 
correlation of n_richness with the total species richness pattern and of 
n_weighted_endemism with the total weighted endemism pattern, all 
cropped to the national borders of Gabon. Resulting Pearson’s r values of 
the subsets along the sequences were plotted against the number of 
species as well as against the information content of the subsets. The 
information content of a subset was computed by summing the 
information contents of the species in the subset. All analysis were 
performed in R, using functions provided in the R script available as 
Supporting Information (S7 File). 

Results 
In total, our dataset contains 5323 species from Gabon and an additional 
3361 from the five degrees buffer zone. A total of 317,582 herbarium 
specimen records related to these 8684 species were aggregated in our 
dataset and used for model-building. 3572 species did not have sufficient 
records to model a reliable SDM; for another 2628, their SDMs did not 
pass the null model test, while 395 of the remaining SDMs predicted the 
species to be absent from Gabon (although present in the buffer zone). 
In total, SDMs of 2089 species were used for further analyses including 
one liverwort species, 22 moss species, eight clubmoss species, 63 fern 
species, one gymnosperm species and 1994 angiosperm species (S4 
Table, SDMs available from the Dryad Digital Repository: 
http://dx.doi.org/10.5061/dryad.v4f53). When trained on tropical Africa, 
SDMs of 1306 species resulted in a predicted prevalence < 0.1, and hence 
their SDMs were rerun using the smaller Gabonese training area. Of these 
new SDMs, 624 also had a predicted prevalence of < 0.1 in the Gabonese 
training area, which we regard as acceptable given the scope of this study. 
The range size frequency distribution based on the predicted prevalences 
for both tropical Africa and Gabon is strongly right-skewed towards 
narrow-ranged species (Fig 1). It is to be noted that for range sizes based 
on tropical Africa, the apparent peak at a prevalence of 0.10-0.15 is 
actually caused by the exclusion of many species with a prevalence 
< 0.10. These excluded species are recorded from the five degrees buffer 
zone but are predicted to be absent from Gabon or have too few records 
inside the Gabonese training area to generate a significant SDM (S5 Fig). 
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Fig 1. Range size frequency distribution of Gabonese plant species. 
The range size frequency distribution is shown for the Gabonese plant 
species with accepted SDMs. Range size or prevalence is defined as the 
fraction of raster cells where the species is predicted present in tropical 
Africa (black) and Gabon (grey) respectively. 

 

The highest species richness in Gabon is predicted for north-western 
Gabon (foothills of the Crystal Mountains and the vicinity of Libreville), as 
well as hills in central and western Gabon (Doudou Mountains and western 
parts of Chaillu Massif) (Fig 2A). Areas with high values of weighted 
endemism are largely congruent with centres of species richness with 
maximum values in the Crystal Mountains and the vicinity of Libreville 
(Fig 2B). Species richness and weighted endemism show a strong 
positive, non-linear relation, best represented by a fourth-order 
polynomial function (Fig 2C, Y = 2.583e-04*X – 6.645e-07*X2 + 6.379e-
10*X3 – 8.581e-14*X4, adjusted R2 = 0.92, p < 0.001). Figure 2D shows 
high positive values of residual weighted endemism in the two 
aforementioned centres of endemism and in the coastal region south of 
one degree south latitude, meaning that in those areas more narrow-
ranged species are present than would be expected from the species 
richness. 

Along each of the sequences based on the prevalence of species in tropical 
Africa, correlation values of n_richness patterns to total richness pattern 
increase, but they do so more rapidly for the narrow-ranged-to-
widespread sequence (Fig 3A, Kolmogorov-Smirnov test: D = 0.37, p 
< 0.001). A correlation of r = 0.7 is achieved with the 5% most narrow-
ranged species, versus the 35% most widespread species. However, these 
subsets are both outperformed by random subsets. When corrected for 
the information content of the subsets, the narrow-ranged-to-widespread 
sequence performs as well as the random sequences, while the 
performance of the widespread-to-narrow-ranged sequence decreases 
(Fig 3B). 
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Fig 2. Botanical diversity patterns for Gabon based on 2089 
species. The following diversity patterns are shown based on thresholded 
SDMs of 2089 Gabonese plant species: (A) total species richness; (B) 
weighted endemism; (C) weighted endemism (y-axis) plotted against 
total species richness (x-axis) with shades of grey indicating values of 
residual weighted endemism and the black curve representing a fourth-
order polynomial function; (D) residual weighted endemism. 

 

By contrast, along each of the sequences based on the prevalence within 
Gabon, correlation values increase more rapidly for the widespread-to-
narrow-ranged sequence (Fig 3E, Kolmogorov-Smirnov test: D = 0.18, 
p < 0.001). Here, a correlation of 0.7 is achieved with the 20% most 
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widespread species versus the 35% most narrow-ranged ones. Here too, 
both are outperformed by random subsets. Correcting for the information 
content of the subsets results in narrow-ranged species slightly 
outperforming widespread ones (Fig 3F). 

 

 

Fig 3. Correlations between subset and total diversity patterns. 
Correlations are presented between species richness patterns based on 
subsets of n Gabonese plant species (n_richness) and total Gabonese 
species richness (A,B,E,F), as well as between weighted endemism 
patterns based on subsets (n_weighted_endemism) and total weighted 
endemism (C,D,G,H). Subsets were composed along the narrow-ranged 
to widespread sequence (dark grey lines), widespread to narrow-ranged 
sequence (black lines), and 100 random sequences (light grey lines). 
Defining the species sequences was done on the prevalences of species in 
either tropical Africa (A-D), or Gabon (E-H). Correlations are plotted 
against the number of species (A,C,E,G) or the information content of the 
subset (B,D,F,H). 

 

Using sequences based on the prevalence in tropical Africa, we found, as 
was to be expected, patterns of n_weighted_endemism based on narrow-
ranged species to be more strongly correlated with the total weighted 
endemism pattern than were patterns based on widespread species (Fig 
3C, Kolmogorov-Smirnov test: D = 0.90, p < 0.001), even outperforming 
random subsets. When corrected for the information content, narrow-
ranged species remain more strongly correlated with weighted endemism, 
whereas the correlation of widespread species to weighted endemism 
decreases (Fig 3D). For the sequences based on prevalence within Gabon, 
patterns of n_weighted_endemism based on narrow-ranged species are 
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more strongly correlated with the total weighted endemism pattern than 
are patterns based on widespread species (Fig 3G, Kolmogorov-Smirnov 
test: D = 0.54, p < 0.001), but are outperformed by random subsets 
when these contain less than 25% of the species. Correcting for the 
information content of the subsets results in subsets of narrow-ranged 
species showing the strongest correlation with the total weighted 
endemism pattern (Fig 3H). 

Discussion 

Diversity patterns in Gabon 

The inferred pattern of plant species richness with centres of diversity in 
the vicinity of Libreville as well as the mountains of central and western 
Gabon confirms previous findings based on legumes (de la Estrella et al., 
2012) or endemic species (Walters et al., 2016). These centres of species 
richness and of weighted endemism coincide with the hypothesised Last 
Glacial Maxima forest refugia in the Crystal Mountains, western parts of 
the Chaillu Massif and the Doudou Mountains (Hardy et al., 2013, Maley, 
1996). The high levels of residual weighted endemism in the coastal 
region south of one degree south latitude illustrates the uniqueness of this 
relatively species-poor area that is floristically not related to other parts 
of central Africa and contains a comparatively high number of endemic 
species (Harris et al., 2012, Wieringa & Sosef, 2011). 

Widespread versus narrow-ranged 

Our results confirm that richness patterns based on narrow-ranged 
species differ from those based on widespread species (Jetz et al., 2004, 
Lennon et al., 2011, Villalobos et al., 2013). However, the correlation of 
each of these patterns with the total species richness pattern depends on 
the extent of the study area used to define the prevalence of species. 
When prevalence was defined for tropical Africa, we found patterns of 
narrow-ranged species in Gabon to be more strongly correlated with the 
pattern of total species richness. This contradicts the results of previous 
studies which found patterns of widespread species being more strongly 
correlated with total species richness patterns (Jetz & Rahbek, 2002, Kreft 
et al., 2006, Lennon et al., 2004, Mazaris et al., 2013, Perez-Quesada & 
Brazeiro, 2013, Vázquez & Gaston, 2004). In addition to the unique suite 
of species and habitats in each study area, four other matters need further 
consideration so as to put our results into perspective. 

Firstly, the range size frequency distribution of the species influences the 
sequential correlations and depends on the study area and species group. 
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Our data set is strongly right-skewed and thus similar to the dataset of 
Uruguayan plants used by Perez-Quesada & Brazeiro (2013), whose 
results are in line with ours. By contrast, Kreft et al. (2006) found patterns 
of widespread species that were more strongly correlated with the total 
species richness pattern using a Neotropical palm data set with an 
approximately normally distributed range size frequency. The work of 
Lennon et al. (2004) then, on birds from Scotland, the united Kingdom as 
a whole, and South Africa, presents results similar to those of Kreft et al. 
for Scottish and British birds, but contrasting results for South African 
birds. The sequential correlation of their South African bird data set 
plotted against the information content of the subsets is higher for 
narrow-ranged species than for widespread species. From their three data 
sets, the South African birds data set is the most strongly right-skewed 
(Lennon et al., 2004). Based on these and our results from different study 
areas and different species groups, we conclude that strongly right-
skewed range size frequency distributions result in stronger correlations 
between narrow-ranged species subsets and the total species richness 
pattern. 

The second matter is the range size or prevalence criterion that is applied 
to define the species sequences, a matter to which little attention has 
been paid up to now. Most studies order species based on their prevalence 
in the study area alone, which can be much smaller than the full range 
size of the species (Evans et al., 2005, Lennon et al., 2011, Lennon et al., 
2004, Mazaris et al., 2013, Perez-Quesada & Brazeiro, 2013, Vázquez & 
Gaston, 2004), with few positive exceptions (Kreft et al., 2006). For 
example, widespread African species are sometimes rare in Gabon and 
Gabonese endemics sometimes have a large prevalence within the 
country. We assessed both of these by ordering species based on their 
prevalence in both tropical Africa and in Gabon and found contradicting 
results. We conclude that for a correct comparison of aspects of narrow-
ranged and widespread species, species should be ordered according to 
their entire range size. 

The third matter to consider is that 6595 species (76%) were excluded 
from our analysis as their models did not meet the criteria of model 
accuracy, or the species were recorded only from the five degrees buffer 
zone but not predicted to be present in Gabon. Little can be said with 
confidence on the overall distribution of these excluded species, but since 
3572 were excluded because of insufficient records, we expect the 
majority to be narrow-ranged. In general, we expect that if these 
apparently rare species could be included in the analysis, this would result 
in an even larger difference between diversity patterns based on narrow-
ranged species versus those based on widespread species. 

Thirdly, our results are based on the use of SDMs, which usually do not 
take into account biotic interactions, historical constraints, and dispersal 
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limitations (Araújo & Peterson, 2012). Therefore, the actual prevalence of 
species limited in their distribution by such factors, may well be (much) 
smaller than predicted here, resulting in an even more skewed range size 
frequency distribution. Ignoring dispersal limitations might also affect the 
calculated species composition of ecologically isolated areas. 

Random subsets 

We found species richness patterns based on random subsets of species 
to be more strongly correlated with the total species richness pattern than 
were patterns based on either narrow-ranged or widespread species 
alone. Some studies report a stronger correlation with the total species 
richness pattern for widespread species subsets over random subsets 
(Kreft et al., 2006, Mazaris et al., 2013), but others show contradictory 
results (Lennon et al., 2011). With respect to the correlation of subsets 
with weighted endemism, we found, as expected, random subsets being 
outperformed by those of narrow-ranged species when species are 
ordered according to their full range size. However, when ordered on 
prevalence within Gabon, again, random species subsets better represent 
the total weighted endemism pattern. Comparing the sequential 
correlation curves of our study with those reported by others cited above, 
we see strong similarities between the curves of random species subsets 
and large differences between the sequential correlation curves of 
widespread and of narrow-ranged species subsets. These differences can 
be explained by the matters addressed above: the range size frequency 
distribution of the assessed species and the applied criterion to define 
species sequences from narrow-ranged to widespread and vice versa. 

Information content 

Correcting for the information content of the subsets influences the 
sequential correlation curves. The magnitude of this correction depends 
on the information content of the species included in the subset with 
species present in 50% of the study area (prevalence = 0.5) contributing 
the largest amount of information (Lennon et al., 2004). Here, the 
prevalence in Africa of all but a few species is < 0.5 and hence the group 
of species with the largest information content consists of those species 
with the largest prevalence (prev. 0.3-0.5). Correcting for the information 
content in our study resulted in a skew to the right for the narrow-ranged-
to-widespread sequence and a skew to the left for the widespread-to-
narrow-ranged sequence (Figs 3B and D). The skew is less strong for the 
curves based on Gabonese prevalences, which contain many species with 
a prevalence value > 0.5. The sequential correlation curves of random 
subsets did not change when corrected for information content. The 
differences in skew found by us and by others (Kreft et al., 2006, Lennon 
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et al., 2004) can be explained by the specific range size frequency 
distributions. 

Overrepresentation of narrow-ranged species in species-
rich areas 

In Gabon, narrow-ranged plant species are overrepresented in species-
rich areas resulting in a strong, positive, non-linear relation. Therefore, 
estimating total plant species richness in Gabon based on the number of 
widespread plant species in an area will result in an underestimate of 
species richness in Gabon’s centres of diversity. Our results thus confirm 
similar findings for African birds (Jetz et al., 2004), North American 
vertebrates and invertebrates (Rickets, 2001), and vascular plants from 
the United Kingdom (Lennon et al., 2011) and Borneo (Raes et al., 2009). 
By contrast, other studies have shown that centres of species richness 
and centres of endemism are not congruent (Ceballos & Ehrlich, 2006, 
Lamoreux et al., 2006, Orme et al., 2005) or only partially so (Villalobos 
et al., 2013). These seemingly contradictory results underline the 
difficulties of identifying universal estimators for patterns of species 
richness and weighted endemism, but can be explained by some factors 
that are often ignored, including differences in the suite of species and 
habitat types present in the study areas, differences in applied spatial 
resolution and differences in the extent of the study areas (Kreft et al., 
2006, Rahbek, 2005, Rahbek & Graves, 2001). In addition, concordance 
of the species richness pattern and endemism pattern is low when only 
the few most species-rich and most rare–species-rich-cells are compared, 
but is high when correlation is computed over all cells (Rickets, 2001). 
Others have found a small overlap between the most species-rich cells 
with those containing the most rare species (Ceballos & Ehrlich, 2006, 
Orme et al., 2005), as well as a weak, or no, correlation between patterns 
of total species richness and endemism when this is computed over all 
cells (Lamoreux et al., 2006, Orme et al., 2005). Furthermore, 
congruence is higher when endemism is defined as weighted endemism 
including all species (Rickets, 2001), as we report here. 

Implications for conservation 

Setting priorities in conservation is topical, especially for the Tropics, that 
harbour by far the most species, but face the highest extinction risks 
(Vamosi & Vamosi, 2008). If one aims to identify the most species-rich 
areas using small subsets of species, random subsets of species best 
represent these areas given that the range size or prevalence of the 
targeted species is defined over their entire range. However, if one aims 
to identify areas containing the highest endemicity values, and applying 
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the same range size criterion, subsets of narrow-ranged species are to be 
preferred. Both criteria may ignore areas with high values of residual 
weighted endemism, thus harbouring only few species but a 
disproportionally high number of species not present elsewhere, as we 
have demonstrated here for the coastal zone of Gabon and has also been 
shown for other areas, including e.g. Borneo (Raes et al., 2009). These 
areas deserve priority for conservation too, as they contain 
disproportionally many species not present elsewhere. 

Conclusions 
For Gabon we have shown that patterns of plant species richness based 
on subsets of narrow-ranged species differ substantially from those based 
on subsets of widespread species. If species are ordered according to their 
full range size, subsets of narrow-ranged species represent the total 
species richness pattern better, but both are outperformed by random 
subsets. However, if ordered on range sizes truncated by the country 
borders of Gabon, subsets of narrow-ranged species are outperformed by 
subsets of widespread species. This difference in the ordering of species 
from narrow-ranged to widespread, in concert with the unique range size 
frequency distribution, suite of species and habitats present in a study 
area, influences the correlation of subsets of species with patterns of total 
species richness and weighted endemism. Correcting for the unequal 
information content of subsets of narrow-ranged and widespread species 
influences the sequential correlation with diversity patterns, and the exact 
effect of this correction depends on the range size frequency distribution 
of the species. 

In Gabon, narrow-ranged plant species are overrepresented in species-
rich areas. Omitting narrow-ranged species from diversity assessments 
will result in an underestimate of species richness in species-rich areas. 
In addition, some centres of residual weighted endemism contain few 
species in total but a disproportionally high number of narrow-ranged 
species and hence can be overlooked too when narrow-ranged species are 
omitted from diversity assessments. We call for a reconsideration of the 
use of richness patterns based on a selection of widespread species as a 
measure of total species richness, as this is not universally applicable to 
all taxonomic groups or study areas. Secondly, we argue for an analysis 
of the range size frequency distribution of the species and always to use 
the full ranges of species when assessing diversity patterns and 
correlations with possible explanatory environmental variables. 
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S5 Fig. Comparison of range size frequency distributions. The range 
size frequency distribution of the species with accepted SDMs is shown, 
with range size or prevalence of the species defined as the fraction of 
raster cells where the species is predicted to be present in tropical Africa. 
In black the original RSFD values based on Species Distribution Models 
trained on either tropical Africa or Gabon and including only species with 
accepted SDMs that are predicted to be present in Gabon (same as in 
main text Figure 1). In grey the RSFD values based on SDMs which are all 
trained on tropical Africa and including all species with accepted SDMs, 
thus including those species recorded from the five degree buffer zone but 
predicted to be absent for Gabon itself. 
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Abstract 
To set conservation priorities, knowing the effect of predicted climate 
change on patterns of species richness and the expected level of 
extinction is important. Here we analyse these effects for Gabonese plant 
species and quantify the explanatory power of individual climate 
anomalies on species gain, loss and turnover, and quantify the additional 
effect of dispersal limitations. For 2,137 species of Gabonese plants we 
generated species distribution models (SDMs) using georeferenced 
herbarium records and high spatial resolution soil and climate data. SDMs 
are projected to 2085 under two representative concentration pathways 
(RCPs) assuming either full or no dispersal. Patterns of future species 
richness, gain, loss and turnover are generated and correlations with 
climate anomalies are computed. In Gabon, predicted loss of plant species 
varies between just over 5% for 2085 under RCP 4.5 assuming full 
dispersal and almost 10% by 2085 under RCP 8.5 assuming no dispersal. 
As for many rare, narrow-ranged species no significant SDM could be 
generated, species losses are likely to be even higher than computed 
here. Species loss is best explained by increased precipitation in the dry 
season, whereas species gain and turnover are correlated with a shift from 
extreme to average values of annual temperature range. Whereas other 
regions with tropical rainforests are facing warmer and drier conditions, 
Gabon is already experiencing warmer and wetter conditions. Our models 
predict that this situation is driving a nation-wide loss of species. At the 
same time, average species-richness per area is predicted to increase, 
but only if species are able to migrate timely into future suitable habitats. 
Therefore, dispersal limitations are posing an additional threat to the 
survival of plant species in Gabon. We advocate for the identification and 
protection of potential refugia with particular attention for microrefugia 
inside as well as outside the current network of protected areas. 

Keywords 
Diversity patterns, species richness, climate change, species distribution 
models, dispersal, microrefugia, Africa, rainforest, extinction, 
precipitation 
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Introduction 
Worldwide, biodiversity is under increasing pressure of climate change, 
acting on all levels from population genetic to biome scale (Scheffers et 
al., 2016). Climate change alters the ranges, growth and abundance of 
individual species (Lenoir & Svenning, 2015, Parmesan & Yohe, 2003), 
leading to changes in patterns of species richness and local or global 
extinctions, although locally species richness may increase (Brown et al., 
2015, Fitzpatrick et al., 2008). Setting priorities for conservation requires 
knowledge on which species are likely to be affected by climate change 
and where changes in species richness are predicted to occur. Global 
climate change scenarios are defined by the Intergovernmental Panel on 
Climate Change (IPCC) by Representative Concentration Pathways (RCP 
2.6, 4.5, 6.0, and 8.5), which represent scenarios ranging from a 
‘mitigating climate change’ scenario to a ‘business as usual’ scenario 
(IPCC, 2013). The RCP 4.5 and RCP 8.5 scenarios project atmospheric 
CO2 concentrations rising from the pre-industrial level of 280 ppm to 650 
and 1,370 ppm by 2100 respectively, (Moss et al., 2010), resulting in an 
increase in global mean annual temperature of 2.4 °C and 4.9 °C above 
pre-industrial levels (Rogelj et al., 2012). 

Such changes are likely to affect the patterns of species richness as well 
as total species richness in central African lowland rainforests. We here 
focus on Gabon, which is part of the Lower Guinean phytogeographic 
region (White, 1979), which is botanically one of the most species-rich 
regions in tropical Africa, especially when its relative small surface area is 
considered (Sayer et al., 1992, Sosef et al., 2017, Sosef et al., 2006). 
Approximately 80% of the country’s land surface is covered by primary 
or slightly disturbed tropical lowland rainforest. During past climate 
change events, Gabon has experienced major changes in vegetation 
coverage and species composition, with large regional differences. During 
Pleistocene glacial maxima, the rainforest contracted to forest refugia 
located in montane regions of Gabon (Fig. 1a) followed by expansions 
during interglacials. On top of these major events, shorter climatic 
changes invoked rainforest expansions like during the African Humid 
Period (11,000 – 8,000 years BP), or contractions during drier conditions 
like that between approx. 4,000 and 2,000 years BP (Maley, 1996, Willis 
et al., 2013). In contrast to many other tropical lowland rainforests, 
including large parts of the Amazon (Malhi et al., 2008, Zelazowski et al., 
2011, Zhang et al., 2015) and the Congo basin (Zhou et al., 2014) that 
are predicted to face drier future conditions, climatic conditions for Gabon 
are predicted to become wetter while periods of aridity will become 
shorter (Platts et al., 2015). However, what this implies in terms of the 
effects on botanical diversity in Gabon is still unknown. 
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Several studies have estimated the level of species extinction as result of 
climate change, e.g. 0-15% by 2070 for New Caledonian tree species 
(Pouteau & Birnbaum, 2016), 5-25% by 2080 for Banksia species in 
Southwest Australia (Fitzpatrick et al., 2008), 15-37% by 2050 for 
endemic animal and plant species in a variety of biotopes worldwide 
(Thomas et al., 2004), and 39-43% of endemic plant and vertebrate 
species in biodiversity hotspots worldwide under the worst-case climate 
change scenarios (Malcolm et al., 2006). The effects of climate change on 
species’ range sizes is not uniform and differs between ecosystems and 
taxonomic groups. The degree of range shifts can largely be explained by 
the level of habitat specialisation of the individual species and the 
proximity and range size of future analogue biotopes (Bellard et al., 2012, 
Pouteau & Birnbaum, 2016). Species that have specific habitat 
preferences, a restricted range or limited dispersal capacity are 
particularly prone to the effects of climate change as these are not able 
to adapt to novel climates, or migrate timely to suitable areas with 
analogue future climates (Malcolm et al., 2006). 

Few studies identified the climate anomalies that drive predicted species 
loss, gain and turnover to understand the effect of climate change on 
biodiversity. Feeley et al. (2012) showed that the ranges of Amazonian 
plant species will decrease if they are not able to tolerate or adapt to the 
expected drier and warmer conditions. Zhang et al. (2014) found 
predicted species losses in Yunnan, China to be associated with increased 
temperature variability and decreased dry season precipitation. To our 
knowledge, no studies addressed the quantitative importance of individual 
future climate anomalies to predicted changes in biodiversity. 

The effect of regional differences in climate anomalies on the distribution 
of species and patterns of species richness are usually ignored, but these 
can have great impact (Lenoir & Svenning, 2015, VanDerWal et al., 2013). 
Recently, remotely sensed temperature and precipitation data at high 
spatial resolution have become available (Platts et al., 2015). These 
remotely sensed data have shown to outperform model-based 
interpolations of weather station data in macroecological studies as they 
result in better fit and transferability of species distribution models 
(Deblauwe et al., 2016). Remotely sensed current climatic data and 
regionally downscaled predictions for future climate scenarios calibrated 
on these remotely sensed current data better capture regional differences 
in climatic conditions and therefore enable assessments of the regional 
effects of climate change on the distribution of individual species and 
patterns of species richness. 

The spatial distribution of the vast majority of species is still unknown. 
Species Distribution Models (SDMs) can be used to overcome this lack of 
data as they predict a species’ distribution by correlating known 
occurrences to environmental variables at high spatial resolution (Elith & 
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Leathwick, 2009). Commonly, bioclimatic variables are used that 
represent annual, seasonal and extreme or limiting environmental factors 
based on temperature and precipitation values. SDMs are commonly 
applied to assess the effects of different climate change scenarios on the 
distribution of species (Guisan & Thuiller, 2005). The capacity of species 
to respond to changing climatic conditions by shifting their distributions 
strongly depends on their dispersal capacities. Recently developed R 
packages enable the integration of dispersal constraints in SDMs (Engler 
et al., 2012, Nobis & Normand, 2014). Unfortunately, the dispersal 
capacity of many species is unknown, thus limiting the use of SDMs to 
predict future distributions (Corlett & Westcott, 2013). Consequently, 
most studies model future distributions assuming either unlimited or no 
dispersal (Bateman et al., 2013), but see Fitzpatrick et al. (2008) and Hsu 
et al. (2012) for two examples where estimates of dispersal capacities 
were applied. 

Here, we use SDMs of Gabonese plant species to assess the regional 
fingerprint of predicted climate change on the total number of species and 
patterns of species richness in Gabon for 2085 under two representative 
concentration pathways and assuming no and full dispersal. We quantify 
the correlations of individual future climate anomalies with patterns of 
species gain, loss and turnover. Specifically, we address the following 
research questions: 1) What is the effect of predicted climate change on 
the total number of plant species in Gabon? 2) What is the effect of 
predicted climate change on patterns of species richness in Gabon in 
terms of species gain, loss and turnover? 3) What is the contribution of 
individual bioclimatic anomalies in explaining patterns of future species 
gain, loss and turnover? and 4) What is the potential effect of dispersal 
limitations on patterns of future species richness in Gabon? 

Methods 

Study area and species data 

Our study area ranged from 15ºN to 19ºS and from 17.5ºW to 43ºE. This 
covers 180,294 raster cells at a 5 arc-minute spatial resolution (excluding 
large water bodies) and encompasses the documented records of most 
Gabonese plant species. Gabon hosts an estimated number of 6,100-
7,500 vascular plant species (Sosef et al., 2017, Sosef et al., 2006), of 
which 5,323 have been documented to date. The collections database of 
Naturalis Biodiversity Center contains data of > 90% of all herbarium 
specimens ever made in Gabon. We selected all species recorded for 
Gabon plus a 5 degrees buffer zone (approx. 600 km). We added the 
buffer to avoid omitting species known from areas close to Gabon and 
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possibly also occurring in Gabon, although not yet collected inside Gabon, 
or species that at present do not occur in Gabon but may arrive in the 
future as result of climate change. Data was taken at species level and 
species only known from cultivation in Gabon were excluded. From this 
list of species we used all available herbarium specimen data present at 
Naturalis Biodiversity Center and 13 additional institutes (herbarium 
acronyms listed in Acknowledgements) with confirmed identification at 
species level and latitude/longitude data accurate to at least 5 arc-minute 
spatial resolution, resulting in 321,275 presence records. The inclusion of 
data from outside Gabon concerning species present in Gabon increases 
the number of records to train the models (van Proosdij et al., 2016b) 
and reduces the risk of modelling truncated species’ niches (Raes, 2012). 
Duplicate records from the same raster cell were removed. For records 
from locations with no climatic data, but within ten kilometres of cells with 
data, we used the average of the data of these data-containing, 
neighbouring cells. This was the case for records projected in water bodies 
or oceans due to small georeferencing errors or incompleteness of the 
layers in areas with water bodies. 

Environmental data and two training areas 

Current bioclimatic variables were obtained from the Africlim 3.0 database 
(https://webfiles.york.ac.uk/KITE/AfriClim/) and are based on 
CHIRPS precipitation and WorldClim temperature baseline data (Platts et 
al., 2015). Potential evapotranspiration ratio was computed following 
Loiselle et al. (2008) using Holdridge et al. (1971) using the CHIRPS-
based Africlim precipitation data. From the same source, we obtained 
future ensemble climate projections for 2085 for RCP 4.5 and 8.5. The 
Africlim climate projections are based on five dynamically down-scaled, 
bias-corrected regional climate models for Africa nested within ten global 
climate models. Quantitative soil data were retrieved from the 
Harmonised World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). 
As a proxy for topographic heterogeneity we used the standard deviation 
of altitude based on the 90 m SRTM altitude data 
(<http://srtm.csi.cgiar.org>) within each 5 arc-minute raster cell. All 
environmental data layers were cropped to the extent of the study area 
and, where necessary, aggregated to 5 arc-minute spatial resolution. 
From the 41 initial variables, we selected 16 uncorrelated ones using 
Spearman’s |rho|< 0.7 to avoid overfitting of models due to multi-
collinearity (Dormann et al., 2013) (Table S1, SM Script 1). 

All models were initially trained on the above defined full study area 
(hereafter ‘African training area’). Models for species with a species’ range 
size or prevalence < 0.1 or > 0.9 can show statistical artefacts, with 
prevalence defined as the fraction of raster cells where the species is 
present (McPherson et al., 2004). Species’ prevalence was estimated 
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based on a thresholded SDM (Syfert et al., 2014). Therefore, for species 
with a predicted prevalence < 0.1 in tropical Africa, we used a smaller 
training area defined as Gabon plus a 5 degrees buffer zone following the 
country borders (hereafter ‘Gabonese training area’) consisting of 18,112 
raster cells containing the same selected environmental variables as the 
African training area. None of the species had a predicted prevalence 
> 0.9. 

Species Distribution Models 

For model building, we selected MaxEnt (Phillips et al., 2006), as this 
algorithm has shown to outperform other methods using presence-only 
data (Elith et al., 2006), including ensemble models (Aguirre-Gutiérrez et 
al., 2013) and when tested with small sample sizes (Wisz et al., 2008). 
We used target-group background sampling by limiting the selection of 
pseudo-absences to raster cells where herbarium records were made 
(Phillips et al., 2009), hence applying the same geographical and 
environmental bias to the background data that is present in the specimen 
data. MaxEnt’s default settings were applied, except that we only allowed 
linear and quadratic features for all sample sizes and excluded other 
features to prevent over-parameterization of the models (Merow et al., 
2013). Binary presence/absence maps for each species were computed 
by applying the ‘ten percentile training presence’ threshold to the logistic 
MaxEnt output, which excludes 10% of the records with the lowest habitat 
suitability values (Liu et al., 2013, Merow et al., 2013). Models trained on 
either tropical Africa or Gabon were projected to the year 2085 for RCP 
4.5 and RCP 8.5 allowing extrapolation to novel future bioclimatic 
conditions. Species’ response functions to environmental variables were 
clamped at the minimum and maximum variable values in the training 
area as a Multivariate Environmental Similarity Surface (MESS) analysis 
showed anomalies of up to 19% beyond the current range of values in 
environmental variables (Fig. S1). 

Models were only accepted if two criteria were met. First, the number of 
unique training records should equal or exceed the minimum sample size 
required to generate models that are significantly better than random 
expectation. This minimum sample size increases with increasing species’ 
prevalence (van Proosdij et al., 2016b), and was identified for the 
following prevalence classes in the African training area (minimum sample 
sizes for the Gabonese training area between brackets): 7(5) for 
prevalence < 0.1, 7(8) for prevalence 0.1-0.2, 9(10) for prevalence 0.2-
0.3, 12(11) for prevalence 0.3-0.4, 12(14) for prevalence 0.4-0.5, and 
15(17) for prevalence > 0.5. Second, the model AUC value should rank 
> 95 when grouped with the 99 null models AUC values derived from a 
bias-corrected null model (Raes & ter Steege, 2007), meaning that the 
model performs significantly better than chance alone (p < 0.05). 
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Dispersal capacity 

For the vast majority of species insufficient information is available to 
estimate the species’ dispersal capacity, let alone estimates of the rare 
but important long distance dispersal events. We are aware of the 
criticism on the use of correlative species distribution models for 
predicting future species ranges, as these ignore dispersal limitations 
(Dormann et al., 2012, Zurell et al., 2016). Therefore, we modelled future 
distribution assuming either full or no dispersal, representing the most 
opportunistic and most conservative estimates of the species’ future 
ranges. Future presence/absence maps assuming no dispersal were 
computed by limiting the predicted presence localities of individual species 
to raster cells where that species was predicted to be present under both 
the current and the future climate scenario. All resulting distribution maps 
were cropped to the country borders of Gabon. 

Changes in species richness patterns  

Current and future patterns of species richness were computed by 
stacking and summing the predicted presence/absence maps of 
significant SDMs. Second, for each 5 arc-minute raster cell for both RCP 
scenarios, species gain, loss and turn-over were computed. Species gain 
is defined as the number of species that are predicted to be present in the 
future but currently absent, species loss as the number of species 
currently present but absent in the future, and percentage of species 
turnover as 100 × (loss + gain) / (current richness + gain) (Thuiller et 
al., 2005). This procedure was repeated for both RCP scenarios assuming 
no dispersal. Logically, under the no dispersal assumption, species gain is 
zero and the percentage of species turnover can be simplified as 100 × 
loss / current richness. 

Explanatory power of climate anomalies 

Climate anomalies for the two RCP scenarios for the year 2085 were 
computed by subtracting the future bioclimatic values from the current 
ones for each raster cell (Fig. S2). We assessed the correlation of 
bioclimatic anomalies with patterns of species gain, loss and turnover 
assuming either full or no dispersal. Quadratic terms of climate anomalies 
were included to account for non-linear responses to predicted climate 
change. Out of the 21 anomaly surfaces and their corresponding quadratic 
terms, we selected the following 11 uncorrelated variables based on a 
Spearman’s |rho| < 0.7 under RCP 8.5 (data not shown): mean annual 
temperature (Bio01), mean diurnal temperature range (Bio02), 
isothermality (Bio03 = mean diurnal temperature range / annual 
temperature range), temperature seasonality (Bio04, standard deviation 
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over monthly values), minimum temperature of the coldest month 
(Bio06), precipitation seasonality (Bio15, standard deviation over monthly 
values), precipitation of the driest quarter (Bio17), length of the longest 
dry season (LLDS), quadratic values of annual temperature range 
(Bio07^2), quadratic values of the number of dry months (DM^2), and 
quadratic values of the annual moisture index (MI^2). Correlations 
between anomalies and their quadratic terms for RCP 4.5 slightly differed 
from those for RCP 8.5, but for reasons of consistency we used the same 
selection of variables. 

By their nature, biogeographic patterns are spatially auto-correlated, 
meaning that values of variables are not independent, as values at 
locations nearby are more similar than those at distant locations (‘first 
law of geography’) (Tobler, 1970). The presence of residual spatial 
autocorrelation (RSA) between predictions and data violates the 
assumption of statistical independence of observations and inflates type I 
errors (Dormann et al., 2007). Although the results of spatial regression 
analyses are not seriously affected by the presence of short-distance 
spatial autocorrelation (Hawkins et al., 2007), to avoid such, we 
accounted for spatial dependency in our correlation analyses by including 
the nine terms of the third order polynomial trend-surface regression 
equation of latitude and longitude (Borcard et al., 1992). 

We first modelled future species gain, loss and turnover as a function of 
climate anomalies (listed in Table 2) using a forward-backward stepwise 
multiple regression by applying the lm function of the R-library stats (R 
Core Team, 2016) and the stepAIC function of the R-library MASS 
(Venables & Ripley, 2002). Final regression models were computed by 
omitting non-significant variables. The residuals were tested for spatial 
autocorrelation (Rangel et al., 2010) by building spatial autoregressive 
(SAR) lag models that compute the Moran’s I value as a function of the 
lag distance. For this, we applied the lagsarlm function of the R-library 
spdep (Bivand & Piras, 2015) to the regression models computed above 
and explanatory variables using lag distances from 0 to 300 km. Secondly, 
we quantified the relative explanatory power of each individual climate 
anomaly to species gain, loss and turnover by applying the calc.relimp 
function of the R-library relaimpo (Gromping, 2006) to the computed 
regression models. All analyses were run in R (R Core Team, 2016), using 
the script provided as SM Script 2. 

Results 
We modelled the distribution of the 8,684 plant species, of which 5,323 
have at least one occurrence in Gabon while the remaining 3,361 non-
Gabonese species were recorded in the five degrees buffer zone. A total 
of 321,275 herbarium specimen records were used for model building. For 
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5,095 species, the number of records to train the model equals or exceeds 
the required minimum number of records. Of these species, the SDMs of 
2,377 species, trained on 101,949 records, performed significantly better 
than null models. Out of the 2,377 species, 2,080 species are predicted 
present in Gabon today. The remaining 297 species are predicted present 
in the buffer zone, of which 57 are predicted to shift their ranges to within 
Gabon under future climate scenarios. These 2,137 Gabonese species 
(2,080 + 57) include nine Lycopodiophyta (club and spike mosses), 67 
Pteridophyta (ferns), two Pinophyta (gymnosperms), and 2,059 
Magnoliophyta (angiosperms) (listed in Table S2, maps with predicted 
current and future distributions available via [DRYAD insert link]). The 
SDMs of 1,271 of these 2,137 species were trained on the Gabonese 
training area as their initial models trained on tropical Africa resulted in a 
predicted species prevalence < 0.1. Of the final models trained on the 
Gabonese training area, 645 had a predicted prevalence of < 0.1, which 
we regard as acceptable given the scope of this study. 

Changes in species richness 

Assuming full dispersal, the total number of species predicted present in 
Gabon by 2085 decreased for both RCP scenarios. The loss of species is 
higher than the gain (arrival of species already present in the 5 degrees 
buffer zone but currently not recorded from Gabon itself; Table 1). In 
contrast, the predicted mean number of species in a raster cell increases 
from 796 to 866 by 2085 under RCP 8.5, whereas the maximum number 
decreased from 1,311 to 1,240. Under RCP 4.5, predicted mean richness 
is 869 and predicted maximum richness is 1,222 species. However, in the 
absence of dispersal, under RCP 8.5 the mean and maximum species 
numbers per raster cell decrease to 619 and 1,075 respectively (689 and 
1,117 for RCP 4.5). 

 

Table 1: The number of species predicted present in Gabon for 2085 
under representative concentration pathways 4.5 and 8.5, assuming 
either full or no dispersal. Percentages of species gained or lost are given 
between brackets. 

Climate scenario Full dispersal No dispersal 
Present 2,080 2,080 
2085 RCP 4.5 2,006 (+2.1% / -5.7%) 1,948 (-6.3%) 
2085 RCP 8.5 1,955 (+2.7% / -8.8%) 1,878 (-9.7%) 
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Changes in species richness patterns  

The current pattern of predicted plant species richness in Gabon is 
presented in Fig. 1b. In general, Gabonese mountains, as well as the area 
around Libreville are more species-rich compared to other lowland areas 
with the Crystal, Doudou and Pelé Mountains and the north-western part 
of the Chaillu Massif being particularly species-rich (see Fig. 1a). Areas in 
the north-east, as well as several coastal and inland savannahs in the 
South-West contain the lowest numbers of species. 

 

 

Figure 1: Map of Gabon showing altitude (a) and current plant 
species richness (b). Altitude (Worldclim data) is shown in meters 
(Hijmans et al., 2005) and the following places are marked by red stars 
and mountains ranges indicated by red polygons: Libreville, the capital of 
Gabon (LBV), Coco Beach (COB), Crystal Mountains (CRM), Chaillu Massif 
(CHM), Doudou Mountains (DOM), Pelé Mountains (PEM) and Mabanda 
Mountains (MAM). Plant species richness (b) is based on stacked SDMs of 
2,080 species. 

 

By 2085 under RCP 8.5 and assuming full dispersal, species richness in 
Gabon is predicted to have increased in the Central-North, in the Doudou, 
Pelé and Mabanda mountains, as well as in the coastal and inland 
savannahs bordering the Doudou and Pelé Mountains (Fig. 2b,d,f). In 
contrast, species richness is predicted to have decreased in the Crystal 
Mountains and in the area around Libreville, resulting from a much larger 
loss of species which is only partially compensated by the gain of other 
species (Fig. 2d,f,h). Species loss is also high in the north-western part of 
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Figure 2 (this and previous page): Patterns of species richness 
(a&b), change in species richness (c&d), species gain (e&f), loss 
(g&h) and turnover (in %) (i&j) in Gabon for 2085 under the 
representative concentration pathways 4.5 (a,c,e,g,i) and 8.5 (b,d,f,h,j) 
assuming full dispersal. 

 

the Chaillu Massif, in the Doudou and Pelé mountains and around Coco 
Beach in the far North-West. In concert, these gains and losses of species 
result in levels of species turnover as high as 75% in the north of Gabon, 
in the Chaillu Massif and in the coastal and inland savannahs in the South-
West (Fig. 2j). 
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By 2085 under RCP 4.5 and assuming full dispersal, patterns of species 
richness, change of species richness, as well as species gain, loss and 
turnover are similar, although the values of species gain, loss and 
turnover are lower than for the RCP 8.5 scenario (Fig. 2c,e,g,i). For the 
RCP 4.5 scenario, values of species richness are intermediate between 
those of RCP 8.5 and the current situation (Fig. 2a). 

 

 

Figure 3: Patterns of species richness (a,b) and turnover (in %) 
(c&d) in Gabon for 2085 under the representative concentration 
pathways 4.5 (a,c) and 8.5 (b,d) assuming no dispersal. 
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Effect of dispersal limitations 

The effect of dispersal limitations on species richness patterns is visualised 
by the patterns of species richness and turnover assuming no dispersal 
for 2085 under RCP 4.5 and 8.5 (Fig. 3). Obviously, future species 
richness is generally lower in the situation of no dispersal compared to 
the situation of full dispersal, but species-poor areas show greater relative 
decrease of richness than species-rich areas. By 2085 under RCP 8.5, 
species richness of the most species-poor areas is predicted to have 
decreased with 46% and richness of the most species-rich areas with 
18%. The absence of gained species in the case of no dispersal results in 
overall lower turnover values, particularly in the south-western coastal 
areas. Some areas are more affected by dispersal limitations than others. 
Whereas species richness in the Central-North, as well as the coastal and 
inland savannahs bordering the Doudou and Pelé Mountains is predicted 
to increase in the case of full dispersal by 2085 under RCP 8.5, these 
areas face a strong decrease in species richness in the absence of 
dispersal. Here too, for RCP 4.5, patterns of species richness and turnover 
are similar to the RCP 8.5 scenario (Fig. 3a,c). As expected, in the 
absence of dispersal, the future total number of species predicted present 
in Gabon is lower compared to the situation of full dispersal (Table 1). 

Correlation with environmental variables 

Spatial autocorrelation is present for the first 100-140 km in the residuals 
of the final stepwise multiple regression models of species gain, loss and 
turnover for the year 2085 under RCP 8.5 (Fig. S3). 

Some climate anomalies show a strong correlation with predicted patterns 
of species gain, loss and turnover for the year 2085 under RCP 8.5 (Table 
2). Species gain is related to increased quadratic values of annual 
temperature range (Table 2 – Bio07^2, Radj.2 = 0.19). Species loss is best 
explained by increased precipitation in the driest quarter (Table 2 – Bio17, 
Radj.2 = 0.32). Species turnover under the assumption of full dispersal is 
correlated with increased quadratic values of annual temperature range 
(Table 2 – Bio07^2, Radj.2 = 0.17), and with increased mean diurnal 
temperature range (Table 2 – Bio02, Radj.2 = 0.09). In the absence of 
dispersal, species turnover is most strongly correlated with increased 
mean diurnal temperature range (Table 2 – Bio02, Radj.2 = 0.14) and 
increased mean annual temperature (Table 2 – Bio01, Radj.2 = 0.11). 

Correlations with anomalies under the RCP 4.5 scenario are different and 
generally weaker than under the RCP 8.5 scenario (Table S3). Species 
gain is weakly correlated with decreased precipitation in the driest quarter 
(Table S3 – Bio17, Radj.2 = 0.07) and with increased quadratic values of 
annual temperature range (Table S3 – Bio07^2, Radj.2 = 0.06). Species 
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loss is most strongly correlated with increased precipitation in the driest 
quarter (Table S3 – Bio17, Radj.2 = 0.27) and weakly with decreased 
isothermality (Table S3 – Bio03, Radj.2 = 0.08). Species turnover under 
full dispersal is weakly correlated with increased quadratic values of 
annual temperature range (Table S3 – Bio07^2, Radj.2 = 0.08) and with 
decreased isothermality (Table S3 – Bio03, Radj.2 = 0.07). Species 
turnover assuming no dispersal is most strongly correlated with decreased 
isothermality (Table S3 – Bio03, Radj.2 = 0.13) and with increased mean 
diurnal temperature range (Table S3 – Bio02, Radj.2 = 0.09). 

Discussion 

Species gain, loss and turnover driven by bioclimatic 
anomalies 

Using the most complete collection record data set of Gabonese vascular 
plants species together with the latest regional climate models predicting 
future bioclimatic conditions, we show that climate change is predicted to 
have major consequences for the pattern of species richness (Fig. 2,3), 
as well as for the total number of plant species present occurring in Gabon 
(Table 1). Using climate change anomalies we quantify the contribution 
of individual climate variables in explaining the predicted changes in 
species richness (Table 2). 

Future species gain under RCP 8.5 is most strongly correlated with 
increased quadratic values of the annual temperature range (Bio07^2), 
which captures two different processes that were not captured by 
anomalies in the annual temperature range itself. Both in areas where the 
future values of Bio07 decrease (South-West) and increase (North-East, 
Fig. S2 – Bio07), captured by the quadratic term of Bio07 are predicted 
to gain species under future conditions. According to our predictions under 
RCP 8.5, species colonize areas with an annual temperature range that is 
currently either too small, which is the case in the lowland rainforests in 
north-eastern Gabon, or that is currently too large, which is the case in 
the savannahs in south-western Gabon. Species expanding their ranges 
in these areas predominantly inhabit semi-wet to wet forests with small 
annual temperature ranges. These findings underline the difficulty of 
modelling general regional responses to climate change as species each 
have their own ecological niche and respond differently to changing 
climatic conditions. 

Species loss appears to be mainly driven by increased precipitation in the 
driest quarter (Bio17). Although the actual maximum increase in 
precipitation for the driest quarter of 212 mm (Fig. S2 – Bio17) is small 
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compared to the over 3,000 mm of annual precipitation (Fig. S2 – Bio12), 
this is still a 3-4-fold increase in the dry season. Consequently, the 
intensity of the dry season is strongly reduced resulting in a loss of species 
that are adapted to those conditions. 

Species turnover under the assumption of full dispersal is dominated by 
species gain, which explains the correlation with increased values of the 
quadratic term of annual temperature range (Bio07^2), followed by 
increased mean diurnal temperature range (Bio02). In the absence of 
dispersal, species turnover is based on species loss and appears to be 
driven by increased diurnal temperature range (Table 2 – Bio02) and 
increased mean annual temperature (Bio01). The predicted high levels of 
turnover, of up to 75% for RCP 8.5 assuming full dispersal, are reason for 
concern as these result in future plant communities characterized by novel 
species compositions for which the effect on novel biotic interactions are 
unknown. Although the highest levels of turnover are predicted for 
relatively species-poor areas, such effects could be detrimental to the 
flora of these regions. This is especially the case for the coastal savannahs 
in south-western Gabon that contain disproportionally high numbers of 
endemic species (Harris et al., 2012, van Proosdij et al., 2016a, Wieringa 
& Sosef, 2011). For the local people this implies that they will lose a major 
part of their traditionally used natural products, hence part of their 
cultural heritage. 

Only few other studies address correlations of climate anomalies with 
patterns of species gain, loss and turnover. In Western Australia, species 
loss is correlated with decreasing precipitation (Fitzpatrick et al., 2008), 
and in Yunnan, China it is correlated with increasing temperature 
variability and decreasing precipitation during the dry season (Zhang et 
al., 2014). For Gabon, we conclude that, species loss is mainly related to 
precipitation anomalies and to a lesser extent to future changes in 
temperature. 

Effects of climate change on Gabonese plant species 

In Gabon, the predicted increase in precipitation of up to 500 mm (Fig. 
S2 – Bio12) is in contrast with other major tropical rainforest regions. The 
Amazon is predicted to experience warmer and drier conditions, 
particularly characterized by longer and more intense periods of water 
deficit (Zelazowski et al., 2011), although some models predict regional 
wetter conditions (Feeley et al., 2012). West African rainforests are 
thought to have been adapted to regular water deficits during their long-
term exposure to droughts (Asefi-Najafabady & Saatchi, 2013) and have 
experienced a continuous drying trend starting in the 1970s. The same 
applies to northern Congolese rainforests, for which a widespread decline 
in greenness over the past decade was documented (Zhou et al., 2014). 
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West Central Africa, including Gabon, experienced regular water deficits 
throughout their history too, but in contrast, it has faced relatively wetter 
conditions in the past 15 years (Asefi-Najafabady & Saatchi, 2013) and 
the bioclimatic anomalies we used here indicate a continuation of this 
warmer and wetter climate (Platts et al., 2015). 

The effect of global climate change on the predicted number of species 
present in Gabon by 2085 is clearly negative: species numbers decrease 
in both climate scenarios ranging from over 5% under RCP 4.5 and full 
dispersal to almost 10% under RCP 8.5 assuming no dispersal. In 
contrast, our results show a predicted increase in average species 
richness per raster cell, but only under the condition that species will be 
able to reach the newly suitable habitats in time. 

Effect of dispersal limitations 

The substantial difference in patterns of species richness in Gabon 
between full vs. no dispersal illustrates the additional threat dispersal 
limitations pose to the survival of species under climate change. In the 
absence of dispersal, the higher number of species predicted to go extinct 
in Gabon and lacking arrival of foreign species in concert, lead to a clear 
decrease in species richness. These results are in contrast to the findings 
of Zhang et al. (2014), who found almost identical results for models with 
or without dispersal. This can, at least partly, be explained by Zhang et 
al.’s selection of species based on the extent of the study area. Zhang et 
al. (2014) included only species recorded from the Yunnan province and 
excluded species known from neighbouring provinces and countries, 
resulting in an underestimation of future species richness in the presence 
of dispersal. In contrast, in our study we included all Gabonese species as 
well as those recorded from the 5 degrees buffer zone. Although many 
species will have limited dispersal capacity and therefore might not be 
able to reach Gabon, ignoring possible future immigrants from 
neighbouring areas leads to erroneous conclusions. Fitzpatrick et al. 
(2008) found little effect of dispersal limitations in the future distribution 
of 100 endemic Australian Banksia species. However, these species 
mostly face a range collapse, thus minimizing the effect of dispersal 
limitations on future distributions. Here, we assessed two extreme 
situations, one where species have full dispersal capacity and hence fill 
their entire potential range in contrast to one with no dispersal where the 
future spatial distribution is limited to those areas that are suitable both 
now and in the future. The truth will lie somewhere in between, where 
some species are poor dispersers and others will easily reach any potential 
area in Gabon or even Africa. The simple lack of data on the dispersal 
capacity of each species hampers more refined analyses. For those 
species with limited dispersal capacity that are predicted to go extinct, 
facilitated migration might offer opportunities for survival. 
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Caveats and considerations 

Climate change drives modifications to the distribution of each individual 
species and can only partly explain changes in patterns of species 
richness. The lack of a collective response of all species in a specific 
community is here best illustrated by the low correlation of species gain 
with climate anomalies. As species respond individually to climate change 
and climate change creates non-analogue climate-soil combinations, in 
concert this results in non-analogue future plant communities. Therefore, 
to assess the effect of global climate change on diversity patterns, we 
advocate to assess the response of individual species like we did here. 

Some aspects not included in our analyses are expected to further 
increase the numbers of species lost from Gabon and further reduce the 
range sizes of many species. First of all, the SDMs of 75% of the species 
were not included because they did not pass the null model test or were 
trained on too few records. As most of these species are rare and narrow-
ranged, and hence more vulnerable to change, we expect that the actual 
percentage of species disappearing in Gabon due to climate change will 
be (much) higher than the 10% computed in our analyses. The richness 
pattern of narrow-ranged species differs from that of widespread species, 
with the former concentrated in centres of plant species richness (van 
Proosdij et al., 2016a). Here, we show that these species-rich areas are 
predicted to face the largest species losses. Second, we ignored biotic 
interactions such as competition and pollination. In reality, limited 
dispersal capacity and interspecific differences in dispersal capacity 
coupled with different competitive strengths and the interaction with 
pollinators will result in higher extinction rates than the ones we modelled. 
Notably, species that have a narrow niche are slow dispersers or weak 
competitors (Urban et al., 2012). Consequently, our predicted numbers 
of species present in Gabon under different future climate scenarios are 
arguably too optimistic and species loss will be (much) higher in many 
areas. In addition, if loss of habitat is taken into account, species loss will 
be even stronger, particularly on a local scale (Newbold et al., 2015). And 
finally, reduced geneflow and fragmentation of populations may cause 
these to drop below a viable minimum size resulting in species entering 
an extinction vortex (Bellard et al., 2012). 

On a positive side, microrefugia (small favourable pockets caused by 
habitat heterogeneity, Leal 2001) are often not visible at the spatial scale 
of the analyses but have prevented species from extinction in the past 
and might do so too in the future (Gillingham et al., 2012, Hylander et 
al., 2015). For Gabon, the presence of microrefugia outside the main 
rainforest refugia has been postulated for Gabonese trees (Leal, 2001, 
Wieringa, 1999) and for Begonia species (Sosef, 1996). Such microrefugia 
were often gallery forests or otherwise wetter areas; the future 
microrefugia are of a different nature and need to be intrinsically drier 
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areas. Possibly inselbergs, commonly surrounded by shallow soils, may 
play a role here. We advocate for additional research on the location and 
stability of microrefugia under climate change, particularly in relation to 
the current network of protected areas. 
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The past three centuries of exploration of life on Earth produced a vast 
amount of data on the distribution of species. These data are captured in 
millions of natural history specimens curated in herbaria and musea. In 
the past two decades, data on such collections have become digitally 
available at an ever increasing speed (Blagoderov et al., 2012, Graham 
et al., 2004). This development coupled with novel methods and an 
exponential increase in computational power offered opportunities never 
experienced before to generate spatial distribution models for species, to 
infer patterns of biodiversity using these models, and to assess the driving 
forces of these patterns (Franklin, 2009, Lomolino et al., 2010). A better 
understanding of these biodiversity patterns and their causes is crucial in 
setting priorities for conservation and to efficiently spend the limited 
resources available in the current era of global change (Boitani et al., 
2011, Meyer et al., 2016, Newbold, 2010). 

In the next paragraphs, I place the results presented in this thesis in a 
broader context. First, I reflect on the contributions I made to the pipeline 
of methods to generate species distribution models (SDMs) and infer 
diversity patterns from them. In addition, I highlight possible lines of 
future research for which the novel methods presented in this thesis offer 
opportunities. Secondly, I reflect on the factors that shape current and 
future patterns of botanical diversity in Gabon, Central Africa, as well as 
the factors that influence our knowledge of these patterns and causes. I 
discuss how the results presented in this thesis contribute to a better 
understanding of Central African botanical diversity patterns and will aid 
in setting priorities in conservation. Thirdly, I comment on the future of 
African rainforests and plants in general and those of Gabon in particular 
with respect to the findings of this thesis and discuss relevant 
conservation aspects. I conclude by commenting on the applicability of 
SDMs in a wider scientific and societal context. 

A pipeline for generating SDMs 
In chapter 2 and 3 of this thesis, I contribute to the further improvement 
of the pipeline for generating accurate SDMs and inferring diversity 
patterns based on SDMs (Fig. 2, Chapter 1). I address two methodological 
matters addressed below using simulated species, following the virtual 
ecologist approach (Zurell et al., 2010). The use of simulated species 
offers opportunities to quantify the effects of these and other aspects in 
a fully controlled environment, both individually as well as in concert 
(Miller, 2014, Saupe et al., 2012). The novel method I used to simulate 
species in either a virtual environment or in a selected study area, here 
Central Africa, offers opportunities to quantitatively assess matters of the 
pipeline mentioned in the Introduction and addressed in more detail 
below. 
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I – Sample size 

In chapter 2, I quantify the effect of sample size on model accuracy. 
Sample size has been shown to have a substantial effect on model 
accuracy (Hernandez et al., 2006, Wisz et al., 2008), although so far, this 
has only been assessed by comparing performance of models based on 
subsets of species occurrence records of decreasing sizes. Still, most 
researchers working with SDMs simply ignore the effect of sample size on 
model accuracy, although some apply a minimum sample size for all 
species to be modelled, often arbitrarily chosen without further 
explanation or valorisation. Using simulated species, I show that the 
minimum sample size required to generate accurate SDMs differs for 
species of different prevalence or range size classes. As could be 
expected, more widespread species require more occurrence records. 
Thus, ignoring the reported differences in data requirements for 
widespread and narrow-ranged species by applying a uniform minimum 
sample size will often lead to erroneous acceptance of SDMs for 
widespread species and erroneous rejection of SDMs of narrow-ranged 
species. As the required minimum number of records also depends on the 
specific study area, I present a novel method using simulated species that 
enables the identification of this minimum sample size for species of every 
possible prevalence class and for every possible study area (chapter 2). 
One could argue that testing whether an SDM deviates significantly from 
random chance by applying a null model test (Raes & ter Steege, 2007), 
qualifies the application of a range size dependent minimum sample size 
as redundant. However, in chapter 4 and 5 I show that these two criteria 
are not mutually exclusive, underlining the importance of applying range 
size dependent minimum sample sizes. Other factors addressed in more 
detail below are likely to influence the minimum sample size too. 

II – Range size 

Range size or prevalence is an important feature of species. An accurate 
estimation of this parameter is crucial for conservation, biogeographical 
and macroecological research (Gaston, 2003). In addition, as I show in 
chapter 2, the prevalence of species also determines the minimum 
number of records required to generate accurate SDMs. In chapter 3, I 
present a novel method to estimate the range size or prevalence of a 
species. Using simulated species, I quantitatively evaluate the accuracy 
of this new method as well as that of ten existing methods. I show that 
traditional, spatial methods to estimate range sizes are clearly 
outperformed by estimators operating in parameter space. The novel 
method presented in chapter 3 produces the most accurate estimations. 
These results challenge the current IUCN recommendations for methods 
to estimate the Extent of Occurrence (EOO) and Area of Occupancy (AOO) 
of species for the purpose of Red List assessments (Bachman et al., 2011, 
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IUCN, 2014). I advocate to reconsider the use of these methods and 
instead apply the novel method presented in chapter 3 to estimate the 
AOO and to estimate the EOO from thresholded SDMs. One aspect limiting 
the accuracy of each of the assessed methods is the spatial occurrence or 
clustering of individuals within a raster cell. At microscale, the occurrence 
of species inside an area obviously differs, with some species being 
clustered in small pockets only, whereas others are scattered over the 
entire raster cell. This scale-dependent, time-dependent, and species-
specific difference might hamper the effective use of indicators of species 
range size and warrants additional assessments. 

III – Spatial resolution 

Spatial resolution strongly influences the accuracy of SDMs (Guisan & 
Thuiller, 2005) and its impact appears to be driven by contradicting 
factors. The use of larger cell sizes results in more accurate models as in 
smaller cells non-climatic factors such as biotic interactions and stochastic 
events play an important role (Kadmon et al., 2003). In addition, not all 
species for which the area is suitable can actually be continuously present 
in each particular cell due to the carrying capacity of a community or area-
dependence of species richness (Guisan & Rahbek, 2011). On the other 
hand, loss of information on e.g. habitat heterogeneity when using larger 
cells reduces model accuracy at coarser spatial resolution (Pearson et al., 
2004, Rengstorf et al., 2012). A recent study assessed the effect of spatial 
scale on the area predicted suitable for 52 Californian plant species under 
climate change and reported only modest agreement between the results 
under different spatial resolutions (Franklin et al., 2013). A possible future 
line of research is a quantitative assessment of the impact of spatial 
resolution using multiple species for which the true distribution is known. 
The use of simulated species will enable such a quantification of the effect 
of spatial resolution on model accuracy in the following way. First, species 
are simulated at the highest possible spatial resolution. Then, the thus 
defined occurrences are aggregated in a series of lower spatial 
resolutions. SDMs at each respective spatial resolution are then generated 
from records sampled from that spatial resolution. By comparing the 
modelled distribution with the defined distribution, the effect of spatial 
resolution on model accuracy is quantified. 

IV – Collecting bias 

Bias in species occurrence data is an often mentioned, but rarely 
quantified matter. It is well-known that most species occurrence data 
from herbaria and other natural history museum collections are biased 
towards specific taxa, periods in history, countries, and easy accessible 
areas such as near roads, cities and rivers, as well as in national parks 
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(Beck et al., 2014, Reddy & Davalos, 2003). These biases may well lead 
to such records incompletely and inaccurately representing the niche of 
the species, which negatively affects the accuracy of SDMs (Feeley et al., 
2016, Hortal et al., 2008). Collecting bias can be reduced through spatial 
filtering, or preferably by ecological filtering of the species occurrence 
data (Kramer-Schadt et al., 2013, Varela et al., 2014). When sample size 
does not allow filtering, the same bias can be applied to the background 
data (Syfert et al., 2013). Some studies assessed the effect of bias and 
methods to compensate for this bias, but these studies are based on few 
individual species only (see e.g. Fourcade et al., 2014). Unfortunately, an 
exact quantification of the bias as well as of the bias reduction by these 
methods based on an assessment of a large number of species is still 
lacking. Future research could address this matter, here again, by using 
simulated species. By using simulated species and bias files based on 
historical sampling localities, the effects of the taxonomic, temporal and 
spatial bias on model accuracy can be quantified for every possible study 
area and taxonomic group and similarly, the effect of data filtering, target-
group background sampling, or other methods to correct for bias can be 
quantified. In addition, the effect of each type of collecting bias on the 
required minimum sample size as well as on the accuracy of estimated of 
EOO and AOO can be quantified. 

V – Spatial errors 

In addition to bias, the effect of spatial errors in species occurrence data 
on model accuracy warrants a quantitative assessment. Species records 
are known to contain spatial errors due to i.a. inaccuracy of the 
measurement in the field, rounding of coordinates, as well as errors made 
by the retrospective interpretation (georeferencing) or operating of often 
imprecise label information (Graham et al., 2004, Newbold, 2010, 
Wieczorek et al., 2004). Spatial errors in species records have been found 
to substantially affect estimations of species traits as well as species 
distributions (Feeley & Silman, 2010b), particularly when models are 
transferred in time and space (Gould et al., 2014). However, modelling 
algorithms vary in their sensitivity to such errors (Graham et al., 2008). 
High-performing models can be generated from data that contain minor 
spatial errors (Mitchell et al., 2017), particularly if occurrence data 
originate from areas with high spatial autocorrelation in the environmental 
variables (Graham et al., 2008, Naimi et al., 2011). Where these studies 
used data of real species that were degraded by applying additional spatial 
error, Velasquez Tibata et al., (2015) and Naimi et al., (2011) used 
simulated species in a simplified virtual landscape. Nonetheless, a 
quantification of the effect of spatial error on model accuracy in a real 
study area for large groups of species for which the true distribution in 
known, is still lacking. The novel method to simulate species presented in 
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chapter 2 offers opportunities for such quantitative assessments. First, 
spatial errors of different sizes are applied to records sampled from 
simulated species. Then, differences in model accuracy due to these 
spatial errors are quantified by comparing the modelled spatial 
distributions based on either the original or the manipulated records with 
the defined distribution. Finally, the additional effect of spatial errors on 
the minimum number of records required for generating accurate SDMs 
as well as on the accuracy of estimations of EOO and AOO can be 
quantified.  

VI – Dispersal limitations 

Species distribution models are built on the assumption that species are 
in equilibrium with their environment, thus filling their entire niche and 
entire range. However, this is often not the case due to biotic interactions 
(competition, pollination, food availability, etc.) or dispersal (migratory) 
limitations including historical constraints. This concept is conceptualized 
by the BAM diagram (Biotic, Abiotic and Migratory factors) of Soberón et 
Peterson (2005). The effect of dispersal limitations on range filling are 
e.g. illustrated by data on European tree species facing a post glacial 
dispersal lag (Svenning & Skov, 2004). Model performance has been 
shown to be strongly affected by dispersal limitations (Saupe et al., 
2012), but can be improved significantly by incorporating distance 
constraints in the model (Allouche et al., 2008). Alternatively, the study 
area can be defined so that it represents the area that is actually 
accessible for the modelled species (M in the BAM diagram) (Anderson & 
Raza, 2010, Barve et al., 2011). Related to the above mentioned 
equilibrium assumption, as well as the matter of collecting bias, is the 
assumption that species occurrence data represent the entire niche of the 
species. This assumption is often violated, when species occurrence data 
are absent from specific areas due to e.g. incomplete range fill by the 
species, inaccessibility of areas for researchers, or unavailability of data 
due to incomplete digitization of specimen data from herbaria and natural 
history museum collections. Models trained on such data sets not 
representing the species’ entire niche can be biased (Raes, 2012). The 
use of simulated species enables a quantitative assessment of the effect 
of incomplete niche sampling and dispersal limitations on model accuracy. 
This can be done e.g. by defining simulated species under conditions that 
prevailed during the last glacial maximum (LGM, 18,000 year BP) as well 
as under current climatic conditions and applying dispersal limitations of 
different magnitudes from localities defined suitable in both current and 
LGM climatic conditions. The effect of dispersal limitations on niche fill and 
range fill, as well as the effect on model accuracy can then be quantified. 
In addition, the minimum number of records required for generating 
accurate SDMs (chapter 2) can be identified for species facing different 
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levels of dispersal limitations. Recently developed R packages such as 
KISSMig (Nobis & Normand, 2014) or MIGCLIM (Engler & Guisan, 2009, 
Engler et al., 2012) apply iterative migration functions that mimic range 
filling through time. However, the lack of data on the dispersal kernel of 
most species including the rare, but important events of long distance 
dispersal strongly limits the applicability of these methods. 

VII – Stochastic effects 

Whether a species is actually present in a raster cell for which a high 
habitat suitability is predicted, depends i.a. on dispersal limitations and 
biotic interactions, but also on temporal and stochastic effects. Temporal 
effects are best illustrated by the spatial distribution of widespread species 
with a wide ecological niche but low abundance (Rabinowitz, 1981), for 
which the actual presence, particularly for long-living species, should be 
considered over a longer temporal window. Similarly, the gradual 
response of many species to the suitability of habitats is ignored when a 
threshold is applied to SDMs to convert gradual habitat suitability values 
into discrete presence/absence values (Meynard & Kaplan, 2012). The 
influence of such stochastic effects on the minimum number of records 
required to generate accurate SDMs as well as on the accuracy of EOO 
and AOO estimations is unknown, but assumed to be substantial (Syfert 
et al., 2014). A quantification of these effects can be obtained by 
repeating the analyses of chapters 2 and 3 with the inclusion of different 
levels of stochasticity in the defined presences and absences of the 
simulated species. 

VIII – Inferring patterns of species richness 

In this thesis I inferred patterns of species richness by superimposing 
(stacking) SDMs to which a threshold is applied and then summing the 
number of predicted presences in each raster cell (chapter 4 & 5). 
Notwithstanding its wide application to different taxonomic groups and 
study areas at various spatial resolution, this method (S-SDMs) has been 
criticized for consistently overestimating species richness (Calabrese et 
al., 2014, D'Amen et al., 2015a, Mateo et al., 2012), although D’Amen et 
al. (2015b) did not report overpredictions. It should be noted though that 
overprediction is relative to the number of species for which significant 
SDMs could be generated, as often for many species insufficient records 
are available or models do not perform significantly better than random 
chance (chapter 4 and 5). Such overprediction is suggested to be caused 
by dispersal limitations, biotic interactions and constraints related to the 
carrying capacity and dynamics of the community (Guisan & Rahbek, 
2011), by a methodological bias resulting from the selection of threshold 
(Calabrese et al., 2014), or by overprediction of individual species’ 
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distributions related to low quality of SDMs (D'Amen et al., 2015b). More 
realistic values of species richness are said to be computed by stacking 
SDMs and summing the unthresholded habitat suitability values (P-
SDMs), instead of binary presence/absence scores (Aranda & Lobo, 2011, 
Dubuis et al., 2011), although at the cost of not knowing the identity of 
the species present in individual raster cells. However, in studies using 
well-sampled sites, P-SDMs are found to overpredict species richness at 
species-poor sites and underpredict richness at species-rich sites 
(Calabrese et al., 2014, Dubuis et al., 2011). Alternatively, species 
richness patterns can be inferred by using macroecological models (MEM) 
that model richness directly as a function of environmental factors (Gotelli 
et al., 2009). Similar to P-SDMs, MEM tend to overestimate species 
richness in species-poor sites and underestimate it for species-rich sites 
(Calabrese et al., 2014). Finally, recently developed methods integrate S-
SDMs with MEM. Species richness values based on S-SDMs are 
constrained by richness values generated through MEM, reflecting the 
effect of biotic filtering (Calabrese et al., 2014, D'Amen et al., 2015a, 
Gavish et al., 2017, Guisan & Rahbek, 2011). However, the number of 
studies verifying such predictions with observed data from well-sampled 
areas is limited and this certainly warrants more assessments (D'Amen et 
al., 2017). 

Other new methodological extensions of the SDM concept include dynamic 
SDMs that incorporate temporal variation in the distribution of species 
(Merow et al., 2011), joint SDMs that generate distribution models for 
multiple species simultaneously to more accurately estimate the 
occupancy or density of rare species (Dorazio & Royle, 2005, Thorson et 
al., 2015), geostatistical models that include aspects of spatial 
autocorrelation (Conn et al., 2015), and joint dynamic SDMs that account 
for all these three aspects (Thorson et al., 2016). Such joint mechanistic 
models can help to address some of the matters described above, e.g. 
species detectability, collecting bias as well as changes in species 
abundance and distribution due to climate change. However, the aspects 
assessed in this thesis address the presence or absence of species in a 
specific raster cell and not their respective abundance. When addressing 
biogeographical questions like the ones I address in this thesis, the 
identity of the species in each raster cell is crucial and hence S-SDMs are 
required. Furthermore, estimations of species richness based on S-SDMs 
are strongly correlated to observed species richness (Calabrese et al., 
2014), justifying the use of S-SDMs to infer patterns of species richness, 
although with the consideration that absolute richness values may or may 
not be overestimated. 
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What drives plant species richness in Central Africa? 

Gabonese patterns of plant species richness and endemism 

Using significant SDMs of over 2,000 plant species, I inferred patterns of 
botanical species richness and of weighted endemism for Gabon. These 
are largely congruent with previously published theories on botanical 
species richness patterns in Gabon, as summarized in the Introduction of 
this thesis. To the previously hypothesized centres of species richness 
located in the Crystal Mountains, western parts of the Chaillu Massif and 
the Doudou Mountains (Maley, 1996), as well as the wider vicinity of 
Libreville, I add the Pelé and Mabanda Mountains that extend from the 
Doudou Mountains southward towards Congo-Brazzaville (chapter 4 & 5). 

Centres of weighted endemism as presented in chapter 4 are largely 
congruent with these centres of species richness and in addition confirm 
previously reported high levels of endemism for the Monda forest 
northwest of Libreville (Walters et al., 2016) as well as the wider vicinity 
of Libreville (Lachenaud et al., 2013). Centres of residual weighted 
endemism show higher levels of weighted endemism than expected based 
on the total number of species present there. These include the centres 
of species richness mentioned above. Next, the high values of residual 
weighted endemism for the Loango National Park in the coastal region 
south of one degree south latitude confirm the presence of an exceptional 
high number of species in this otherwise rather species-poor area that are 
not found elsewhere (Harris et al., 2012, Wieringa & Sosef, 2011). 

The centres of species richness and of weighted endemism presented in 
this thesis coincide well with previously hypothesized LGM forest refugia 
in the Crystal Mountains, western parts of the Chaillu Massif and Doudou 
Mountains (Maley, 1996, Pietsch & Gautam, 2013, Sosef, 1996). In order 
to further improve the understanding of Quaternary rainforest dynamics 
in Africa, studies on the location of hypothesized LGM forest refugia are 
recommended, preferably by inferring the LGM species richness pattern 
using SDMs. Unfortunately, until today, this is hampered by the lower 
accuracy of LGM climate data models in contrast to the higher accurate 
current and future climate data models such as the AFRICLIM data (Platts 
et al., 2015). 

Congruence of S-SDMs with patterns of genetic diversity 

The results of recent genetic studies offer knowledge on the localities of 
LGM forest refugia from a genetic perspective. As most plant species 
evolved before the Quaternary, variation within-species rather than 
among-species patterns can provide detailed information about Late 
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Quaternary rainforest dynamics. A large number of studies showed that 
spatial patterns of genetic diversity are correlated with patterns of species 
richness, the so-called species-gene diversity correlation (SGDC, 
(Vellend, 2003), reviewed by Vellend et al., 2014). Based on the SGDC, 
genetic diversity has been suggested as an indicator of species richness 
(Papadopoulou et al., 2011). Genetic diversity within species has been 
used to identify centres of genetic diversity (Ley et al., 2014), colonization 
routes (Tian et al., 2015), and genetic relatedness of populations and 
areas (Demenou et al., 2016). The theory of rainforest contraction into 
forest refugia during the LGM followed by expansion is supported by a 
variety of phylogeographic studies on rainforest tree species (reviewed by 
Hardy et al. 2013). The existence of such isolated forests in Gabon during 
the LGM is supported by genetic data of various tree species, e.g. 
Greenwayodendron suaveolens (Dauby et al., 2010), Santiria trimera 
(Koffi et al., 2011), and Erythrophleum species (Duminil et al., 2010). 
Similar results were found for gorillas in Central Africa (Anthony et al., 
2007, Clifford et al., 2004). Genetic discontinuities between areas with 
hypothesized LGM forest refugia have been reported for a selection of 
non-related Central African plant species (Dauby et al., 2014, Faye et al., 
2016, Hardy et al., 2013). The patterns of genetic diversity in these 
studies are largely congruent with the pattern of species richness 
presented in chapter 4 & 5. Bringing together palynological data, SDMs 
and phylogeographic studies has been recommended to identify past 
climate refugia (Gavin et al., 2014). In line with this recommendation, as 
a possible line of future research, I suggest to assess the congruence of 
genetic and floristic resemblance between hypothesized LGM forest 
refugia, e.g. by following the Relative Floristic Resemblance method of 
Wieringa & Sosef (2011). 

Contribution of narrow-ranged species to diversity 
patterns 

In this thesis, I show that narrow-ranged species contribute differently to 
patterns of species richness and weighted endemism than widespread 
species and that the former are overrepresented in species-rich areas. 
This confirms previous findings on plants for other regions (Raes et al., 
2009), as well as for e.g. birds in Sub-Saharan Africa (Jetz et al., 2004). 
However, in chapter 4, I show that it is important to clearly define what 
is meant by narrow-ranged and widespread. It might seem obvious to use 
the full range of species to define their range size or prevalence. However, 
unfortunately, too often, researchers use study areas limited by political, 
rather than natural boundaries and hence ignore large parts of species’ 
ranges. 
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The results presented here are based on SDMs of a subset of all Gabonese 
plant species, as for 75% of the species no significant SDM could be 
generated. It remains unclear how species for which no significant SDM 
could be generated (due to lack of data) contribute to the inferred 
patterns of species richness and weighted endemism. As most of these 
species have few records, the majority is expected to be narrow-ranged, 
although some will be widespread but represented by too few records. To 
overcome this problem, species of which the collecting localities are 
clustered within few raster cells at low spatial resolution could be modelled 
at a higher spatial resolution if this results in a higher number of records 
available for training the model. Alternatively, giving priority to digitize 
herbarium specimen records of these species or collect additional records 
in the field further increases the available number of records. When 
significant SDMs can be generated for all species, I expect the species 
richness gradient in Gabon to be steeper than the gradient presented in 
chapters 4 and 5. 

SDMs in chapter 4 and 5 for current climate conditions are generated 
without considering dispersal limitations, thus assuming full range fill. In 
reality, many species will not have been able to fill their entire potential 
current range. As the current centres of species richness and of weighted 
endemism are congruent with hypothesized LGM forest refugia, I expect 
the true ranges of species with limited dispersal capacity to be restricted 
towards these LGM refugia. This leads to levels of species richness outside 
the LGM forest refugia being lower than predicted in this thesis. As the 
levels of species richness inside these refugia is less affected by dispersal 
limitations, the predicted gradient in species richness and in weighted 
endemism may well be steeper than presented here. For future climate 
scenarios, the effect of dispersal limitations has been addressed in chapter 
5. 

African tropical rainforest diversity: the odd man out 

The question what drives plant species richness in African rainforests 
takes a central position in macroecological and conservation research. 
Although the latitudinal diversity gradient (Rosenzweig, 1995), driven 
primarily by higher energy levels in the Tropics (Brown, 2014), explains 
general higher levels of species richness in the Tropics, it does not explain 
the relative lower richness of African rainforests compared to Neotropical 
and Asian ones. Africa’s position as “odd man out” is still not fully 
understood (Parmentier et al., 2007). Couvreur (2015) reviewed this topic 
and highlighted some important but often neglected aspects, including the 
need to correct for area as well as to include all species instead of only 
trees with DBH higher than 10 cm. Recently, the role of megafauna on 
species richness in African rainforests has been addressed, but no clear 
picture has yet emerged (Terborgh et al., 2016a, Terborgh et al., 2016b). 
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Some other aspects may play a role too in explaining the lower species 
richness of African rainforests. The African rainforest region is much 
smaller in size and much more fragmented than the larger and continuous 
Amazonian rain forest. These differences in size and shape may well 
contribute to the lower species richness of African rainforests. 

When comparing species richness of Upper Guinean, Lower Guinean and 
Congolian rainforests, a few aspects may account for the higher level of 
species richness of Lower Guinean rainforest. First, Lower Guinean 
rainforests share many endemic species with either Congolian or Upper 
Guinean rainforest and hence the geographical central position of the 
Lower Guinean rainforest region may in part explain its higher species 
richness. Second, the Upper Guinean rainforest region is smaller than 
either the Lower Guinean or the Congolian rainforest region. The smaller 
area of Upper Guinean rainforest region may host fewer species. Thirdly, 
the elongated shape of the Upper Guinean rainforest region may 
contribute to its lower species richness compared to the Lower Guinean 
and Congolian rainforests regions that each have a more compact shape. 
Finally, the East-West orientation of the Upper Guinean coastline 
hampered southwards migration of species during arid glacial periods and 
thus may well have led to increased levels of extinction, possibly 
explaining the lower species richness of Upper Guinean rainforests. 
Phylogenetic diversity assessments of each of these rainforest regions 
may address potential differences in extinction levels between the African 
rainforests regions. 

To this debate on the relative species-poorness of African rainforests and 
differences of species richness between individual African rainforest 
regions, I contribute by addressing the potential role of niche size of 
individual species and of the total available niche space in each rainforest 
region. A potentially important difference in climatic conditions between 
the tropical rainforests of the three continents is that Africa is largely 
lacking the mega-wet conditions that are widely present in the Neotropics 
and South-East Asia (Malhi & Wright, 2004). On the one hand, for areas 
of medium precipitation and temperature values (1,500-2,500 mm and 
22-25 °C), Parmentier et al. (2007) observed levels of alpha diversity in 
African rainforests that are similar or even higher than those for 
Amazonian rainforests. However, on the other hand, differences in the 
total available niche space in each rainforest region may explain the lower 
species richness of African rainforest in several ways. To assess this, 
available niche space can be quantified by applying niche density kernels 
following the method of Broennimann et al. (2012) or the novel method 
presented in chapter 3 to all raster cells of each rainforest region plotted 
in multidimensional parameter space. First, African rainforests may be 
species-poor due to smaller current available niche space. Secondly, they 
may be species-poor due to smaller available niche space during the LGM, 
which can be assessed by comparing available niche space in that period 
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across the different tropical regions. Thirdly, they may be species-poor 
due to a shift of available niche space in Asia and the Neotropics towards 
warmer and wetter conditions, thus with higher energy levels. An 
alternative approach is to assess if the niche size of individual species of 
the respective rainforest regions may explain the differences in species 
richness between the three rainforests. If species in Africa tend to have 
wider niches, this potentially allows for fewer species to co-exist. 

The future of the Gabonese rainforest and its plant 
species 

Safeguarding Gabonese rainforests 

In Africa, the increase of human populations and/or the level of their 
prosperity will come at the cost of the loss of tropical rainforests. This will 
be the case for Gabonese rainforests too, although not as severely as for 
West African rain forests (Poorter et al., 2004). In the latter, the 
rainforests in some unprotected areas have been dramatically reduced, 
best illustrated e.g. by the 79% loss of forest in the Guiglo-Taï region of 
Ivory Coast (Chatelain et al., 1996). The future of Gabonese rainforests 
is influenced by factors that at least partially have a contrasting effect. 
First, recent data on climate change show an increase in precipitation 
(Asefi-Najafabady & Saatchi, 2013) and recent models predict a 
continuation of this increase (Platts et al., 2015), favouring forest growth 
in current savannahs. However, in chapter 5, I show that this increased 
precipitation, particularly in the dry season, results in species loss and 
high levels of species turnover. Loss of habitat due to logging, mining, 
urbanization and agriculture including large-scale production of palm-oil 
will contribute to a decreasing extent of rainforest. In contrast, the 
reduced number of large herbivores or even extinction of megafauna 
lowers the grazing pressure on trees and hence favours the recruitment 
of new trees, although the impact on species composition, community 
dynamics and ecosystem functions remains largely unknown (Malhi et al., 
2016). All in one, the future of Gabonese rain forests remains unknown, 
but clearly, some of the main threats have been identified and important 
steps towards long-term conservation have been taken. The current 
network of national parks and other protected areas in Gabon hosts a wide 
variety of biotopes and many of its species. Nevertheless, the status of 
national park does not fully protect species against poaching, harvesting 
or human-induced fires. In addition, an assessment of the effectiveness 
of the current network of protected areas in the light of systematic 
conservation planning (Margules & Pressey, 2000) deserves high priority. 
Such assessments have been done for several areas and taxa including 
e.g. amphibians (Chen et al., 2017) and vascular plants in China (Zhang 
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et al., 2012), terrestrial vertebrates in Europe (Maiorano et al., 2015), 
and animals and plants in Guyana (McPherson, 2014), and medicinal 
plants in Egypt (Kaky & Gilbert, 2016), to name but a few. The SDMs of 
Gabonese plant species presented in this thesis enable such an 
assessment and the identification of priority areas for conservation with 
recommendations for potential additional protected areas. 

Safeguarding Gabonese plant species 

In the light of global climate change, the future of individual Gabonese 
plant species largely depends on their ability to either adapt to changes 
in their current biotope or to migrate in time to suitable future habitats. 
In chapter 5, I show that dispersal limitations pose a severe additional 
threat to the future survival of plant species in Gabon. This is expected to 
be even more the case for the species for which no significant SDM could 
be generated, representing 75% of the total number of species, and the 
majority of which is expected to be narrow-ranged. 

A crucial step in the conservation of Gabonese plant species is an IUCN 
Red List assessment (IUCN, 2001, IUCN, 2014). For most species the level 
of threat is unknown, underlining the “urgent need to produce fast, 
objective and consistent Red List assessment” (Willis et al., 2003). 
However, traditional Red List assessments are time-consuming and 
therefore the majority of plant species worldwide has not been assessed 
yet. An efficient and reliable method to execute a preliminary Red List 
assessment for large numbers of species would enable a quick 
identification of those species most probably being classified in the highest 
risk categories. The use of SDMs and the estimators of species range size 
or prevalence discussed in chapter 3 offer opportunities for such rapid, 
preliminary Red List assessments. First, an SDM is generated and the EOO 
is computed using the SDM to which a threshold is applied. The next step 
is to compute the AOO, defined as the predicted fraction of raster cells 
where the species is predicted present. Third, the number of populations 
is counted using both the predicted presences and the known occurrences. 
The predicted decline (or increase) in AOO and number of populations due 
to climate change and change of land use is computed by joining SDM 
projections to future climate scenarios and maps of foreseen future land 
use. These basic data enable a rapid, preliminary IUCN Red List 
classification for species that have sufficient records to generate 
significant SDMs. This may aid in listing many species with few data in an 
appropriate Red List category rather than as ‘data deficient’ as most of 
these species will be narrow-ranged, understudied and facing a higher 
risk of extinction that other species (Roberts et al., 2016). 
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Novel applications of SDMs 
Nowadays, SDMs have been widely used to infer the spatial distribution 
of indigenous and invasive species, assess the impact of climate change 
on these distributions, identify geographic areas where a target species 
may be found (gap analysis), as well as to infer patterns of species 
richness and weighted endemism and quantify the effectiveness of 
protected areas in safeguarding the future of species. However, other 
potential applications of SDMs are still in their infancy. Promising new 
applications of SDMs include modelling the distribution of phylogenetic 
lineages within species (D'Amen et al., 2013), modelling the distribution 
of functional groups such as vegetation types (Elias et al., 2016, Zhang 
et al., 2013), or modelling the spatial distribution of social values for 
ecosystem services (Sherrouse et al., 2014). The overall principle remains 
the same: known occurrences of the target, whether lineage, species, 
function, group or else is linked to high resolution spatial data on climate, 
soil, elevation, distance, biotic competitors, social, economic or other 
variables. 

In agriculture, SDM received little attention so far, but may prove to be 
of great future value. In many tropical regions, including Central Africa, 
people still largely depend on non-timber forest products (NTFP) for food, 
medicine, and religious purposes. Such NTFP are mainly harvested from 
the wild, posing a threat to the survival of many NTFP species. A recent 
study on West-African medicinal plants used SDMs to map the potential 
distribution of 12 commercially important medicinal plants (van Andel et 
al., 2015). As such, SDMs help to document the distribution of NTFPs and 
set priorities in their conservation for future generations. Similarly, SDMs 
have been used successfully to assess the distribution of crop wild 
relatives (CWR) and identify geographic locations for further collecting of 
genetic resources (Cobben et al., 2014, Khoury et al., 2015). Following 
the line of thought that crops grow bests at the smallest costs and 
smallest effort when the agricultural conditions are closest to their natural 
niche optimum, SDMs offer opportunities to identify areas suitable for the 
future production of crops or of NTFP if the latter are to be planted in 
semi-natural environments such as permacultures in forests. Such was 
done for coffee in Nicaragua (Laderach et al., 2017), but studies on other 
crops and regions are likely to follow soon. 

Concluding remarks 
In this thesis, I contribute to a better documentation and understanding 
of biodiversity patterns in Gabon, Central Africa. The central question 
“What determines plant species richness in Gabon?” could only partly be 
answered. Obviously, a question stimulating researchers, governmental 
and non- governmental professionals, and nature lovers for centuries to 
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explore Central Africa’s tropical rainforest, cannot be fully answered within 
the scope of a single PhD project. Still, I have contributed to a better 
understanding by assessing for the first time the patterns of plant species 
richness and weighted endemism in Gabon using all plant species for 
which significant SDMs could be generated. This is the first step and 
provides a supportive framework for future biogeographical, 
macroecological and conservation research. In addition, as I showed in 
the first chapters of this thesis, methodological matters have a substantial 
impact of usually unknown size on SDMs. By using simulated species, I 
enabled a quantitative assessment of some of these matters. Thereby, I 
contributed to the production of better, more accurate SDMs and hence 
estimations of EOO and AOO. In return, these improved methodologies 
contribute in answering that enigmatic question: “What determines plant 
species richness in Gabon?”.
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Summary 
 

 

Planet Earth hosts an incredible biological diversity. Estimated numbers 
of species occurring on Earth range from 5 to 11 million eukaryotic 
species including 400,000-450,000 species of plants. Much of this 
biodiversity remains poorly known and many species have not yet been 
named or even been discovered. This is not surprising, as the majority 
of species is known to be rare and ecosystems are generally dominated 
by a limited number of common species. 

Tropical rainforests are the most species-rich terrestrial ecosystems on 
Earth. The general higher level of species richness is often explained by 
higher levels of energy near the Equator (latitudinal diversity gradient). 
However, when comparing tropical rainforest biomes, African rainforests 
host fewer plant species than either South American or Asian ones. The 
Central African country of Gabon is situated in the Lower Guinean 
phytochorical region. It is largely covered by what is considered to be the 
most species-rich lowland rainforest in Africa while the government 
supports an active conservation program. As such, Gabon is a perfect 
study area to address that enigmatic question that has triggered many 
researchers before: “What determines botanical species richness?”. 

In the past 2.5 million years, tropical rainforests have experienced 21 
cycles of global glaciations. They responded to this by contracting during 
drier and cooler glacials into larger montane and smaller riverine forest 
refugia and expanding again during warmer and wetter interglacials. The 
current rapid global climate change coupled with change of land use poses 
new threats to the survival of many rainforest species. The limited 
availability of resources for conservation forces governments and NGOs 
to set priorities. Unfortunately, for many plant species, lack of data on 
their distribution hampers well-informed decision making in conservation. 

Species distribution models (SDMs) offer opportunities to bridge at least 
partly this knowledge gap. SDMs are correlative models that infer the 
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spatial distribution of species using only a limited set of known species 
occurrence records coupled with high resolution environmental data. 
SDMs are widely applied to study the past, present and future distribution 
of species, assess the risk of invasive species, infer patterns of species 
richness and identify hotspots, as well as to assess the impact of climate 
change. The currently available methods form a pipeline, with which data 
are selected and cleaned, models selected, parameterized, evaluated and 
projected to other areas and climatic scenarios, and biodiversity patterns 
are computed from these SDMs. In this thesis, SDMs of all Gabonese plant 
species were generated and patterns of species richness and of weighted 
endemism were computed (chapter 4 & 5). 

Although this pipeline enables the rapid generation of SDMs and inferring 
of biodiversity patterns, its effective use is limited by several matters of 
which three are specifically addressed in this thesis. Not knowing the true 
distribution limits the opportunities to assess the accuracy of models and 
assess the impact of assumptions and limitations of SDMs. The use of 
simulated species has been advocated as a method to systematically 
assess the impact of specific matters of SDMs (virtual ecologist). Following 
this approach, in chapter 2, I present a novel method to simulate large 
numbers of species that each have their own unique niche. 

One matter of SDMs that is usually ignored but has been shown to be of 
great impact on model accuracy is the number of species occurrence 
records used to train a model. In chapter 2, I quantify the effect of sample 
size on model accuracy for species of different range size classes. The 
results show that the minimum number of records required to generate 
accurate SDMs is not uniform for species of every range size class and 
that larger sample sizes are required for more widespread species. By 
applying a uniform minimum number of records, SDMs of narrow-ranged 
species are incorrectly rejected and SDMs of widespread species are 
incorrectly accepted. Instead, I recommend to identify and apply the 
unique minimum numbers of required records for each individual species. 
The method presented here to identify the minimum number of records 
for species of particular range size classes is applicable to any species 
group and study area. 

The range size or prevalence is an important plant feature that is used in 
IUCN Red List classifications. It is commonly computed as the Extent Of 
Occurrence (EOO) and Area Of Occupancy (AOO). Currently, these 
metrics are computed using methods based on the spatial distribution of 
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the known species occurrences. In chapter 3, using simulated species 
again, I show that methods based on the distribution of species 
occurrences in environmental parameter space clearly outperform those 
based on spatial data. In this chapter, I present a novel method that 
estimates the range size of a species as the fraction of raster cells within 
the minimum convex hull of the species occurrences, when all cells from 
the study area are plotted in environmental parameter space. This novel 
method outperforms all ten other assessed methods. Therefore, the 
current use of EOO and AOO based on spatial data alone for the purpose 
of IUCN Red List classification should be reconsidered. I recommend to 
use the novel method presented here to estimate the AOO and to estimate 
the EOO from the predicted distribution based on a thresholded SDM. 

In chapter 4, I apply the currently best possible methods to generate 
accurate SDMs and estimate the range size of species to the large dataset 
of Gabonese plant species records. All significant SDMs are used here to 
assess the unique contribution of narrow-ranged, widespread, and 
randomly selected species to patterns of species richness and weighted 
endemism. When range sizes of species are defined based on their full 
range in tropical Africa, random subsets of species best represent the 
pattern of species richness, followed by narrow-ranged species. Narrow-
ranged species best represent the weighted endemism pattern. Moreover, 
the results show that the applied criterion of widespread and narrow-
ranged is crucial. Too often, range sizes of species are computed on their 
distribution within a study area defined by political borders. I recommend 
to use the full range size of species instead. Secondly, the use of 
widespread species, of which often more data are available, as an 
indicator of diversity patterns should be reconsidered. 

The effect of global climate change on the distribution patterns of 
Gabonese plant species is assed in chapter 5 using SDMs projected to the 
year 2085 for two climate change scenarios assuming either full or no 
dispersal. In Gabon, predicted loss of plant species ranges from 5% 
assuming full dispersal to 10% assuming no dispersal. However, these 
numbers are likely to be substantially higher, as for many rare, narrow-
ranged species no significant SDMs could be generated. Predicted species 
turnover is as high as 75% and species-rich areas are predicted to loose 
many species. The explanatory power of individual future climate 
anomalies to predicted future species richness patterns is quantified. 
Species loss is best explained by increased precipitation in the dry season. 
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Species gain and species turnover are correlated with a shift from extreme 
to average values of annual temperature range. 

In the final chapter, the results are placed in a wider scientific context. 
First, the results on the methodological aspects of SDMs and their 
implications of the SDM pipeline are discussed. The method presented in 
this thesis to simulate large numbers of species offers opportunities to 
systematically investigate other matters of the pipeline, some of which 
are discussed here. Secondly, the factors that shape the current and 
predicted future patterns of plant species richness in Gabon are discussed 
including the location of centres of species richness and of weighted 
endemism in relation to the hypothesized location of glacial forest refugia. 
Factors that may contribute to the lower species richness of African 
rainforests compared with South American and Asian forests are 
discussed. I conclude by reflecting on the conservation of the Gabonese 
rainforest and its plant species as well as on the opportunities SDMs offer 
for this in the wider socio-economic context of a changing world with 
growing demand for food and other ecosystem services. 
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