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Out of  the night that covers me,
Black as the Pit from pole to pole,

I thank whatever gods may be
For my unconquerable soul.

In the fell clutch of  circumstance
I have not winced nor cried aloud.
Under the bludgeoning’s of  chance
My head is bloody, but unbowed.

Beyond this place of  wrath and tears
Looms but the Horror of  the shade,

And yet the menace of  the years
Finds, and shall find, me unafraid.

It matters not how strait the gate,
How charged with punishments the scroll.

I am the master of  my fate:
I am the captain of  my soul.

William Ernest Henley (1888)
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If  I have seen further, it is by standing on the shoulders of  giants

Isaac Newton (1643 - 1727)







No effort of  mine could avail to make the book easy reading. 

Ronald A. Fisher (1890 - 1962) 



Chapter One

“...Who can explain why one species ranges widely and is very numerous, and why 
another allied species has a narrow range and is rare? These relations are of  the 
highest importance, for they determine the present welfare, and, as I believe, the 
future success and modification of  every inhabitant of  this world...”

In his seminal work On the Origin of  Species (1), Charles Darwin asked one of  the 
biggest and long standing questions in the field of  evolutionary ecology: why are 
some species common and range widely while many others are rare and restricted in 
their distribution? We see such a pattern in almost every form of  life, from trees to 
birds, butterflies, mammals (2), vascular epiphytes (3), frogs, bats,  dung beetles (4), 
even bacteria (5, 6) or fungi (7) and many other groups (8). This pattern of  community 
composition in terms of  commonness and rarity can be summarized by what has 
been dubbed the second law of  Biodiversity, stating that the “common species are 
rare and rare species are common” (9). But how did this seemingly universal pattern 
of  diversity came to be and how is it is maintained? What mechanisms account 
for the rarity of  some and the commonness of  others? This question remains 
important as it allows for a better understanding of  the driving forces of  diversity, in 
the past, present and future. Arguably the need for understanding what determines 
species diversity is even more critical than ever before in light of  the last decades, 
where we have seen an astonishing decline in species diversity proceeding at an 
unprecedented rate in history (10). In fact, this question was considered among the 
25 most important scientific questions to be answered in the coming years (11, 12) 
and still is among the top 100 questions to be answered in ecology (13), even after 
more than 150 years since Charles Darwin first asked it. 

Patterns as described above can also be found in Amazonian rainforests, where 
individual trees are distributed in a similar way over an incredible amount of  species, 
even so much suggested as 16.000 (14). The Amazon, covering approximately 5.7 
million square kilometers of  the Earth’s surface, harbors an incredible amount of  

Unravelling betadiversity of  Amazonian tropical trees: 
rolling the dice or struggling for survival
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biodiversity and is considered to be among the most important properties of  our 
world. They are in a continuous dynamic state – individuals come and go. Trees 
fall down and their gaps are recolonized by their successors, ever changing the 
structure and composition of  the forest. And although potential mechanisms to 
explain patterns in diversity at various geographical and temporal scales, such as 
environmental filtering or stochastic events, have been proposed over the years, no 
true consensus has been reached concerning the origin and maintenance of  these 
patterns. Typically, changes in composition are studied using measurements in 
variation among (sampled) local communities, determining how they contribute to 
the regional diversity of  an area and vice versa (15). For a long time it was assumed that 
variation in species composition was mainly the result of  so called niche-assembly 
rules, well known from classic ecological models (16–28). According to these 
rules, species composition of  communities is mainly the result of  environmental 
heterogeneity and the subsequent selective pressures resulting in filtering species 
from the regional species pool (28). Whether species are present or absent in a 
community is not primarily the result of  the inability to reach a site (i.e. dispersal 
limitation) but is more dependent on the ecological demands of  each species (see 
also paragraph 2.1 from chapter 2). In contrast, a more neutral (and at first radical) 
view for explaining variation in species composition was proposed by Hubbell at the 
beginning of  the twenty-first century in his ‘Unified Neutral Theory of  Biodiversity 
and Biogeography’ (UNTB) (29), which created quite a stir in the scientific world. For 
readers unfamiliar with this concept, chapter two provides a light primer on neutral 
theory. With a simplified, yet elegant model, the UNTB was able to predict species 
abundance distributions, species area curves and even phylogenies. This neutral view 
on biological processes thus generated both interest and controversy in the field 
of  community ecology (30–38). It has already been argued that a mechanism to 
maintain exact equal fitness between individuals (true neutrality) over long periods 
is very difficult to envision (39). To be fair, this is not what Hubbell intended when 
publishing his ideas. Most biologists realize the world certainly is not solely neutral 
and obviously driven by selection to some extent. One of  the greatest biologist 
of  all, quoted at the start of  this dissertation, even wrote an entire book on the 
subject. However, one cannot ignore the success the UNTB has had in explaining 
or predicting observed patterns. The question at hand then is not how or if  we can 
prove or defy either theory by fitting it to more and larger empirical datasets but to 
look more closely at both theories and to study what their relative importance is at 
different scales. For instance, at what temporal or spatial scales does the importance 
of  stochastic processes in relation to more deterministic ones shift? Is the first always 
present as background noise, continuously acting against competition, selection and 
predation by “rolling the dice of  life” (40) in concert with selection? Or is stochastic 
interplay more important in the long run with taxa playing this same game of  life, 
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but now using “loaded dice” (40) and hence cheating the otherwise stochastic game? 
Can we understand community dynamics using neutral theory or is het necessary 
to invoke more complex processes of  community assembly? In other words, what 
is the relative importance of  both neutral and niche processes and how can we 
disentangle these two components in the search for understanding betadiversity? 

Using recent developments combined with earlier work from population genetics, 
constructing a novel spatially semi-explicit plot-based neutral model in combination 
with a large-scale dataset from the Amazonian Tree Diversity Network (ATDN) 
(41) and by using principles from information theory and statistical mechanics I 
aim at answering such questions. The goal of  this thesis was to unravel Amazonian 
betadiversity, to create an understanding of  community dynamics and to further 
the field of  evolutionary ecology. The chapters that  follow are the structure of  the 
thesis; scaling up from detailed studies of  empirical datasets to the comparisons of  
fundamental estimation of  patterns and processes and finally to the use of  a newly 
developed semi-spatially explicit neutral model and the mathematical machinery of  
information theory to provide this understanding of  community dynamics:

Chapter one gives a general introduction into the subject and provides a thesis 
outline.

Chapter two is a light primer of  neutral theory and maximum entropy, to provide 
readers with the necessary background for the following chapters and to set the 
stage between classical ecology and neutral theory. Those who are familiar with the 
concept of  neutral theory and maximum entropy may skip this chapter. 

Chapter three investigates the consequence of  omitting unidentified records from 
empirical datasets. As ecologists are often unable to identify all field collections to 
a species, such indets are often not taken into account to save costly and time-
consuming efforts of  identifying them. The effects of  this practice, however, 
remained fairly understudied and here we focus on its consequences on large-scale 
patterns in biodiversity. 

Chapter four focuses on estimation methods of  one of  the most widely used 
analyses carried out by ecologists: species richness. As nonparametric estimators are 
probably the most used techniques to carry out such estimations, the assumptions 
and results of  nonparametric estimators are compared with those of  a logseries 
approach to species richness estimation. In addition, it studies the potential of  
extrapolation of  patterns in species richness to larger scales necessary to implement 
in neutral models. 
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Chapter five compares different estimation methods for estimating one of  the 
core parameters of  neutral models: migration. With many sophisticated methods 
available for estimating migration, ecologists face the difficult decision of  choosing 
for their specific line of  work. We compare and test a number of  methods for their 
ability to estimate migration from spatially implicit and semi-explicit simulations. In 
addition, we provide suggestions to correct one of  the methods to be implemented 
as estimator of  migration for the newly developed semi-spatially explicit neutral 
model used in the next chapter. 

Chapter six adds a level of  biological reality to predictions from neutral theory, 
emphasizing the novel spatially semi-explicit neutral model and combining the 
model with large-scale empirical tests. It uses the three different datasets introduced 
in chapter two, with estimates of  diversity from chapter four, and migration from 
chapter five and studies predictions at both local and regional scales to study the 
scalability of  neutral theory and whether correct regional predictions follow from 
accurately reflected local dynamics. 

Chapter seven moves away from mechanistic (neutral) models and uses the 
mathematical machinery from information theory and statistical mechanics (the 
maximum entropy formalism) to quantify the relative importance of  niche and 
neutral processes as well as giving estimates for the actual geographic range of  where 
potential recruits can come from in the process of  community assembly. 

Chapter eight is the final chapter in which I synthesize all results and put them 
in a wider perspective. It not only provides the closing statement of  this thesis, 
addressing the questions posed at the start but also provides suggestions for future 
research and proposes a new hypothesis of  the governing dynamics of  communities 
to explain community structure.
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We need not marvel at extinction; if  we must marvel, let it be at our 
presumption in imagining for a moment that we understand the many 

complex contingencies, on which the existence of  each species depends.

Charles Darwin, On the Origin of  Species (1859: page 322)



Chapter Two

Classical ecology states that coexistence of  species and community structure 
follows from complex interactions determined by quantitative selection over time. 
In contrast, however, protagonists of  neutral theory suggest more simple but strict 
rules of  stochasticity are more important in determining community structure. 
This chapter provides a primer into neutral theory, providing the basis of  terms, 
processes and paradigms that will be discussed in the following chapters. It starts by 
shortly introducing classical ecological theory and then moves on to neutral theory. 
It concludes with a short introduction to the use of  Maximum Entropy, a principle 
from information theory used in chapter seven.

2.1 Species coexistence in classical ecology
The niche forms a fundamental aspect of  traditional ecological thinking. It tells us 
that each species inhabits a specific part of  the ecosystem not only defined by a 
physical location but also the interactions with biotic and abiotic elements within the 
ecosystem. Environmental heterogeneity, inter-specific competition and resource 
partitioning between species work together with niche differentiation to allow 
coexistence of  multiple species. This principle of  coexistence was formalized more 
than a century ago by Ernst Haeckel in 1869 (42), who coincidently was the first to 
coin the term Oecologie. It comes as no surprise that our observations of  nature, 
in which species seem to be almost perfectly adapted in both morphological and 
functional appearance lead to these early conclusions on the seemingly “lock and 
key” principles of  evolution and the occupation of  specific habitats of  species (43). 
The idea of  the niche, however, did not come into existence until the beginning of  
the twentieth century when Grinnell (44) proposed the so-called pre-interactive or 
potential niche as it was later known (45). It was defined by the overlap between 
abiotic and biotic elements and the fundamental requirements of  organisms 
for living and reproduction in the absence of  competition or predation. Shortly 
thereafter, a more functional niche concept also incorporated trophic relations 
between organisms and their place in the food web (46). The current view of  the 

A primer on Neutral Theory and Maximum Entropy
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niche is a product of  Gause’s axiom, the statement that if  two species are (almost) 
identical in their niche characteristics they simply cannot occupy the exact same 
location (47) and Hutchinson who moved the niche concept from the environment 
to the organisms themselves, making the niche an attribute of  species. Thereby 
viewing it more as a continuum (48). According to the latter view, an ecological 
niche should be considered as a multidimensional space of  environmental variables, 
termed a hyper volume (Fig. 2.1). 

Within the niche, a particular species can flourish, for values above and below this 
hyper volume its performance in terms of  survival and reproduction decreases. 
Such niche based models and theories can provide great insights, e.g. in ecosystem 
functioning, the dynamics of  invasive species but also the evolution of  adaptation, 
whereas other theories as of  yet cannot (54). Intuitively, this idea of  niches is also 
very straightforward. The quantification of  niches and determining whether species 
diversity is a direct result of  non-overlapping niches in which species coexist by 
interspecific competition and resource partitioning is, however, another matter. It 
suffers from being overly complex. These same complexities of  niche theory lead 
many scientists to develop alternative models to study coexistence of  species and 
observed patterns in species abundance patterns, such as Neutral Theory.

Figure 2.1 
The niche hypervolume 
Based on three chemical soil 
properties from a dry Pinus 
silverstris forest in Sweden. 
Adapted from (49) and created 
using the package plot3D (50) 
in the R statistical 
environment (51).

Nitrogen Phosphorous

Potassium

Niche Hypervolume
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2.2 Neutral theory of  biodiversity
If  we scoop a few liters of  water from the ocean we find a huge variety of  
planktonic species in a seemingly very homogenous environment and at first glance 
appearing to have a very similar niche. According to Gause’s axiom this should 
be nearly impossible or at the very least very improbable and it was dubbed the 
“plankton paradox” (55). Such observations argued whether there was a niche 
for niches in community ecology at all. They also lead to the earliest equilibrium 
versus non-equilibrium discussions, precursors to the niche versus neutral debate. 
According to the first, species diversity is maintained due to functional differences 
such as life history strategy (56), habitat preference (57) or pathogens, pests and 
predators (58, 59). Here, due to forces of  selection, composition roughly stays the 
same (in equilibrium). Non-equilibrists, however, put more emphasis on processes 
as speciation, immigration and extinction to maintain diversity (53, 60–62), with 
composition continuously changing (hence the non equilibrium). 
During the early sixties, MacArthur and Wilson provided one of  the first mechanistic 
neutral models for ecology with the equilibrium theory of  insular zoogeography 
(53). These ideas were furthered by analyses of  neutral models from Caswell and 
Hubbell (60, 61). Kimura had, however, already paved the way for neutral theory in 
ecology with his Neutral Theory of  Molecular Evolution, leading the way for other 
such models where alleles were replaced by individuals in an ecological context (63, 
64). Hubbell formalized these ideas in his Unified Neutral Theory of  Biodiversity 
and Biogeography at the turn of  the twenty-first century (29). For the unfamiliar 
reader, box one on the next page provides the necessary background in the workings 
of  neutral theory.

From box one it is clear that in the original model it is only migration that is 
determining the relative abundance distribution patterns of  local communities, 
whereas speciation and extinction (both random processes as well) regulate diversity 
in the metacommunity. And although the results of  neutral theory showed good 
fits to actual field data, there is one fundamental assumption that poses a serious 
problem for ecologists: panmixis, or the ability to move around freely without any 
restriction. This comes from the fact that although there is an implicit spatial relation 
between the local and the metacommunity as is defined by the migration parameter 
m, within each there is no spatial dependency. In other words, any immigrants or 
local recruits can come from any location within their respective community. From 
numerous field experiments and studies on betadiversity we know it is likely that 
offspring will be recruited close by the parent and that there is a strong distance decay 
of  similarity in composition, even within homogeneous environments (65). Charles 
Darwin himself  also noted that: “migration is likely as important for selection, and 
hence eventual composition, as the environment itself ” (1). 
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Box 1 Classical Neutral Theory

Classic neutral theory models communities at two different spatial and temporal scales: a 
large metacommunity consisting of  Jm individuals operating at evolutionary timescales and 
a smaller local community having J individuals operating at ecological timescales. It is quite 
similar to original Mainland-island models by Wright, MacArthur and Wilson (55, 62) where 
the metacommunity represents the main land and the local community is the island (Fig. 2.2). 
Both communities are governed by a zero sum assumption of  a saturated landscape meaning 
that they are saturated with individuals and replacement is immediate, not allowing for gaps in 
the community. All individuals in the neutral model also have equal demographic probabilities 
(i.e. the same chance of  birth and death) and therefor recruitment is proportional to the species 
abundance.

Local community dynamics. Each time step, an individual in the local community dies and is 
immediately replaced. Replacements can either be an immigrant from the metacommunity with 
probability m or the offspring from a randomly chosen individual within the local community 
at probability 1-m. The parameter m can be considered a measure of  dispersal, a probability 
between zero and one that a replacement will be an immigrant rather than a local recruit. At 
values between zero and one it can either be severely or hardly dispersal limited, depending on 
whether values approximate zero or one. When m is equal to one there is no dispersal limitation 
and all replacements are from the metacommunity. In this special limiting case, it represents, in 
essence, a direct (random) sample from the metacommunity. On the other extreme, if  m equals 
zero this means that for every replacement, none are coming from the metacommunity but 
from the local community itself. This inevitably leads to a closed community with an absorbing 
state: monodominance of  a single species due to the process of  ecological drift (the analog of  
genetic drift). 

Metacommunity dynamics. The metacommunity represents the major source pool of  
species. A process similar to that of  the local community determines composition of  the 
metacommunity. However, as it operates at a different spatial and temporal scale, neutral theory 
assumes the species abundance distribution does not change on local community timescales 
and it does not receive immigrants but instead allows for speciation and extinction events. 
It is assumed the abundance distribution of  the metacommunity is in equilibrium at local 
community timescales. The expected species richness and relative species abundance in the 
metacommunity under the preceding assumptions are controlled by a single parameter θ (theta), 
the fundamental biodiversity number. At small speciation rates it is approximated by 2Jmv, 
with Jm being the total number of  individuals in the metacommunity and v being a constant 
rate of  speciation. Theta here is analogous to Kimura’s theta, defining the homozygosity of  
a population in a stable equilibrium (60). Although in general Jm is quite large, speciation 
rates are very low, resulting in a θ of  intermediate size. High values of  theta can be the result 
of  either a large metacommunity size or high speciation rates. If  θ is small the predicted 
dominance-diversity curve becomes steep, representing high rates of  dominance within the 
metacommunity. However, as θ becomes larger it starts predicting the often-observed logseries 
like species abundance curve (29). It is of  note that when metacommunity size increases, in the 
absence of  migration, theta becomes equal to fishers alpha (29).
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Fig. 2.2 The original spatially implicit neutral model. Adapted from original Mainland-Island 
models (52, 53) where a larger metacommunity is represented by the mainland and a smaller local 
community by the island. Migration determines the relation between the metacommunity and local 
community with 1 minus the migration probability giving the probability of  a local recruit after a death 
in the local community. 

As a consequence, Hubbell already recognized early on that this original spatially 
implicit model lacks any form of  functional betadiversity and is a poor reflection of  
the real world (29). In the field of  population genetics, this same issue had already 
been tackled by providing solutions for the correlation between allelic states among 
individuals that were separated by a certain distance (r), for instance between islands 
and the mainland (63, 52). Several solutions to calculate F(r), the probability that 
two randomly chosen alleles are the same, have been proposed over the following 
years (63, 66–69) which also found their way into neutral theory (35, 70). Following 
this, spatial dependency was incorporated into neutral models in various ways. From 
grid like models incorporating differential probabilities of  migration depending on 
distance (71) to individual based models in which dispersal ability could be varied 
and life history strategy differences among species could be added, as well as 
conspecific density dependence for each species (72). And although these brought 
neutral theory closer to the real world, they inevitably also made it more complex. 
The first step towards an analytically tractable model for the quantification of  beta 
diversity came with the extension of  the original neutral model by a hyper-cubic 
lattice with d dimensions where each site of  the model represents a single individual 
(73). Such developments incorporated at least one extra level of  spatial dependency, 
namely that within the local community but not the overarching dependency between 
communities. 
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To solve the latter, one attempt was to create a metacommunity model in which a local 
community was embedded within the metacommunity instead of  connected to it via 
an abstract parameter of  migration (Fig. 2.3) (74). The local community, however, 
was still a separate entity from the metacommunity. Later, local communities were 
truly embedded in the metacommunity by introducing a continuous landscape (75) 
and this idea was further developed providing an analytical approach to examine 
a network structure of  communities (76), making neutral theory more and more 
biologically realistic. Although the above developments reflect progress in neutral 
models approaching the real world by incorporating some form of  spatial 
dependency, which is far from done, they still lack a good connection to empirical 
data as this is also subject to sampling schemes and sampling errors usually not 
incorporated in such models. This thesis provides a first step towards solving these 
issues in chapters five and six.
  

Fig 2.3 A collection of  local communities, with the summation forming the larger 
metacommunity. Local communities are connected by the same migration parameter although this is 
now migration from plot to plot. It is, however, still an approximation of  migration, as the intermediate 
plots are not taken into account and migration still acts as an ecological aggregated parameter, 
incorporating not only dispersal but also filtering and recruitment.
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2.3 A short primer on Maximum Entropy
Chapter 7 of  my dissertation focuses on the use of  principles from information 
theory and statistical mechanics: the Maximum Entropy Formalism (MEF). Moving 
away from mechanistic models for which parameters need to be estimated and 
assumptions need to be made, the MEF allows for objective inference of  relative 
importance of  various aspects of  ecological communities without invoking such 
assumptions and parameters. This formalism has its foundation in two different 
fields of  science: information theory and statistical mechanics. Edwin Jaynes 
combined both to construct the MEF in 1957 (77, 78). After more than 20 years the 
MEF was applied to ecological problems (79, 80). Here, the process of  community 
assembly is viewed from a statistical mechanic viewpoint. In other words, the 
idea that a macroscopic pattern (e.g. a species abundance distribution) arises from 
random microstate allocations forced to obey certain macroscopic constraints. These 
constraints in classical statistical mechanics are given by physical assumptions not 
appropriate for ecological communities (81–83) but the principle remains the same. 
In short, the allocation of  resources at the microstate level interacts with natural 
selection between entities (being species, reproductively isolated genotypes or any 
other taxonomic identifiable group). This results in a balance between random and 
deterministic allocation. In other words, fitness differences between entities bias 
these random allocations. If  fitness differences are heritable and repeatable in time 
and space, this will generate repeatable community structures and ultimately will lead 
to observed patterns of  community structure. This also led to the title and cover of  
this thesis, in which we draw a comparison between species in life and individuals in 
a casino. To quote Shipley: “The analogy that emerges is of  Nature as an immense 
casino. The species play craps with loaded dice for resource payoffs. There is no 
guarantee of  success, only a probability of  success. The dice that each species uses 
are biased due to the unique traits that each possesses, thus weighting the probability 
one way or another, but whether or not the bias helps or hurts the species depends 
on the nature of  the tables (environments) on which the dice are thrown” (40). The 
dice on the front of  this thesis represent exactly these loaded dice that species are 
playing with in the casino of  life. What we then try to do using the MEF is to find 
how these dice are biased and how this depends on the table (e.g. environment) on 
which entities are playing. This is done by calculating the importance of  functional 
traits relative to for instance the abundance in the regional species pool independent 
of  these traits and demographic stochasticity. In other words, we try to find out in 
what way species are cheating an otherwise fair and stochastic game.



If  the traveler notices a particular species and wishes to find more like it, he 
must often turn his eyes in vain in every direction. Trees of  varied forms, 

dimensions, and colors are around him, but he rarely sees any of  them 
repeated. Time after time he goes towards a tree which looks like the one 

he seeks, but a closer examination proves it to be distinct. 

Alfred Russel Wallace, Equitorial Vegetation (1891)



Chapter Three

Are all species necessary to reveal ecologically important patterns?
(Published in Ecology and Evolution 4.24 (2014): 4626-4636)
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Abstract

Aim While studying ecological patterns at large scales, ecologists are often unable to 
identify all collections, forcing them to either omit these unidentified records entirely, 
without knowing the effect of  this, or pursue very costly and time-consuming efforts 
of  identifying them. These indets may be of  critical importance but as of  yet their 
impact on the reliability of  ecological analyses is poorly known. We investigated the 
consequence of  omitting the unidentified records and provide an explanation for 
the results.

Location South America (Guyana, Suriname, French Guiana and Ecuador)

Methods We used three large-scale independent datasets, each consisting of  records 
having been identified to a valid species name (Identified Morpho-Species - IMS) 
and a number of  unidentified records (Unidentified Morpho-Species - UMS). A 
subset was created for each dataset containing only the IMS, which was compared 
with the complete dataset containing All Morpho-Species (AMS: = IMS + UMS) 
for the following analyses: species diversity (Fishers alpha), similarity of  species 
composition, Mantel test and ordination (NMDS). In addition we also simulated an 
even larger number of  unidentified records for all three datasets and analysed the 
agreement between similarities again with these simulated datasets.

Results For all analyses results were extremely similar when using the complete 
datasets or the truncated subsets. IMS predicted ≥ 91% of  the variation of  AMS in 
all tests/analyses. Even when simulating a larger fraction of  UMS, IMS predicted the 
results for AMS rather well. Using only IMS also out-performed using higher taxon 
data (genus level identification) for similarity analyses.

Main conclusions Finding a high congruence for all analyses when using IMS 
rather than AMS suggests that patterns of  similarity and composition are very 
robust. In other words, having a large number of  unidentified species in a dataset 
may not affect our conclusions as much as is often thought.

Keywords: Beta-diversity, Fishers alpha, species richness, indets, morpho-species, 
large-scale ecological patterns, similarity of  species composition, Mantel test, 
NMDS, spatial turnover.
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Introduction

In comparative ecology, the proper naming of  species is essential. Historically, 
ecological studies have assigned a particular name to a particular entity based on 
the Darwinian species concept, which uses morphological characters to separate 
clusters of  individuals into species (1, 84). While studying ecological patterns at 
large scales, ecologists are often unable to identify all individuals encountered in the 
field to species. This leads to a potential problem: individuals that are recorded in a 
dataset but which have no valid species name (hereafter indets). As databases grow 
larger, so does the number of  indets, with each plot added to a database also adding 
a number of  new unidentified morpho-species (UMS), which ecologists must either 
incorporate or ignore in analyses. Both of  these options potentially introduce errors 
of  some sort, and there is no agreement among ecologists how indets should be 
handled or to what degree they might compromise the results of  large-scale analyses. 
These questions have been addressed on multiple occasions. Pitman et al. (1999), 
comparing tree species communities, also posed the question what would be the 
result of  eliminating species that lacked taxonomic identification. In their view 
the only variable that would substantially change with more individuals identified 
to a species was the geographic range of  a species (85). Following this statement, 
Ruokolainen et al. (2002) focused on the geographical ranges of  identified vs. 
unidentified species previously mentioned by Pitman et al. (1999) and agreed that this 
bias has the potential to greatly distort analyses and added that it is not necessarily 
confined to distributional patterns (86). Some might be more obvious than others; 
species richness will be underestimated when unidentified specimens belong to new 
species and this will also affect the relative abundance distribution. Similarities of  
species composition may also be affected, which will affect subsequent analyses that 
depend on these similarities, importantly Mantel tests and ordinations, tests that are 
often used by ecologists.

Many studies have sought a middle ground between high-cost, taxonomically 
precise analyses and more cost-effective methods without losing valuable ecological 
information, for instance by relaxing taxonomic resolution ((87) and references 
therein) or by randomly reassigning UMS to identified species present in other plots 
or to itself  again, in which case it was considered a new species (88). This, however, 
unintentionally increases similarity between plots. In several studies, correlations 
were in fact found between different taxon-level approaches and the patterns in 
abundance and composition in both marine and terrestrial habitats (89–92). In an 
attempt to abbreviate forest inventories, Higgins and Ruokolainen also made use 
of  higher taxon level analyses by eliniminating species identifications (93). While 
promising, these studies mostly dealt with unidentified species by decreasing 
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taxonomic resolution, allowing the use of  more individuals from a dataset without 
identification up to species-level. However, as Terlizzi et al. (2003) have noted, 
many large-scale ecological questions (e.g., species loss or the degradation of  forest 
diversity) require species-level analyses (87). And, while new analytical tools offer 
some help in standardizing ecological datasets, removing synonyms, and checking 
the validity of  names (e.g., the Taxonomic Name Resolution Service or TNRS 
(94) and the R packages taxize (95) and Taxonstand (96)), they cannot help solve 
the indet problem. In a theoretical approach, it was shown that by subsampling 
datasets at random, thereby simulating a random sampling at a lower intensity, and 
by making subsamples based on the difficulty in identifying them, the outcome of  
analyses on species richness and composition do not necessarily change (97). The 
first probably being the result of  the relative abundance distribution theoretically 
remaining identical even with smaller subsamples, because of  the random sampling. 
To our knowledge the effect of  omitting unidentified species has not yet been tested 
with actual data containing unidentified records at a scale as presented here.

Here we use three independent large-scale harmonized and standardized tree 
inventory datasets (Guyana/Suriname, French Guiana and Ecuador) to test whether 
ecological patterns such as species diversity, richness, composition and underlying 
gradients in the full datasets, using all morpho-species differ from those in subsets 
of  identified morpho-species. This was done using three often-used analyses: 
Species richness and Fishers alpha (98), to study patterns in tree species diversity, the 
similarity of  species composition between samples for studying patterns in species 
turnover (65) and non-metric multidimensional scaling (NMDS), an ordination 
technique designed to search for patterns in community composition. We also 
tested the similarities using a higher taxon level, in this case genus-level, against 
results generated by the complete dataset (i.e. all morpho-species, the sum of  the 
identified morpho-species and unidentified morpho-species included). These tests 
have significant practical implications, because a finding of  no difference between 
using only identified morpho-species or all morpho-species would suggest a simple 
solution to the indet problem: omitting them altogether. In turn, this might make it 
possible to use large datasets that are currently underutilized in ecology because they 
contain large numbers of  indets.  
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Table 3.1 The number of  one hectare plots for each forest type listed by country. Guyana and 
Suriname are used as one dataset. Type abbreviations are igapó (IG), podzol (PZ), swamp (SW), terra 
firme (TF) and várzea (VA). Minimum Diameter at Breast Height (DBH) as limit for measurement was 
10 centimeters for all plots.

Fig. 3.1 Map showing location of  all 202 plots belonging to the Ecuador (blue), Guyana/
Suriname (red) and French Guiana (black) datasets.
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Table 3.1 The number of one hectare plots for each forest type listed by country. 
Guyana and Suriname are used as one dataset. Type abbreviations are igapó (IG), 
podzol (PZ), swamp (SW), terra firme (TF) and várzea (VA). Minimum Diameter at 
Breast Height (DBH) as limit for measurement was 10 centimeters for all plots. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  IG PZ SW TF VA Min. DBH Nr. 1 Ha plots 
Guyana/Suriname 0 21 0 45 1 10 67 

Ecuador 2 3 4 53 10 10 72 
French Guiana 0 0 0 63 0 10 63 

Total 2 24 4 161 11 NA 202 
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Methods

Species composition data. Three independent, non-overlapping, tree inventory 
datasets were assembled: one from Guyana and Suriname, one from Ecuador, 
and one from French Guiana (Fig. 3.1). Each dataset consisted of  63-72 one-
hectare plots, in which all trees ≥10 cm DBH had been inventoried (see Table 
3.1 for details). Within each dataset, one or two persons responsible for the 
majority of  the collected material harmonized all species names. Olaf  Bánki and 
Juan Ernesto Guevara performed harmonization for the Guyana/Suriname and 
Ecuador datasets, respectively, while Daniel Sabatier and Jean-François Molino 
together harmonized the French Guianan dataset (hereafter referred to as OSB, 
JEG, S-M). Harmonization was done by morphological comparison of  collections 
with reference to a ‘morpho-holotype’ for each morpho-species. Species names of  
all subsets were standardized with the W3 Tropicos database, using TNRS (94). 
The three datasets were harmonized independently of  each other; no attempt was 
made to harmonize the three datasets into one. Three types of  common ecological 
analyses (described below) were performed for each dataset, twice: once for the all 
morpho-species (hereafter AMS) and once for a subset composed of  only identified 
morpho-species (IMS), omitting the unidentified morpho-species of  this dataset 
(UMS – thus AMS = IMS + UMS). All tests were performed in the R statistical and 
programming environment (51). To calculate the Mantel statistics and metaMDS (a 
variant of  NMDS) we used the package vegan (99). All linear models were tested for 
significance with a permutation procedure from the package lmperm (100).

Diversity analyses. To test how UMS influence analyses of  alpha and beta diversity, 
we calculated Fisher’s alpha values (98) for every one-hectare plot twice: once 
with AMS and once for only IMS. We then performed a linear regression analysis 
between Fisher’s alpha calculated for AMS and IMS to determine whether diversity 
patterns remain the same when datasets are truncated like this. Fisher’s alpha is a 
widely used diversity index, specifically suited for species abundances following a 
logseries distribution. Fisher’s alpha has been shown to be a very efficient diversity 
index for discriminating between sites (101). This is a consequence of  Fisher’s alpha 
being theoretically independent of  sample size and therefore much less influenced 
by the abundances of  the more common species (102, 103). If  UMS can safely be 
excluded from the dataset we expect to find no deviation from the pattern predicted 
by using only IMS or AMS and high R2 values from the linear regression analysis. 
We do expect, however, as UMS are especially common among the rare species, that 
omitting UMS may result in a significant decrease in Fisher’s alpha, which was tested 
by a paired sample t-test.
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Similarity in species composition. To examine whether floristic similarity between 
plots differed when using AMS or only IMS we constructed floristic similarity 
matrices for each dataset and a geographical distance matrix between the plots. 
Again, this was done twice for each dataset: once for AMS and once for IMS. 
We calculated the Mantel statistic (104) as the matrix correlation between the two 
similarity matrices (in this case the floristic and the geographical matrix). Random 
permutation of  both rows and columns of  the species similarity matrix is then used 
to evaluate the significance of  the performed test (105). We performed a linear 
regression between the pairwise similarities between all plots of  each dataset to 
assess the prediction of  similarity values based on only the IMS. Because the two 
similarity matrices (i.e. based on IMS only or AMS) are not independent, this should 
be interpreted as underestimates of  the risk to abandon the null hypothesis of  no 
dependence between the matrices. However, we need to stress that despite the non-
independence, this is exactly the test we need to perform, as we are interested if  
IMS are a good predictor of  AMS. Floristic similarity values were first calculated 
with the Bray-Curtis index of  similarity, which is based on both species occurrence 
and abundances at each site (106). For comparison, we also used the Jaccard index 
and the Sørensen index to calculate similarities. The Jaccard index is only based on 
species presence or absence, i.e. ignoring differences in species abundance (107) and 
calculates similarity as the number of  shared species between two sites divided by 
the total number of  species of  the two sites combined. The Sørensen index (108) is 
in essence much the same as the Jaccard index with the exception of  giving double 
the weight to the shared species. To test the degree to which pairwise communities 
are more different or more similar than expected by chance we used the Raup-Crick 
distance metric and repeated the above analyses. The Raup-Crick metric (βRC) was 
previously used in Paleontological studies and just recently in some works related to 
variation in beta diversity and species turnover (109–111). The βRC metric calculates 
the similarity between two communities under a null model. Assuming that SS1,2 
is the number of  shared species between two communities with values of  alpha 
diversity α1 and α2 respectively, the βRC is obtained by random draws of  α1 and α2 
species from a determined species pool to estimate the probability of  observing 
the shared species. The Mantel statistic was first calculated based on the standard 
distance matrix function in vegans vegdist (99). We then used the Raup-Crick 
method, under a null-model assuming that the occurrence probability of  species 
is frequency dependent, and performed the Mantel’s statistic and linear regression 
on the matrices of  pairwise similarities again. Similar to the diversity analyses, if  
omitting UMS from our datasets indeed makes no difference we again expect to 
find high R2 values from the regression between analyses performed on IMS and 
AMS. In addition we also tested for the deviation from a slope of  1 belonging to 
the relationship of  y = x (i.e. when IMS and AMS generate the exact same results). 
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To test whether using a higher taxon approach would yield similar results as the 
approach based on AMS as above, we also tested results from a similarity analysis 
based on only genera against the results of  the AMS dataset. Agreement between 
similarities was analysed using the same procedure as above.

Multivariate analyses. To evaluate underlying structures of  floristic composition 
within the three datasets we performed Non-Metric Multidimensional Scaling 
(NMDS) using MetaDMS. Two NMDS were performed separately for each dataset: 
once for AMS and once for IMS. The scores of  the first and second axes were then 
compared separately by linear regression. NMDS is an ordination technique, which 
attempts to find the best rank-order agreement between actual similarities in floristic 
similarity and interpoint distance in the computed ordination space (112–114). 
NMDS therefore does not try to fit axes based on eigenvalues but instead represents a 
coordinate system for the ordination space. We used MetaMDS, a NMDS procedure 
that centers the origin on the averages of  the axes and uses principal components 
to align the scores in such a way that most variation is projected along the first axis 
(99). We tested the hypothesis that the patterns produced by the NMDS on the 
first and second axis are similar using either the IMS or AMS and hence that linear 
regressions will yield high R2 values. Here we also tested for the deviation from a 
slope of  1 belonging to the relationship of  y = x.

Table 3.2 Adjusted R2 coefficients from the linear regression for each analysis; listed for all 
three datasets. All regression coefficients were found significant at a 0.001-signficance level after 5000 
permutation iterations. Results of  stratification were averaged over 50 runs for each diversity index.
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Table 3.2 Overview of all adjusted R2 coefficients from the linear regression for 
each analysis; listed for all three datasets. All regression coefficients were found 
significant at a 0.001-signficance level after 5000 permutation iterations. Results of 
the stratification were averaged over 50 runs for each diversity index. 
 
 
 
 

 
 
  

Valid vs Morpho 
  Guyana/Suriname Ecuador French Guiana 
Fishers Alpha 0.967 0.959 0.970 
Mantell Bray-Curtis 0.983 0.998 0.999 
Mantell Bray-Curtis (genus level) 0.739 0.805 0.904 
Mantell Jaccard 0.983 0.998 0.999 
Mantell Sørensen 0.966 0.995 0.996 
Raup-Crick 0.918 0.955 0.967 
NMDS axis 1 0.979 0.998 0.9997 
NMDS axis 2 0.991 0.988 0.998 
Stratification (50%) Bray Curtis 0.80 (SD 0.17) 0.92 (SD 0.042) 0.92 (SD 0.05) 
Stratification (50%) Sørensen 0.60 (SD 0.073) 0.85 (SD 0.02) 0.81 (SD 0.051) 
Stratification (50%) Jaccard 0.78 (SD 0.19) 0.91 (SD 0.04) 0.92 (SD 0.05) 
Stratification (25%) Bray Curtis 0.59 (SD 0.2) 0.81 (SD 0.07) 0.82 (SD 0.09) 
Stratification (25%) Sørensen 0.51 (SD 0.12) 0.75 (SD 0.06) 0.71 (SD 0.097) 
Stratification (25%) Jaccard 0.59 (SD 0.19) 0.79 (SD 0.072) 0.81 (SD 0.095) 
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Fig. 3.2 Rank abundance curves for the IMS (blue) and AMS dataset (red) for Guyana/Suriname (upper 

left), Ecuador (upper right) and French Guiana (bottom left) showing the effect of omitting UMS. The AMS 

dataset contains many more rare species and the UMS are mostly in the tail of the distribution as indicated 

by the dashed line separating the truncated IMS datasets and the AMS datasets, effectively transforming the 

curve from a logseries to a lognormal.	

	

Data stratification. To test for the robustness of  predictions based on IMS, we 
created random smaller subsets to perform the same Mantel test as explained above. 
A random subset of  respectively 50% and 25% was selected from the Guyana/
Suriname, French Guiana, and Ecuador IMS pool. In making the IMS dataset even 
smaller in comparison with the complete dataset (by randomly omitting IMS), we 
simulated a larger proportion of  UMS. This was repeated for 50 iterations from 
which mean values were calculated for the similarity matrices using the same three 
indices as used for the similarity analyses described above. 

Fig. 3.2 Rank abundance curves for the 
IMS (blue) and AMS dataset (red) for 
Guyana/Suriname (upper left), Ecuador 
(upper right) and French Guiana (bottom 
left) showing the effect of  omitting UMS. 
The AMS dataset contains many more rare 
species and the UMS are mostly in the tail of  
the distribution as indicated by the dashed line 
separating the truncated IMS datasets and the 
AMS datasets, effectively transforming the 
curve from a logseries to a lognormal.
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Results

Floristic composition and level of  species identification
The proportion of  IMS varied in the three datasets from 44-77%. In Guyana and 
Suriname (OSB), 67 plots yielded 37,446 individual trees, for a total of  1042 AMS 
and 458 IMS (44%). The mean number of  UMS per plot was 27 with a median of  
24. Mean fraction of  IMS per plot for Guyana/Suriname was 70%. Ecuador (JEG) 
with a total of  72 plots yielded 34,544 individual trees, for a total of  2021 AMS and 
1391 IMS (69%), with a mean number of  17 and a median of  16 UMS per plot. 
The mean proportion of  IMS for each plot in Ecuador was 90%. In French Guiana 
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Fig. 3.3 Comparisons between the IMS and AMS dataset for species richness per plot (top left), 
Fisher’s alpha (top right), pairwise similarities between all plot pair combinations (bottom 
left) and axis 1 scores of  the Non Metric Multidimensional Scaling (bottom right). All analyses 
were performed on the three large subsets Guyana/Suriname (o; black), Ecuador (Δ; red) and French 
Guiana (+; blue). All analyses show extremely similar results and yield high R2 values.
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(S-M), 63 plots yielded 35,075 individuals of  trees, for a total of  1204 AMS and 925 
IMS (77%). Mean number of  UMS per plot was 15 with a median of  15. The mean 
proportion of  IMS per plot in French Guiana was 91%. Linear regressions between 
the number of  AMS and the number of  IMS were high, with R2 values of  0.938, 
0.976 and 0.959 for Guyana/Suriname, Ecuador and French Guiana respectively 
(Table 3.2).

Predicted species diversity based on identified morpho-species
Linear regressions between Fisher’s Alpha (FA) calculated using AMS and only the 
IMS were extremely high, yielding R2 values of  > 0.95 for all three datasets (Table 
3.2). The slope of  the linear model based on the Guyana/Suriname was 1.6. Using 
a 95% confidence interval for the slope showed that this was significantly different 
from the relation to y = x with slope 1 (i.e. when there is no difference between FA 
based on AMS or just IMS). This was the case for Ecuador and French Guiana as 
well, with deviation of  the slopes of  1.12 and 1.10 respectively. As expected, FA 
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Fig. 3.4 Comparisons between pairwise 
similarities (1-Bray) between all plot 
pair combinations using a higher taxon 
level indicator (here genus level) and 
the AMS dataset (Guyana/Suriname 
topright, Ecuador bottom left and 
French Guiana bottom right). Although 
patterns still remain the same, similarities 
are continuously higher than expected based 
on AMS when using only higher taxa as an 
indicator. Results show that using only IMS 
in comparison with AMS gives a better fit.
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showed an increase with an increasing number of  species per plot for both IMS and 
AMS. FA calculated for just IMS ranged between 2.87-44.92 for Guyana/Suriname, 
8.96-114.65 for Ecuador and 27.61-114.65 for French Guiana. When using AMS 
this was (in the same order) 4.65-78.17, 12.23-130.32 and 27.61-130.32. These 
differences were found to be significant after performing a paired sample t-test with 
significance levels for rejecting the H0 of  equal ranges with probabilities < 0.005 for 
all three datasets. 

Patterns in morpho-species abundance. Because the slope between FA calculated 
for only the IMS and AMS deviated significantly from 1, we examined the rank 
abundance curves for both IMS and AMS for each dataset. The AMS datasets were 
consistently richer in species, especially the rare ones, when compared to the IMS 
datasets (Fig. 3.2). Moving from the AMS dataset to the IMS more species were lost 
than individuals, significantly affecting FA. For instance, the IMS dataset contains 
only approximately 21% of  the number of  singletons compared to the AMS dataset 
in Guyana/Suriname. For Ecuador and French Guiana this was 41% and 55% 
respectively. In terms of  numbers there are a total of  only 44 singletons in the IMS 
dataset of  Guyana/Suriname against 210 in the AMS dataset (Ecuador = 212 vs. 518 
and French Guiana = 114 vs. 208). 

Similarity in species composition. Using IMS only, the similarity in species 
composition based on Bray Curtis was predicted very well for all three datasets 
(R2 values of  > 0.98) (Table 3.2) and the slope in all cases was almost identical to 1 
(Fig. 3.3). Confidence intervals (c.i.) showed, however, that, despite high adjusted R2 
values, slopes from the linear regressions actually deviated significantly from 1 for 
all datasets when using the Bray Curtis index (Guyana/Suriname c.i. 0.917-0.927, 
Ecuador 0.958-0.961 and French Guiana 0.979-0.982). The difference between 
using either the Jaccard, Bray Curtis or Sørensen index for calculating similarities 
among plots appeared to be negligible, all resulted in adjusted R2 values of  > 0.96 
(Table 3.2) with slopes from the linear regressions all still significantly deviating from 
1 (for Jaccard: Guyana/Suriname c.i. 0.897-0.907, Ecuador 0.950-0.953 and French 
Guiana 0.973-0.976 and for Sørensen Guyana/Suriname c.i. 0.915-0.930, Ecuador 
0.932-0.938 and French Guiana 0.969-0.974). Adjusted R2 values using the Raup-
Crick distance metric yielded values of  > 0.91 for all three datasets. Examples of  
the patterns of  distance decay with AMS and only IMS can be found for all three 
datasets in the Supporting Information Chapter three. The Mantel’s r coefficient for 
Guyana/Suriname using only IMS was 0.4695; when using AMS this was slightly 
higher (0.5092). The differences in Mantel’s r coefficient were smaller for Ecuador 
(0.4029 and 0.4039) and French Guiana (0.7944 and 0.7987).
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Using higher-taxon level resolution in comparison with identified morpho-species. 
Using higher taxon level (genus level) data, similarities among communities are 
higher and much more deviant from the expected similarities based on AMS (Fig. 
3.4) than with the IMS (Fig. 3.3). The latter shows a very strong linear regression, 
while regressions between similarities based on genus level appear to predict the 
pattern generated by AMS not as good (with R2 values ranging from 0.74-0.90, Table 
3.2) as using only the ISM.

Predictions of  Multivariate analyses. Non Metric Multidimensional Scaling of  all 
three subsets showed good segregation along the first two axes of  the NMDS when 
using AMS as well as when using only IMS. Axis 1 scores derived from only the IMS 
and AMS were very similar (Fig. 3.4). All linear regressions of  first axis scores for 
the AMS and IMS NMDS yielded adjusted R2 values of  > 0.97, for all three datasets. 
The same pattern emerged from using the second axis with (R2 values of  > 0.99) 
(Table 3.2). In all cases except French Guiana, deviation of  the slopes from 1 was 
found not to be significant using a 95% confidence interval. Although for French 
Guiana the CI was between 0.984-0.993. Examples of  NMDS results for all three 
datasets using either AMS or IMS can be found in the Supporting Information 
Chapter 3: Fig. S7.

Robustness of  predictions: data stratification. IMS made up between 44-77% of  all 
species encountered in the datasets (see above). After randomly selecting 50% and 
25% of  all IMS from each dataset and recalculating the distance decay in Similarity 
and Mantel’s statistic using the Bray-Curtis, Sørensen and Jaccard index, regressions 
dropped slightly but they still yielded high linear regression coefficients (Table 3.2). 
For Guyana/Suriname 50 runs with 50% of  IMS yielded adjusted R2 values between 
0.60 and 0.80 for the tree indices. Ecuador and French Guiana yielded even higher 
R2 values for each index, ranging from 0.85-0.92. In the case of  25% of  IMS drawn 
randomly from the total set of  IMS this gave a mean linear regression coefficient 
R2 between 0.51 and 0.59 for Guyana and in the ranges 0.75-0.79 and 0.71-0.82 for 
Ecuador and French Guiana respectively.
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Discussion

We asked if  omitting individuals that have no valid species name (UMS) from 
ecological datasets would change the overall result of  several important ecological 
analyses. We showed that when using only the IMS of  actual field data, major 
ecological patterns such as the differences in species richness among sites, floristic 
similarities among sites and ordination gradients in species composition were 
maintained. The linear regressions between analyses based on the IMS only or AMS 
(including all UMS) were extremely high for almost all analyses (R2 > 0.91). This 
was the case even when simulating a larger fraction of  UMS. And although FA 
underestimated species diversity, when using only IMS, linear regressions between 
FA from IMS and AMS still showed extremely high R2 values, suggesting that spatial 
patterns in diversity will still be similar when using only IMS. However, if  individuals 
can be assigned to morpho-species within plots this will also allow the comparison 
among plots from different resources (115), including the UMS.

Different methods have been proposed in the past to deal with unidentified 
morpho-species. By relaxing the taxonomic resolution (87), however, the prediction 
of  similarity between our sites was lower than when omitting UMS (Figs. 3.3 and 
3.4). Thus, although a genus level approach allows a larger number of  individuals 
from the dataset to be used, its performance was not necessarily better. Cayuela 
et al. (2011) used a different method of  trimming UMS from a dataset: instead of  
omitting individuals of  UMS, they randomly reassigned them to species present in 
other plots (or to itself  again, in which case it was considered a new species) (88). 
This resulted in plots becoming more similar then observed as all plots drew the 
names for the indets from a panmictic species pool. Omitting UMS results in lower 
similarities, rather than higher but with smaller deviation (cf. Fig. 1 from (88))

When UMS are omitted, a risk is introduced of  underestimating the actual geographic 
range of  the species, e.g. when these UMS are located at the range margins. It would 
then be expected that this would greatly influence the agreement in similarity of  
species composition between IMS only and AMS (85). However, this effect appears 
to be negligible in terms of  determining patterns of  tree species turnover, as shown 
by our extremely high regression coefficients between similarities among plots based 
on AMS and IMS alone (Fig. 3.3). For the sake of  argument there is a slight decrease 
in the correlation (Mantel r) if  only IMS are taken into account in the analysis but 
this effect arguably does not change the patterns of  species turnover. Confidence 
intervals for the slope of  the regression for the comparison of  similarity values based 
on all three used indices showed that with an increasing amount of  species identified 
(i.e. a lower proportion of  UMS) as is the case with subsequent increased IMS when 
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comparing the Guyana/Suriname, Ecuador and French Guiana datasets, the linear 
regression starts to approach a slope of  1. For example, with 77% identification of  
all species in French Guiana, a confidence interval of  0.979-0.982 shows that the 
slope of  the regression between IMS and AMS similarity values calculated with the 
Bray Curtis index is extremely close to a slope of  1, indicating that the Bray-Curtis 
similarity values are nearly equal between the IMS and AMS dataset. This was also 
true when using the other indices
The similarity matrices are the input for the distance decay in similarity, Mantel test 
and NMDS. As a result it is obvious to expect that if  the similarity matrices are very 
similar these will also generate very similar results when AMS and IMS are compared. 
We, however, did not know this a priori and had decided to show all three analyses 
as primary examples because they are all often used by ecologists. For almost all 
analyses (except NMDS first axis comparison for Guyana and Ecuador) there was a 
significant positive deviation from the relation y = x with slope 1, when comparing 
results of  AMS and IMS. Hence, omitting species has a small but significant effect. 
However, this difference is apparently not enough to distort the actual pattern of  
species turnover. Results from the Raup-Crick analyses also showed that using both 
approaches to calculate the distance matrices, i.e. with and without permutation 
based on frequency dependent probabilities of  selecting species to be used for 
Mantel’s r, still yields similar results. There are some limitations to using this method. 
As it is a presence/absence based non-metric measure, identical samples can have 
dissimilarities above zero and samples sharing no species can have dissimilarities 
less than one. Samples sharing rare species in particular appear to be more similar 
as the probability of  sharing these species is lower in comparison with samples 
sharing more common species and data is always treated as presence/absence. In 
addition, Lennon et al. (2001) showed that strong local differences (i.e. in adjacent 
plots) in species richness might have an influence on species similarities when using 
the Sørensen index (116). But even in the light of  these limitations, the results 
from the similarity analyses indicate that, while leaving out unidentified species 
might compromise species ranges, it does not seem to affect overall similarity, thus 
remaining a useful approximation for similarity analyses. Results from the NMDS 
indeed supported the other analyses. Scores from the first axis of  the NMDS were 
nearly identical between only the IMS and AMS. This was also true for the second 
axis scores. As regressions between NMDS scores of  both the first and second axis 
showed extreme good regression coefficients (R2 values all >0.97) it shows that it 
is in fact possible to omit UMS from datasets without losing large scale patterns as 
are analysed when using NMDS. If  a strong underlying gradient, for instance due 
to different forest types, would be responsible for the robustness of  patterns, they 
could be maintained if  a large enough fraction of  plots in each forest type is still 
present after omitting UMS. Table 3.1 shows a summary of  the datasets used and 
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the types of  forest incorporated in the analyses and although five different types of  
forest Igapó (IG), Podzol (PZ), Swamp (SW), Terra Firme (TF) and Várzea (VA) 
were used, the far majority of  plots is on Terra Firme soils suggesting forest types 
are not likely the reason for maintaining these patterns. 

Common species dominate ecological patterns. Even when simulating a larger 
proportion of  the complete dataset to be unknown, the majority of  analyses still 
yielded very comparable results. Considering this simulated loss of  information, this 
suggests that patterns of  species diversity and composition are robust enough to 
emerge from (very) limited datasets. Most likely this is due to the fact that common 
species are common enough to even have a pattern, whereas rare species are often 
so restricted they do not affect the large-scale patterns much. Lennon et al. (2004) 
already showed that the more common species were mostly responsible for richness 
patterns in avian species (117). It would appear that in tropical tree species the 
common species also dominate major ecological patterns, such as species turnover. 
Even when using the Jaccard index for similarity, which is only based on presence 
or absence, results from the similarity analyses showed that omitting UMS made 
no difference in the overall result (although deviation from the relationship y = x 
was significant). If  IMS consist mostly of  common species, this common species-
domination as explained above would explain why using only IMS results in the 
same patterns as when using AMS. To test this we plotted a rank abundance curve 
on a logarithmic scale. It becomes immediately apparent (Fig. 3.2) that the AMS 
dataset include many more rare species than did the IMS subset. In fact, omitting 
the UMS from the dataset results in the rank abundance curve showing a lognormal 
distribution instead of  the logseries-distribution when AMS are plotted. In a sense, 
omitting UMS truncates the datasets from the right, cutting of  the rare species. This 
also explains why our results for Fisher’s alpha showed an underestimation when 
using only IMS and why similarities between plots using just IMS and AMS deviate 
with increasing similarity. UMS are not randomly distributed among the common 
and rare species but are mostly rare species. Hence, FA calculated with N and S for 
just the IMS will generally be an underestimate. 
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Conclusions

Finding near identical similarities of  species composition and patterns from NMDS 
results suggest that patterns of  similarity and thus composition are robust. Although 
Fishers alpha based on IMS or AMS showed nearly identical spatial patterns, using 
a dataset with AMS is still preferred, as FA is not based on comparison and will be 
underestimated when using only IMS. Overall, the results presented here suggest that 
irrespective of  metrics used, analyses and their limitations; strong ecological patterns 
still arise using only IMS. In other words, having a large number of  unidentified 
species in a dataset may not affect our conclusions as much as is often thought. 
However, this should not be interpreted as an argument to omit all UMS all the 
time. They remain important as they may represent important species (118)  and are 
essential for the calculation of  correct diversity measures.
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Figure S1. Example showing the distance decay in similarity (DDS) for the Guyana/Suriname 
dataset based on the distance matrices calculated with the Bray-Curtis index used for the 
Mantel statistic. Analysis of  DDS are shown for only IMS (upper left), AMS (upper right) and the 
linear regression for Guyana/Suriname (lower left)

Supporting Information
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Figure S2. Example showing the distance decay in similarity (DDS) for the Guyana/Suriname 
dataset using the Raup-Crick analyses. Analysis of  DDS are shown for only IMS (upper left), AMS 
(upper right) and the linear regression for Guyana/Suriname (lower left).
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Figure S3. Example showing the distance decay in similarity (DDS) for the Ecuador dataset 
based on the distance matrices calculated with the Bray-Curtis index used for the Mantel 
statistic. Analysis of  DDS are shown for only IMS (upper left), AMS (upper right) and the linear 
regression for Ecuador (lower left).
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Figure S4. Example showing the distance decay in similarity (DDS) for the Ecuador dataset 
using the Raup-Crick analyses. Analysis of  DDS are shown for only IMS (upper left), AMS (upper 
right) and the linear regression for Ecuador (lower left).
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Figure S5. Example showing the distance decay in similarity (DDS) for the French Guiana 
dataset based on the distance matrices calculated with the Bray-Curtis index used for the 
Mantel statistic. Analysis of  DDS are shown for only IMS (upper left), AMS (upper right) and the 
linear regression for French Guiana (lower left).
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Figure S6. Example showing the distance decay in similarity (DDS) for the French Guiana 
dataset using the Raup-Crick analyses. Analysis of  DDS are shown for only IMS (upper left), AMS 
(upper right) and the linear regression for French Guiana (lower left).



50	 Rolling the Dice or Struggling for Survival

Figure S7. Example showing the Non Metric Muldimensional Scaling (NMDS) ordination 
procedure for Guyana/Suriname (upper), Ecuador (middle) and French Guiana (lower) using 
meta-MDS. Analyses are shown for only IMS (left) and AMS (right). Dashed lines indicate different 
grouping based on country (Guyana/Suriname), forest type or geographic subdivision (North/South).
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No one knows the diversity in the world, not even to the nearest order of  magnitude. We 
don’t know for sure how many species there are, where they can be found or how fast they’re 

disappearing. It’s like having astronomy without knowing where the stars are. 

Edward. O. Wilson, Time Magazine (13 Oct 1986)
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Abstract

Species richness estimation is one of  the most widely used analyses carried 
out by ecologists, and nonparametric estimators are probably the most used 
techniques to carry out such estimations. We tested the assumptions and 
results of  nonparametric estimators and those of  a logseries approach to 
species richness estimation for simulated tropical forests and five datasets 
from the field. We conclude that nonparametric estimators are not suitable 
to estimate species richness in tropical forests, where sampling intensity is 
usually low and richness is high, because the assumptions of  the methods 
do not meet the sampling strategy used in most studies. The logseries, 
while also requiring substantial sampling, is much more effective in 
estimating species richness than commonly used nonparametric estimators, 
and its assumptions better match the way field data is being collected. 
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Introduction

Species-richness estimation is one of  the most widely used analyses carried out 
by ecologists, either to compare samples obtained with different efforts, or by 
extrapolation, to predict the number of  species present in an area larger than the 
one sampled. Extrapolation methods are frequently used for geographically large 
areas, where coverage of  the complete range is out of  reach, too labor intensive, or 
too expensive.

Parametric species richness estimation is based on parameter inference for either one 
of  the two main relationships describing assemblages: the number of  individuals 
(N) in a community or the area (A) this community occupies. In these cases, the 
number of  species (S) only depends on the relative or Rank Abundance Distribution 
(RAD) of  the species (119) or the Species-Area Relationship (SAR) (120). As a 
general rule of  thumb, in any number of  random samples of  an area, the number of  
species that remain undetected will increase with increased S and A (121), precluding 
any attempt to directly quantify the RAD or the SAR from samples. This clearly 
poses a problem in tropical forests that are generally both large and rich. There 
has been a long argument as to whether the logseries (98), the log-normal (122), 
or alternative distributions (123) give the best fit for RADs, how much the fit is 
dependent on scale or sampling completeness, and to which extent the best fitting 
model reflects the biological processes underlying the distribution. The use of  
nonparametric estimators of  species richness such as Chao, ICE (Incidence-based 
Coverage Estimator of  species richness), and Jackknifing, has been proposed as a 
way of  dealing with this uncertainty, because they do not assume any underlying 
distribution. It would be wrong, however, to suppose that they are less sensitive to 
other assumptions than parametric methods or that they do not suffer from other 
drawbacks. Brose et al. (124) noted that sampling-theoretical methods of  estimation 
require high sampling intensity to avoid what Wang and Linday (125) call the “severe 
under-estimation observed from popular nonparametric estimators due to the 
interplay of  inadequate sampling effort, large heterogeneity and skewness.” Xu et al. 
(126) also reported that nonparametric methods severely underestimate richness and 
emphasized that these methods should not be used across heterogeneous landscapes. 
This is largely because nonparametric estimators based on a sampling estimate of  the 
rare-tail of  the SAR are very sensitive to the shape of  the abundance-distribution. 
As underlined by Harte and Kitzes (127), “The rare tail is emphasized because the 
shape of  the species-area relationship is especially influenced by the numbers of  rare 
species”. Although the performance of  estimators has been frequently compared 
(124, 126, 128–130), much less of  the ecological literature critically evaluates their 
assumptions and caveats. 



Estimating species richness in hyper-diverse large tree communities 55

Perhaps the most commonly used estimator for species richness is the Chao1 
nonparametric estimator (131, 132), which estimates the number of  species as: 
Sestimated = Sobserved + f1

2/(2f2), where f1 is the number of  species with 1 individual 
in the sample (singletons) and f2 is the number of  species with 2 individuals in 
the sample (doubletons). The Chao1 estimator and other nonparametric estimators 
make no assumptions about the underlying species-abundance distribution, but do 
assume that sampling is random with replacement across the whole area. When f1 = 
0, it is assumed that all species have been collected and Sestimated = Sobserved (132).
Chao Bunge (133), Chao Lee ACE, Chao Lee ACEI (134), and Jackknife (135) are 
variations on the original Chao 1 estimator. They are also dependent on the fractions 
of  the rare or infrequent species, and require “a sufficiently high overlap fraction [..] 
to produce a reliable estimate of  the species” (133), and, finally, are all based on the 
capture-recapture principle that requires sampling with replacement. 

The logseries in contrast is not based on a capture-recapture principle and was 
among the first attempts to mathematically describe the relationship between the 
number of  species and number of  individuals in a biological context by Fisher (98) 
and is given by: Φn = αxn/n, where: Φn is the number of  species with n individuals; α 
is Fisher’s α; x = N/(N + α) (N being the number of  individuals in the total sample; 
x being asymptotically equal to 1 with large sample sizes). Hence, we expect α from 
samples to quickly approach α of  the total landscape, after which it will be practically 
independent of  sample size. Fisher’s alpha can be calculated from the number of  
individuals (N) and species (S) in a sample by iteratively solving: α = S/ln(1 + N/ α). 
The logseries is essentially a geometric summation, which builds up from the first 
term (Φ1), the singletons. The number of  singletons is thus predictable in a logseries 
(Φ1 = αx) and always the largest class. As x is very close to 1 for reasonably large 
samples, Φ1 ≈ α in such samples. Similarly, the number of  doubletons is: Φ2 = α x2/2 
≈ α/2. When we assume that RAD’s of  communities follow the logseries, this has 
implications for the nonparametric Chao1 estimator. For large samples, the Chao1 
estimator (note that f1

2/[2f2 ] = Φ1
2/[2 Φ2 ]) will simply become: Sestimated = Sobserved + 

α2/[2(α/2)] = Sobserved + α. Consequently, we predict that for reasonably large samples, 
for which α is constant, Chao1 always estimates the number of  unseen species as α, 
regardless of  the size of  the samples. 

Hubbell’s neutral theory was the first ecological theory deriving the logseries from 
the basic biological processes of  birth rate (b) and death rate (d) (29, 136).  It can be 
shown that in this model x (N/[N + α]) = b/d. NT derives a distribution, the Zero 
Sum Multinomial (ZSM), which for large communities with little drift approaches 
a logseries. For small local communities (limited immigration and drift), the ZSM 
approaches a lognormal (29).
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Here we compare commonly used nonparametric estimators of  species richness 
to one parametric estimator based on the logseries for the purpose of  estimating 
species richness in large areas of  tropical forest. We specifically chose the logseries 
as we are trying to estimate richness in very large areas where the ZSM approaches 
this distribution. We show by simulations and comparisons with empirical data that 
the assumptions of  the parametric estimator are less sensitive to deviations than 
those of  the nonparametric estimators. 

Methods

Simulations. We modelled forest communities of  100 x 100 1-ha plots (a 100 km2 
square area), each plot with 500 individuals. We initially filled each of  the 10,000 
hectares with a random sample of  500 individuals from a metacommunity (MC). 
The MC was constructed using a logseries of  15 million individuals and a Fisher’s α 
of  300, which is roughly equivalent to a rich central Amazonian rainforest (see Field 
data). We used a logseries as this conforms to the structure expected (29) and found 
in tropical forests (14, 136, 137). After filling the plots randomly from the MC, the 
mean Fisher’s α of  all plots and that of  the virtual forest initially is, as expected, 
equivalent to that of  the MC. During the simulations, trees were randomly selected 
to be removed (1 per plot per time step) and new recruitment could come from 
dispersal (m) from 4 sources: 

1) Recruitment from dispersal inside the plot (mplot ), equivalent to local recruitment. 
Local recruitment is random within the plot, i.e. we assume no spatial structure 
inside the plots. 

2) Recruitment from dispersal from the surrounding eight plots. Dispersal probability 
based on dispersal distance was based on the model of  Chisholm and Lichstein 
(138), modified by Pos et al. (139). The dispersal probability from the adjacent plots 
(madjacent ) is computed from dispersal distance as (139): 
madjacent  = 0.3 * (A - (l - 2*d)2)/A. Where: A is the area of  the plot  (10,000 m2), l 
= length of  the plot (100 m), and d = the average dispersal distance. Assuming an 
average dispersal range of  10-40 meters madjacent is in the range of  0.108-0.288.

3) Recruitment from dispersal from the surrounding forest (10,000 ha), comparable 
to long-distance dispersal. Individuals for replacement were drawn randomly from 
the 10,000 ha. This assumes that long-distance dispersal is not spatially driven. We 
used a probability of  mforest = 0.1*madjacent .
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Table 4.1 Botanical inventories used for the analysis. Locations are Barro Colorado Island (BCI), 
Reserva Ducke (RD), Piste de St Elie (PSE), Monte Branco Plateau (MBP). Variables are number 
of  plots sampled, plot area (ha), number of  individuals sampled (N), number of  species recorded 
(S), the target area for which estimates were made, number of  individuals in the target area based on 
average density, and reference to the data source: 1) (35); 2) (140); 3) (141); 4) (142).

Table 4.2 Species estimates based on plot samples in BCI, RD, PSE, and PMB 
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Table 4.1 Botanical inventories used for the analysis. Locations are Barro Colorado 
Island (BCI), Reserva Ducke (RD), Piste de St Elie (PSE), Monte Branco Plateau 
(MBP). Variables are number of plots sampled, plot area (ha), number of individuals 
sampled (N), number of species recorded (S), the target area for which estimates were 
made, number of individuals in the target area based on average density, and 
reference to the data source: 1) (1); 2) (2); 3) (3); 4) (4).  
 
 
Locality # plots Plot 

area 

N S target area target 

individuals 

Reference 

BCI 50 1 21,457 225 50 ha 21,457 1 

RD 72 0.5 25,066 1233 100 km2 7,200,000 2 

PSE 20 1 12,450 574 1500 ha 933,750 3 

MBP 301 0.25 36,546 703 3750 ha 1,821,229 4 
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Table 4.2 Species estimates based on plot samples in BCI, RD, PSE, and PMB  
 
 

 BCI se RD se PSE se PMB se   

Number of plots 50  72  20  301    

number of individuals 21,457  25,066  12,450  36,546    

number of species 

target area 

225 

50 ha 

 1233 

100 km2 

 574 

1500 ha 

 703 

3750 ha 

   

target individuals 21,457  6,960,000  933,750  1,821,229    

Sestimated with           

 Fisher’s α 225  2759  1110  1185    

 Chao 1984 239 8.3 1,408 32 724 36 821 31   

 Chao Bunge 243 9.6 1,423 32 715 34 823 31   

 Chao Lee ACE 238 6.1 1,375 20 669 18 738 16   

 Chao Lee ACEI 241 8 1,405 26 694 25 805 23   

 Jackknife 244 6.1 1,591 59 1066 124 920 40   
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4) Recruitment from dispersal from the MC, this is comparable to infrequent very 
long-distance dispersal, also termed vagrancy. The individuals were drawn randomly 
from the MC, assuming that very long-distance dispersal too is not spatially driven. 
We used a probability of  mMC = 0.01*madjacent.

5) Speciation (v) as defined in the Unified Neutral Theory of  Biodiversity and 
Biogeography (29):  v = θ/(2*J) = 250 /(2*10,000*500) = 2.5e-5 . Where θ is the 
biodiversity number, asymptotically equivalent to Fisher’s alpha and J is the size of  
the community.

Parameters 2-4 were calculated first. Local recruitment (1) was then calculated as: 
mplot = 1 - madjacent - mforest - mMC – v. We ran 30,000 time steps for each model with 
mean dispersal distances of  10, 15, 20, 25, 30, and 40 m. 

Fig. 4.1 Simulation of  a 10,000-ha virtual forest with mean dispersal distance of  20 m. 
Parameters used are mplot = 0.78688; madjacent = 0.192; mforest = 0.0192; mMC = 0.00192; v = 10 4. (A) 
Rank abundance distribution (RAD) of  the total virtual (black) with logseries fit (red) and lognormal 
fit (blue). (B) Species area (SPAR) curve for the total virtual forest and estimated richness (Sestimated) 
based on Chao1 (blue). (C) Fisher’s α area curve for the virtual forest. (D) Species richness estimated 
with Fisher’s α (black), Chao1 (blue), each with 95% CI (red), and actual species richness of  the 
simulated community (horizontal line). mplot = local recruitment; madjacent = recruitment from adjacent 
plots; mforest = recruitment from total forest; mMC = recruitment from metacommunity; v = speciation.
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At each time step, 1 individual per plot was randomly selected to be replaced by 
another individual based on the 5 probabilities above. Thus, 10,000 individuals were 
replaced at each time step. After each simulation, we plotted the RAD with a fit 
of  the logseries and lognormal, the Species Area Curve with Chao1 estimator, the 
Fisher’s α to area curve, and the predicted richness based on Fisher’s α and the 
Chao1 estimator. All curves were based on the average of  50 draws from 1 to all 
10,000 plots. We also plotted the results for the average of  50 random draws of  
100 plots from our virtual forest. In addition, we also ran the simulation model for 
a sample of  49 ha of  forest (7x7 ha), using the field data of  BCI (Table 4.1). We 
simulated a forest area of  49 plots, using a MC of  15 km2 (the size of  BCI), an alpha 
of  50 and density of  429 ind ha-1, a dispersal distance of  40 m (138) for madj = 
0.288, and ν = 0.00119. Simulations and calculations were carried out with custom-
made scripts in R (51).

Fig. 4.2 Barro Colorado Island field data (BCI). (A) Rank abundance distribution (RAD) of  BCI 
with logseries fit (red) and log- normal fit (blue). (B) Species area curve for BCI and estimated richness 
(Sestimated ) based on Chao1 (blue). (C) Fisher’s α area curve for BCI. (D) Species richness estimated for a 
100-ha area on BCI with Fisher’s α (black) and Chao1 (blue), each with 95% CI (red).
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Field data. We used field data from 4 sites. 1) Barro Colorado Island (BCI), a 50-ha 
plot in old growth forest (35). This well-known dataset was also used in Chao et 
al. (132); 2) Reserva Ducke (RD; Supporting Information (SI) Chapter 4 S1: Fig. 
S1), a forest reserve of  100 km2 in central Amazonia, just north of  Manaus (140); 
3) Piste de St Elie (PSE, SI Chapter 4 S1: Fig. S2), mixed forest in northern French 
Guiana (141); 4) the Monte Branco Plateau (MBP, SI Chapter 4 S1: Fig. S3), a large 
bauxite plateau of  3750 ha in Para, Brazil (142). BCI tree data was extracted from 
vegan (143), tree data for RD and PSE are integrated in the ATDN database (14) 
and extracted from that source, MBP tree data (R.P. Salomão, unpublished data) was 
taxonomically harmonized with the ATDN database. 
We extrapolated the species richness for an area in which the plots were located; 
for RD for 7.2 million individuals (the area of  the full 100 km2 reserve); for PSE 
an imaginary 1500 ha forest area encompassing the plots; for MBP the 3750 ha that 
comprises the complete plateau (Table 4.1). The plots are well spread across these 
areas. For BCI we estimated richness for the 50-ha plot. For each of  the plot datasets 
we carried out the following analyses: 

Fig. 4.3 Reserva Ducke field data (RD). (A) Rank abundance distribution (RAD) of  RD with 
logseries fit (red) and lognormal fit (blue). (B) Species area curve for RD and estimated richness 
(Sestimated ) based on Chao1 (blue). (C) Fisher’s α area curve for RD. (D) Species richness estimated for the 
total 100-km2 RD area with Fisher’s α (black) and Chao1 (blue), each with 95% CI (red).
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1.	 Plotted the RAD of  the dataset with the exact logseries and lognormal for 	
	 the number of  individuals (N) and species (S) in the field sample;

2.	 Constructed a curve of  the mean species richness by area, based on 50 	
	 randomizations of  the field data;

3.	 Constructed a curve of  the mean of  Fisher’s α by area, based on the same 	
	 50 randomizations of  the field data;

4.	 Estimated species richness in the target area for all sub-samples of  the 50 	
	 randomizations based on Fisher’s α of  the sub-samples as follows: 
	 S = α * ln(1 + N/α) (98); where α = Fisher’s α, and N is the number of  	
	 trees in the subsample and the variance of  S as (98): 
	 varS = α ln([2N + α]/[N + α]) – α2N/(N + α)2;

Fig. 4.4 Piste de Saint Elie field data (PSE). (A) Rank abundance distribution (RAD) of  RD with 
logseries fit (red) and lognor- mal fit (blue). (B) Species area curve for RD and estimated richness 
(Sestimated) based on Chao1 (blue). (C) Fisher’s α area curve for RD. (D) Species richness estimated for 
the total 15 km2 area surrounding the plots with Fisher’s α (black) and Chao1 (blue), each with 95% 
CI (red).
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5.	 Estimated species richness in the target area for all sub-samples of  the 50 	
	 randomizations, based on Chao1: Sest = Sobs + f12/(2f2 );

6.	 Estimated the species richness for the field dataset for a number of  	
	 nonparametric estimators  (Chao 1989, Chao Bunge, Chao Lee ACE, 
	 Chao Lee ACEI, Jackknife), as provided in the R-package SPECIES (144).

The 50 randomizations of  the plot data were produced without replacement from 
one plot to the number of  plots in the field dataset. 

 

Fig. 4.5 Monte Branco Plateau field data (MBP). (A) Rank abundance distribution (RAD) of  MBP 
with logseries fit (red) and lognormal fit (blue). (B) Species area curve for MBP and estimated richness 
(Sestimated ) based on Chao1 (blue). (C) Fisher’s α area curve for MBP. (D) Species richness estimated for 
the total 37.5 km2 MBP area with Fisher’s α (black) and Chao1 (blue), each with 95% CI (red).
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Results

Simulations. The simulations of  our virtual forest with mean dispersal distance of  
20 m produced an RAD that is close to a logseries (but not fully identical) (Fig. 
4.1A). Species richness calculated with the Chao1 estimator as predicted becomes 
Sobserved plus ~ Fisher’s α for larger samples (Fig. 4.1B). While Fisher’s α and species 
richness calculated with Fisher’s α tend to asymptotically approach the community 
value, species richness calculated with the Chao1 estimator follows the shape of  
the species area curve and finally overestimates the richness of  the total sample by 
approximately Fisher’s α. 

All simulations (d = 10 - 40 m) show similar results (SI Chapter 4 S1: Figs.  S4, S6, 
S8, S10, S12, S14, S16; Data S1: SPAR samples.csv). With increasing mean dispersal 
distance and, hence, stronger input from the adjacent plots, Fisher’s α tends to be 
overestimated slightly before it reaches the value of  the total virtual forest and 
the number of  species in the full virtual forest increases from 2071 to 2098. The 
calculations for 50 samples of  100 plots suggest that although Fisher’s α predicts a 
richness closer to the known richness for the virtual forest, it is still an underestimate 
of  3-17% (SI Chapter 4 S1: Figs S5, S7, S9, S11, S13, S15; Data S1: sample by nr. of  
plots.csv). For a similar sample size, the Chao1 estimator provides an underestimate 
of  43-51%, depending on the dispersal distance chosen (SI Chapter 4: Data S1).

Simulations of  49 ha of  BCI. Simulations of  a 49 ha virtual plot based on the BCI 
data produced a RAD (SI Chapter 4 S1: Fig. S18) very similar to that of  the forest in 
the real 50 ha BCI plot (Fig. 4.2). Fisher’s α was very close to the final value for the 
simulated forest after 10 plots. Consequently, species richness was also close to its 
simulated richness after sampling 10 plots. Species richness calculated with Chao1 is, 
as predicted, the species area curve plus Fisher’s α of  the sample. Thus, even when 
all individuals have been sampled, Chao1 still predicts unobserved species with a 
magnitude of  Fisher’s α. This is because, as in real forests, the virtual forest of  49 ha 
still contains singletons.

Field data. In all cases: BCI (Fig. 4.2), RD (Fig. 4.3), PSE (Fig. 4.4), and MBP (Fig. 
4.5), the RAD showed a hollow curve with few common and many rare species 
and, except for BCI, the logseries provided a reasonable fit. In all cases, Fisher’s α 
was very close to that of  the full sample with less than 20 plots sampled. For small 
samples, Chao1 provided a severe underestimate for the richness in the sample, and 
even for the final sample, Sestimated was almost equivalent to Sobserved + Fisher’s α. 
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Species estimates for the target area made with Fisher’s α were much larger than 
those made with the asymptotic Chao1 estimator, which were close to Sobserved + 
Fisher’s α of  the measured data (Figs.  4.2-4.5). All other nonparametric estimators, 
too, predict much lower values for richness, comparable to the Chao1 estimator 
(Table 4.2). Only for BCI, where the area for which richness was to be estimated was 
similar to the actual sample, did the nonparametric estimators approach the estimate 
based on Fisher’s α. For the BCI and MBP data, and simulations with higher mean 
dispersal distances, Fisher’s α peaked before it levelled off  to its final value similar to 
the simulations, i.e. it showed a hump (see Figs.  4.2, 4.5). Fisher’s α, however, rose 
regularly for PSE, RD and for simulations with lower mean dispersal distances (Figs.  
4.1, 4.3, 4.4). 

Discussion

Based on our simulations with a spatially semi-explicit model, Fisher’s α provides 
a more accurate prediction of  species richness in the virtual forest communities 
than does the nonparametric Chao1 and other nonparametric methods, especially 
if  sample intensity is low. We believe that the failure of  nonparametric methods to 
estimate diversity is mainly due to the resampling approach with its need of  high 
sampling effort and its expected loss of  singletons, and the lack of  definition of  the 
target area. We elaborate on this below. 

Based on resampling the BCI plot data, Chao et al. (132) found that, to detect 90% 
of  the species, a median sample size of  80% of  the area is necessary. Also Chiarucci 
et al. (128), using modeled vegetation, found that nonparametric estimators need 
at least 15-30% of  the area to be sampled for reasonable estimates of  the species 
richness of  the whole area. Using these methods with low sampling effort leads 
to serious underestimation as Brose et al. (124) and our models clearly show. In 
real life, even though trees are not removed by our sampling (and resampling is 
thus statistically possible), the chances of  resampling the same plot are negligible. 
In the Amazon with a sample of  1170 1-ha plots in an area of  over 5 million km2 
(14), that chance would be just 2∙10-9. At the intensities at which tropical forests 
are sampled (0.0002% for the Amazon) nonparametric methods simply cannot 
accurately estimate the number of  species in the whole area. On top of  that, when 
plot locations are known researchers are unlikely to resample a known area. Also, 
when locations of  previous studies are known, researchers are unlikely to resample 
a plot. 

With capture and recapture techniques and the nonparametric estimators tested, 
sampling is considered complete when no singletons exist anymore in the data (132). 
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In tree plots, the disappearance of  singletons would be the result of  sampling the data 
many times over with replacement (132). This resampling results in the estimated 
richness asymptotically approaching true richness when the number of  singletons is 
zero, as the total number of  species cannot be larger than those observed in the total 
dataset (132). We argued above that in the case of  research in tropical forests, plots 
are probably never sampled with replacement. 

Thus, the number of  species is expected to increase with sample size as predicted 
by the ‘First Law of  Biodiversity’ ((120), “larger samples yield more species”) and 
many other theories of  Biodiversity (29, 53, 64, 80, 145). In addition, singletons will 
remain (often close in number to Fisher’s alpha). In the above theories singletons 
are the representatives of  the biological processes of  immigration, extinction 
or speciation. Singletons might be species on their proverbial way out driven by 
extinction or new species coming in by speciation or migration. The latter are hence 
necessary to maintain richness. Without these processes fixation will occur due to 
ecological drift, analogous to genetic drift from population genetics. Thus, when 
sampling without replacement: the lack of  singletons in these systems would suggest 
incomplete rather than complete sampling. This inconsistency can be extracted from 
the description of  the method itself, where authors mention that “given adequate 
sampling, lack of  singletons indicates adequate sampling” (132).

Finally, as most tropical tree field data conforms to the logseries (see references in 
Introduction), the Chao1 index becomes scale invariant, always estimating the same 
number of  missing species, in the case of  Chao1, to exactly the amount of  Fisher’s 
α. This was shown mathematically in the introduction for Chao1 and is supported 
by our simulations. While we did not show this mathematically for the other 
nonparametric estimators, they are derived from the same theoretical framework of  
capture-recapture and estimate similar richness (SI Chapter 4 S1: Fig. S19; Table 4.2) 
and thus also provide severe underestimates with low sampling intensities.

For the full Amazon area (~5.5 million km2), ter Steege et al. estimated ~ 16,000 tree 
species based on a sample of  1170 plots of  1-ha (14). They applied at least 18 different 
extrapolation methods from software packages SPECIES (144), and CatchAll (146) 
to their plot data (14). Almost all were rejected, as they predicted the total number 
of  Amazonian tree species to fall in the range 4015-6412, a demonstrably severe 
underestimation of  the true species richness (147). A new estimator, implemented 
in CatchAll (WLRM_UnTransf) (146, 148) gave an estimated total richness above 
11,000, closer to that calculated with their logseries extrapolation, but was not 
selected by the program as the best estimator. The ACE1_Max Tau estimator gave 
a result greatly exceeding the estimate with the log-series but its Tau was much 
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higher (9048) than the recommended value (tau < 10). The failure of  these models 
to fit the Amazonian data was not surprising. These estimators performed poorly 
because at least one of  their assumptions, high sampling intensity, was not met - 
a condition unlikely to be met in any large forested area. Based on an extensive 
search in several data providers and herbaria, (149) found that nearly 12,000 tree 
species have actually been collected in Amazonia, with a collecting density as low 
as 10 collections per 100km2. They conclude that the estimate of  16,000 is entirely 
plausible. Importantly, the number of  species found is almost twice that estimated 
with most nonparametric methods.

Using different methods to estimate or extrapolate the SAR, like Maximum Entropy 
inference (80, 127) or a power law based fitting from multi-scales sampling (150, 
151), also showed that regional scale diversity of  trees was estimated acceptably from 
small plots samples. Interestingly, the abundance distribution model arising from the 
Maximum Entropy approach is most often a logseries (127). Using the logseries is, 
however, not without assumptions either. Our virtual forest is neutral with regard 
to the environment, i.e. demographic probabilities for each individual, regardless 
of  species identity, are equal. Hence, in addition, the only cause of  aggregation is 
limited dispersal of  individuals but given enough time, even ranges of  very dispersal 
limited species can become large. In real life, species will segregate the environment 
based on ecological preferences as well. Hence, beta-diversity in real forests is higher 
than in our virtual-forest stand and a peak of  Fisher’s α is expected when a large 
heterogeneous area is sampled over a range of  sampling intensities.

BCI is known to have clear segregation of  species based on soil moisture (152) 
and the relationship Fisher’s α to area peaks at relatively low number of  plots. We 
also expect the species on MBP to be similarly clumped because of  the clear peak 
in Fisher’s α at low sample sizes. At MBP plot size may also influence the peaking 
of  Fisher’s α. As the plots are smaller (0.25 ha), the recruitment to the plots will be 
more affected by the adjacent plots as madjacent is very much dependent on the ratio 
between the plot boundary and mean dispersal distance (138). The peak modeled 
and observed can be explained by a relationship between beta- and alpha-diversity. 
At low migration rates, recruits mostly come from within plots, hence beta-diversity 
is maximized but alpha-diversity is not because each plot is practically isolated and 
losing species due to ecological drift. This means that, for just sampling one plot, 
Fisher’s α will be much lower than the average of  the whole forest. Continuous 
sampling, however, will gradually result in the average Fisher’s α. There will be no 
peak because the probability for each plot bringing new species to the whole is the 
same and thus the increase will be gradual until Fisher’s α is equal to that of  the 
virtual forest. When migration increases, however, plots close by exchange more 
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species and beta and local alpha diversities increase simultaneously. In this case, 
sampling a few plots randomly will likely initially overestimate Fisher’s α, because 
each sample includes new species for the total sample due to the combined higher 
beta and alpha-diversity, creating a fast rise in Fisher’s α. However, continuing the 
sampling at some point does add more individuals to the total sample, though 
species will be resampled, lowering Fisher’s α again. When dispersal is so high as to 
be similar across the complete virtual forest, composition would essentially be very 
similar for all plots with very high local alpha- and low beta- diversities and Fisher’s 
α would not peak but increase fast to its virtual-forest value (as in the virtual 49 ha 
BCI, Fig. 4.3).

Is estimating species richness still a long way off? Chiarucci (153) suggested that 
‘estimating species richness is still a long way off!’ Nonparametric estimators 
underestimate richness (see above and (126)), while area-based estimators tended 
to overestimate richness (126). Xu et al. (126) concluded that Maximum Entropy 
greatly overestimated richness. However, their perceived overestimate is based on the 
richness they expected, which was based on a list of  species found in their area. We 
believe that many of  us do not fully comprehend the consequences of  the logseries 
model. One of  us was also surprised when we estimated the expected species for 
RD, which was much more than was expected based on extensive fieldwork for the 
Flora of  the area (154) and ecological fieldwork. However, with an Fisher’s α of  
271 for the plots of  RD, assuming that this is close to the correct Fisher’s α for the 
area, we expect 271 species with only 1 individual, 135 with two individuals, 62 with 
3 individuals, 31 with 4 individuals, etc. RD covers 100 km2, with an average tree 
density of  696 trees ha-1 (14). That indicates a total of  6.96 million individuals. The 
chance of  finding a singleton species there with feasible sampling intensity is thus 
very, very small. This is the consequence of  using this theoretical framework - see 
also (136). Because many researchers using nonparametric estimators assume that 
sampling is complete when the samples contain no singletons, an assumption that 
does not agree with ecological theory or with most ecological sampling, they are 
likely to severely underestimate richness when sampling level is low. Therefore, we 
suggest that the use of  nonparametric estimators should be discouraged in studies 
with low sampling intensity in large remote areas. If  the data can reasonably be 
assumed to follow a logseries, species estimation by means of  Fisher’s α is likely 
a better option. Other methods that produce abundance distributions with many 
singletons, matching most observational data, such as various parametric methods 
(155) or phenomenological theories, such as Maximum Entropy (80) are probably 
also good alternatives. 
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Fisher’s paradox. The term Fisher’s paradox was coined by Hubbell (136): 

“The logseries is an infinite series that mathematically goes on forever. But the 
world’s forests are finite in size. So what happens to estimates of  species abundance 
when the entire world is your sample? […] The paradox would seem to run even 
deeper, because Fisher’s logseries predicts that many more of  the world’s tropical tree 
species are hyper-rare. […] The truth is, we still have inadequate data to definitively 
answer the “how many tropical tree species?” question. Ecologists at present are 
forced to make huge extrapolations from existing inventory plot data to the entire 
world.” 

Hubbell (136) believes hyper-rare species do exist, as do we and in the case of  
areas smaller than the world, so do singletons. What are then those singletons? For 
an area like the Amazon, a huge and open system, singletons are most likely the 
result of  species (locally) going extinct or new immigrants. ter Steege et al. (149) (SI 
Chapter 4 S1: Fig. S7) showed that several singleton species are in fact species found 
only once in the Amazon but common in the Cerrado, Andes and even Atlantic 
forest, ‘vagrants’ in the viewpoint of  Magurran and Henderson (156). However, 
this may suggest that singletons or other hyper rare species are found mainly on 
the edges of  an area. In the Amazon they were not and include such iconic species 
as Asteranthos braziliensis Desf. (endemic to the middle and upper Rio Negro) 
and Duckeodendron cestroides Kuhlm. (endemic to an area around Manaus, central 
Amazon). We believe that even if  all individuals of  the Amazon forest could be 
measured and identified, the biological processes of  extinction and immigration 
would lead to the presence of  at least ~750 singleton species, based on the Fisher’s 
α found for the area (14) and a huge amount of  hyper-rare species, some of  which 
may have small contracted ranges, some of  which may even be spread over large 
areas (157). One of  the most important merits of  NT is to emphasize the role 
of  migration in building and maintaining community structures. However, the 
underlying mathematical model is based on a discretization down to the individual 
level, where a random process is supposed to play and can be expressed as per capita 
probabilities. In a complex system such as tropical forests, clearly not only chance 
acts upon birth, death, dispersal and migration. This could result from acquiring a 
new competitive advantage, losing a competitor because a pest, losing a pest because 
a super-pest develops. Myriad combinations are possible. The processes involved at 
local scale are not exclusively random but from local to global their combined effects 
on species abundances may appear to be. 
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Conclusion

To evaluate diversity of  a rich, complex, large, open system, a parametric approach 
based on a probabilistic model such as Fisher’s logseries, seems to be more applicable 
than a non-parametric one, because such a system is driven by the random walk 
resulting from an infinity of  processes that vary among scales, and where chance 
affects many biological processes, and not just the random sampling context 
considered by nonparametric models.
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Fig. S1. Reserva Ducke, located just north of Manaus (AM), Brazil. The 72 0.5-ha plots are 
situated on a trail grid with trails 1 km apart.  The reserve (yellow square) is ~10x10 km.  

Fig. S1. Reserva Ducke, located just north of  Manaus (AM), Brazil. The 72 0.5-ha plots are situ-
ated on a trail grid with trails 1 km apart. The reserve (yellow square) is ~10x10 km.
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Fig. S2. Map of 20 plots on the Piste de St. Elie location, French Guiana.  

 

 

 

  

Fig. S2. Map of  20 plots on the Piste de St. Elie location, French Guiana.
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Fig. S3. Map of 301 0.25-ha plots on the Monte Branco Plateau, Trombetas, Pará, Brazil. The 
plots were established along exploration lines of a geological survey.  

Fig. S3. Map of  301 0.25-ha plots on the Monte Branco Plateau, Trombetas, Pará, Brazil. The 
plots were established along exploration lines of  a geological survey.
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Fig. S4. Simulation of a 10,000 ha virtual forest with mean dispersal distance of 10 
meters. Parameters used: mplot = 0.88012; madjacent = 0.108; mforest = 0.0108; mMC = 0.00108; 
ν = 10-4. A. Rank abundance distribution (RAD) of the total virtual (black) with logseries fit 
(red) and lognormal fit (blue). B. Species area curve for the total virtual forest and estimated 
richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the virtual forest. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and 
actual species richness of the simulated community (horizontal line).  

  

Fig. S4. Simulation of  a 10,000 ha virtual forest with mean dispersal distance of  10 meters. 
Parameters used: mplot = 0.88012; madjacent = 0.108; mforest = 0.0108; mMC = 0.00108; ν = 10-4. A. Rank 
abundance distribution (RAD) of  the total virtual (black) with logseries fit (red) and lognormal fit 
(blue). B. Species area curve for the total virtual forest and estimated richness (Sestimated) based on Chao1 
(blue). C. Fisher’s α area curve for the virtual forest. D. Species richness estimated with Fisher’s α 
(black) and Chao1 (blue), each with 95% CI, and actual species richness of  the simulated community 
(horizontal line).
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Fig. S5. Subset of 100 plots from a simulation of a 10,000 ha virtual forest with mean 
dispersal distance of 10 meters. Parameters see Fig. 1. A. Rank abundance distribution 
(RAD) of the 100 plots (black) with logseries fit (red) and lognormal fit (blue). B. Species 
area curve for the 100 plots and estimated richness (Sestimated) based on Chao1 (blue). C. 
Fisher’s α area curve for the 100 plots. D. Species richness estimated with Fisher’s α (black) 
and Chao1 (blue), each with 95% CI, and actual species richness of the simulated community 
(horizontal line). 

  

Fig. S5. Subset of  100 plots from a simulation of  a 10,000 ha virtual forest with mean dispersal 
distance of  10 meters. Parameters see Fig. S4. A. Rank abundance distribution (RAD) of  the 100 
plots (black) with logseries fit (red) and lognormal fit (blue). B. Species area curve for the 100 plots 
and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the 100 plots. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and actual 
species richness of  the simulated community (horizontal line).
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Fig. S6. Simulation of a 10,000 ha virtual forest with mean dispersal distance of 15 
meters. Parameters used: mplot = 0.83017; madjacent = 0.153; mforest = 0.0153; mMC = 0.00153; 
ν = 10-4. A. Rank abundance distribution (RAD) of the total virtual (black) with logseries fit 
(red) and lognormal fit (blue). B. Species area curve for the total virtual forest and estimated 
richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the virtual forest. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and 
actual species richness of the simulated community (horizontal line).  

  

Fig. S6. Simulation of  a 10,000 ha virtual forest with mean dispersal distance of  15 meters. 
Parameters used: mplot = 0.83017; madjacent = 0.153; mforest = 0.0153; mMC = 0.00153; ν = 10-4. A. Rank 
abundance distribution (RAD) of  the total virtual (black) with logseries fit (red) and lognormal fit 
(blue). B. Species area curve for the total virtual forest and estimated richness (Sestimated) based on Chao1 
(blue). C. Fisher’s α area curve for the virtual forest. D. Species richness estimated with Fisher’s α 
(black) and Chao1 (blue), each with 95% CI, and actual species richness of  the simulated community 
(horizontal line).
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Fig. S7. Subset of 100 plots from a simulation of a 10,000 ha virtual forest with mean 
dispersal distance of 15 meters. Parameters see Fig. 1. A. Rank abundance distribution 
(RAD) of the 100 plots (black) with logseries fit (red) and lognormal fit (blue). B. Species 
area curve for the 100 plots and estimated richness (Sestimated) based on Chao1 (blue). C. 
Fisher’s α area curve for the 100 plots. D. Species richness estimated with Fisher’s α (black) 
and Chao1 (blue), each with 95% CI, and actual species richness of the simulated community 
(horizontal line). This figure is equal to Fig. 1 in the main text. 

  

Fig. S7. Subset of  100 plots from a simulation of  a 10,000 ha virtual forest with mean dispersal 
distance of  15 meters. Parameters see Fig. S6. A. Rank abundance distribution (RAD) of  the 100 
plots (black) with logseries fit (red) and lognormal fit (blue). B. Species area curve for the 100 plots 
and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the 100 plots. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and actual 
species richness of  the simulated community (horizontal line). This figure is equal to Fig. 1 in the main 
text.
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Fig. S8. Simulation of a 10,000 ha virtual forest with mean dispersal distance of 20 
meters. Parameters used: mplot = 0.78688; madjacent = 0.192; mforest = 0.0192; mMC = 0.00192; 
ν = 10-4. A. Rank abundance distribution (RAD) of the total virtual (black) with logseries fit 
(red) and lognormal fit (blue). B. Species area curve for the total virtual forest and estimated 
richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the virtual forest. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and 
actual species richness of the simulated community (horizontal line). 

 

  

Fig. S8. Simulation of  a 10,000 ha virtual forest with mean dispersal distance of  20 meters. 
Parameters used: mplot = 0.78688; madjacent = 0.192; mforest = 0.0192; mMC = 0.00192; ν = 10-4. A. Rank 
abundance distribution (RAD) of  the total virtual (black) with logseries fit (red) and lognormal fit 
(blue). B. Species area curve for the total virtual forest and estimated richness (Sestimated) based on Chao1 
(blue). C. Fisher’s α area curve for the virtual forest. D. Species richness estimated with Fisher’s α 
(black) and Chao1 (blue), each with 95% CI, and actual species richness of  the simulated community 
(horizontal line).
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Fig. S9. Subset of 100 plots from a simulation of a 10,000 ha virtual forest with mean 
dispersal distance of 20 meters. Parameters see Fig. 1. A. Rank abundance distribution 
(RAD) of the 100 plots (black) with logseries fit (red) and lognormal fit (blue). B. Species 
area curve for the 100 plots and estimated richness (Sestimated) based on Chao1 (blue). C. 
Fisher’s α area curve for the 100 plots. D. Species richness estimated with Fisher’s α (black) 
and Chao1 (blue), each with 95% CI, and actual species richness of the simulated community 
(horizontal line).  

  

Fig. S9. Subset of  100 plots from a simulation of  a 10,000 ha virtual forest with mean dispersal 
distance of  20 meters. Parameters see Fig. S8. A. Rank abundance distribution (RAD) of  the 100 
plots (black) with logseries fit (red) and lognormal fit (blue). B. Species area curve for the 100 plots 
and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the 100 plots. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and actual 
species richness of  the simulated community (horizontal line).
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Fig. S10. Simulation of a 10,000 ha virtual forest with mean dispersal distance of 25 
meters. Parameters used: mplot = 0.75025; madjacent = 0.225; mforest = 0.0225; mMC = 0.00225; 
ν = 10-4. A. Rank abundance distribution (RAD) of the total virtual (black) with logseries fit 
(red) and lognormal fit (blue). B. Species area curve for the total virtual forest and estimated 
richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the virtual forest. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and 
actual species richness of the simulated community (horizontal line).  

  

Fig. S10. Simulation of  a 10,000 ha virtual forest with mean dispersal distance of  25 meters. 
Parameters used: mplot = 0.75025; madjacent = 0.225; mforest = 0.0225; mMC = 0.00225; ν = 10-4. A. Rank 
abundance distribution (RAD) of  the total virtual (black) with logseries fit (red) and lognormal fit 
(blue). B. Species area curve for the total virtual forest and estimated richness (Sestimated) based on Chao1 
(blue). C. Fisher’s α area curve for the virtual forest. D. Species richness estimated with Fisher’s α 
(black) and Chao1 (blue), each with 95% CI, and actual species richness of  the simulated community 
(horizontal line).
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Fig. S11. Subset of 100 plots from a simulation of a 10,000 ha virtual forest with mean 
dispersal distance of 25 meters. Parameters see Fig. 1. A. Rank abundance distribution 
(RAD) of the 100 plots (black) with logseries fit (red) and lognormal fit (blue). B. Species 
area curve for the 100 plots and estimated richness (Sestimated) based on Chao1 (blue). C. 
Fisher’s α area curve for the 100 plots. D. Species richness estimated with Fisher’s α (black) 
and Chao1 (blue), each with 95% CI, and actual species richness of the simulated community 
(horizontal line). 

  

Fig. S11. Subset of  100 plots from a simulation of  a 10,000 ha virtual forest with mean dispersal 
distance of  25 meters. Parameters see Fig. S10. A. Rank abundance distribution (RAD) of  the 100 
plots (black) with logseries fit (red) and lognormal fit (blue). B. Species area curve for the 100 plots 
and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the 100 plots. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and actual 
species richness of  the simulated community (horizontal line).
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Fig. S12. Simulation of a 10,000 ha virtual forest with mean dispersal distance of 30 
meters. Parameters used: mplot = 0.72028; madjacent = 0.252; mforest = 0.0252; mMC = 0.00252; 
ν = 10-4. A. Rank abundance distribution (RAD) of the total virtual (black) with logseries fit 
(red) and lognormal fit (blue). B. Species area curve for the total virtual forest and estimated 
richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the virtual forest. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and 
actual species richness of the simulated community (horizontal line).  

  

Fig. S12. Simulation of  a 10,000 ha virtual forest with mean dispersal distance of  30 meters. 
Parameters used: mplot = 0.72028; madjacent = 0.252; mforest = 0.0252; mMC = 0.00252; ν = 10-4. A. Rank 
abundance distribution (RAD) of  the total virtual (black) with logseries fit (red) and lognormal fit 
(blue). B. Species area curve for the total virtual forest and estimated richness (Sestimated) based on Chao1 
(blue). C. Fisher’s α area curve for the virtual forest. D. Species richness estimated with Fisher’s α 
(black) and Chao1 (blue), each with 95% CI, and actual species richness of  the simulated community 
(horizontal line).
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Fig. S13. Subset of 100 plots from a simulation of a 10,000 ha virtual forest with mean 
dispersal distance of 30 meters. Parameters see Fig. 1. A. Rank abundance distribution 
(RAD) of the 100 plots (black) with logseries fit (red) and lognormal fit (blue). B. Species 
area curve for the 100 plots and estimated richness (Sestimated) based on Chao1 (blue). C. 
Fisher’s α area curve for the 100 plots. D. Species richness estimated with Fisher’s α (black) 
and Chao1 (blue), each with 95% CI, and actual species richness of the simulated community 
(horizontal line). 

 

  

Fig. S13. Subset of  100 plots from a simulation of  a 10,000 ha virtual forest with mean dispersal 
distance of  30 meters. Parameters see Fig. S12. A. Rank abundance distribution (RAD) of  the 100 
plots (black) with logseries fit (red) and lognormal fit (blue). B. Species area curve for the 100 plots 
and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the 100 plots. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and actual 
species richness of  the simulated community (horizontal line).
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Fig. S14. Simulation of a 10,000 ha virtual forest with mean dispersal distance of 35 
meters. Parameters used: mplot = 0.69697; madjacent = 0.273; mforest = 0.0273; mMC = 0.00273; 
ν = 10-4. A. Rank abundance distribution (RAD) of the total virtual (black) with logseries fit 
(red) and lognormal fit (blue). B. Species area curve for the total virtual forest and estimated 
richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the virtual forest. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and 
actual species richness of the simulated community (horizontal line).  

  

Fig. S14. Simulation of  a 10,000 ha virtual forest with mean dispersal distance of  35 meters. 
Parameters used: mplot = 0.69697; madjacent = 0.273; mforest = 0.0273; mMC = 0.00273; ν = 10-4. A. Rank 
abundance distribution (RAD) of  the total virtual (black) with logseries fit (red) and lognormal fit 
(blue). B. Species area curve for the total virtual forest and estimated richness (Sestimated) based on Chao1 
(blue). C. Fisher’s α area curve for the virtual forest. D. Species richness estimated with Fisher’s α 
(black) and Chao1 (blue), each with 95% CI, and actual species richness of  the simulated community 
(horizontal line).
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Fig. S15. Subset of 100 plots from a simulation of a 10,000 ha virtual forest with mean 
dispersal distance of 35 meters. Parameters see Fig. 1. A. Rank abundance distribution 
(RAD) of the 100 plots (black) with logseries fit (red) and lognormal fit (blue). B. Species 
area curve for the 100 plots and estimated richness (Sestimated) based on Chao1 (blue). C. 
Fisher’s α area curve for the 100 plots. D. Species richness estimated with Fisher’s α (black) 
and Chao1 (blue), each with 95% CI, and actual species richness of the simulated community 
(horizontal line). 

  

Fig. S15. Subset of  100 plots from a simulation of  a 10,000 ha virtual forest with mean dispersal 
distance of  35 meters. Parameters see Fig. S14. A. Rank abundance distribution (RAD) of  the 100 
plots (black) with logseries fit (red) and lognormal fit (blue). B. Species area curve for the 100 plots 
and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the 100 plots. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and actual 
species richness of  the simulated community (horizontal line).
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Fig. S16. Simulation of a 10,000 ha virtual forest with mean dispersal distance of 40 
meters. Parameters used: mplot = 0.68032; madjacent = 0.288; mforest = 0.0288; mMC = 0.00288; 
ν = 10-4. A. Rank abundance distribution (RAD) of the total virtual (black) with logseries fit 
(red) and lognormal fit (blue). B. Species area curve for the total virtual forest and estimated 
richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the virtual forest. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and 
actual species richness of the simulated community (horizontal line).  

  

Fig. S16. Simulation of  a 10,000 ha virtual forest with mean dispersal distance of  40 meters. 
Parameters used: mplot = 0.68032; madjacent = 0.288; mforest = 0.0288; mMC = 0.00288; ν = 10-4. A. Rank 
abundance distribution (RAD) of  the total virtual (black) with logseries fit (red) and lognormal fit 
(blue). B. Species area curve for the total virtual forest and estimated richness (Sestimated) based on Chao1 
(blue). C. Fisher’s α area curve for the virtual forest. D. Species richness estimated with Fisher’s α 
(black) and Chao1 (blue), each with 95% CI, and actual species richness of  the simulated community 
(horizontal line).
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Fig. S17. Subset of 100 plots from a simulation of a 10,000 ha virtual forest with mean 
dispersal distance of 40 meters. Parameters see Fig. 1. A. Rank abundance distribution 
(RAD) of the 100 plots (black) with logseries fit (red) and lognormal fit (blue). B. Species 
area curve for the 100 plots and estimated richness (Sestimated) based on Chao1 (blue). C. 
Fisher’s α area curve for the 100 plots. D. Species richness estimated with Fisher’s α (black) 
and Chao1 (blue), each with 95% CI, and actual species richness of the simulated community 
(horizontal line). 

  

Fig. S17. Subset of  100 plots from a simulation of  a 10,000 ha virtual forest with mean dispersal 
distance of  40 meters. Parameters see Fig. S16. A. Rank abundance distribution (RAD) of  the 100 
plots (black) with logseries fit (red) and lognormal fit (blue). B. Species area curve for the 100 plots 
and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the 100 plots. D. 
Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI, and actual 
species richness of  the simulated community (horizontal line).
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Fig. S18. Simulation of a 49 ha virtual forest from BCI data, with mean dispersal distance of 
40 meters. Parameters used: mplot = 0.68032; madjacent = 0.288; mforest = 0.0288; mMC = 
0.00288; ν = 0.00119. A. Rank abundance distribution (RAD) of the total virtual (black) with 
logseries fit (red), lognormal fit (blue), and RAD from plot data of BCI (green). B. Species 
area curve for the total virtual forest and estimated richness (Sestimated) based on Chao1 
(blue). C. Fisher’s α area curve for the virtual forest. D. Species richness estimated with 
Fisher’s α (black) and Chao1 (blue), each with 95% CI (red), actual species richness of the 
simulated community (horizontal line).   

Fig. S18. Simulation of  a 49 ha virtual forest from BCI data, with mean dispersal distance of  
40 meters. Parameters used: mplot = 0.68032; madjacent = 0.288; mforest = 0.0288; mMC = 0.00288; ν = 
0.00119. A. Rank abundance distribution (RAD) of  the total virtual (black) with logseries fit (red), 
lognormal fit (blue), and RAD from plot data of  BCI (green). B. Species area curve for the total virtual 
forest and estimated richness (Sestimated) based on Chao1 (blue). C. Fisher’s α area curve for the virtual 
forest. D. Species richness estimated with Fisher’s α (black) and Chao1 (blue), each with 95% CI (red), 
actual species richness of  the simulated community (horizontal line).
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Fig. S19. Richness estimated with nonparametric species richness estimators as a 
function of the number of plots sampled.  

Nonparametric richness estimators for field data of BCI (A) and RD (B). In BCI 50 ha are 
sampled without replacement. In RD 72 plots are sampled without replacement. Black: Mean 
Chao1; Red: Chao1984; Blue: Chao Bunge; Green: Chao Lee; Orange: Jackknife. Estimators 
from the R package ‘Species’ (Wang 2011). 
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Fig. S19. Richness estimated with nonparametric species richness estimators as a function of  
the number of  plots sampled.Nonparametric richness estimators for field data of  BCI (A) and RD 
(B). In BCI 50 ha are sampled without replacement. In RD 72 plots are sampled without replacement. 
Black: Mean Chao1; Red: Chao1984; Blue: Chao Bunge; Green: Chao Lee; Orange: Jackknife. Estima-
tors from the R package Species (Wang 2011)(144).
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Seen in the light of  evolution, biology is, perhaps, intellectually the most 
satisfying and inspiring science. Without that light it becomes a pile of  
sundry facts, some of  them interesting or curious but making no meaningful 

picture as a whole.

Theodosius Dobzhansky, The American Biology Teacher (1973)
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Abstract

Aim. With many sophisticated methods available for estimating migration, ecologists 
face the difficult decision of  choosing for their specific line of  work. Here we test 
and compare several methods, performing sanity and robustness tests, applying to 
large-scale data and discussing the results and interpretation.

Location.  South America (Guyana, Suriname, French Guiana and Ecuador).

Methods. Five methods were selected to compare for their ability to estimate 
migration from spatially implicit and semi-explicit simulations based on three large-
scale field datasets. Space was incorporated semi-explicitly by a discrete probability 
mass function for local recruitment, migration from adjacent plots or from a 
metacommunity. 

Results. Most methods were able to accurately estimate migration from spatially 
implicit simulations. For spatially semi-explicit simulations, estimation was shown to 
be the additive effect of  migration from adjacent plots and the metacommunity, only 
accurate when migration from the metacommunity outweighed that of  adjacent 
plots, discrimination proved to be impossible. We show that migration should be 
considered more an approximation of  the resemblance between communities and 
the summed regional species pool. Application of  migration estimates to simulate 
field datasets did show reasonably good fits and indicated consistent differences 
between sets in comparison with earlier studies.  

Main conclusions. Estimated migration is more an approximation of  the 
homogenization among local communities over time rather than a direct measurement 
of  migration and hence has a direct relationship with betadiversity. As betadiversity 
is the result of  many (non)-neutral processes, we have to admit that migration as 
estimated in a spatial explicit world encompasses not only direct migration but is an 
ecological aggregate of  these processes. The parameter m of  neutral models then 
appears more as an emerging property revealed by neutral theory instead of  being 
an effective mechanistic parameter and spatially implicit models should be rejected 
as an approximation of  forest dynamics.

Keywords: neutral theory, parameter estimation, species composition, migration, 
species diversity, betadiversity.
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Introduction

Whether stochastic or deterministic processes govern species distribution has been 
a long-standing debate, starting with the equilibrium vs. non-equilibrium theories 
more than 25 years ago (158). The Unified Neutral Theory of  Biodiversity and 
Biogeography, or UNTB (29) refuelled this discussion (32, 34, 39, 159–161). Prior 
to this debate, the main accepted view of  population dynamics was of  a niche-based 
origin, i.e. species being specifically adapted to certain environments where they 
could thrive, while outcompeted elsewhere. Processes as competitive exclusion (47, 
162) and niche partitioning (44, 163, 164) were believed to be the main drivers of  
differences in species composition. Actual niches occupied by species were thought 
to be determined by specific suits of  adaptations for certain environments and biotic 
interactions among species (165). This combination of  interspecific differences 
and environmental heterogeneity allowed for coexistence. In contrast, the UNTB 
is neither based on such interspecific differences nor environmental heterogeneity. 
It assumes that all individuals are ecologically equivalent in terms of  demographic 
events such as birth and death, but also in rates of  migration and their probability of  
speciation. As a result, the main differences in species composition are simply based 
on stochastic processes, resulting from ecological equivalence. It was not a fully novel 
approach, however, as the model of  Island Biogeography by MacArthur and Wilson 
was also truly neutral in its mathematical foundations treating species equivalent 
in demographics, even though the authors still regarded species as having distinct 
niches in real life (53). Much work on neutral theory had already been developed 
in population genetics, some implicit, such as the Island Model (52), others explicit 
such as the Stepping Stone model (63). The UNTB relies heavily on these models of  
genetic differentiation between communities, with the neutral theory of  molecular 
evolution (64) obviously being one of  its pillars (29). Many criticized the UNTB 
(156, 166–171) and many supported it (35, 36, 74, 172, 173). Today, many ecologists 
agree that both deterministic and neutral processes play a role in determining species 
composition (174–177). To study their relative importance, models are often used 
to investigate whether communities behave neutrally or not. An important question 
still remaining is how to parameterize neutral models. Suggestions for estimating two 
of  the core parameters of  Hubbell’s neutral model, speciation and migration, have 
been proposed over the years and the importance of  parameter estimation has been 
discussed previously (178). These studies concentrated, however, specifically on the 
difference between estimating from a single (large) sample or multiple samples in a 
spatially continuous landscape. They did not focus on the role of  spatial relationships, 
i.e. the effect of  distance between plots when estimating migration. We feel this 
effect of  distance is important because space and migration can be incorporated 
in two different ways; either spatially implicit (29, 60) or spatially explicit (35, 70, 
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179, 180). Models of  the first kind work on the assumption of  a panmictic system. 
They disregard the spatial position of  individuals within each community as there is 
only one migration parameter m, determining whether a recruit is from the regional 
or local species pool but there is no within community dispersal limitation. Even 
though such models show good fits, the existence of  such a panmictic community 
is unlikely, due to the physical dispersal ability of  individuals versus the size of  many 
communities (63). In contrast, spatially explicit models consider the metacommunity 
rather as the sum of  a number of  local communities, between which there exists 
an explicit spatial relationship. The first models, where the spatial position of  each 
individual was explicitly modelled, were based on a discrete grid-like structure, 
each cell containing an individual which could disperse to either neighbouring cells 
(73, 181) or to other regions by implementing different dispersal kernels (35, 70). 
However, while there are quite some analytical solutions for the implicit models, 
only few exist for the explicit versions such as developed by O’Dwyer and Green 
(2010) by applying principles from physics. 

Comparisons show that, although spatially explicit models should approximate the 
real world better, spatially implicit models provide better fits to empirical data (182, 
183). Hence, the latter are more often used when estimating migration, even though 
field data comes from a spatially explicit reality. In this study, we therefore extend the 
comparison of  estimation methods towards the practical ability of  these methods 
to estimate migration from simulated datasets based on both spatially implicit and 
spatially semi-explicit models. We focus on five different parameter estimation 
methods: 1) a sampling formula by Etienne (184), 2) the Inference method by Jabot 
et al. (185), 3) The Gst statistic adopted from population genetics by Munoz et al. 
(186), 4) the two-stage sampling formula by Etienne (187), which is an extension on 
the two-stage-estimation method by Munoz et al. from 2007 (188) and 5) a method 
by Chisholm and Lichstein (138) based on plot geometry and absolute dispersal 
distances. A summary of  the different estimation methods can be found in the 
Supporting Information Chapter 5: S1. For the interested and more mathematically 
oriented reader we refer to the original papers, as here we are focusing on the use 
of  the methods rather than their exact mathematical derivation. Our first goal is 
to perform a sanity check on each method. They should at least be able to recover 
parameter estimates from models on which they are based. Our second and main 
goal is to establish whether these methods are also robust, i.e. if  they are able to 
accurately recover parameters when performed on models a bit different from the 
models on which they are based. For this, we apply them to a spatially semi-explicit 
model in which migration can either be from a hypothetical metacommunity or 
from adjacent plots. Our last and third goal is to apply each method to field data. 
For this we use three different independent field datasets; Guyana/Suriname (GS), 
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French Guiana (FG) and Ecuador (EC), which are highly distinct in their forest 
dynamics (189). Using both spatially implicit-, semi-explicit- and field data we hope 
to reach a broad public of  ecologists working on similar problems. 

Methodology

Comparison of  model parameter estimation
Each parameter estimation method, as described above, was used to generate an 
estimation of  migration for a number of  situations using spatially implicit, (semi) 
explicit simulated and field datasets. Results were compared from the simulated 
datasets in terms of  their ability to accurately describe migration as parameterized 
to construct the datasets. After using the simulated datasets we turned to the actual 
field data, having multiple local communities assumed to be a sample from the larger 
metacommunity for which migration was also estimated using the same estimation 
methods. Etienne’s sampling formula (2005) and the Inference method of  Jabot et 
al (2008) were both tested using the TeTame freeware version 2.1 (http://chave.ups-
tlse.fr/projects/tetame.htm). Etienne’s two-stage sampling method was tested using 
the PARI/GP environment (190). Chisholm & Lichsteins’s method was tested using 
MATLAB (191) and the Gst statistic was computed using the package untb (192) in 
the R environment (51). Other R-packages used were Quantreg, Vegan, Labdsv and 
FasianOptions (99, 193–195). 

Metacommunity simulation
For both spatially implicit and explicit simulations, the first step was to create the 
larger metacommunity. The relative abundance distribution of  tree species in the 
Amazonian forests shows a nearly exact fit with Fisher’s Logseries (14, 137). We 
therefore used this relationship and the related number of  species for a given 
abundance (98) to derive the relative abundance distribution from the expected 
number of  species (S) and individuals (N) in the metacommunity, given by Φn = 
αxn/n. Here, Φn is the number of  species with n individuals; α is Fisher’s α and x is 

Table 5.1 Summary of  table S1, with the mean difference between given and estimated migration 
(Δm), using spatially implicit simulations. Results from the corrected plot geometry method by 
Chisholm & Lichstein are not shown as they yield a single value with a confidence interval shown in 
Table S1
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Table 5.1 Summary of table S1, with the mean difference between given and 
estimated migration (Δm), using spatially implicit simulations. Results from the 
corrected plot geometry method by Chisholm & Lichstein are not shown as they yield 
a single value with a confidence interval shown in Table S1 

 
 
 
 
 
 
 
 
 
 
  

Summary difference m.given vs m.est and range SD of estimations  

    One-stage est. Inference method Gst-statistic 2-stage 
(Etienne) 

Dataset   Δm SD range Δm SD range Δm SD range Δm SD range 
Guyana/Suriname  .044 .032-.06 .0075 .009-.016 .0200 .043-.382 - - 
French Guiana  .071 .033-.060 .0078 .009-.016 .0240 .044-.325 - - 
Ecuador   .132 .022-.061  .0070 .008-.018 .0160 .043-.418  .004 .017-.046 
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given by N/(N + α) (N being the number of  individuals in the total sample and x 
being asymptotically equal to 1 with large sample sizes). We created three different 
metacommunities: two for the simulated spatially implicit datasets and one for the 
spatially semi-explicit dataset. Because of  the observed difference between the 
Guianas and Ecuador in terms of  diversity and composition (Fig. S10 from (14)) and 
the regions being separated by a large geographical distance, we created two different 
metacommunities for the spatially implicit simulations related to these two regions 
rather than one large metacommunity. They are hereafter referred to as MC-high 
and MC-low respectively (MetaCommunity high and low diversity). Ter Steege et al. 
(2013) estimated mean tree densities for all species per degree grid cell and by fitting 
the mean rank abundance curve to Fisher’s Logseries distribution estimated the total 
amount of  species to be expected by country (Fig. S10 from (14)). We adopted these 
figures to construct MC-low (20,191,600,511 individuals and 4582 species) and MC-
high (5,611,001,426 and 6834), for details on both see the Supporting Information 
Chapter 5. For the simulated spatially explicit dataset a separate metacommunity was 
constructed using the same methods based on the Reserva Ducke forest, with 5,5 
million trees and a Fishers alpha of  272 (196); hereafter referred to as MC_spatial. 
The logseries for each community was constructed starting from the left tail (most 
dominant species). The fixed parameters α and x were first calculated from the 
number of  individuals (N) and species (S), after which the maximum dominance 
according to Fisher’s logseries for all species is calculated, which is then given the first 
rank. For each subsequent rank the predicted number of  species is then calculated 
until all species are given a rank and all individuals are distributed.

Table 5.2 Estimates of  migration based on a semi-spatially explicit neutral model. Probability 
of  migration was determined either from adjacent plots (m.adj), the metacommunity (i.e. all other plots 
except the local and adjacent plots; m.meta) or the local plot. Number of  plots was 400 with a runtime 
of  1e8 for all datasets.
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Table 5.2 Estimates of migration based on a semi-spatially explicit neutral 
model. Probability of migration was determined either from adjacent plots (m.adj), 
the metacommunity (i.e. all other plots except the local and adjacent plots; m.meta) or 
the local plot. Number of plots was 400 with a runtime of 1e8 for all datasets. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  

Spatial semi-explicit 
Simulation parameters and yielded variables  Estimated migration 

        Inference method Gst-statistic  
dataset  Nr. sp. Nr. sing m.local m.adj m.meta  m2 SD m3 SD   
1  1777 244 0 0 1.00  .990 .028 1.011 .0057   
2  1088 37 .79 .20 .01  .140 .015 .156 .0012   
3  1529 142 .79 .01 .20  .209 .021 .210 .0015   
4  1542 147 .75 .05 .20  .244 .024 .247 .0017   
5  1282 73 .75 .20 .05  .200 .019 .205 .0014   
6  1093 48 .69 .30 .01  .197 .019 .215 .0013   
7  1609 169 .69 .01 .30  .310 .027 .312 .0020   
8  1277 74 .65 .30 .05  .260 .023 .270 .0017   
9  1077 50 .59 .40 .01  .254 .021 .277 .0016   
10  1666 182 .59 .01 .40  .416 .034 .419 .0024   
11  1315 97 .55 .40 .05  .325 .027 .341 .0019   
12  1056 36 .49 .50 .01  .310 .028 .330 .0019   
13  1690 186 .49 .01 .50  .512 .040 .517 .0028   
14  1301 96 .45 .50 .05  .380 .032 .400 .0023   
15  1706 187 .39 .01 .60  .615 .046 .621 .0034   
16  1727 220 .29 .01 .70  .716 .050 .721 .0039   
17  1748 224 .19 .01 .80  .819 .050 .822 .0042   
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Spatially implicitly simulated data. For the spatially implicit datasets we used the 
exact same sampling procedure as proposed by Hubbell in the original UNTB. Each 
time step, one individual dies, which is replaced by an individual having an ancestor 
either in the local community (with probability 1-m) or from the metacommunity 
(with probability m). The identity of  the recruit is then only dependent on its 
relative abundance in the respective community. Datasets based on GS and FG 
(67 and 63 plots) were sampled from the MC-low assuming they share the same 
metacommunity and the dataset based on EC (72 plots) from MC-high. Sampling of  
the local communities was repeated for a range of  migration parameters (Supporting 
Information Chapter 5: Table S1). For details on the number of  time steps used see 
the Supporting Information Chapter 5 (S2). After the construction of  the simulated 
datasets, migration was estimated using the above-mentioned estimation methods.

Spatially semi-explicitly simulated data. Spatially semi-explicit simulations were 
done by modeling a lattice of  20x20 plots, each with 500 individuals. We assume no 
spatial explicit arrangement of  individuals within a plot. Taking a random sample 
from the metacommunity creates the forest at time t0. Each time step (t+1) one 
individual from each plot to be replaced was chosen at random from the MC_spatial 
metacommunity, this was repeated for 10,000 time steps. Recruitment was generated 
from either of  three sources: 1) migration from adjacent plots (m.adj), 2) migration 
from the MC_spatial metacommunity (m.meta) or 3) local recruitment (1-(m.adj+m.
meta) = 1-m). According to studies on long distance dispersal of  seeds (LDD) the 
majority of  seeds (>99%) often fall within ca. 100 meters of  their origin (197), 
depending on among others, seasonal conditions, wind speed, turbulence initiated 
by the canopy and particle fall velocity, which is obviously also affected by seed mass 
and shape (198, 199). As the plots from the field data used in this study are 1 hectare 
in size, it is reasonable to assume that migration either does not occur but there is 
local recruitment, or there is migration mostly from adjacent plots when the tree 
of  origin would be on the edge of  a plot, with occasionally seeds ending up further 
away. Hence, this subdivision in dispersal categories using a discrete probability mass 
function seems a likely approximation of  the actual dispersal of  individuals and 
allows for much faster calculations by the computer. Values for both m.adj and 
m.meta were based on an arbitrary division of  the range of  migration used for the 
spatially implicit simulations (see also Table 5.2).
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Species composition of  field data. Three different sets of  field data from the 
Amazon Tree Diversity Network (14) were used for analysis. Two sets belong to 
the Guiana Shield: Guyana/Suriname (GS) combined and French Guiana (FG), the 
third set contains data from forests in Ecuador (EC). All three sets are completely 
independent and non-overlapping (200). Datasets are composed of  63-72 1 ha 
plots with all trees ≥10 cm DBH inventoried. Species names of  all datasets were 
standardized with the W3 Tropicos database within each dataset, using TNRS (94), 
as described in more detail in ter Steege et al. 2013 (14). The EC dataset has 72 
plots of  one hectare, yielding 34,544 individuals and 2021 morphospecies. The GS 
and FG datasets are composed of  67 and 63 one-hectare plots respectively. In GS, 
37,446 individual trees were distributed among 1042 morphospecies, and FG had 
35,075 individuals belonging to 1204 morphospecies. 

Fig. 5.1 LOESS regressions of  the migration parameter used for input versus the estimated 
migration from the spatially implicit simulations. Results from each method indicated by color 
with broken lines indicating the 95.5% confident interval, polynomial degree and span used for the 
LOESS regression was 2 and .75, respectively.

Table 5.3 Parameter estimation for the three field datasets. For the corrected Plot Geometry 
method by Chisholm & Lichstein (2009) (138) the following parameters were used: Guyana/Suriname 
w = 100, d = 15-25 m, French Guiana, w = 100 m, d = 25-35 m, Ecuador, w = 100 m and d = 40-50 m
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Table 5.3 Parameter estimation for the three field datasets. For the corrected Plot 
Geometry method by Chisholm & Lichstein (2009) (5) the following parameters were 
used: Guyana/Suriname w = 100, d = 15-25 m, French Guiana, w = 100 m, d = 25-35 
m, Ecuador, w = 100 m and d = 40-50 m 
 

 
 
 
 
 
 
 

 
 
 

 
    Inference method Gst-statistic 2-stage (Etienne) Cor. Plot Geometry 
Dataset   m2 SD  m3 SD m4 SD m5 CI 
Guyana/Suriname  .075 .050 .046 .044 .084 .074 .071 .055-.088  
French Guiana  .22 .085 .11 .058 .170 .062 .103 .088-.119  
Ecuador   .26 .153 .17  .152 .246 .114 .147 .133-.160  
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Fig. 5.2 Given joint migration probability with either migration predominantly coming from 
the metacommunity (left) or from adjacent plots (right) plotted against the estimated joint 
migration by both the Inference method (blue) and Gst  statistic (red). Broken lines indicate the 
estimation plus or minus the standard deviation of  the average over all plots used in the simulation. 
It is clear that when migration mostly comes from the metacommunity, both estimation methods are 
very accurate, and when migration from adjacent plots is dominant, both estimation methods are 
underestimations.

Table 5.4 Results from the spatially implicit models based estimates of  m using the three 
separate field datasets. Fisher’s alpha was averaged over all plots; first row of  each set shows actual 
field data.
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Table 5.4 Results from the spatially implicit models based estimates of m using 
the three separate field datasets. Fisher’s alpha was averaged over all plots; first 
row of each set shows actual field data. 
 
 

Dataset method migration metacommunity plots species singletons Fisher's alpha 
Guyana/Suriname - - - 67 1042 210 198 
Guyana/Suriname Inference method .075 MC-low 67 885 69 158 
Guyana/Suriname Gst statistic .046 MC-low 67 826 83 146 
Guyana/Suriname Two-stage Etienne .084 MC-low 67 896 78 164 
Guyana/Suriname  Cor. Plot Geometry .071 MC-low 67 801 97 151 
French Guiana - - - 63 1204 208 177 
French Guiana Inference method .220 MC-low 63 1045 113 197 
French Guiana Gst statistic .110 MC-low 63 964 105 179 
French Guiana Two-stage Etienne .170 MC-low 63 975 116 188 
French Guiana  Cor. Plot Geometry .103 MC-low 63 910 95 169 
Ecuador - - - 72 2021 518 468 
Ecuador Inference method .260 MC-high 72 1667 243 126 
Ecuador Gst statistic .170 MC-high 72 1333 167 289 
Ecuador Two-stage Etienne .246 MC-high 72 1489 196 324 
Ecuador  Cor. Plot Geometry .147 MC-high 72 1373 196 292 
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Results

Comparing parameter estimation methods: spatially implicit and explicit
Sanity checks on each method showed that the Inference method and Gst statistic 
were able to approximate the complete range of  migration parameters based on 
each different field dataset accurately. Etienne’s one stage sampling method showed 
larger deviations. The two-stage sampling by Etienne was only used for the spatially 
implicit dataset based on EC due to extreme long computation time (see details in 
the Supporting Information Chapter 5: S1) but also generated accurate estimations. 
Average difference between given and estimated migration was .08, .007, .02 
and .004 for the Etienne’s one stage sampling, Gst statistic, Inference method, 
and Etienne’s two-stage sampling respectively (see Table 5.1 for a summary and 
Supporting Information Chapter 5 Table S1 for details). All methods except the one 
stage sampling by Etienne thus showed very good accuracy when given migration 
parameters were plotted against the estimated migration (Fig. 5.1). Next we tested 
the robustness of  each of  the methods when applied to slightly different models. 
Etienne’s one stage sampling formula was not used for estimating data from spatially 
explicit simulation because of  the larger deviations found with the spatially implicit 
simulations. The corrected Plot Geometry method was also excluded because 
estimation of  migration would be constant over the range of  parameters used. 
The two-stage estimation method by Etienne was also not used due to practical 
limitations as explained earlier. Hence, we were only able to use the Inference 
method and Gst statistic. The migration estimates from the spatially semi-explicit 
simulations were the additive effect between migration from the adjacent plots and 
the metacommunity (Table 5.2). As both methods generate a single migration value, 
they were only able to estimate the joint migration probability. As example, in one 
of  the simulated sets the parameters were set such that 1% of  replacements were 
drawn from the 8 cells surrounding the cell in which an individual died and 20% 
of  replacements are drawn from the metacommunity surrounding these adjacent 
cells (m.adj of  .01 and m.meta of  .20, Table 5.2, dataset 3). Both the Gst statistic 
and the Inference method estimated a migration probability of  .21, indicating that 
these probabilities are additive in the estimation and it is still unknown whether 
migration is from close by or far away. Estimation of  the joint migration probability 
was only accurate when migration from the metacommunity was higher than from 
the adjacent plots. In the contrasting situation (m.adj > m.meta) estimations were 
generally an underestimation of  the joint migration probability (Table 5.2 and Fig. 
5.2).
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Parameter estimation from field data. The Gst statistic, Inference and Etienne’s 
two-stage sampling formula were used to estimate migration from the three field 
datasets. Calculation of  migration using the Corrected Plot Geometry method was 
based on the following parameters: edge length of  plot (w) 100 meters for all three 
sets (as each plot is 1 ha) and mean absolute dispersal distances in the ranges 15-25 
meters for GS, 25-35 meters for FG as it has more pioneer species in comparison 
to the first, and 40-50 meters for EC as it is relatively comparable to the BCI plot in 
Panama having rich soils sustaining rapid dynamics (i.e. fast growth). This yielded 
migration parameters of  .237 with a confidence interval (CI) of  .182-.293, .344 
(CI .293-.396) and .489 (CI .444-.533) for GS, FG and EC respectively (see also 
Table 5.3). After applying the correction as explained in the Supporting Information 
Chapter 5 this was .071 (CI .055-.088), .103 (CI  .088-.119) and .147 (CI .133-.160). 
Here CI is given instead of  SD as the corrected Plot Geometry method gives a single 
estimate depending on plot geometry and mean dispersal distance, the CI is then 
related to the lower and upper limit of  the dispersal range. In the same order (GS, 
FG and EC), the Gst statistic yielded estimates of  .046, .11 and .17 (SD: .044, .058 
and .152). Using the Inference method, this was .075, .22 and .26 (SD .050, .085 and 
.153), for Etienne’s two-stage sampling this was .084, .170 and .246 (SD .074, .062 
and .114); see also Table 5.4 and Fig. 5.3. 

Comparing parameter estimation from field and simulated datasets. We implemented 
all migration parameters from the spatially implicit simulations in the spatially implicit 
model and compared the results of  the relative Rank Abundance Distribution 
(RAD), number of  species and singletons (i.e. species with one individual) and 
Fisher’s alpha generated from the simulations to the actual field data (Supporting 
Information Chapter 5: Figure S5, S6 and Table 5.4). As example, for GS (having 
1042 morphospecies and 210 singletons), the simulated dataset based on the MC_
low metacommunity using a migration of  0.046 (Gst statistic estimation from field 
data) yielded a total number of  826 species belonging to 41,875 individuals (67 plots 
times 625 individuals) with 83 singletons and an average Fisher’s alpha of  146.  When 
using .075 as the probability of  migration (as estimated by the Inference method) 
this was 885 species, 69 singletons and a Fisher’s alpha of  158. For a migration of  
.084 (Etienne’s two-stage sampling method) this was 896 species, 78 singletons and a 
Fisher’s alpha of  164 and finally with a migration parameter of  .071 (corrected Plot 
Geometry method) this was 801 species, 97 singletons and 151 as Fisher’s alpha. 
Using the spatially implicit simulations with the estimation migration probabilities 
hence tended to show less species and a smaller amount of  singletons than the 
actual field data, which was the case for FG and EC as well (see Table 5.4). For the 
comparison of  RAD’s from field data and simulations see Supporting Information 
Chapter 5, Figs. S5 and S6. 
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Discussion

Most methods used for estimating migration rates of  neutral models are based 
on Hubbell’s original spatially implicit model or its derivations (178, 184–188, 
201, 202). This implicit approach contrasts strongly with reality for tropical trees, 
as the morphology of  for example fruits, seeds and also different strategies play 
an important role in defining the average dispersal distance of  plants (203–205). 
In addition, in real life, dispersal limitation is also not neutrally distributed among 
species. Although this disagreement is quite apparent, the inference of  migration 
using such estimation methods is often done to study forest dynamics and the 
relative importance of  niche versus neutral processes shaping communities. Here 
we show that although the estimation methods we compared were able to correctly 
estimate migration from models of  which they were derived, they fail to do so for 
models in which there is a spatially explicit relationship. For the spatially implicit 
simulations, the Inference method (185) and Gst statistic (186) yielded comparable 
results and were able to estimate migration very precisely (Table 5.1 and Supporting 
Information Chapter 5: S1). The two-stage sampling method by Etienne was only 
used for the spatially implicit datasets based on EC due to long computation time, 
but showed comparable results. The only exception was the one stage estimation 
method by Etienne, which in particular for higher probabilities of  migration 
showed a larger deviation (see also Fig. 5.1). This method is based on the likelihood 
calculation of  P[D|θ, m, J], the multivariate probability of  observing a current 
specific species abundance distribution given the constraints of  the parameters 
(see also Supporting Information Chapter 5: S1). This in essence is the sum of  all 
possible species-ancestry-abundance distributions. The problem that could occur 
here, although we did not test this explicitly, is that this may be a result of  the 
way m is related to I by m = I/(I+J-1) with J the size of  the community. Hence, I 
is equal to m(j-1)/(1-m) and when m approaches unity, I reaches infinity. Thus as 
migration approaches one and I becomes increasingly large, the expression (4) from 
Etienne (2005) is reduced to become only dependent on one term, namely A=J. 
Intuitively this means that all individuals in the community are a potential ancestor, 
thus coming from the metacommunity and likelihood estimates of  migration could 
potentially deviate substantially from what is given. Other problems might be caused 
by the way this method is implemented in the software as used in this study (Etienne, 
personal communication). Perhaps further study into this phenomenon could shed 
more light on these results. 

When we turn to the semi-spatial explicit simulations we see a different result. Each 
method yields only a single estimation for migration per sample. As such, it was 
obvious they would only estimate a joint migration probability instead of  those 
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from separate sources of  migration. This total migration rate, however, could still 
be the correct total migration, if  it would in fact measure actual migration or at least 
approximate it. Given that there is no spatial relationship in the model from which 
the methods are derived, however, we expected that estimation methods based on 
a spatial implicit reality would struggle to infer migration when this is larger from 
nearest neighbour communities than that from the larger metacommunity. Although 
intuitively this makes sense, as far as we know this has not been tested with actual 
large-scale field data before nor has it been shown to what extent it would deviate 
using a quantitative modelling approach. Our results supported our expectation 
and showed that this joint estimation was accurate only when migration from the 
metacommunity was higher than from the adjacent plots. In contrast, if  m.adj > 
m.meta which would be the normal situation in reality for tropical trees, estimations 
were consistently found to be an underestimation of  the joint migration probability 
(see Table 5.2 and Fig. 5.2). Although only the Inference method and Gst statistic 
were used for the latter, we assume given the earlier results on the spatially implicit 
simulations that the two-stage sampling by Etienne would generate similar results. 

Here we show the consequences of  using estimation methods based on a spatially 
implicit model to estimate migration from a spatially explicit reality. When the 
majority of  migration is coming from the metacommunity, even spatially semi-
explicit simulations approach a spatially implicit reality. One could ask if  we would 
ever expect estimations of  migration to be accurate when we are using spatially 
implicit models. Given the model’s assumptions and rules we think this would only 
be the case if  the actual system approaches a spatially implicit system, i.e. when 
there is no true spatial relationship between composition and geographical distance. 
In this case these methods would estimate migration correctly (i.e. m = m.adj + 
m.meta). In bryophytes this may be the case, or at least the data were consistent with 
the predictions of  the spatially implicit neutral model (206). When spores get in the 
upper wind layers they are capable of  travelling almost across the entire Amazon, 
although the majority of  replacements will still be local recruits. In such a spatially 
implicit reality, each local community is considered a sample from the metacommunity, 
how much it actually resembles the metacommunity depends on the migration 
parameter (estimated to .2 for the bryophytes). In Hubbell’s original UNTB, species 
abundances deviate from the expected abundance (its proportional abundance in 
the metacommunity) because migration determines the time that ecological drift 
operates within the local community. In other words, the migration parameter 
determines differences in species diversity between the plot under consideration and 
the diversity of  the total sample used for analysis and hence has a direct relationship 
with betadiversity found in the total sample. This is meaningful when estimating 
from neutral spatially implicit simulations, where the only relationship is that of  
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migration between each plot and the metacommunity. When it comes to the real 
world it is a different matter as betadiversity can be the result of  many neutral and 
non-neutral processes (Supporting Information Chapter 5: Fig. S9). As such, it also 
becomes apparent why the neutral model shows such good fits when estimating 
migration and implementing it in a neutral model, even though we know the world 
is not neutral. Migration as estimated from a spatially implicit model encompasses 
not only dispersal but is in fact an ecological aggregate of  all processes determining 
betadiversity; dispersal, time, competition, habitat selectivity, predation, frequency 
dependent mortality etc. It is the link between the (summed) regional species pool 
and each local community. 
As example, different forest dynamics can play an important role in determining forest 
diversity and hence the estimation of  migration.  Wood density, relative growth rate 
and seed mass are related to dispersal, shade-tolerance and are considered indicative 
for difference between pioneering or non-pioneering species (207–211). High wood 
density, slow growth and large seed mass are reflected in slower forest dynamics (31, 
212). In contrast, low wood density, low seed mass and faster turnover of  individuals 
are reflecting faster forest dynamics. Marzluff  and Dial showed that turnover and 
seed mass influence the ability to colonize new resources, leading to a potential 
higher diversity for forest having higher turnover and smaller seed mass (213). On 
the other hand, strong selective pressures or a very homogeneous environment 
in combination with fast turnover might cause plots to look more similar to each 
other due to natural selection, hence decreasing differences in species composition 
or even decreasing total species richness. In both cases, estimation of  migration 
would potentially be relatively high as similarity between plots is also fairly high (low 
betadiversity), but again, neither neutral processes nor dispersal had little to do with 
it. Strong natural selection and a very heterogeneous habitat can also cause high 
betadiversity, decreasing estimates of  migration. The above-mentioned processes 
shape species composition and have an influence on the connection between the 
regional species pool and the local species pools, but have no neutral fundament. 
To be fair, the stochastic (neutral) counterpart of  selection, ecological drift, can 
obviously also cause differences in species composition. Similar to population 
genetics, if  drift is very pronounced, rare species will disappear and systems will 
lose diversity. But we know that this is by far not the only mechanism responsible 
for differences in community composition and that estimates of  migration do not 
tell us specifically how much influence this stochastic mechanism has in shaping 
diversity. Regarding this mechanism, we did observe an interesting pattern in the 
ratio between observed and expected singletons according to Fishers Logseries. As 
communities are structured according to Fisher’s Logseries, we can calculate the 
expected number of  singletons based on the total number of  species and individuals 
and compare this with the observed number of  singletons in each sample. When 
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forests are well mixed in the case of  little dispersal limitation, the observed number 
of  singletons should approach the expected number of  singletons dependent on 
sample size. When this ratio deviates from one, this indicates that local plots are less 
connected to each other over larger distances resulting in a clumpier distribution. 
This eventually means fewer singletons than expected according to Fisher’s Logseries 
based on the number of  individuals and species. We showed that there indeed was 
a strong relationship between the amount of  migration from the metacommunity 
and this ratio of  expected versus observed singletons. This idea is further explained 
and studied in the Supporting Information (S4: Further analysis of  migration using 
Fishers Logseries). A last note on interpreting estimates of  migration focuses on 
the aspect of  time. Given enough time at an ecological time-scale, a collection of  
local communities will potentially have shared much of  their species overall. Even 
when having low direct migration between each local community. This is the result 
of  each local community acting as a stepping-stone, if  individual species travel 
short distances each generation, they can still travel great distances. This inevitably 
increases the theoretical value of  migration. Small differences in species composition 
(and thus high estimates of  migration) can thus be the result either of  low migration 
over a long period of  time or high migration in a short period of  time.

Reinterpreting estimation of  migration from field data. We showed that estimates 
of  migration from all three regions differed markedly (see Table 5.4). Although 
there were small differences between estimations when using different methods, 
relative differences between each dataset within one method were comparable. 
Guyana and Suriname showed the lowest migration probabilities, followed by 
French Guiana and finally Ecuador. Knowing that these estimates of  migration are 
actually ecological aggregates, what differences in these forests can we attribute to 
these differences in migration probability? The relationship between community 
dynamics and alpha diversity was already shown for forests within Guyana (208). 
Ter Steege et al. furthermore showed that on average, Western Amazonian forests 
are 150 individuals ha-1 denser than Eastern Amazonian forests and also have a 
higher alpha diversity (115). Forests of  the Guiana Shield also experience a less 
heterogeneous environment and a more climax species composition having a higher 
seed mass and higher wood density in comparison with forests of  Ecuador (209). 
This all suggests that forests of  the Guiana Shield probably experience an overall 
stronger selection pressure, slower dynamics and potentially also a higher impact of  
ecological drift due to smaller population sizes and less dispersal ability. All of  these 
potentially lead to a stronger distance decay of  similarity and a higher betadiversity, 
both also shown earlier (214). This would also explain a lower estimate of  migration 
of  forests of  the Guiana Shield in comparison with Western Amazonian forests, 
such as those of  Ecuador.
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Conclusions

We have shown that estimation of  migration using methods based on species 
composition fails when estimating from spatially (semi-)explicit simulations. 
Estimation was only correct when our spatially semi-explicit model approached a 
spatially implicit world. We summarize that there are three major problems when 
using estimation methods based on spatially implicit models on a spatially explicit 
reality: 1) Estimations of  migration relate to the differences in species diversity 
between plots and the diversity of  the total sample used for analysis as it is based on 
a spatially implicit model, not an actual mechanism of  dispersal; 2) As differences 
in species diversity can be the result of  a number of  potential causes, the migration 
parameter does not solely reflect neutral dynamics as it is assumed to do so in neutral 
models. It is an aggregated ecological parameter, capturing a myriad of  different 
processes. And 3) even if  the migration parameter could actually be considered being 
reflective of  the migration of  individuals and not including any other mechanisms, 
these methods still only look at the end result of  the homogenization. Hence, it does 
not shed any light on actual current forest dynamics, as it can be the effect of  much 
migration in a short period or little migration over a long period.  
The only method used in this paper not based on species composition and hence 
not influenced by the problems mentioned above is the (corrected) Plot Geometry 
method (138). This uses plot geometry and absolute dispersal distances of  individuals. 
It therefore attempts to estimate the actual amount of  migration per time index 
as migration, although the original authors still implemented this into a spatially 
implicit model. For spatially (semi-) explicit models, it offers a much more intuitive 
implementation of  migration and shows promising results (196). We propose that 
the next steps would be to study the real importance of  migration by implementing 
such  a mechanistic estimate of  dispersal into semi-spatially explicit models (215). 
By doing so, we not only investigate the influence of  dispersal directly but also have 
a more objective way to study the influence of  neutral processes and to distinguish 
between sources of  betadiversity. If  dispersal would be the only mechanism driving 
diversity, such models should be able to predict community composition to a good 
degree. If  not, then other mechanisms must be invoked. The interesting question 
is how this differs between different regions, e.g. between more dynamic and slow 
forests such as Ecuador versus the Guyana Shield (215). A different interesting 
question is regarding the influence of  species richness and the ratio between species 
richness of  the metacommunity and the local communities. Here we focused on 
tropical forest systems as we have access to large-scale datasets to test these models. 
But asking similar questions across multiple scales of  diversity would most likely 
yield even more questions on the importance of  regional diversity and the size of  
the species pool, which may prove a significant challenge.
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Our main conclusion here is that spatially implicit models mimic the real world in a 
very good way simply because they make us of  an aggregated ecological parameter, 
incorporating not only dispersal but also everything determining the connection 
between a regional species pool and a local species pool. But the world simply 
is not spatially implicit; at least not for tropical tree species and we should reject 
all inference from such models on whether communities behave neutrally or not. 
Knowing this contains all possible filters that have been proposed, it does not further 
our knowledge of  forest dynamics as we can only infer whether there is strong 
or weak filtering, it being either dispersal or establishment or both. Obviously, if  
we feed non-neutral (assuming the real world is non-neutral) data into a neutral 
model, models will still create output and methods for estimation of  parameters will 
still generate parameter values. The importance, however, lies in the interpretation 
of  these estimates. In neutral models, the emphasis lies on limited migration of  
individuals for explaining differences in composition. Many biologists thus interpret 
migration from such models as a mechanistic explanation for said differences. What 
we have tested here is whether this is reasonable or not and show is that it is not 
and that we should be careful with these interpretations. As such, either assuming 
neutral dynamics or not, we can not be sure what we are actually estimating from our 
spatially explicit world using methods based on species composition: low migration, 
high selective pressures, slow dynamics or fast dynamics, stronger drift, weak or 
strong natural selection, effects over short or long periods? The only thing we know 
is that we are estimating how much difference there is between the plots and the 
overall pool of  diversity and it is unlikely this is based solely in implicit neutral 
dynamics. 
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Supporting Information

S1 Summary of  used estimation methods

We focus on five different parameter estimation methods 1) Etienne’s Sampling 
formula (184, 187), 2) the Inference method by Jabot et al (185), 3) The Gst statistic 
adopted from population genetics (186), 4) Etienne’s two-stage sampling formula 
(202), which is an extension on the two-stage-estimation method by Munoz et 
al. (2007) (188) and 5) a method by Chisholm & Lichstein (2009) based on plot 
geometry and absolute dispersal distances (138). Each method is summarized briefly 
below.

Etienne’s sampling formulae. Etienne (2005) presented a sampling formula for 
calculating the joint probability of  species abundances in multiple local samples and 
its use to estimate migration. He based his work on the original spatially implicit 
version of  the UNTB (29, 74, 184), where immigrants are drawn from a regional 
species pool according to one aggregated migration parameter m (see also figure 
S1). This migration parameter was transformed into the dispersal number I, which 
is related to sample size J and the migration probability m by I = (m(J-1))/(1-m) 
showing that m is also related to sample size by m = I/((I+J-1)) (216). Considering 
that each local community is a sample from the larger regional species pool we can 
imagine species entering the local community, establishing themselves and from that 
point forward potentially increasing in abundance by propagating (taking up the role 
as ancestors for all individuals of  that same species in the future time). From the 
moment these ancestors arrive in the local community and going forward in time, 
each individual belonging to a specific species gives rise to a number of  descendants 
being of  the same species (as there is only speciation in the metacommunity), 
ultimately resulting in the species abundance distribution in the present community 
(184). If  we would know all these intermediate steps (i.e. the number of  individuals 
each ancestor of  a specific species would have produced) it would be possible to 
derive what Etienne calls the “species-ancestry–abundance” distribution (D+) (184). 
As this is not possible in many cases, the current observed species abundance needs 
to be calculated as the sum of  all possible species-ancestry-abundance distributions, 
which in turn is given by the multivariate probability P[D|θ, m, J] of  observing a 
specific species abundance distribution (217). This multivariate probability is the 
likelihood P of  observing a specific species abundance distribution D (for S species, 
D= (n1,n2, …, nS)) under the constraint of  the suit of  parameters used, thus P[D|θ, 
m, J], for the exact derivation of  this expression, see Etienne & Olff  (2004)(217). 
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Although still rather complex, Etienne presented a simplification of  this multivariate 
probability in 2005, which was incorporated in the freeware program Tetame 
<current version 2.1: http://chave.ups-tlse.fr/projects/tetame.htm>. Etienne’s 
estimation method of  2005, however, still has the assumption that all samples share 
a similar dispersal limitation. In 2007, Munoz et al. proposed a two-stage estimation 
method developed to circumvent problems encountered by the sampling formula 
of  Etienne when dealing with small samples (188). They first start by resampling a 
single individual from each separate sample (first stage) from which theta (θmeta) 
is then estimated using Ewens’ sampling formula (218). This procedure is repeated 
numerous times and the results averaged. The second stage of  the estimation 
procedure is simply calculating the migration parameters I and m for each separate 
sample in the dataset using Etienne’s sampling formula as described above with the 
use of  θmeta as θ. However, this approach has difficulties when estimating θ in the 
case of  having either few samples or many samples that are very different from 
each other (187). Later, Etienne therefore provided a renewed sampling formula as 
an improved two-stage estimation method, better suited for dealing with multiple 
samples having potentially very differing degrees of  dispersal limitation (202). This 
“two-stage Etienne estimation method” will also be used in the comparison; the 
coding for estimation was made available in the PARI/GP environment (190) as 
appendix (202). There were, however, a few practical issues while attempting to 
use the coding. Only older versions of  PARI/GP could be used (pers.com Rampal 
Etienne) and calculation time was lengthy (taking approximately 4 days per subset 
to compute on a standard desktop computer with an Intel Core i5-4670 3.40 GHz 
processor and 8Gb RAM, which in total would mean roughly 200 days for all spatially 
implicit and the semi-explicit datasets). This in combination with the apparent small 
difference between the methods after performing the calculation on part of  the data 
lead to the choice to use this method only for estimation of  the field datasets and 
one spatially implicit dataset based on the empirical set of  Ecuador.  

Inference method. Jabot et al. (2008) used a different approach by using the pooled 
abundances of  all species over all samples as regional species abundances to infer 
parameters for their model, rather than a summary based on the estimation of  θmeta 
(185). They assumed that plots are randomly placed and not stratified to particular 
habitats. If  this would be the case, then the estimate of  migration would be biased, 
resulting from a non-random sampling of  the regional species pool. Jabot et al. 
consider the regional relative abundances to be fixed, however, and by doing so 
ignore spatial aggregation of  species. Using the constructed regional species pool, 
a maximization of  the likelihood for the parameters to be estimated is achieved by 
optimization of  their sampling formula (185). This method is also available in the 
Tetame freeware program (version 2.1).
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Gst statistic. Munoz et al. (2008) proposed an estimation method based on the Fst 
statistic from population genetics (186). Originally, the Gst statistic as proposed 
by Nei in 1973 infers the extent of  genetic differentiation between populations by 
comparing the variation in alleles among populations (i.e. betadiversity) and overall 
allelic diversity at the specific locus (gamma diversity).  Nei’s genetic distance measure 
(219, 220) has assumptions comparable to Hubbell’s NT: all loci have the same rate 
of  neutral mutation, there is a stable effective population size and this population is 
in a mutation versus drift equilibrium. Munoz et al. (2008) made a similar approach 
as Hubbell (29) using theory from population genetics to estimate parameters for 
the neutral model. A very large set of  alleles from a single locus is comparable to 
the number of  species in large area. As such, the Gst statistic can be viewed as 
a measure of  the variation among samples not in allelic diversity, but in species 
diversity. To estimate migration, three estimators of  similarity are used: Fintra as 
the probability that two individuals in a sample (k) are conspecific, Finter that two 
individuals one from sample k and one from sample l are conspecific and Fglobal 
that two individuals samples from the larger species pool are conspecific (186).  The 
average intrasample similarity (      ) over all samples is related to Simpsons alpha 
diversity (221) as Divα = 1-       , Fglobal is related to gamma diversity in a similar 
fashion as 	 is to Divα by Divγ = 1-Fglobal (186) and lastly, betadiversity as Divβ =      
     - Fglobal. These similarity statistics together form the Gst statistic for each 
separate sample k by: 

This relationship measures the relative dissimilarity between a sample and the regional 
species pool, which is considered to be the sum of  all samples. Munoz et al. (2008) 
show that after derivation, the Gst(k) is dependent only on the migration number 
I(k) when the sum of  all individuals is much larger than that of  a single sample. With 
this it is possible to estimate I(k) from each sample, under the assumption, however, 
that these samples have enough distance between them to actually be separate 
distinct local communities. For a detailed analysis of  the exact and approximate 
estimators (sampling without and with replacement) and the relationship of  the 
average betadiversity to similarity relative to a specific sample k (186).

Chisholm & Lichstein’ 2009 plot geometry method. All of  the above described 
estimation methods lack a biological interpretation of  the migration parameter. 
Chisholm and Lichstein (2009) presented expressions related to actual dispersal 
kernels and plot geometry for approximating the amount of  migration, making it 
a more “biological intuitive” method (138). The main result of  their efforts is their 
expression (2): m ≈  Pd/ A, with P as the perimeter of  the plot in meters, d the 
actual mean absolute dispersal distance in meters and A the total surface area of  the 
plot in square meters. This expression holds only for large plots, as long as the size 
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of  the plot is relatively large in comparison to the mean dispersal distance it can be 
applied. They also show this for the case of  a square plot and bivariate Gaussian 
kernel, yielding their expression (3): 

Where erf  is an error function and w is the edge of  the plot. As the size of  the 
plot increases relative to the dispersal distance d the erf  and exp function tend to 1 
and 0 respectively, resulting in the same expression as (2). As example, for a square 
plot with an edge length of  100 meters and mean dispersal distance of  30 meters, 
the error function becomes .999 and the exponent becomes 1.6e-4, thus becoming 
negligible and resulting in the general solution of  expression (2) (Chisholm & 
Lichstein 2009). In order for the erf  function to be >.99 and the exp function to be 
<.025 the ratio [d/w] should be at least < .45 meaning that the edge of  the plot size 
should roughly be at least twice the mean dispersal distance. For this study, when 
this was the case expression (2) was used to approximate m, otherwise expression (3) 
was used for approximating the migration parameter. This method does suffer from 
a serious drawback: it only takes into account the number of  immigrants arriving 
in the local community from outside of  a plot as potential replacements. Recruits, 
however, can come from inside the local community as well. When for instance the 
replacement falls on the edge of  a plot, assuming a Gaussian dispersal kernel, the 
probability distribution is symmetric. To solve this, we used a corrected version of  
the Plot Geometry method; see S3.

S2. Stabilization time and plot size of  simulations 

Two major components determine whether simulations stabilize in terms of  their 
species abundance distribution: size of  the plot and runtime of  the simulation. 
To determine both we made use of  Fisher’s Logseries distribution (98). To test 
whether time and plot size was adequate, a simulation was run with and without 
dispersal limitation. As the local communities start out as a random sample 
of  the metacommunity, in the latter case they reflect the composition of  the 
metacommunity. The number of  singletons and Fisher’s alpha is then expected to 
be almost identical to that of  the metacommunity, given a large enough sample due 
to random variation of  the sampling procedure. According to Fisher’s logseries the 
total number of  individuals (NT) found in any community can be calculated by NT 
= S1 + 2S2 + 3S3 + 4S4 + iSi with Si being the abundance class a species belongs to 
(i.e. S1 are all singletons, S2 all doubletons etc.). In terms of  Fisher’s parameters α and 
x this is equal to Nt = αx + αx2 + αx3 + αx4 + αxi, where αx is the number of  species 
predicted to have only 1 individual (singletons), αx2/2 the number of  doubleton 
species etc. Assuming x is a value between 0 and 1, Fisher’s logseries approaches a 
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geometric series given by 1/(1-x). Nt then becomes Nt = αx(1/(1-x)) = αx/(1-x). 
From this we can derive the value of  x using NT (1-x) = αx, which leads to NT = 
x(α+NT) and finally to x = NT/( NT+α). By plugging this into the first term of  
the logseries we come up with the equation for the expected number of  singletons 
in the community, Φ1exp = αx = αNT/(NT+α). By calculating the expected number 
of  singletons (Φ1exp ) for any given community given the total community size and 
comparing this with the actual number of  singletons observed of  the sample (Φ1obs ) 
in the case without dispersal limitation we can test whether sample size was adequate. 
To test generation time for scenario’s with dispersal limitation we simulated a set of  
25 local communities, each having 625 individuals starting out as a random sample 
of  the metacommunity. Migration was set to an arbitrary value of  0.5, meaning half  
of  replacements is coming out of  the metacommunity and half  are local recruits 
(as this is a spatially implicit model). After the initial sampling, at some point local 
communities running neutral dynamics should stabilize in terms of  the species 
abundance distribution and the difference between Fisher’s alpha of  the previous 
generation and the next generation should become negligible (Figure S3). 

Simulated metacommunities and stabilization of  the sampling procedure.
Construction of  the MC-Low yielded 20,191,600,511 individuals distributed 
over 4,582 species with a Fisher’s alpha of  251. For the MC-High this yielded 
5,611,001,426 individuals belonging to 6,834 species, with a Fisher’s alpha of  416 
(Figure S2). Analysis of  the stabilization for sampling each of  the simulated spatially 
implicit datasets showed that approximately 625 individuals and 1e5 sampling rounds 
was sufficient to minimize the difference between Φ1exp and Φ1obs (Figure S3).

S3 A comment on the plot geometry multi subplot calculation

According to Chisholm & Lichstein (2009), their Plot Geometry method also allows 
estimation of  migration for disconnected local communities (138). As the direct 
dispersal between distant subplots becomes negligible, approximately at twice the 
mean dispersal distance according to their simulations, they state the migration 
parameter can be calculated by 
 

with K the number of  subplots, pi the probability of  death occurring in subplot i 
and      the probability that the parent of  the replacement has an origin outside this 
or any subplot in the total community. Because direct dispersal between subplots at a 
certain distance becomes negligible, migration for each subplot can be approximated 
by assuming each plot is completely isolated and therefore estimation can be 
performed by using expression 3 of  Chisholm & Lichstein (2009) which states:
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In addition, because under the assumptions of  the UNTB (29) the probability of  a 
death of  a particular individual is simply proportional to the relative abundance of  
the species it belongs to in that subplot, the approximation for migration becomes:
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assumption of  panmixis of  the original UNTB might be a potential violation but that 
despite this shortcoming, their method still remains useful as instead of  simulating a 
single migration parameter you could calculate it for each separate subplot. However, 
we fail to see the added value of  this last statement, as 
						           
					          and
	
m reduces to m=mi, meaning that assuming the plot geometry and mean dispersal 
distance for each plot is constant, one could simply calculate it for one plot and it 
would be the same for all plots. Only in the case where each subplot has different 
geometry or mean dispersal distance this has merit.

A correction for the plot geometry method. Chisholm & Lichstein (2009) proposed 
an estimation method based on simple plot geometry and the mean dispersal 
distance of  individuals. They assume an infinite two-dimensional landscape on 
which a quadrat of  area A is “thrown down”, being the local community (LC). 
The LC then consists of  J individuals, calculated as the density of  individuals in 
the infinite landscape (ρ) captured within the area A. Similar to Hubbell’s UNTB 
(29), individuals within the LC die and are being replaced at random from either 
parents within the LC (local recruitment) or from outside of  the LC (migrants). 
Each individual, either within or outside the local community is thus capable of  
producing offspring. In contrast with the original UNTB, Chisholm & Lichstein 
incorporate space by assuming the offspring of  each parent has the ability to 
disperse according to a radially symmetric dispersal kernel, assuming there is no 
difference between individuals. Imagine the LC is divided into xn by yn gridcells of  
1 m2 with n the edge length of  the area A. Each cell is occupied by an individual 
and each timestep an individual dies, vacating one of  the grid cells with coordinate 
(xi, yi). Chisholm & Lichstein consider the location of  the parent individual for the 
replacement randomly selected from a dispersal kernel, which is centered at the 
dying individual. It then is the mean dispersal distance of  individuals, in combination 
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with the location (xi, yi) that determines the overall probability of  a replacement 
coming from either inside or outside the local community.  

For replacements near the edge of  the plot area A, this latter probability is the largest 
considering half  of  the kernel is situated outside of  the plot, rather then inside 
(figure S4A). They justify using the replacement location as the center considering 
the kernels are symmetrical from either perspective and the result will be the same 
when you consider it from the parent perspective. Because they calculate it from 
the perspective of  selecting the parent from the dispersal kernel centered at the 
replacement location, they only take into account a small fraction of  potential 
recruits from both within and outside of  the plot. In this case indeed, swopping 
from either the parent or the replacement perspective does not matter because 
they are symmetrical (figure S4B,C). The consequence however also is that the 
probability kernel only is calculated with a maximum mean μ as the edge of  the plot 
(L in the figures S4A-D), because a replacement location cannot be outside of  the 
surface area A. If  we, however, look from the perspective of  the potential parents, 
considering a dispersal kernel with a mean dispersal distance (σ) of  20 meters the 
entire probability density curve has a range of  approximately +-σ4 from the edge 
of  the plot (figure S4D, in this case with a mean dispersal distance of  20 meters this 
would be the edge +- 80 meters). This in turn means that parents within the range of  
L+- 4σ can potentially supply the replacement (figure S4D). We therefore simulated 
all dispersal kernels for each meter in the range L+-4σ and calculated the entire 
surface area’s of  the probability density kernels coming from both inside the plot 
(figure S4D, red) and outside (blue) and divided the surface area of  the blue density 
kernels by the total, yielding the ratio of  replacements being a migrant from outside 
the plot. Disregarding the mean dispersal distance σ, this is always approximately 
30%, meaning that from assuming an individual every meter, the ratio of  migrants 
of  the total estimated migration by the Plot Geometry method should be multiplied 
with a correction of  .3. As is shown in the main text, using this corrected migration 
parameter to simulate a spatially implicit forest shows this has extremely good fits 
with the actual field data.
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S4 Further analysis of  migration using Fishers Log series

Although estimation methods were only able to estimate joint migration rate and only 
accurately for the limitation of  m.meta>m.adj, we did observe an important pattern 
in the amount of  singletons per plot and in the total simulated forest. The amount of  
singletons was strongly dependent on the amount of  migration from either source, 
adjacent or the metacommunity. An increase in the probability of  migration from 
the metacommunity was being reflected in a relative high number of  singletons. In 
contrast, this was relatively low when migration was mostly coming from adjacent 
plots. Interestingly, this pattern is comparable to the amount of  rare alleles found 
in population genetics in relation to genetic drift, which is also dependent on the 
amount of  migration. Disregarding selective pressures, when populations experience 
little to none migration of  individuals, they will eventually become fixated for 
specific alleles due to sampling error. Following a similar train of  thought, due to the 
probabilistic nature of  sampling in neutral theory models, singletons are lost and are 
not being replaced from the metacommunity but by the more common species from 
adjacent plots. In this case, the more common species increase in abundance as they 
are shared more and more among adjacent plots, hence the amount of  singletons 
will decrease. We can use this pattern to shed light on whether much migration 
is coming from adjacent localities or from the main source pool of  species. As 
communities are structured according to Fisher’s Logseries (98), we can calculate 
the expected number of  singletons (Φ1exp ) based on the total number of  species and 
individuals and compare this with the observed number of  singletons in the samples 
(Φ1obs ) if  forests follow true neutral dynamics. A low singleton ratio of  Φ1obs/ 
Φ1exp is expected when most migrants are from adjacent plots (leading to clumped 
patterns of  species composition). When the ratio approaches 1 this indicates that 
most migrants are originating from the metacommunity, ultimately representing a 
homogeneous random sample of  the metacommunity when all migrants actually do 
originate from the metacommunity. We tested this for all combinations of  migration 
used in the spatially semi-explicit simulations and indeed found that a higher ratio 
was indicative of  a higher migration probability from the metacommunity (Figure 
S7). We also applied this to the field data. For each dataset, Φ1exp was calculated for 
each plot and compared with Φ1obs. Results showed that for all datasets there was on 
average a higher than 1 ratio of  observed versus expected singletons (Figure S8 and 
Table S2). This means that on average, plots have more singletons than would be 
expected purely on the logseries and neutral dynamics. As is explained in the main 
text, this might be explained by the fact that these forests indeed experience more 
than just neutral dynamics. Perhaps there is strong selection forcing species on their 
way out more than we would expect on the basis of  stochastic processes alone or 
differential selection might allow specialists to persevere in low numbers. 
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Table S1. Estimates of migration from spatially implicit simulated datasets based on the MC-low 
and MC-high metacommunities. For each dataset created, the runtime and number of plots are 
indicated. Size was set on 625 individuals per plot and runtime was 1e5 generations, based on 
stabilization time of the sampling procedure as explained in the main text. Species richness depends 
on both runtime and migration. Estimated migration parameters are shown with standard deviation 
of the mean calculated for all plots. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

GS	based	(MC-Low,	67	plots)	
Simulation	 Estimated	Migration	
		 One-stage	est.	 Inference	method	 Gst-statistic	
dataset	 Nr.	sp.	 Nr.	sing	 m	 		 m1	 SD	 m2	 SD	 m3	 SD	
1	 1062	 131	 .21	 	 .231	 .032	 .219	 .015	 .211	 .043	
2	 1100	 151	 .25	 	 .250	 .032	 .255	 .015	 .247	 .059	
3	 1130	 163	 .31	 	 .302	 .036	 .314	 .015	 .297	 .077	
4	 1155	 157	 .35	 	 .294	 .034	 .359	 .016	 .341	 .095	
5	 1166	 164	 .41	 	 .433	 .048	 .415	 .015	 .394	 .120	
6	 1199	 172	 .45	 	 .443	 .051	 .458	 .015	 .430	 .141	
7	 1213	 185	 .51	 	 .522	 .060	 .515	 .015	 .487	 .170	
8	 1220	 196	 .55	 	 .553	 .054	 .553	 .014	 .521	 .198	
9	 1246	 211	 .61	 	 .543	 .047	 .628	 .013	 .574	 .216	
10	 1253	 201	 .71	 	 .586	 .046	 .717	 .011	 .670	 .289	
11	 1259	 211	 .81	 	 .651	 .047	 .820	 .009	 .780	 .382	

FG	based	(MC-Low,	63	plots)	
Simulation	 Estimated	Migration	
		 One-stage	est.	 Inference	method	 Gst-statistic	
dataset	 Nr.	sp.	 Nr.	sing	 m	 		 m1	 SD	 m2	 SD	 m3	 SD	
1	 1077	 141	 .21	 	 .238	 .033	 .216	 .015	 .209	 .044	
2	 1081	 145	 .25	 	 .287	 .034	 .254	 .015	 .247	 .0459	
3	 1109	 140	 .31	 	 .313	 .039	 .320	 .016	 .311	 .0770	
4	 1143	 166	 .35	 	 .339	 .042	 .351	 .016	 .327	 .075	
5	 1164	 158	 .41	 	 .427	 .052	 .413	 .015	 .386	 .099	
6	 1152	 177	 .45	 	 .440	 .049	 .461	 .015	 .429	 .125	
7	 1169	 182	 .51	 	 .478	 .058	 .530	 .015	 .489	 .153	
8	 1209	 162	 .55	 	 .557	 .058	 .551	 .014	 .509	 .169	
9	 1212	 193	 .61	 	 .578	 .060	 .624	 .013	 .588	 .220	
10	 1241	 213	 .71	 	 .542	 .043	 .712	 .012	 .653	 .257	
11	 1254	 224	 .81	 	 .375	 .059	 .824	 .009	 .760	 .325	

EC	based	(MC-High,	72	plots)	
Simulation	 Estimated	Migration	
		 One-stage	est.	 Inference	method	 Gst-statistic	 2-stage	(Etienne)	
dataset	 Nr.	sp.	 Nr.	sing	 m	 		 m1	 SD	 m2	 SD	 m3	 SD	 m4	 SD	
1	 1589	 205	 .21	 	 .280	 .025	 .2154	 .014	 .205	 .043	 .204	 .017	
2	 1659	 244	 .25	 	 .264	 .030	 .254	 .014	 .241	 .056	 .245	 .022	
3	 1699	 249	 .31	 	 .469	 .053	 .313	 .014	 .296	 .075	 .308	 .022	
4	 1718	 266	 .35	 	 .528	 .055	 .359	 .014	 .336	 .096	 .344	 .025	
5	 1736	 256	 .41	 	 .620	 .060	 .419	 .013	 .399	 .132	 .417	 .030	
6	 1776	 297	 .45	 	 .648	 .061	 .460	 .013	 .435	 .157	 .449	 .036	
7	 1803	 308	 .51	 	 .665	 .060	 .510	 .013	 .472	 .173	 .496	 .029	
8	 1804	 283	 .55	 	 .712	 .053	 .556	 .013	 .525	 .212	 .547	 .040	
9	 1852	 336	 .61	 	 .712	 .046	 .618	 .018	 .587	 .250	 .610	 .041	
10	 1891	 368	 .71	 	 .729	 .036	 .724	 .010	 .695	 .326	 .713	 .046	
11	 1922	 371	 .81	 	 .625	 .022	 .819	 .008	 .808	 .418	 .810	 .045	

Table S1. Estimates of  migration from spatially implicit simulated datasets based on the MC-
low and MC-high metacommunities. For each dataset created, the runtime and number of  plots 
are indicated. Size was set on 625 individuals per plot and runtime was 1e5 generations, based on 
stabilization time of  the sampling procedure as explained in the main text. Species richness depends 
on both runtime and migration. Estimated migration parameters are shown with standard deviation of  
the mean calculated for all plots.
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Table S2. Results belonging to figure S7 with mean Φ1obs and Φ1exp for all plots of the datasets 
Guyana/Suriname (GS; 67), French Guiana (FG; 63) and Ecuador (EC; 72). 
 

	
Mean	FA	 Mean	Nr.	species	 Mean	ϕ1obs	 Mean	ϕ1exp	 Ratio	 Sd.	ratio	

GS	 20	 58	 22	 19	 1.198	 .33	
FG	 67	 142	 69	 59	 1.169	 .11	

EC	 78	 146	 75	 68	 1.115	 .17	

Table S2. Results belonging to figure S7 with mean Φ1obs and Φ1exp for all plots of  the datasets 
Guyana/Suriname (GS; 67), French Guiana (FG; 63) and Ecuador (EC; 72).

Figure S1. Schematic view of  the two spatio-temporal communities and their connection as 
implemented in the original Unified Neutral Theory of  Biodiversity and Biogeography by 
Hubbell (29)
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Figure S2. Rank abundance curve for both MC-low (left) and MC-high (right). Numbers are 
based estimates for the number of  individuals and species from (14). 

Figure S3. Stabilization time of  the sampling model without dispersal limitation (m=1) based 
on both sample size (x1 axis above, red label) and number of  generations (x2 axis below, black 
label). On the y-axis is the difference between the expected number of  singletons (F1) and observed 
F1, which was calculated using Fisher’s Logseries (98). 
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Figure S4. Different situations of  the distribution of  Probability Density Kernels following a 
Guassian Distribution with L the edge of  a plot and d the mean dispersal distance used as the 
standard deviation (σ) of  the distribution and range given by L +- 4σ to ensure a full range 
(as 3σ covers 99.73% of  the values around the mean). A) A single dispersal kernel for propagules 
produced by a parent on the edge of  the plot, B) All dispersal kernels from parents residing within the 
plot, C) All dispersal kernels from parents residing outside the plot and D) The combined plot of  B 
and C. 
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Figure S4. Different situations of the distribution of Probability Density Kernels following 
a Guassian Distribution with L the edge of a plot and d the mean dispersal distance used as 
the standard deviation (σ) of the distribution and range given by L +- 4σ to ensure a full 
range (as 3σ covers 99.73% of the values around the mean). A) A single dispersal kernel 
for propagules produced by a parent on the edge of the plot, B) All dispersal kernels from 
parents residing within the plot, C) All dispersal kernels from parents residing outside the 
plot and D) The combined plot of B and C. 
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Figure S5. Rank abundance curves (Guyana/Suriname top, French Guiana middle, Ecuador 
bottom) for the simulated datasets (red) in comparison with those of  the actual field data 
plotted in the same graph (blue). Migration parameter used for sampling the simulated sets is based 
on the Gst statistic (left) and Inference method (right).
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Figure S6. Rank abundance curves (Guyana/Suriname top, French Guiana middle, Ecuador 
bottom) for the simulated datasets (red) in comparison with those of  the actual field data 
plotted in the same graph (blue). Migration parameter used for sampling the simulated sets is based 
on Etienne’s two-stage estimation method (202) (left) and the (corrected) Plot Geometry method from 
Chisholm & Lichstein (138) (right). 
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Figure S7. The calculated ratio of  Φ1obs/Φ1exp plotted against the given migration probability 
from the metacommunity (m.meta) in the semi spatially explicit model as described in the 
Supporting Information. Dashed lines indicate the 95% confidence interval for the loess model.



Estimating and interpreting migration of  Amazonian forests using spatially 
implicit and semi-explicit neutral models

125

Guyana/Suriname French Guiana Ecuador

R
at

io
 O

bs
er

ve
d/

E
xp

ec
te

d 
si

ng
le

to
ns

0.
0

0.
5

1.
0

1.
5

2.
0

Guyana/Suriname
French Guiana
Ecuador

Figure S8. Calculation of  the mean ratio of  observed singletons versus the expected amount 
of  singletons per field dataset as explained in the main text of  the Supporting Information. 
Error bars shown are the standard deviations of  the mean.
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FIGURE	S9	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
 

 
 
 
 
   
 
  

 
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure S9. Schematic view of how both environmental distance and geographical distance 
can cause similar patterns in differentiation of species composition. Although these two 
mechanisms are each others opposite in terms of the niche versus neutral discussion, 
spatially implicit neutral models cannot differentiate between the two mechanisms 
responsible.	

Figure S9. Schematic view of  how both environmental distance and geographical distance can 
cause similar patterns in differentiation of  species composition. Although these two mechanisms 
are each others opposite in terms of  the niche versus neutral discussion, spatially implicit neutral 
models cannot differentiate between the two mechanisms responsible.
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The Darwinian process of  continued interplay of  a random and a selective 
process is not intermediate between pure chance and pure determinism, 

but qualitatively utterly different from either in its consequences.

Sewall Wright (1889 - 1988)



Chapter Six

Adding biological reality to general predictions of  neutral theory 
reveals scaling issues between local and regional patterns of  diversity

(Currently under Review)
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Abstract

Neutral models of  ecology are often used as null models, testing the relative 
importance of  niche versus neutral processes in shaping diversity. Most versions of  
neutral models, however, focus only on regional scale predictions and neglect local 
level contributions. Using a semi-spatially explicit neutral model and a unique dataset 
from the most species-rich forest region on Earth, we add biological reality to general 
predictions of  neutral theory by combining regional and local-level perspectives and 
testing the scalability of  predictions. We find that accurate simultaneous predictions 
of  both regional and local patterns are not attainable. Specifically, predictions of  
patterns in species dominance at local levels while maintaining regional species 
richness are not feasible. We show that although there are clear relationships between 
species composition and both spatial and environmental distances, there is also a 
clear differentiation of  species able to attain dominance with and without restriction 
to specific habitats. We hypothesize that lack of  ecological equivalence accounts 
for this failure of  scaling predictions either up or down and that this is just as likely 
due to competitive differentiation in terms of  tolerance to pathogens or herbivores, 
regardless of  adaptation to specific habitats, as it is to competitive exclusion related 
to specific evolved niche differentiation.

Significance statement

Lack of  attempts at testing the scalability of  predictions from neutral theory has left 
the scientific ecological community wanting for a more biologically realistic testing. 
Using a novel modeling approach and a unique tree inventory dataset of  over 200 
hectares we show that neutral theory suffers severe scaling issues, unable to attain 
accurate local and regional predictions simultaneously. Our results are not only a 
clear indication that non-neutral processes other than dispersal limitation must be 
at work, at least at the local level, but are also a clear warning regarding the use and 
interpretation of  neutral models, both previous and newly developed.
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Introduction

Why are some species dominant and others rare? Posed by Charles Darwin, this 
question remains among the most important in ecology (13) and its answer frames 
our fundamental understanding of  community assembly. Classical Hutchinsonian 
ecology emphasizes deterministic processes based on niche-thinking and 
environmental heterogeneity. Neutral theory (NT), emerging from the theory 
of  Island Biogeography (53), lottery models (62) and earlier work by population 
geneticists (64), argues for stochastic processes and environmental stochasticity. 
The goal of  the latter is not to test the hypothesis that species do not differ or 
that interactions play no role at all. Instead it was put forward as a null model to 
test if  these interactions and differences between species matter to the assembly 
of  ecological communities. In a way it is similar to the Hardy Weinberg theorem 
in population genetics (222, 223), testing assumptions regarding the evolution of  
populations. NT likewise tests assumptions regarding the dynamics of  communities. 
The first neutral models of  ecology were spatially implicit, with recruitment from 
either within a local community or from a metacommunity (Supporting Information 
(SI) Chapter 6: Fig. S1A). These models fail, however, to correctly estimate migration 
from a spatially explicit world (139), even though they generate accurate predictions 
of  community structure. Considering the overwhelming evidence that migration is 
in all probability very important (74, 156), spatially explicit models were developed 
to study the relative importance of  migration and neutral processes in determining 
community structure (70, 173, 224, 225). These models generated good predictions 
for species Rank Abundance Distributions (RADs) and Species Area Relationships 
(SPARs) (29) but focused only on explaining such patterns at regional scales. A 
lack of  previous attempts to combine both regional and local scale predictions has 
prevented a proper validation of  fundamental predictions of  NT. Here we combine 
regional and local results of  a neutral spatially semi-explicit model (139) using 
parameters based on species characteristics to test if  there is a biologically sound 
prediction at regional scales, following from accurate predictions at local scales. If  
migration is the main process determining community structure (reflecting mainly 
the neutral perspective), our model should approach empirical data accurately both 
at regional and local scales. If, however, model results deviate substantially from 
empirical data on either scale, key assumptions of  the model are violated and other 
processes must be more dominant or at least strongly complementary to migration. 
To explain such a potential discrepancy and to identify model assumption violations 
we performed a number of  different (multivariate) analyses on the empirical data, 
complementary to the simulations and studied distribution of  dominant species. 
Using empirical data from 223 hectares’ worth of  plots in the Amazon, covering 
4493 species and 120.322 individual trees, we simulate forests on the order of  8000 
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hectares, with 400-500 individuals per hectare. With the Amazon being one of  the 
most diverse forests of  the world in terms of  tree species (14, 137, 226), such a 
large dataset allows us to test the model at different spatial scales and different 
communities in terms of  diversity. 
 

Results

No single model parameter setting was capable of  reproducing correct patterns at 
both regional and local scales fitting empirical observations simultaneously. Although 
regional RAD patterns (Fig. 6.1), total number of  species and Fisher’s alpha of  the 
total sample (Table 6.1 and Fig. 6.2) showed good, although not significant fits for 
two out of  three datasets (Guyana/Suriname and French Guiana) the simulation 
output did not approach the empirical data for Maximum Dominance Distribution 
(MDD: the distribution of  species with the highest number of  individuals per plot) 
at plot level for any of  the three datasets (Figs. 6.1, 6.2). For Guyana/Suriname 
there was a significant difference between the predicted and field RADs, although 
maximum distance (D, derived from the Kolmogorov-Smirnov test) between the 
two distributions was small (Fig. 6.1). There was also a relatively small yet significant 
difference in the mean number of  species per plot but no significant differences 
in the mean number of  singletons (species with only one individual) (Table 6.1). 
Simulated and empirical regional RADs were also significantly different for French 
Guiana (again with small maximum distance), with a significant difference in both 
the mean number of  species per plot and mean number of  singletons per plot at 
local scales. For Ecuador/Peru, simulations yielded a much less diverse sample 
than the empirical data resulting in a strong significantly different RAD yielding 

Table 6.1 Table comparing simulated (Sim) and empirical datasets (Field) in terms of  
number of  species, singletons and Fisher’s Alpha (both total and mean per plot),  ** indicate 
significance levels at P ≤ .01, *** at p ≤ .001.

	 13	

Table 6.1 Table comparing simulated (Sim) and empirical datasets (Field) in 
terms of number of species, singletons and Fisher’s Alpha (both total and mean per 
plot),  ** indicate significance levels at P ≤ .01, *** at p ≤ .001. 
 
 
 
 

 
 
 
 

Guyana/Suriname French Guiana Ecuador/Peru 
  Sim Field Sim Field Sim Field 
Mean nr species 110*** 

 

84*** 114*** 157*** 113*** 168*** 
Total nr of species 1227 1042 1212 1204 2247 3018 
Mean nr singletons 34 33 36*** 78*** 40*** 88*** 
Total nr singletons 215 210 212 208 462 998 
Mean FA per plot 46** 31** 48*** 76*** 58*** 101*** 
FA of total sample 243 199 244 242 489 716 
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Fig. 6.1. The Rank Abundance Distribution (RAD, left) and Maximum Dominance 
Distributions (MDD, right) for tree species in 223 Amazon forest plots from Guyana/Suriname 
(top), French Guiana (middle) and Ecuador/Peru (bottom). Green lines indicate field data, black 
the simulated data based on the spatially semi-explicit model and red the fitted logseries based on the 
simulated distribution of  individuals over the species. Blue shading indicates upper and lower RAD 
based on 25 sampling iterations of  the total simulated forest. For the RADs, x-axis indicates the rank 
from most abundant to least abundant species, with the y-axis showing the actual abundances of  the 
species for the ith rank. For the MDD graphs, the x-axis reflects the ranking of  plots and the y-axis 
the maximum dominance of  the most abundant species for each plot. Green depicts results from the 
empirical data, black the simulation output based on the same empirical dataset, blue shading indicates 
maximum and minimum values of  distributions after 25 sampling iterations. Simulation output shows 
a much more even distribution of  maximal dominance over all plots in comparison to the empirical 
dataset for all three regional datasets.
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Fig. 6.2. Boxplots summarizing features of  quantitative variables of  composition for both 
simulation and field data) for Guyana/Suriname (top), French Guiana (middle) and Ecuador/
Peru (bottom). Statistics are shown by the labels for the plots from the simulation (red) and from the 
actual field data (green) after a single sampling iteration. Whiskers of  boxplots indicate minimum or 
maximum values (excluding outliers), hinges reflect lower and upper quartiles, and bold stripes reflect 
median values.
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less than half  of  the species found in the empirical data as well with a maximum 
distance over twice as large as for the other two datasets. There were also significant 
differences in the mean number of  species and singletons per plot. All RADs at 
a regional scale showed the familiar logseries (Fig. 6.1) although comparisons of  
mean Fisher’s alpha (FA) per plot did reveal significant differences for all datasets. 
Regional total FA indicated close comparisons for both Guyana/Suriname and 
French Guiana whereas Ecuador/Peru again showed larger differences between 
observed and simulated values. From the RAD it can clearly be seen that primarily 
the very common species are responsible for distances for all three datasets yet 
larger distances between empirical and simulated RAD of  Ecuador/Peru are most 
due to differences in the tail of  rare species. 

As simulations were unable to attain realistic patterns in dominance distribution of  
species we redid simulations using near null migration (m <<.1) to mimic extreme 
ecological drift at the local level. We also performed simulations at the other extreme 
of  near unity (m = .9) migration, mimicking a panmictic community. This clearly 
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Fig. 6.3 Relative abundance (left) and Maximum dominance distribution (MDD: right) 
for two limiting cases of  near null (top) and near unity migration (below). Distributions are 
shown in each corner for Guyana Suriname (top), French Guiana (left) and Ecuador/Peru (right) 
Distributions clearly show the disagreement between predictions both for relative abundances and the 
maximum dominance, with migration set near null yielding accurate regional predictions but losing 
local predictions as based on MDD with for migration set to unity yielding the opposite results.
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showed the disagreement between regional and local predictions of  the RADs (Fig. 
6.3). The first resulted in MDD shapes approaching the empirical data (yet too even 
and too rich and still significantly different) but at the cost of  regional diversity 
where RAD agreement was lost. With migration probabilities set near unity, regional 
predicted patterns of  RAD again showed stronger approximation with empirical 
data (although richer) but MDDs were almost flat, i.e. individuals were too even 
distributed over the species and significantly different. 

Analyses of  composition. For all three datasets there were significant correlations 
between spatial distance and composition dissimilarity with relatively high r statistics 
from the Mantel tests for Guyana/Suriname (0.3101) and French Guiana (0.6723) 
whereas for Ecuador this was considerably lower (0.2073)(SI Chapter 6: Table 
S1). Dissimilarity of  composition was also compared with environmental distance 
matrices where local ecology was approximated by Euclidean distances for annual 
rainfall and a binary distance index of  0 or 1 for forest type (SI Chapter 6: S2). For 
Guyana/Suriname this yielded a weaker r statistic of  .1176 for the former but a 
similar r statistic of  .2961 for the latter, both significant. For French Guiana, only 
comparisons between local ecology and species distances were available as all plots 
are from the same forest type, yielding an r statistic of  .1713, also significant. For 
Ecuador, in comparing species distances with local ecology yielded an r statistic of  
.1742, with forest type vs. species distances yielding .3122, both also significant. 
NMDS also showed distinct grouping for all three different subsets with high 
agreement between plotted values and observed dissimilarities (all R2 > .95) 
(SI Chapter 6: Fig. S3). Guyana/Suriname showed strong groups based on both 
country and forest type. French Guiana showed strong overlapping groups based on 
geographical subdivisions. Ecuador/Peru, with analyses performed separately for all 
forest types combined and only TF to show separation on country of  origin on axes 
more discretely, yielded clear visible segregation along the first axis for both forest 
type and country of  origin. A one-way ANOVA based on the scores of  the first 
or second axis yielded significant differences for segregation of  both country and 
forest type for Guyana/Suriname. Segregation of  geographical subdivision along 
the second axis of  the NMDS for French Guiana also proved to be highly significant 
as well as segregation of  country and forest type for Ecuador/Peru, both along first 
axis in the separate analyses. 
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Discussion

Incorporating dispersal in a realistic way and being able to model a considerably large 
area, we were able to predict diversity at regional scales but unable to predict diversity 
patterns at local scales and vice versa. This disagreement between regional and 
local predictions suggests that even if  regional patterns follow neutral predictions, 
suggesting neutral dynamics with a significant role for dispersal (e.g. (35)), local 
patterns may deviate strongly and indicate non-neutral dynamics. In the least, they 
suggest a severe scalability issue of  neutral theory. At regional scales, simulation 
results of  both Guyana/Suriname and French Guiana were very similar to the actual 
field data. There were only small differences in the total number of  species, total FA 
over all plots or the distribution of  species and singletons over the sampled plots 
according to the RAD. For western Amazonian plots, however, the simulation yielded 
a much less diverse sample at the regional scale, not only in terms of  total number of  
species (almost 1000 species fewer than the field data) but also for total FA (almost 
half  of  the field data). Simulated data also showed much narrower ranges of  these 
values compared to the field data for any dataset, indicative of  much more similar 
distributions across plots in comparison with field data (Fig. 6.2). In addition, local 
community structure showed a much more even distribution of  species per plot 
than the field data (Fig. 6.1). Our results suggests that with estimates of  dispersal 
limitation based on species characteristics, neutral theory can neither predict the high 
dominance of  some species observed in any of  the field datasets (even though they 
approximate regional patterns quite good) nor the excessive diversity of  Western 
Amazonian forests reflected in the large tail of  rare species. Only with severely 
unrealistic dispersal limitation, patterns in maximal dominance at local scales can 
be approximated, but at the loss of  diversity in comparison with empirical data at 
regional scales. As mentioned earlier, similar to the Hardy Weinberg principle from 
population genetics testing the null hypothesis of  no evolutionary change when 
assumptions are not violated (222, 223), NT can be used as the null hypothesis of  
ecological equivalence in ecology. When the assumptions of  NT, with ecological 
equivalence, birth and death rates being proportional to abundance in either LC or 
MC and a saturated landscape being the main assumptions, are indeed true we would 
expect predicted patterns to follow those observed in the field. If, however, for some 
reason any of  these (or other assumptions) are not met, predictions deviate from 
empirical data. Our results indicate deviation from the model predictions occurred 
at two scales, the regional scale for the Ecuador/Peru data and the local scale, with 
the latter independent of  the dataset used and show that at least one assumption is 
violated. 
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Rejection of  NT on a regional level. We hypothesize potential violations are threefold: 
1) differences in environmental heterogeneity, even within forest types, and life 
history strategy among species, 2) geographical distance between plots not being 
equal and 3) the laws of  probability. Western Amazonia in general has much richer 
soils, lower wood density and smaller seed size in comparison with the Guiana Shield 
and is much more diverse in term of  species (209). These differences in fertility and 
different life history strategy (indicated by wood density and seed mass differences) 
might allow higher and differential turnover rates of  individuals and hence a higher 
diversity than predicted by NT where the assumption is strict ecological equivalence 
between species on the individual level (227). This in turn could lead to the higher 
in general diversity of  Ecuador and Peru versus the Guiana Shield. Such signals 
within each dataset, where environmental heterogeneity obviously is to be found, 
also potentially account for the significant differences in all datasets, even with 
small distances between simulated and empirical RADs. The average geographical 
distance between plots in the empirical dataset is also larger for Ecuador and Peru 
in comparison with Guyana, Suriname and French Guiana (mean distance of  195 
km for Ecuador/Peru versus 161 for the Guiana Shield datasets) adding to the 
turnover of  species within the sampling scheme and reinforcing this difference in 
diversity resulting in the larger distance between simulated and empirical RADs. 
The last potential cause for deviation of  predictions at regional scale is perhaps not 
so much a violation of  the models assumption, but rather an indirect result of  the 
modeling process, reinforcing the earlier mentioned violations. When simulations 
start, each plot shares roughly the same logseries of  the total forest. The process of  
ecological drift then slightly changes this logseries for each plot separately causing 
some species to become more abundant whereas others become less abundant. As 
this is random across all plots and we have a large number of  plots (8000), the law 
of  large numbers will cause the logseries to be preserved in the total sample, even 
though each separate community might deviate substantially. A similar pattern is 
observed in population genetics in allele frequencies across communities. Separate 
samples starting with similar allele frequencies under influence of  drift show that the 
average frequency over all plots does not change, even though each separate sample 
might show fixation or loss of  the allele (228). The same could be happening in 
simulations of  neutral models: even though each separate sample is under influence 
of  ecological drift, perhaps losing some species and fixating others, adding up all 
plots results in an average RAD that hardly changes and might look like the one 
observed in the field. However, it is hiding the fact that each separate plot is quite 
different, both in terms of  composition and structure in comparison with field 
data. More interestingly, patterns of  MDD over all the plots showed remarkably 
different results compared to regional patterns, with no congruence between field 
data and simulation output even in extreme cases (Fig. 6.3). The summed regional 
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Fig. 6.4. Correlations between species identity and relative abundance corrected for total 
abundance and standardized over all plots for Guyana, Suriname and French Guiana combined 
(top) and Ecuador with Peru (bottom). Points indicate standardized relative abundance of  species 
occurring in both Terra Firme (x-axis) and Podzol forests (y-axis).  Red dots indicate species that attain 
maximal dominance within any plot. Pearson rank correlation coefficients are noted, including the 
estimated significance levels. Arrows indicate two categories in which species can attain dominance: 
mainly resource competition in combination with tolerance to frequency dependent mortality, limiting 
dominance to a single forest type (blue arrow) or on either forest type indicative of  only tolerance to 
Frequency Dependent Mortality but a lesser degree of  resource competition (red arrow).
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rank abundance distributions then would suggest neutrality by their good fits (at 
least for the Guiana Shield), which appears not to exist at the local scale. 

Rejection of  NT on a local level. At local levels we show strong deviation in predicted 
patterns of  MDD versus those observed in empirical data. Even at regional levels, 
some species are more abundant than either predictions or estimations using a 
logseries distribution (Fig. 6.1). This suggests some species are better competitors 
in some way, reaching higher abundances than predicted by NT at both scales. This 
clearly is a violation of  one of  the key assumptions of  NT, ecological equivalence, 
which would predict a much more even distribution. Mantel tests supported this 
view and in accordance, NMDS also showed clear segregation of  plot community 
composition based on both geographical and environmental proxies for all three 
datasets used. These results would indicate that at least in terms of  composition 
there is a strong effect of  both environmental filtering and dispersal limitation, 
violating at least partly the assumption of  ecological equivalence. Although this 
would be expected for communities of  different forest types, many of  the dominant 
species are clearly not restricted to a single forest type. This leaves the question 
whether being the better competitor related to abiotic conditions is making species 
more dominant than predicted by NT or that perhaps a greater ability to withstand 
pests, pathogens and herbivores could account for this pattern. 
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Fig. 6.5 Proportion of  co-occurring dominant species plotted against distance classes between 
plots. X-axis shows distance classes between which plots comparisons are made, proportions of  co-
occurrence indicates the proportion of  plots within the distance class of  each other share the same 
species being the most dominant.
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Identifying key violations of  ecological equivalence. If  environmental filtering and 
subsequent selection on certain traits based on abiotic conditions would account 
mostly for dominance of  species we would expect species dominant within one forest 
type are not necessarily dominant in others as selective regimes would be different. 
To test this, we correlated species identity and relative abundance, corrected for total 
abundance and standardized over all plots for the two major forest types found in 
each dataset (Terra Firme and Podzols). This was done within geographical subsets 
to account for dispersal limitation effects (i.e. the three datasets separate), similar to 
an approach studying distribution of  species in Peru and Ecuador performed earlier 
(167). This showed there was a strong correlation between relative abundances 
with a highly significant Pearson rank correlation of  .72 for Guyana/Suriname 
and French Guiana combined. For Ecuador this yielded a weaker correlation 
of  .29 although still highly significant (Fig. 6.4). Interestingly, species that attain 
maximal dominance in any plot (indicated by red) fall in two distinct categories: 
those dominant on a single forest type or those attaining dominance across forest 
types. We show this is not due to a mass effect of  clustering due to limited dispersal 
leading to the same dominant species in nearby plots as only between 8 and 15% 
of  dominant species co-occurred between plots, with only a slight decrease in the 
proportion of  co-occurrence over larger distances (Fig. 6.5). Species apparently can 
attain dominance in two ways: being a good competitor in a specific environment 
driven by for instance resource competition (confined by forest type in this case, 
indicated by the blue arrow in Fig. 6.4) or being a good competitor regardless of  the 
abiotic environment (red arrow). In either case they must have tolerance to frequent 
dependent mortality (FDM tolerance, as indicated in Fig. 6.4). In terms of  violating 
the assumption of  ecological equivalence, we now also have two explanations 
accounting for the excessive dominance of  species related to different scales: 1) 
species either outcompete other species, adding to deviance at regional scale patterns 
as different species are dominant in different areas or 2) they are better competitors 
in terms of  escaping from frequency dependent mortality, resilience to pathogens 
or predators (229, 230) or specialization (14), regardless of  habitat. Processes such 
as competitive exclusion (231, 232) based on environmental filtering or even severe 
ecological drift (233), however, are less likely to account for the majority of  these 
patterns in MDD on the local level. The first would result in either the same set 
of  species reaching higher abundances more likely than expected by chance (at 
least within forest types and over distances) while the second would result in lower 
regional diversity as shown by our model predictions. Our findings are supported by 
recent studies on correlation of  species richness on different taxonomic levels at a 
global scale (234, 235), also indicating violation of  neutral theory assumptions, as the 
number of  species per family and individuals within species were highly correlated 
across different continents.
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Conclusions

Our results indicate a severe scaling issue in predictions of  neutral theory. It fails 
to scale either up or down while maintaining good predictions for both local and 
regional predictions of  community structure. We hypothesize this is due to model 
assumption violation at different scales, in particular that of  ecological equivalence 
as indicated by the disagreement between distributions of  maximum dominance of  
species across species. In addition, we show that even though (summed) regional 
patterns in diversity from neutral models may be accurate, there is no guarantee that 
local plot dynamics and hence the mechanisms behind community composition are 
also neutral.  

Materials and Methods

Spatially semi-explicit models: modeling the green mass. We used a mechanistic model 
(236) simulating not only separate plots and their direct interaction (SI Chapter 6: 
Fig. S1), but also the intermediate green matrix connecting these plots (not unlike 
the analytic network approach by Economo & Keitt (28)). Although we often look 
at the forest using only a relatively small sample of  plots, it is this intermediate green 
matrix which plays a vital role in determining species composition of  each local plot, 
acting as a bridge for exchanging species between the plots being sampled. The model 
is built up as a Rubik’s cube, with each column of  the cube representing a single plot 
within a forest with its individuals stacked as the individual blocks (SI Chapter 6: Fig. 
S2). The different colors of  blocks represent different species and the number of  
individuals (i.e. amount of  stacked blocks) is based on an average amount per plot as 
observed in the empirical set used for comparison. Creating the forests starts with 
each block (i.e. each individual) being assigned to a species by randomly sampling 
from a hypothetical metacommunity. This metacommunity follows a logseries, 
which has been shown to be the best approximation for describing species richness 
of  hyper diverse communities (2, 14, 137, 196). The logseries is parameterized using 
the actual field data to which the simulation is being compared, similar to an earlier 
study (5). With each time step of  the simulation, the forest is allowed to change 
with one individual in each plot randomly chosen for replacement. Replacements 
can come from either of  five categories: 1) the plot itself  (local recruitment), 2) 
adjacent plots, 3) the entire forest, 4) the hypothetical metacommunity or 5) a 
speciation event, which creates a new species neither present in the forest nor in 
the metacommunity. We estimate probability of  migration from adjacent plots using 
the Corrected Plot Geometry method (138, 236) and mean dispersal distance based 
on phenotypic characteristics, see below. Migration probability of  each subsequent 
category is calculated as 10 percent of  the former, e.g. if  the migration probability 
from adjacent plots is estimated at .071, that from the entire forest is set at .0071 and 
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from the hypothetical metacommunity at 0.00071. We calculated speciation as in the 
original UNTB: theta/(2*J) with theta equal to Fisher’s α (29) and J the total number 
of  individuals in the forest. Parallel processing using either multiple cores on one 
processor or a cluster using the packages foreach, doParallel and doSnow (237, 238) 
allows multiple forests to be simulated at once, all drawing from the same larger 
hypothetical metacommunity. These separate forests are indirectly connected as they 
draw from the same metacommunity, essentially simulating vagrant dispersal from 
a larger species pool. This allows for much faster computation of  a large area. Each 
step of  the simulation itself  is explained in chronological order in the Supporting 
Information of  Chapter 6 (S1).

Field datasets. Three independent datasets were used: Guyana/Suriname combined, 
French Guiana and Ecuador/Peru, also combined. All identifications within each 
dataset were harmonized and are independent and non-overlapping (214). Each 
dataset consisted of  plots having all trees ≥10 cm Diameter at Breast Height (DBH) 
inventoried. Species ID’s were standardized to the W3 Tropicos database within each 
dataset, using TNRS (14, 94).  The Guyana/Suriname set consisted of  67 plots all of  
one hectare in size, yielding 37.446 individual trees distributed among 1042 morpho-
species. French Guiana is comprised of  63 plots, ranging between .40 and 1 hectares 
in size (.40 ha 1 plot, .50 ha 3 plots, .80 ha 1 plot, .98 ha 2 plots and 1 ha 56 plots) 
accounting for 35.075 individuals belonging to 1204 morpho-species. Ecuador/Peru 
having 93 plots, ranging in size from .2 to 1 hectares in size (.1 hectares 2 plots, .2 ha 
1 plot, .25 ha 6 plots, .5 ha 1 plot and 1 ha 87 plots) accounts for 47.801 individuals 
and 3018 morpho-species. A map of  the locations of  all plots is provided in the 
Supporting Information (SI Chapter 6, Fig. S4).

Parameterizing the model. The mean dispersal distance for each dataset to be 
implemented in the Corrected Plot Geometry method (236, 239) was calculated by 
assigning a mean dispersal distance depending on the category, based on literature 
(210, 240, 241) (SI chapter 6: Table S2). This was done for each plot and ultimately 
averaged over all plots per dataset (see below). As a control, we also simulated the 
forests for a range of  combinations where the total summed amount of  migration 
was randomly divided over all the different categories. A table of  all used parameters 
is provided in the Supporting Information (SI chapter 6: Table S2). To test for the 
influence of  severe and absent ecological drift on the difference between local and 
regional patterns of  diversity, we also implemented near null (m <<.1) and near-
unity parameters of  migration (m = .9).
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Sampling and analyses. After the simulations, a number of  plots equal to the amount 
of  plots in the dataset used for comparison were sampled randomly from the forest. 
Shapes of  the RADs for both the simulation output and the empirical data were 
compared using the non-parametric Kolmogorov–Smirnov test (242) as it allows for 
a goodness-of-fit test between two distributions without assuming any theoretical 
distribution and calculates the statistical distance between the two distributions. 
D values reported indicate maximum distance between the two distributions, with 
p-values indicating the probability of  such a D statistic being larger or equal to 
the observed value. The mean number of  species in the total sample, number 
of  singletons and Fisher’s alpha (98) were compared using the non-parametric 
Wilcoxon rank sum test (243). We posited that if  forest dynamics are similar to our 
neutral model, these aspects of  the empirical and simulated datasets should also be 
similar. Any substantial deviation would represent non-dispersal related influences 
on species composition. Thus we treat the model as a null-model, much like the 
Hardy-Weinberg theorem in population genetics (222, 223), with only dispersal as a 
mechanistic driver. In addition to studying the regional patterns in diversity we did 
the same for local patterns studying the average number of  species per plot and the 
ranking in dominance of  these species per local community over the whole dataset. 
To complement these comparisons, we performed three different analyses to study 
the relative importance of  geographical distance and environmental filtering. These 
were Non Metric Multidimensional Scaling (NMDS) (112–114) using the Morisita 
index of  diversity (244) as distance measure and a correlation analysis between 
environmental, geographic and species distance matrices using Mantel tests (104, 
105), using the same distance measure. All are explained in more detail in the 
Supporting Information (SI chapter 6: S2).
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S1 Steps of  the Simulation

1) Setting up the metacommunity. The first step of  the simulation process is creating 
a metacommunity having similar characteristics to the actual field data with which to 
compare the results afterwards. For this we made use of  Fisher’s Logseries, as most 
forests of  the Amazon show a near exact fit with this distribution model (2, 14, 137). 
Assuming the larger surrounding metacommunity also follows a logseries and that the 
datasets are reflective of  this metacommunity we can derive the relative abundance 
distribution from the expected number of  species and individuals by solving for 
Fisher’s Logseries parameters alpha and x. These are then used to construct each 
term of  the logseries (i.e. singletons, doubletons etc.) until all individuals have been 
distributed for each separate empirical dataset, similar to earlier published results 
(139, 245). 

2) Creating the forest and filling it up with individuals. The forest itself  is created by 
setting up a square lattice of  size N (Number of  plots), where each XY-coordinate 
represents a local community of  stacked individuals as an array instead of  one 
individual (Fig. S2), similar to Kimura’s stepping-stone model from population genetics 
(51). The size of  the array, i.e. the number of  individuals, depends on the average 
amount of  individuals found per plot of  the field data (Jp). The forest is filled up 
with individuals belonging to specific species for the first time step of  the simulation 
process. This is done at random (i.e. mixed) by sampling the metacommunity created 
earlier for each available slot in the forest. By doing so, the model at t = 0 is a direct 
representative sample of  the metacommunity with the probability of  selecting a 
species a direct result of  its abundance in the metacommunity. 

3) Running the neutral game: migration and speciation. After the metacommunity 
is created and the entire forest of  N*Jp individuals is filled up, the next step is to 
specify the recruitment parameters. Probabilities of  migration in each category are 
based on the mean mode of  dispersal based on the dominant dispersal mode of  
the majority of  species present in the respective communities. For each plot, for 
all known species within the plot, the dispersal syndrome was verified, if  known 
(courtesy Pablo Stevenson). Plots were categorized into predominantly zoochorous, 
zoo/synzoochorous, explosive dehiscence/zoochorous or anemo/zoochorous 
as these were the most occurring combinations of  syndromes. We calculated the 
percentage of  each dispersal syndrome present within a plot and grouping was 

Supporting Information
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then based on either a sole category comprising over 75% of  all individuals or, 
if  this was not the case, a combination yielding over 50% of  all individuals in the 
plot. This mean dispersal distance belonging to this grouping is based on previous 
literature (see main text), this distance is then implemented in the Corrected Plot 
Geometry method (see main text). The probability of  speciation is determined from 
Hubbell’s equation for the fundamental diversity number: θ = 2Jmv, resulting in      
v = θ/2*(N*Jp) with theta assumed to be similar to the forests Fisher’s alpha. The 
sampling and replacing of  individuals is carried out sequentially, starting with the 
four corners, followed by all edges and lastly the remaining plots on the lattice, 
this way we avoid having to implement any torus and are able to incorporate edge 
effects as they would also occur in a real forest (e.g. on the edge of  a river, a cliff  or 
coastline).  Each simulation was run for 150,000 time steps. 
 

S2. Analysis

Multivariate analysis - NMDS. A Non-Metric Multidimensional Scaling (NMDS) 
using MetaDMS and Morisita index of  diversity (244) from the package vegan 
(99) was performed on each of  the three datasets to study patterns of  community 
composition and its relation to either environmental characteristics or geographical 
distances. For each of  the datasets the NMDS was performed separately, after 
which points in the two-dimensional space were colored to represent environmental 
characteristics or geographical separation. If  either environmental or geographic 
distances were mostly related to floristic composition, plots should be separated 
accordingly in the ordination space. NMDS attempts to find the best rank-order 
agreement between floristic similarities and distances between points in the ordination 
space (112–114). As such, NMDS does not fit axes based on eigenvalues as many 
other ordination techniques do but instead represents a coordinate system for the 
computed space. MetaMDS is a specific NMDS approach which, in addition to the 
standard MDS, centers the origin of  the ordination space on the averages of  the 
axes and then uses principal components so that most variation is represented by the 
first axes, then the second, etcetera (143). If  migration is the most important factor 
determining species composition, we expect grouping of  points will be strongly 
related to geographical origin (i.e. country or region). In contrast, if  environmental 
filtering is stronger, grouping is expected to be more strongly related to forest types. 

Environmental and geographical distance matrices - Mantel tests. To determine 
whether geographical distance (being neutral) or environmental similarity (being 
more niche dependent) would be correlated with similarity across plots we also 
performed Mantel tests (104, 105). Geographical distance matrices were based on 
actual Euclidean distance derived from latitude and longitude coordinates for all 
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plots. For the floristic species similarity matrices we used the same Morisita diversity 
index as mentioned earlier. Environmental distance matrices were based either 
on mean annual rainfall or forest type. With the first, distance is calculated as the 
absolute Euclidean distance. For the latter, a binary index was used for measuring 
similarity with 0 indicating the plots both are of  the same forest type and 1 when this 
is not the case. For the Mantel tests we also subdivided all plots into separate groups 
depending on the dominant dispersal mode within the plots. Distance matrices and 
Mantel tests were performed using the distance matrix function in vegan’s vegdist 
and the mantel function (143).
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Fig. S1. Above) Original neutral model adapted to the theory of  Island Biogeography (53) with 
a larger metacommunity as the mainland and a smaller local community as the island. Relative 
abundance distributions of  the metacommunity are given by Hubbell’s fundamental biodiversity 
number theta (29) (equals 2Jmv, with Jm the size of  the metacommunity and v the speciation rate). 
Migration determines the relation between the metacommunity and local community with 1 minus 
the migration probability giving the probability of  a local recruit after a death in the local community. 
Right) Later adaptation to the original neutral model with the metacommunity as the sum of  a 
collection of  local communities. Local communities are connected by the same migration parameter 
although this is now migration from plot to plot. It is, however, still an approximation of  migration, 
as the intermediate plots are not taken into account and migration still acts as an ecological aggregated 
parameter, incorporating not only dispersal but also filtering and recruitment.
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Fig. S2. 

New proposed mechanistic model build up as a Rubik’s cube, with each column of the cube 

representing a single plot within a forest with its individuals stacked as the individual 

blocks. Each unique x-y coordinate represents a single plot with z individuals, bottom 

shows the 3D view of the forest with the individuals stacked as an array of per plot 

(example forest of 10x10 plots with each plot having a 100 individuals).  

 

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Fig. S2. New proposed mechanistic model build up as a Rubik’s cube, with each column of  the 
cube representing a single plot within a forest with its individuals stacked as the individual blocks. Each 
unique x-y coordinate represents a single plot with z individuals, bottom shows the 3D view of  the 
forest with the individuals stacked as an array of  per plot (example forest of  10x10 plots with each plot 
having a 100 individuals).
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Fig. S3 Results of  the Non Metric Multidimensional Scaling for Guyana and Suriname. 
Polygon coloring and grouping is based on forest type (terra firme TF, podzol PZ, swamp SW). As 
French Guiana only has a single forest type included (terra firme) the polygon is excluded. Dashed 
lines indicate grouping based on country of  origin or region of  origin for French Guiana (Cayenne or 
St Laurent du Maroni). First axis segregation for Guyana/Suriname on country was highly significant 
(F(1,63) =243 and p < 2.2 e-16) as well as the second axis segregation on forest type (F(1,63) =107 and 
p = 3.6 e-15). Segregation of  geographical subdivision along the second axis for French Guiana also was 
highly significant (F(1,60) =28 and p = 1.7e-6) as well as segregation along first (forest type) and second 
(country) for Ecuador/Peru (F(2,82) =15 and p = 3.1 e-6, F(1,75) =54 and p = 1.8 e-10). 
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Fig. S4 Map showing the spatial location of  all plots from the different geographical subsets of  
Guyana (blue), Suriname (pink), French Guiana (green), Ecuador (red) and Peru (light blue). 
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	 67	

	

OSB	 Spatial	 Local	ecology	 Forest	type	

All	species	 .3101*	 .1176*	 .2961*	

Dispersal	ability	

	 	 	Zoochory	 .5519*	 .08003	 .4056*	

Anemo/zoochory	 .5686*	 .2904*	 .2351*	

Explo/zoochory	 .2297*	 .08632	 .4464*	

	 	 	 	 	DS	 Spatial	 Local	ecology	 	

All	species	 .6723*	 .1713*	 	

Dispersal	ability	

	 	
	

Zoochory	 .5913*	 .4647*	 	

Zoo/Synzoochory	 .6322*	 .4586*	 	

Anemo/zoochory	 .6110*	 .4925*	 	

Explo/zoochory	 .2824				 .3102*	 	

	 	 	 	 	JEG	 Spatial	 Local	ecology	 Forest	type	

All	species	 .2073*	 .1742*	 .3122	

Dispersal	ability	 	 	 	

Zoochory	 .2297*	 .2139*	 .2347	

Zoo/Synzoochory	 .2401	 .3308*	 .3404*	

Anemo/zoochory	 .6068	 .4887*	 .6553	

Hydro/zoochory	 .3513*	 .3716*	 .9186*	

	

Table S1. 

Results from the Mantel tests for each separate dataset with and without specific grouping 

based on dominant dispersal syndrome. Asterisks indicate significance at the .05 level.  

 

 

Table S1. Results from the Mantel tests for each separate dataset with and without specific 
grouping based on dominant dispersal syndrome. Asterisks indicate significance at the .05 level. 
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Table S2. 

Mean dispersal distances in meters based on literature for the various dispersal syndromes. 

Distances were used to calculate the average dispersal distance per plot based on the 

grouping category of the predominant dispersal syndrome as approximation using the 

Corrected Plot Geometry method. Below: mean migration probabilities for each category 

per dataset. 

syndrome	 min	 max	 mean	

zoochorous		 3.16	 100	 25.12	

zoo/synzoochorous		 4.39	 100	 52.19	

explosive	dehiscence/zoochorous		 3.16	 52.8	 27.98	

anemo/zoochorous		 6.58	 100	 53.29	

Dataset	 local	recr.	 m	adjacent	 m	forest	 m	meta	 speciation	

Guyana/Suriname	 .84394	 .141	 .0141	 .00141	 .000563	

French	Guiana	 .83217	 .1512	 .01512	 .001512	 .000565	

Ecuador/Peru	 .82229	 .1601	 .01601	 .001601	 .000638	

Table S2. Mean dispersal distances in meters based on literature for the various dispersal 
syndromes. Distances were used to calculate the average dispersal distance per plot based on the 
grouping category of  the predominant dispersal syndrome as approximation using the Corrected Plot 
Geometry method. Below: mean migration probabilities for each category per dataset.



Information is something that can be used to remove uncertainty.

Claude E. Shannon (1916 - 2001)
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Abstract

Understanding drivers of  community assembly remains important in ecology and 
attempts to resolve it range from truly deterministic to completely neutral. We 
apply Maximum Entropy to disentangle dynamics of  Amazonian tree communities 
without invoking a-priori assumptions. We use over 2000 hectares of  tree inventory 
plots and functional traits associated with a broad range of  ecological challenges. 
We show an overall low, but strong, environmentally dependent effect of  functional 
traits on genus level composition. We also show much stronger effects of  dispersal 
from the regional taxonomic pool, accompanied by a strong spatial pattern that 
depends on geographical distance. Our results significantly contribute to the debate 
between neutral and niche paradigms and suggest direction for future studies on the 
governing dynamics of  ecological communities.

Introduction

What drives community assembly? Approaches to answer this long standing question 
in ecology have varied from completely deterministic, or niche based (16–26) to 
completely neutral (29, 74, 246–248) and almost everything in between (e.g. near-
neutral, continuum or emergent-neutral: 17–20). Most models are based on some 
prior described reasoning of  a functional mechanism driving community dynamics. 
Inference of  governing dynamics depend on the type of  model used, neutral 
or deterministic, and whether or not model outputs fit with field observations. 
However, such a priori reasoning is also at the center of  the question itself, making 
it a causality dilemma: choosing whether to use a deterministic, neutral or hybrid 
model of  community assembly. But when the choice has been made, do results 
reflect the choice or actual community dynamics?

Choosing has a practical basis, e.g. deterministic models are popular as they allow 
precise inferences regarding dynamics. They are, however, quickly overloaded 
with parameters, challenging their use, especially in hyper diverse communities. As 
a response, more simplified (neutral) models emerged as null-hypotheses to test 
against actual empirical observations. Without invoking complex sets of  parameters, 
these run on simple but strict rules of  demographic stochasticity. But even such 
models require complex parameterization and often unrealistic assumptions (139, 
226). In addition, they have difficulties disentangling predictions at different scales 
(215) as well as faced by many empirical objections (34, 159). Given all this, it may be 
helpful to explore different methods of  quantifying niche versus neutral processes. 
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The Maximum Entropy Formalism (MEF) provides such a different method (40, 79, 
251). In contrast with models as mentioned above, this makes no inference regarding 
population dynamics and no a-priori assumptions in terms of  functional dynamics 
to generate predictions of  relative abundances. Instead, it mathematically derives 
relative abundances in the form of  Bayesian probabilities for each entity in a sample 
(see Fig. 7.1 and SI chapter 7: boxes S1-S3). Predictions of  these relative abundances 
for each sample (i.e. each local community) are such that they need to agree with 
any constraint we might know, e.g. functional traits or the abundance distribution 
of  taxa in the total sample (i.e. the regional metacommunity), but are otherwise 
maximally uninformative. In other words, no other constraints beyond those we 
know are implied on these probabilities. If  demographic rates are indeed determined 
by heritable traits in specific environmental context (a deterministic view), over time 
specific traits leading to higher fitness will lead to greater relative abundances of  taxa 
possessing these traits within these environments. If  this assumption holds true, we 
should be able to derive accurate predictions of  local community composition from 
pure trait effects based solely on community-weighted means of  these taxa-specific 
traits. If  relative abundances are, however, more driven by the limited migration of  
individuals regardless of  functional traits (a neutral perspective), the regional relative 
abundances should provide a better prediction relative to using only the traits as 
constraints (i.e. a pure metacommunity effect). Given the many studies on dispersal 
kernels and the accompanying distance decay of  similarity (65) the effect of  the 
regional relative abundances of  taxa should also be inversely related to geographic 
distance from the sample for which predictions of  relative abundance distributions 
are made using the MEF. Although it is nearly impossible to include all traits that 
might be important as constraints, here we use a comprehensive list of  functional 
traits reflecting a broad spectrum of  ecological challenges (Table 7.1). Hence, any 
unidentified causes of  variation in abundances should be left to demographic 
stochasticity or ecological challenges not captured in these functional traits. And even 
though there are many different tests available to link trait variation to abundances, 
turnover between habitats or environments and the distance decay of  similarities 
between samples, they cannot quantify the importance of  these constraints relative 
to each other. The MEF, however, is capable of  and designed to do exactly this. 

Here we present the application and adaptation of  the MEF to quantify signals of  
natural selection over time and migration from a regional pool without making any 
a priori assumptions regarding community dynamics. We apply this formalism to 
the largest and richest rainforest of  our world, the Amazon, using a tree inventory 
database well over 2000 plots (14, 41). We first quantify the relative importance of  
niche and neutral processes in structuring community composition for different forest 
types using the MEF and secondly identify which, if  any, traits are most important in 
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structuring composition for the different forest types. Finally, we provide estimates 
of  the actual potential metacommunity size of  Amazonian tree genera for local 
communities by studying spatial patterns of  relative metacommunity effect to trait 
effects. The above allows us to significantly advance the study of  relative importance 
of  niche versus neutral processes.

Results

Pure trait based filtering of  community composition accounted for 21% on average 
of  the information contained in the observed relative abundances for the total 
dataset. Filtered by forest type this was (on average) 35% for white sand forests, 23% 
and 21% for várzea and igapó, 33% for swamp and 19% for terra firme forests (see 
SI chapter 7: Table S1 for a detailed decomposition). Dispersal filtering based on 
the metacommunity prior (i.e. a neutral prior, taking total Amazonian abundances 
but not the traits into account) accounted for on average 56% for the combined 
dataset (in the same order for the separate forest types this yielded 51%, 50%, 53%, 
53% and 58%). The hybrid model (including both traits and the metacommunity 
prior) performed slightly better for the combined dataset (average 60%) and for 
each specific forest type separate at 60%, 55%, 56%, 56% and 62%. The above 
is also reflected in the predictive ability of  the maximum entropy model for the 
observed relative abundances. Using only the functional traits as constraints for the 
MEF calculations and a uniform prior (i.e. a metacommunity without structure) this 
resulted in a Pearson’s R2 of  0.39 whereas using both the traits and the neutral prior 
this increased to 0.68. For the regional summed genus pool the increase in predictive 
ability was even higher, yielding Pearson’s R2 values of  0.27 and 0.99 respectively. 
This shows a very high predictive ability of  the maximum entropy model when 
taking both traits and the regional abundances as prior into account (SI chapter 7: 
Fig. S1).

When inferring biologically whether niche or neutral processes are more important, 
the explanatory power is regarded relative to the model bias, to compensate for 
any relationship between regional abundances (i.e. relative abundances in the total 
metacommunity) and local trait constraints (see also Fig. 7.1 and SI chapter 7: boxes 
S2 and S3). This lowered the proportion of  information accounted for considerably 
and yielded average pure metacommunity effects of  44% for the overall dataset and 
for each forest type: 29%, 37%, 40%, 29% and 47%. The pure trait effect, although 
also lowered substantially, did appear to be strongly dependent on forest type. When 
taken relative to effects of  demographic stochasticity (i.e. the unexplained effects and 
model bias), the pure trait effects accounted for only 5% for the combined dataset on 
average with for each forest type 11%, 6%, 3%, 5% and 4% (Fig. 7.2 and SI chapter 
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Fig. 7.2. Visual representation of  pure trait, pure metacommunity, hybrid model and the 
remaining unexplained information for each separate forest type. Abbreviations indicate different 
types: white sand (PZ), várzea (VA), Igapó (IG), swamp (SW) and terra firme (TF). Boxplots show the 
median value of  each pure effect over all samples (i.e. inventory plots), with lower and upper hinges 
corresponding to the first and third quartiles (the 25th and 75th percentiles). Whiskers extends from 
the hinge to the largest or smallest value no further than 1.5 * IQR from the hinge. Points beyond this 
range are plotted individually.

Table 7.1. Overview of  the functional traits used as constraints. Mean and standard deviation 
(SD) are calculated on the data after the predictive mean matching algorithm (percentage of  estimated 
values is given by MICE (%)). Associated challenge indicates different aspects of  life history and 
selective environment that are related to the specific functional traits, sources are given in the table. 
For specific methodology of  measurement protocols and calculation for each trait we refer to the 
original sources of  the data: Adalardo de Oliveira (unpublished data), L. Poorter (unpublished data), J. 
Lloyd (unpublished data), Van der Sande and Mazzei (unpublished data), Van der Sande and Poorter 
(unpublished data), (272), (273), (274), (227), (275), (276), (277), (278) and the TRY database (279).

	 15	

 Table 7.1. Overview of the functional traits used as constraints. Mean and 

standard deviation (SD) are calculated on the data after the predictive mean matching 

algorithm (percentage of estimated values is given by MICE (%)). Associated 

challenge indicates different aspects of life history and selective environment that are 

related to the specific functional traits, sources are given in the table. For specific 

methodology of measurement protocols and calculation for each trait we refer to the 

original sources of the data: Adalardo de Oliveira (unpublished data), L. Poorter 

(unpublished data), J. Lloyd (unpublished data), Van der Sande and Mazzei 

(unpublished data), Van der Sande and Poorter (unpublished data), (6), (7), (8), (9), 

(10), (11), (12), (13) and the TRY database (14). 

 
 

 

Functional	trait	 Units	 Mean	 SD	 MICE	(%)	 Associated	challenge	
Wood	density	(WD)	 g/cm

3
	 0.625	 0.170	 0.30	 Longevity(15)	

Seed	Mass	Class	(SMC)	 categorical	(1-8)	 4.272	 1.377	 0.31	 Dispersal,	Fecundity,	Establishment(15)	
Specific	Leaf	Area	(SLA)	 mm

2
/mg	 15.019	 5.922	 0.41	 Establishment,	Plasticity,	Disturbance(15)	

Leaf	nitrogen	content	(N)	 mg/g		 22.310	 7.290	 0.41	 Photosynthetic	capacity(15)	
Leaf	phosphorus	content	(P)	 mg/g	 1.018	 0.773	 0.50	 Limited	available	P	for	metabolism(16)	

Leaf	carbon	content	(C)	 mg/g	 466.642	 38.131	 0.54	 Herbivore	resistance	(C:N)(17)	

Latex	 1=no,	2	=yes	 0.239	 0.427	 0.46	 Herbivore	resistance(18)	

Resin	 1=no,	2	=yes	 0.143	 0.351	 0.58	 Herbivore	resistance(18)	

Root	Nodules	(Nodules)	 1=no,	2	=yes	 0.084	 0.278	 0.00	 Nitrogen	fixation(19)	

Ectomycorrhiza	(EctoMyco)	 1=no,	2	=yes	 0.011	 0.105	 0.00	 Organic	N	fixation	(20),	heavy	metal	pollution(21)	

Aluminum	accumulation	(AlAcc)	 1=no,	2	=yes	 0.046	 0.210	 0.03	 Heavy	metal	pollution(22)	

Fleshy	Fruits	(Fleshy)	 1=no,	2	=yes	 0.574	 0.495	 0.07	 Dispersal	(specificity)(23)	

Winged	seeds	(Wings)	 1=no,	2	=yes	 0.224	 0.417	 0.39	 Dispersal	(limitation)(23)	
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7: Table S1). We also see a clear trend dependent on forest type when pure trait and 
metacommunity effects are both taken into account and looked at relative to each 
other (Fig. 7.3). White sand and swamp forests clearly have weak metacommunity 
effects relative to the trait effects (indicating a stronger selective environment), 
whereas terra firme forests show the opposite with a stronger metacommunity to 
trait effect. Spatially, results also indicate that for the Amazonian interior, the influx 
of  taxa from surrounding areas as reflected by the pure metacommunity effect is 
more important in explaining variation of  Amazonian composition than trait effects, 
whereas trait effects are more important along the edges (Fig. 7.4). Most likely this 
is not due to differentiation of  climatically driven regional patterns as this is taken 
into account in the four step MEF model calculations and would yield stronger trait 
effects, even at large spatial scales.
  
Direction and strength of  selection. The absolute value and sign of  the lambda values 
for traits (i.e. the relative strength of  the effect on local abundance, see methods) 
indicate both the strength and direction of  selection. Positive values indicate that 
taxa having these traits also have higher abundances, whereas negative values indicate 

Fig. 7.3. Boxplots showing ratio of  pure metacommunity to pure trait effect by forest type, 
ordered by median value. Ratio was calculated per plot by dividing the pure metacommunity effect 
by (10*pure trait effects+1). High values indicate a high relative importance of  metacommunity effects, 
and low values indicate a high relative importance of  trait effects. A clear pattern can be seen, from with 
white sand and swamp forests having the lowest pure metacommunity and trait effects ratio, indicating 
stronger trait effects relative to the metacommunity effects and vice versa for terra firme and igapó 
forests.
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the opposite. Comparisons between forest types showed that all traits showed strong 
significant difference when compared between forest types (Fig. 7.5). A number of  
functional traits associated with low nutrient conditions (e.g. ectomycorrhiza) and 
life history strategies suited for protection against herbivores (e.g. latex and high leaf  
C content) were clearly subjected to positive selection in nutrient poor environments 
(white sand), indicated by the positive lambda values. In contrast, having fleshy fruits 
and high leaf  N and P content were clearly negatively associated with abundance for 
these soils. Likewise, the ability to accumulate aluminum was positively selected for 
on those soils commonly associated with higher aluminum content such as igapó 
(showing strong effects) and terra firme soils (showing a minor, yet positive effect). 
In contrast, it was strongly negatively selected for on the other soils, with negative 
lambda values for white sand, várzea and swamp forests. Traits such as SLA, having 
nodules or winged fruits also showed strong patterns dependent on forest type.  
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Figure 7.4. Spatial gradient in pure trait relative to pure metacommunity effect.  Map showing 
the ratio between the pure metacommunity effect and the pure trait effects for each plot. Ratio was 
calculated per plot by dividing the pure metacommunity effect by (10*pure trait effects+1). Values for 
projection on the map using a loess regression were multiplied by 1000 to allow clearer differentiation. 
Squares show the predictions from loess regression (color depending on value). Map clearly shows 
interior of  the Amazon having weaker trait effects relative to metacommunity effects whereas on the 
edges of  the Amazon this pattern is reversed.
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Metacommunity size. The effect of  the regional species pool relative to the model 
bias and trait effect appeared to be strongly related to geographical distance and 
dependent on forest type (Fig. 7.6). For the total dataset there was a 19% decrease 
of  the mean information explained purely by the metacommunity prior when the 
prior was scaled up from 100 (mean 64%, SD 12%) to 3500 km (mean 45%, SD 
10%).  For the separate forest types, although the initial pure metacommunity effect 
varied, the decline appeared remarkably similar with a mean 22% decrease in pure 
metacommunity effect for white sand (50% to 28%), 19% for várzea (59% to 40%), 
31% for igapó (71% to 40%) and 37% for swamp forests (57% to 20%) with terra 
firme forests having a smaller decline of  approximately 18% (65% to 47%). Clearly, 
there is an initial relative steep decline the first 1000 km followed by a shallower 
decline the next 1500 km. After this second boundary at 2500 km there is virtually 
no visible decay anymore in pure metacommunity effect, regardless of  forest type. 
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Figure 7.5. Mean lambda values with standard error bars for each functional trait and compared 
between forest types. Positive values indicate positive selection, reflected in a strong association 
between higher trait values and higher abundances; negative values reflect the opposite with high trait 
values associated with lower abundances. Differences between forest types were tested with a one way 
analysis of  variance with significance levels corresponding to: * p < .05, ** p < .01 and *** p < .001. 
Abbreviations of  functional traits stand for WD wood density, SMC seed mass class, SLA specific leaf  
area, N P and C are nitrogen, phosphorus and carbon leaf  content. Latex, Resin, Nodules are presence 
absence of  said traits. EctoMyco ectomycorrhiza, AlAcc the ability to accumulate aluminum, both also 
presence or absence. Fleshy indicates having fleshy fruits and wings the presence or absence of  winged 
seeds.
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Projecting these decays geographically using the ratio of  pure metacommunity 
effect at the start (i.e. 100 km) and at the second boundary of  decline (i.e. 2500 
km) showed a clear pattern: plots in the Amazonian interior have the most gradual 
declines (yielding higher ratios) compared to plots along the edges of  the Amazon 
(Fig. 7.7). There is an obvious risk that when metacommunity size is increased, this 
also includes more environmental heterogeneity, potentially confounding results. 
However, if  this were the case, the metacommunity prior (qi from Fig. 7.1 and SI 
chapter 7: box S2) would also change. As the pure metacommunity effect is the 
explained information that remains after correcting for any trait effects and the pure 
trait effects is the explained information that remains after correcting for the pure 
metacommunity effect (SI chapter 7: box S3) this confounding effect should then be 
accompanied by an increase in pure trait effect for each sample. This is not what is 
observed, not even within the different forest types (SI chapter 7: Fig. S3). Instead, 
the trait effect gradually goes up and then remains constant. 

Figure 7.6. Distance decay of  pure metacommunity effect. X-axis represents radius of  
metacommunity prior; i.e. first 100 km consists of  just a few plots and at 3800 km all plots are taken 
into account. Colors indicate different forest types with abbreviations as in main text. Lines indicate 
predictions from loess regression based on all points. Blue vertical dashed lines indicate 1000 and 2500 
km boundary points. Blue shading reflects maximum values for that distance of  total dataset.
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Discussion

The underlying principles of  the MEF follow from a well-founded theoretical 
body of  evolutionary biology (i.e. natural selection of  beneficial traits), ecology (i.e. 
migration of  individuals) and population dynamics (40, 79, 251, 252). It enabled us 
to quantitatively disentangle the dynamics of  community structure for tropical forest 
communities at genus level, i.e. determine the relative importance of  niche versus 
neutral processes and to study their relationship at large spatial scales on genus 
level taxonomy. Our results show that pure trait based filtering relative to regional 
abundances explained 11% of  forest composition for white sand forests with an 
average explained proportion of  only 5% when all forest types are taken together. 
The influence of  dispersal limitation, reflected by the pure metacommunity effect, 
was 4 times higher with a maximum of  47% for terra firme forests at an average value 
of  44% for all forest types combined, almost tenfold larger. The joint information 
taking both the traits and regional abundances into account showed a maximum 
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Figure 7.7. Spatial pattern of  the distance decay of  pure metacommunity effect. Map showing 
spatial patterns of  the inverse of  the absolute power law’s exponent best describing the distance decay 
of  pure metacommunity effect (Fig. 7.6) for each plot.  Values for projection on the map using a loess 
regression were multiplied by 10 to allow clearer differentiation, legend indicates values of  predictions 
from loess regression (squares). Map clearly shows interior of  the Amazon having weaker declines 
of  metacommunity importance over distances whereas on the edges of  the Amazon this pattern is 
reversed.
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explained proportion of  12% for white sand forests and an overall average explained 
proportion of  7% for all forest types combined. Assuming a sufficient number of  
functional traits were taken into account, these results clearly indicate that neither 
neutral nor niche processes, as taken into account by these functional traits, can 
be solely responsible for community composition. We first discuss our findings in 
light of  explaining community dynamics and hypothesize on what is missing from 
the niche or neutral perspective; second we discuss this in relation to geographical 
distance and finally propose what should be added to our ecological toolbox in order 
to gain a better understanding of  community assembly. 

Governing dynamics of  community composition. Signals of  quantitative selection 
in functional traits caused by long-term evolutionary change was found to be highest 
for white sand forests, whereas its counterpart in the form of  the dispersal mass 
effect from the regional pool of  genera had the second lowest value (only swamp 
forests had slightly lower values). Looking at other forest types we see the same 
pattern, where the pure metacommunity effect is always stronger than the pure 
trait effects. White sand forests, having extremely nutrient poor soils and therefore 
presumably a much stronger selective environment than any of  the other forest 
types, clearly support a deterministic view of  community composition. Terra 
firme forests, however, reflective of  a less strong selective environment in terms 
of  resource availability, showed the opposite, with less than half  of  the pure trait 
effect in comparison with white sand forests (even when rarefied to accommodate 
for different sample sizes). In addition, white sand forests have a smaller connected 
surface area and accompanying smaller number of  genera in comparison with terra 
firme forests, adding to the calculated stronger trait effects (14). 
It should be noted that within forest type heterogeneity was not taken into 
account as this was mixed into a single environmental class. This might cause an 
underestimation of  the deterministic effect but as of  yet cannot be corrected for at 
this scale. Detailed analyses of  lambda values also gave indications which traits were 
important for selective advantages between forest types. The strength and direction 
of  selection indicated a clear selective pressure for a different life history strategy 
of  growth versus protection. Traits associated with protection against herbivores 
such as latex (253) and high leaf  carbon content were clearly positively associated 
with higher abundances on white sand soils, whereas traits indicative of  soil fertility, 
investment in growth and photosynthetic ability such as high foliar concentrations 
of  P and N (254) showed strong negative associations. The ability to accumulate 
aluminum was also strongly positively associated on the more nutrient but also often 
aluminum enriched soils of  terra firme and igapó. There were also traits that showed 
no specific (strong) signal of  selection on certain forest types (either positive or 
negative), such as wood density on terra firme or ectomycorrhiza on várzea (see Fig. 
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7.5 for all lambda values). Interestingly, terra firme also showed the smallest lambda 
values overall (either positive or negative). This may be indicative of  either more 
pronounced demographic stochasticity or ecological drift eliminating the association 
between traits and relative abundance or lower effects of  selection in general. Again, 
this might also be due to mixing heterogeneous microenvironments into a single 
environmental class. Support for such heterogeneity within terra firme forests having 
influence on distribution of  functional traits on valleys or plateaus has recently been 
found (255). It should be noted that a significant part of  the trait data was estimated 
using the predictive mean matching (Table 7.1) which also might account for 
counterintuitive signals such as the positive selection of  SLA on nutrient poor white 
sand soils. The general pattern, however, does indicate a clear signal of  differential 
trait selection between forest types relative to effects of  the metacommunity for 
a number of  functional traits. This pattern is most likely a combined effect of  
differential abiotic environments resulting in quantitative selection of  traits over 
time (i.e. strong filtering for white sand and swamp forests) and a scale dependency 
of  the potential pool of  recruits resulting in differential influence of  the regional 
pool (i.e. large for terra firme forests but smaller for white sand forests where the 
selective environment has more influence). This is also supported by the variation in 
strength and sign of  the lambda values (Fig. 7.5).  

Explaining the unexplained effects. The relatively strong selective filter of  white sand 
forests is supported by the fact that these forests also had a relative low unexplained 
proportion of  48% while having the lowest metacommunity effects. For other forest 
types this unexplained proportion was quite high with a maximum of  56% for swamp 
forests and an average of  44%. These unexplained effects could be attributed to 
two separate causes. First, demographic stochasticity could weaken any link between 
functional traits measured and regional abundances. This would mean almost half  
of  the information contained in relative abundances are the result of  random 
population dynamics and are not structurally governed. The alternative and perhaps 
more likely hypothesis is that this is due to important functional traits, reflective 
of  processes not taken into account in this study. Traits such as SLA, nodulation, 
leaf  C and N concentration or wood density and seed mass are likely reflective 
of  differential life history strategy associated with competition effects in terms of  
growth (35–37) with latex or resin often associated with protection against herbivory 
(253). The still relatively high values of  unexplained information, however, indicate 
this competition effect may be less important in driving community composition 
in comparison with other processes for which we had no functional traits, such as 
the co-evolutionary arms races with pests and pathogens (58, 59, 230). The first 
supports results from earlier studies, finding no relation between similar traits as 
used in this study and the hyperdominance of  species (14) as well as findings that 
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similar species can reach high dominance in different habitats (215) while the second 
argues for perhaps more detailed study of  trait combinations (258). It might also be 
the case that these functional traits are in fact not as good predictors of  competitive 
ability at all (259, 260). However, in light of  the large amount of  functional traits 
and that despite low proportions of  explanatory power there were strong signals of  
selection of  these traits, they can be used to approximate such life history strategies. 
The above therefor argues for other processes in concert with resource competition 
or herbivore defense to play important roles in structuring communities.

Spatial effects of  metacommunity importance. Although the initial explanatory 
power of  the metacommunity prior might differ between forest types, the decay 
pattern is very similar for each forest type (Fig. 7.6). Only for terra firme the first 
decline appeared to be more gradual. This arguably is related to these forests having 
the largest relative surface area of  the Amazon, giving these forests potentially an 
almost continuous metacommunity without gaps allowing for a gradual decline. The 
overall pattern, however, still remains the same, with an initial steep decline up to 
approximately 1000 km followed by a slow gradual decrease stabilizing after roughly 
2500 km. Even terra firme forests adhere to this first 1000 km boundary. Our 
findings provide a quantitative and mechanistic explanation for the often-observed 
distance decay in similarity of  tropical forests where we see almost the exact same 
pattern (SI chapter 7: Fig. S2). As the effects of  either traits or the metacommunity 
are measured in the goodness-of-fit predictions on local relative abundances, this 
implies that at small spatial scales the surrounding regional abundances provide 
better estimators than functional traits and at larger scales this shifts to the traits. 
At small spatial scales, local communities share similar environmental conditions 
leaving only dispersal and drift acting in changing community composition, at least 
for genus level taxonomy. Again, for species level analyses any micro environmental 
gradients might prove to show selection at local scales (255, 261, 262), but as of  yet 
this high resolution data is not available. As the potential regional pool is increased, 
however, more and more environmental heterogeneity is introduced and differences 
in composition are being driven more and more by differences in selective pressures 
compared to direct dispersal, lowering the pure metacommunity effect (although it 
still remains relatively high at large distances). This spatial trade-off  of  course only 
holds for the traits used in this study, differences in microhabitat or herbivore/
pathogen composition might change this relationship. Nevertheless, due to limited 
dispersal there is an apparent clear switch between migration and environmental 
filtering being the most dominant process shaping communities. This effect seems 
to be universal across forest types and that it does not change anymore at certain 
distances but instead remains constant indicates the effect of  dispersal potentially 
occurs over very large distances. Crossing these large distances at ecological (short-
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term) temporal scales could be accounted for by vagrant long distance dispersal 
(263). Considering these calculations are done at community and genus level and 
do not measure single dispersal events but rather the effect of  long-term dispersal 
on community composition much deeper in time, we argue there is a strong effect 
of  dispersal at evolutionary (long-term) temporal scales. Values ranging between 
approximately 20 - 50% metacommunity effect suggest more than a dispersal event 
every now and then. Instead, it argues for prolonged mixing of  forests at large 
geographical scales. This would indicate Amazonian forests are perhaps more 
mixed on genus level than expected based on for instance average actual dispersal 
distances. Such an evolutionary metacommunity is also supported by recent 
findings demonstrating a lack of  geographical phylogenetic structure of  lineages for 
Amazonian tree genera, although this was based on species level calculations (264). 

Explaining Amazonian tree diversity patterns. Many models have been proposed 
for explaining patterns in Amazonian tree diversity. Some rely on very simple null 
models such as the mid-domain effect (265, 266). Here we show support that high 
diversity of  the Amazon interior could be explained by influx of  recruits due to 
large (overlapping) ranges, causing high mixing as indicated by the still relatively high 
pure metacommunity effects over large distances. The mid-domain effect, however, 
would also predict lower species richness for the edges due to lower range overlap 
(assuming a closed community). This is not the case, as there is a strong species 
richness gradient from West (rich) to Eastern Amazonian forests (poor) (115). The 
lower metacommunity effect for the edges then is most likely not due to less absolute 
influx of  genera, rather less influx from the Amazonian tree community. Influx from 
the species-rich Andes biome could account for the high diversity (267), yet low 
Amazonian metacommunity effect for Western Amazonian forests. In contrast, 
South Eastern parts of  Amazonia receive influx from species-poor biomes (i.e. the 
Cerrado) resulting in lower diversity but also low metacommunity effect. 

Conclusions

Our results significantly advance the debate between the neutral or niche discussion for 
at least genus level taxonomy and show that there is a clear spatial and environmental 
dependency of  these two aspects of  community assembly. However, there is still 
much to be explored due to the large unexplained effects and analyses on finer 
taxonomic scales (i.e. species level) could resolve these issues. The relatively large 
effects of  the regional pool of  recruits over great distances do suggest an important 
role for dispersal and mixing of  Amazonian trees in community assembly at 
evolutionary time-scales (at least for genera), either via stepping-stones or prolonged 
slow mixing over large distances, especially for the interior of  the Amazon. 
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Materials and Methods

Shipley et al (2006) introduced the ecological application of  the MEF with the goal to 
predict local abundances of  taxa within a sample based on information of  functional 
traits and the abundance of  taxa in other areas (i.e. regional metacommunity 
abundances) (79). It is based on what we know and what we do not know regarding 
these taxa. The first is described by certain constraints and prior information based 
on empirical data (e.g. values of  certain functional traits and the regional abundance 
of  taxa) and by the nature of  the states we are looking at (e.g. abundances of  the 
taxa in the local community). The latter is described by the remaining uncertainty, 
quantified by the entropy; the greater the uncertainty, the greater is the entropy. 
The purpose of  MEF is to find probabilities for all possible states in the system 
and ultimately the most likely relative abundance of  genera in such a way that the 
distribution still maximizes entropy while continuously agreeing with the constraints 
and prior information.

Empirical data. The ATDN network (41) consists of  over 2000 tree inventory plots 
distributed over both the Amazon basin and the Guiana Shield, hereafter collectively 
referred to as Amazonia. Of  the entire ATDN database only those plots were used 
with trees ≥ 10 cm DBH (diameter at breast height) leaving 2011 plots with a mean 
of  558 individuals per plot identified to at least genus level. Most plots used are 1 
ha in size (1414) with 492 being smaller (minimum size of  .1 ha) and 105 larger 
(maximum size of  80 ha). Genus IDs have been standardized to the W3 Tropicos 
database (268) using the Taxonomic Name Resolution Service (TNRS (94)). After 
filtering based on above criteria and solving any nomenclature issues 1.121.935 
individuals distributed over 828 genera remained. 

Functional traits. 13 different functional traits were used as constraints: wood density, 
seed mass class, Specific Leaf  Area (SLA), leaf  Nitrogen, Phosphorus and Carbon 
content and whether genera possessed latex, resin, root nodules, ectomycorrhiza, 
whether they were aluminum accumulators and whether fruits were fleshy or seeds 
had wings (for protocol and measurements see the original sources of  the data as 
shown in Table 7.1). Trait values were computed as genus-level means of  species 
values if  known within the genus and considered constant for each genus. Genus 
level of  taxonomy was used as the available trait database had the most information 
on this taxonomic level. Doing calculations on species level would mean assuming 
many species have the same average trait value as many species specific trait values 
are unknown, which could confound any results. In addition to effects on relations 
with functional traits, if  there are many species with an extremely restricted range 
and they do not only have low probabilities but simply zero of  reaching some local 
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communities this potentially also leads to an overestimated size of  the actual regional 
species pool and leads to prediction errors. Following an earlier approach, unknown 
values for traits were estimated by Multiple Imputation with Chained Equations 
(MICE) using the package mice available for the R statistical environment (269). 
Predictive mean matching (pmm setting) uses all available data as predictors in 
estimating the most likely values for missing data. All trait values were transformed 
to Community Weighted Means (CWM)of  each trait (J) for each plot (K) as 

with ra the relative abundance of  the ith genus in the kth plot, following earlier uses 
of  the MEF (27), but now on genus level. Table 7.1 provides details on functional 
traits used and reports units of  measurement, mean and standard deviations as well 
as the percentage of  estimated values using the predictive mean matching. 

MEF Procedure, ecological inference and predictions
Predictions of  relative abundances and inference of  proportions of  explained 
information for each plot by either traits, the relative abundances of  the regional 
pool or a combination were obtained by applying the maxent2 function (251), 
an updated version of  the maxent function currently in the FD package in the R 
environment (270). In the MEF, constraints are incorporated using the CWM values, 
reflective of  the traits possessed by the “average individual” in the local community, 
and the prior information such as the regional relative abundances (see SI chapter 
7: box S1 for an overview of  important terms). CWM values are assumed to be 
reflective of  continuous selective pressures over time and space. If  there is a fitness 
advantage of  having certain traits there should be a strong relation between certain 
CWM values and the relative abundances. On the other hand, if  relative abundances 
are not determined by the selective advantage of  having a specific suit of  traits, 
then knowing these trait values will not give any further information already known 
from the regional prior. In the most likely case, both are operating at some level and 
knowing both traits and the regional relative abundances will in this case provide an 
increase in information for predicting relative abundances in local communities. To 
decompose these aspects, the MEF procedure is formulated by a four step model 
with each step randomizing a different aspect (e.g. traits or regional abundances) to 
determine its effect on abundance predictions: 1) Given genus-specific traits and 
their CWM, fit the data assuming a uniform metacommunity prior, i.e. each genus 
is assumed to have an equal abundance on average in the regional pool of  recruits. 
2) Permutate the fit found in step 1 using the observed relative abundances and the 
specific traits by randomly shuffling the traits and the genera using the maxent.test 
function (271). 3) Calculate new fit using the CWM plus the observed metacommunity 
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prior, i.e. using the actual relative abundances of  genera summed over all samples 
and finally 4) permutate this fit again similar to step 2 by randomly shuffling traits, 
genera and their metacommunity prior using the maxent.test function. Each step 
finds predicted relative abundance values for each genus in each local community 
while maximizing entropy given the CWM values and specific priors for that model. 

The proportion of  uncertainty in observed relative abundances explained by each 
model is given by the Kullback-Leibler divergence R2

KL values, a generalization of  
the classic R2 goodness of  fit values (30). The above four steps and the specific 
R2

KL values generate all the necessary information to calculate the pure trait, 
pure metacommunity, joint metacommunity-trait and the unexplained effects as 
proportions of  the total biologically relevant information for each plot (see SI 
chapter 7 for details: box S2 and S3).  Analyses were performed on the entire dataset 
and the dataset filtered according to forest type (white sand, várzea, igapó, swamp 
and terra firme). Quantitative predictive ability for predictions from step 1 and 3 for 
the entire dataset was analysed using a linear least square regression with reported 
R2 value equal to the Pearson correlation coefficient between the observed and 
predicted relative abundances defined as one minus the ratio of  the error sum of  
squares to the total sum of  squares. The R2

KL  basically has all of  the same properties 
as this standard model R2 but in addition to being able to quantify the proportion of  
total information of  the dependent variable accounted for in the model it is able to 
decompose this in the various components of  the four step model and is calculated 
using actual observed and predicted relative abundances instead of  the error sum 
of  squares (see also (251)). Because sampling size (i.e. number of  plots) differed 
considerably between forest types (swamp 28, white sand 111, igapó 176, Várzea 
277 and terra firme 1419) data were rarefied to the smallest sample size (i.e. 28) and 
calculations permutated 25 times to identify for any sampling effects. Results from 
this rarefaction procedure indicated no significant change in results and total dataset 
was used for all analyses. 

Strength and direction of  selection
The MEF generates predictions of  relative abundance as a function of  its traits 
reflected in the CWM values and a series of  constants (λjk: the Lagrange Multipliers). 
Each multiplier quantifies the association between a unit of  change for a particular 
trait j and a proportional change in the predicted relative abundance pik (the ith 
genus in the kth community) considering all other traits are constant. Positive values 
indicate that entities with larger trait values for this specific trait in general also 
are associated with higher abundances (positive selection), negative values indicate 
the opposite with higher trait values associated with lower abundances (negative 
selection). Values more or less equal to zero indicate no true association and hence 



174	 Rolling the Dice or Struggling for Survival

it could be assumed there has been no selective pressure for this particular trait. 
Studying these lambda values then gives information on both the strength and 
direction of  selection. Lambda values for each trait were compared between forest 
types using a One Way Analysis of  Variance (ANOVA).

Estimation of  metacommunity size
To estimate the potential range of  dispersal of  genera for each local community, 
apart from vagrant dispersal, we adapted the MEF procedure to run in a loop. 
Each iteration, the size of  the regional pool is increased in concentric circles of  
a fixed radius around the local community for each plot. The surface area then 
covered by the circle and plots therein constitute the prior of  regional abundances. 
If  this subset of  the actual regional pool is very small (i.e. the first circles) we expect 
metacommunity effects to be high relative to the effects of  traits as the environment 
will be more homogeneous. This will, however, most likely shift to the relative 
effect of  functional traits being stronger relative to the size of  the regional pool as 
the size of  the regional pool of  recruits and composition of  the metacommunity 
prior changes relative to the sample. In addition, if  there is no strong selection filter 
operating there should be no difference in this decrease of  the metacommunity 
importance in relation to distance, as they would potentially share the same regional 
pool. If  this, however, does differ strongly between the forest types it would be 
indicative of  selection preventing the sharing of  the same pool. Regardless of  forest 
type, at some point the pure metacommunity effect will not change anymore from 
the previous to the next circle and we assume we have reached the outer range of  
the potential regional pool of  recruits from which point on only vagrant dispersal 
still causes input of  new genera and the effect of  the metacommunity stabilizes. The 
relationship between the pure metacommunity effect and radius of  metacommunity 
size was analyzed using a smoothing loess regression (function loess and predict; 
R-package stats (51)). The fit from the loess regression was subsequently used to 
predict values of  metacommunity effect based on geographical distance. Again, 
analyses were performed on both the entire dataset and the dataset filtered to forest 
type. The ratio of  pure metacommunity effect at 100 and 2500 km was then used 
to project spatial patterns across the Amazon for each plot and interpolated using a 
loess regression (Fig. 7.7). The same interpolation and projection was done for the 
ratio between pure trait and pure metacommunity effect (Fig. 7.4). 
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Entities
The basic unit of  the MEF model can exist in different states. If  the system under study is a 
collection of  genera existing at a site, then each entity is a single genus.
 
States
Classification of  different ways any entity can exist. In the same collection of  taxa, states of  each 
entity (i.e. genus) is its specific abundance at that site. Microstates are the exact arrangement 
in time and space for the states of  the entities in the system. Macrostates are the description 
of  entities among the possible states in the system under study without regard to the spatial 
or temporal arrangement of  these entities. I.e. observing a relative abundance distribution, but 
not the actual dispersal and germination of  individuals.

Traits, attributes or properties 
Each entity possesses measurable properties whose values will probably differ between states. 
For example, genera differ in average wood density, seed mass, height etcetera.

Maximally uninformative prior
All the information concerning states before constraints are introduced. Called maximally 
uninformative as preferably all empirical information is introduced in the form of  constraints 
as to have the maximal gain of  information regarding the different traits. 

Prior distribution
Prior distribution of  expected states for the entities, which can be incorporated as a constraint 
in addition to the traits, being either the observed relative abundance of  each entity in the 
summed sample (i.e. the metacommunity) or a maximally uninformed (uniform) distribution. 
The former would be a neutral prior (expected local abundance is equal to the abundance in 
the larger metacommunity). 

Community-weighted means
The average trait value (i.e. measurable property such as wood density) of  entities (such as 
genera) weighted by the relative abundance of  each entity at a specific site.

Box S1. The different ingredients necessary for analyses using the MEF. A glossary of  the most 
important terms used in the MEF analyses and throughout the main text to provide the necessary 
framework of  understanding.
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The Maximum Entropy Formalism works 
on the basis of  a conceptual model called 
the CATS (Community Assembly by Trait 
Selection) (323) and makes use of  three 
inputs:

i) A trait matrix containing the measured 
functional traits of  each of  the S total genera 
in the total regional pool, these can be of  
either discrete or continuous form. 
ii) A vector of  n community weighted trait 
values, estimating the trait value of  the 
average individual in the local community for 
each of  the traits
iii) A prior probability distribution specifying 
the potential (hypothetical) contribution of  
the regional pool of  recruits to the structure 
of  local communities. 

Using only these three sources of  
information, the model is able to predict 
relative abundances in the form of  Bayesian 
probabilities for each of  the entities for 
each local community without assuming 
any a priori relations or mechanisms. This 
is achieved by finding the unique vector of  
relative abundances maximizing entropy:

with qi the prior distribution (i.e. regional 
species pool abundance) and RE subject to 
the known constraints:

The solution is a generalized exponential 
distribution where the λ values measure the 
importance of  each trait when all other traits 
are constant:
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The final step is to measure the proportion 
of  total deviance accounted for between 
observed and predicted relative abundances 
for each of  the four-step solution. These are 
the R2

KL values, a generalization of  the classic 
R2 index of  maximum likelihood estimation 
using the Kullback-Leibler index (323):  

1)        2KL(u): fit of  model bias, the model null 
hypotheses given a uniform prior (i.e. equal 
distribution in the regional pool of  recruits).

2)    R2
KL(u, t): fit using again a uniform prior 

but including traits as constraints. 

3)   2
KL(m): fit using the metacommunity 

prior but excluding traits as constraints 

4)    R2
KL(m, t): fit using the metacommunity 

prior and including traits as constraints
 
The general form of  the R2

KL divergence is 
calculated by:

With the following parameters:

Oij as the observed relative abundances of  
the ith genus in the jth community, 
Pij the accompanying predicted values for the 
specific model of  the four solution step as 
described in the main text and,
Qi,0  the predicted relative abundances given 
only the maximum uninformative prior. 

Further details on the calculation of  all 
separate R2

KL values and accompanying pure 
trait, pure metacommunity, joint information 
and biologically unexplained information can 
be found in the SI (box S3).
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Box S2 Mathematical description of  the Maximum Entropy Formalism accompanying Fig. 7.1 
of  the main text. Left panel shows the necessary ingredients and basic formulation of  the Maximum 
Entropy Formalism. Right side panel shows decomposition of  the proportion of  total deviance 
accounted for between observed and predicted relative abundances for each of  the four-step solution.
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Box S3 Detailed decomposition of  the four-step solution from the MEF. Mathematical description 
of  the decomposition based on the constraints and prior distributions (both uniform and neutral) for 
each of  the steps from the four-step solution to measure the proportion of  total deviance accounted 
for by each specific model from one of  the four steps.

The purpose of  using MEF is to decompose the deviance between observed and predicted 
relative abundances using the four-step solution as described in the main text. The values 
generated are described below. The R2

KL value is a generalization of  the classic R2 index of  
maximum likelihood estimation using the Kullback-Leibler index for a non-linear regression 
including a multinomial error structure (323, 324). In essence, it is a way of  measuring the 
proportion of  total deviance accounted for by that specific model from one of  the four steps:

     2
KL(u): fit of  model bias, the model null hypotheses given a uniform prior

R2
KL(u, t): fit using a uniform prior but including traits as constraints 

     2
KL(m): fit using the metacommunity prior but excluding traits as constraints 

R2
KL(m, t): fit using the metacommunity prior and including traits as constraints 

1) The increase in the explained deviance due to traits can be calculated either by

ΛR2
KL(t|φ) = R2

KL(u, t) -    2
KL(u) 

Increase in explained deviance due to traits beyond that due solely to model bias
or ΛR2

KL(t|m) = R2
KL(m, t) -   2

KL(m) 
Increase in explained deviance due to traits beyond contributions made by the meta-community

2) The increase in explained deviance due dispersal mass effects via the metacommunity can 
be calculated by either:

ΛR2
KL(m| φ) =    2

KL(m) -   2
KL(u) 

Increase in explained deviance (if  any) due to the metacommunity beyond that due to model bias
or ΛR2

KL(m|t) =   2
KL(m, t) -   2

KL(u, t) 
Increase in explained deviance due to the meta-community given traits, relative to the explained deviance 
due only to the traits: i.e. information unique to neutral prior

3) And finally the joint information and the biologically unexplained information:
ΛR2

KL(m+t) = ΛR2
KL(m|φ) - ΛR2

KL(m|t) = ΛR2
KL(t|φ) - ΛR2

KL(t|m)
Joint information gain, or increase in explained deviance due to both the metacommunity prior and the 
constraints based on the traits

1- ΛR2
KL(m,t) 

Biologically unexplained variation

From these values the pure trait, pure metacommunity, joint effect and biologically unexplained 
variation can be calculated by the following calculations:
Pure trait effects: ΛR2

KL(t|m) / (1-   2
KL(u))

Pure metacommunity effects: ΛR2
KL(m|t) / (1-   2

KL(u))
Joint metacommunity and trait effects: ΛR2

KL(m+t) / (1-   2
KL(u))

Unexplained effects: ΛR2
KL(m,t) / (1-   2

KL(u))
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Figure S1. Observed relative abundances plotted against predicted relative abundance per plot 
(left) and summed (right) using only the traits as constraints in combination with a uniform 
prior (top) or the hybrid model using both traits and the metacommunity relative abundance 
as prior (bottom) on a log-log scale. Top figures show predictions for each separate plot and genus, 
bottom figures show predictions for summed regional abundances. Red points indicate taxa with 
observed relative abundances over 1e-1. Lines show the x = y prediction and R2 values correspond to 
the Pearson’s correlation coefficient.
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Figure S2. Distance decay of  similarity using Morisita index of  diversity on genus level for all 
plots used in the MEF analyses. Points are all plots from the total ATDN forest inventory dataset. 
Curves indicate LOESS regressions for the different forest types (All combined: red, TF terra firme: 
brown, PZ white sand: yellow, IG Igapó: blue, VA Várzea: purple, SW Swamp: green). 



Rolling the dice or struggling for survival, using Maximum Entropy to unravel 
drivers of  community composition

191
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance from focal plot (km)

P
ur

e 
tra

it 
ef

fe
ct

100 250 400 550 700 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850 3050 3250 3450

ALL
TF
PZ
SW
IG
VA

Figure S3. Distance decay of  pure trait effect for each forest type separately and the overall 
dataset. X-axis represents the radius of  the metacommunity prior; i.e. the first 100 km consists of  just 
a few plots and at 3800 km all plots are taken into account. Colors indicate the different forest types 
with abbreviations as in main text. Lines indicate the predictions following from the loess regression 
based on all points. Blue vertical lines indicate the 1000 and 2500 km boundary points. Blue shading 
reflects maximum values for that distance of  the whole dataset.



192	 Rolling the Dice or Struggling for Survival

	 81	

TABLE	S1	
	
	
		 Forest	types	 	
Explained	proportions	 	PZ	 VA	 IG	 SW	 TF	 Combined	
R2KL(u)	
model	bias	fit	 0.1705	 0.1284	 0.1255	 0.2127	 0.0878	 0.1030	
R2KL(m)	
pure	neutral	model	fit	 0.5126	 0.5013	 0.5330	 0.5256	 0.5810	 0.5613	
R2KL(u,t)	
pure	trait	model	fit	 0.3495	 0.2289	 0.2064	 0.3279	 0.1904	 0.2078	
R2KL(m,t)	
hybrid	model	fit	 0.5967	 0.5538	 0.5587	 0.5635	 0.6192	 0.6029	
	 	 	 	 	 	 	
Increase	in	explained	deviance	 	 	 	 	 	 	
ΛR2KL(m|φ)	
metacommunity	effect	beyond	model	bias	 0.3420	 0.3729	 0.4075	 0.3130	 0.4933	 0.4583	
ΛR2	KL(t|φ)	
trait	effect	beyond	model	bias	 0.1790	 0.1005	 0.0809	 0.1152	 0.1026	 0.1048	
ΛR2	KL(t|m)	
trait	effect	beyond	metacommunity	effect	 0.0842	 0.0525	 0.0257	 0.0379	 0.0381	 0.0416	
ΛR2	KL(m|t)	
metacommunity	effect	relative	to	given	trait	effects	 0.2472	 0.3250	 0.3523	 0.2357	 0.4288	 0.3951	
ΛR2	KL(m+t)	
joint	contribution	of	metacommunity	and	traits	 0.0948	 0.0479	 0.0552	 0.0773	 0.0645	 0.0632	
1-	ΛR2	KL(m+t)	
unexplained	effects	 0.4033	 0.4462	 0.4413	 0.4365	 0.3808	 0.3971	
	 	 	 	 	 	 	
Biologically	relevant	information	 	 	 	 	 	 	
Pure	trait	effect	
Information	from	traits,	relative	to	bias	 0.1086	 0.0616	 0.0313	 0.0543	 0.0428	 0.0482	
Pure	metacommunity	effect	
Information	from	metacommunity,	relative	to	bias	 0.2944	 0.3703	 0.3983	 0.2871	 0.4687	 0.4368	
Joint	effect	
Information	from	joint	effect,	relative	to	bias	 0.1159	 0.0543	 0.0650	 0.1019	 0.0701	 0.0705	
Unexplained	information	
Left	over	information	not	explained,	relative	to	bias	 0.4810	 0.5138	 0.5054	 0.5567	 0.4183	 0.4445	

	
	
	
	
Table S1. Decomposition of results from the various maximum entropy models, 

combined and separated by forest type (PZ podzol, IG igapó, VA várzea, SW swamp, 

TF terra firme).  Top rows indicate the estimated proportions (R2
KL values) of the total 

information reflective of variation in local relative abundance explained for by the various 

maximum entropy models. Middle rows indicate the specific information gain from any 

one of the used models relative to the model bias. Bottom rows show the actual effects of 

traits, the metacommunity and the joint information relative to the model bias. 

Table S1. Decomposition of  results from the various maximum entropy models, combined and 
separated by forest type (PZ podzol, IG igapó, VA várzea, SW swamp, TF terra firme).  Top 
rows indicate the estimated proportions (R2

KL values) of  the total information reflective of  variation in 
local relative abundance explained for by the various maximum entropy models. Middle rows indicate 
the specific information gain from any one of  the used models relative to the model bias. Bottom rows 
show the actual effects of  traits, the metacommunity and the joint information relative to the model 
bias.
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 Although some emphasize the danger, 
I see mainly beauty in the forest.

Hans ter Steege



Chapter Eight

Synthesis
Rolling the dice or struggling for survival

Cheating in life’s casino

Imagine yourself  in a tropical rain forest, surrounded by numerous trees of  different 
species. Some species you will see almost everywhere, while others you only see 
occasionally. But what determines if  a species is common or rare? Now picture 
all of  these species playing in a casino, at a game called community assembly. The 
goal of  the game is to increase your own abundance, at the expense of  others 
and try to avoid losing individuals yourself. You can either play the game fair and 
let chance decide your fate or you can cheat at the game, using loaded dice and 
changing the odds in your favour (40). These loaded dice are an ecological analogy 
for a deterministic hypothesis, e.g. differences in competitive ability in resource 
acquirements or a differential ability to escape from pests, pathogens or predators 
increasing the fitness of  individuals of  some over those of  others. The fair dice on 
the other hand represent stochastic (neutral) processes, i.e. chance events resulting in 
ecological drift. Although these are distinct from each other, they are often assumed 
working simultaneously in some manner (280, 281). Their relative importance and 
how to determine this has remained unresolved up to this day. 

Understanding these rules of  community assembly remains important (13, 282, 
283), stretching much further than a purely fundamental need towards a practical 
application in nature management and restoration of  degraded systems (284, 285). 
In light of  recent predictions of  climate change and the continuous land-use change 
resulting in severe biodiversity loss (286, 287), this has become even more important 
and will likely remain so in the coming future. In this dissertation I have tried to 
further our grasp on community assembly, by developing and studying neutral 
models at different spatial scales and by applying principles from information theory 
to quantify signals of  selection and stochastic interplay. 

My dissertation started with a light primer on neutral theory and the principles of  
Maximum Entropy (chapter 2), to set the stage for the following chapters. I then 
moved on to validating the use of  large-scale data, including unidentified species, 
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showing that large-scale patterns of  diversity are extremely robust (chapter 3) and 
providing estimates of  diversity in hyper-diverse communities (chapter 4). This 
allowed me to study neutral models in a detailed manner at different spatial scales. 
My work on necessary input parameters of  neutral models revealed these often are 
aggregated parameters, encompassing much more than just dispersal of  individuals, 
but incorporate many processes influencing betadiversity (chapter 5). Following this 
and using different parameter estimation methods, I worked on adding biological 
reality to neutral theory and identified scaling issues of  neutral theory. It appeared 
that regional predictions do not necessarily follow from accurate local predictions 
and vice versa, questioning the interpretation that neutral models provide an 
accurate reflection of  community dynamics (chapter 6). However, the main goal 
of  this dissertation was to advance the long-standing debate between niche and 
neutral proponents, to be able to quantitatively define the realm of  selection versus 
stochasticity. Using the Maximum Entropy principle from information theory and 
statistical mechanics, I provided this advancement by unequivocally showing just 
how strong and in which direction selection has influenced composition on genus 
level taxonomy relative to dispersal and stochastic influences (chapter 7). This 
chapter also studied spatial patterns of  dispersal across the Amazon in terms of  
metacommunity relative to trait importance, and showed that the metapopulation 
size affecting the community composition of  a plot is in the order of  38e11 km2, 
much larger than previously assumed.

The results presented in this dissertation would argue against the evidence produced 
over the years for communities following neutral dynamics (34). I showed that 
rather than being accurate predictions, they follow from emergent properties of  
the models themselves. But what does this mean? Should we discard any prediction 
made by neutral theory? Should we develop more complex models of  neutrality? 
Are we then no further in understanding community assembly? In this final chapter 
I synthesize the results of  my dissertation to answer these questions and show that 
although we should tread carefully with respect to earlier made predictions, neutral 
theory in itself  remains a valuable null model similar to the Hardy Weinberg theorem 
from population genetics (222, 223). We absolutely have gained more understanding 
of  community dynamics by developing such models. I, however, will also show that 
perhaps it is time to look more with an evolutionary view of  community ecology, 
across trophic levels, if  we are to find a single unifying concept of  diversity. My 
work shows that species are in fact playing in the world’s casino, but are using loaded 
dice on crooked tables, resulting from generations of  natural selection, differential 
migration, geographical history and co-evolutionary processes shaping diversity. In a 
sense, species are indeed cheating an otherwise fair (stochastic) game of  life and are 
also being hindered by other players. 
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8.1 The robustness of  large-scale patterns. In testing hypotheses regarding 
community dynamics we often focus on large-scale patterns of  diversity. In chapter 
three, I showed that when using a number of  different analyses studying patterns 
of  community composition at large spatial scales, these patterns are actually 
extremely robust when using either a complete dataset or a truncated subset from 
which unidentified species are removed. Even when simulating a larger fraction of  
unidentified species by removing a percentage of  identified species on top of  the 
unidentified species, major ecological patterns such as the distance decay of  similarity 
still remained identifiable. In other words, the spatial patterns of  such community 
characteristics do not change, even if  we know just a little about which species 
are present. This points to an important conclusion, validating the use of  such 
often-limited datasets. As ecologists, both empirical and theoretical, we inevitably 
make use of  field inventory data whenever we wish to infer explanations regarding 
community dynamics. There are, however, two important issues to be addressed. 
First, in many systems, especially the hyper-diverse systems such as the Amazonian 
rainforests, it is impossible to identify all individuals. Many collections are sterile or 
either difficult to obtain (e.g. Fig. 8.1). The second issue is that given the sheer size 

Fig. 8.1 Collection of  a species of  Inga from the tropical rainforest of  Guyana. A clear example 
of  a vegetative collection of  which no fruits, flowers or seeds were available.
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of  some communities, such as the 5.6 million square kilometers of  the Amazon, it 
is impossible to approximate this amount of  surface area by sampling. Again, using 
the ATDN as example, after approximately 75 years of  plot forest inventory we have 
only covered little over 2000 hectares, which is approximately 0.00036% of  the total 
area of  the Amazon rainforest. Even with botanical collections, given the past and 
current efforts and the estimated number of  tree species in the Amazon it would take 
at least another 300 years of  collecting before we find all estimated species (149). By 
this time communities might have changed so much we should start over again with 
sampling the earliest made collections, creating a never-ending cycle just to keep 
up with all changes. The fact that we find some patterns of  community dynamics 
being extremely robust saves ecologists from having to wait these hundreds of  years 
before doing any analyses. It also means that we can safely use our limited coverage 
and make inference or interpolate over larger areas, at least for these large-scale 
patterns of  diversity. 

Fig. 8.2 Schematic overview of  processes determining similarity between samples. Processes at 
ecological timescales such as dispersal (top left) and selection (bottom left) or evolutionary timescales 
such as extinction (top right) and speciation (bottom right) all determine similarity in terms of  
composition between samples. Centre figures indicate plots that are very similar to each other due to 
high dispersal: low selection, low extinction and low speciation (separate or in combination) (dashed 
lines) or the opposite (solid lines) causing low similarity and hence higher betadiversity.
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However, as chapter three showed, truncating the data either due to actual sampling 
issues or low quality of  data (i.e. having many unidentified collections; see Fig. 3.3) 
does shroud much information regarding these communities. Those that are not 
identifiable are not distributed uniformly across the rank abundance distributions, 
instead it are usually the rare species that are not identifiable or missed in limited 
datasets. In essence, the truncation transforms the logseries of  community structure 
into a lognormal without the binning trick first used by Preston (122). To play the 
devil’s advocate and to taunt Preston’s argument that the lognormal is conceived as 
the unveiling of  a logseries we might even say that the lognormal as imposed on 
truncated data in some cases actually might be a logseries without knowledge, at least 
with regard to these details of  community structure and composition. Of  course, 
Preston worked with a fully identified dataset so not all lognormal distributions 
suffer from this effect but this would imply that sometimes much information is still 
hidden in plain sight when looking only at such large-scale patterns using truncated 
data and might confound our conclusions regarding local community dynamics. 
For instance, when neutral theory provides good fits to such regional scale patterns 
one might think neutrality is the main driver of  community structure. If, however, 
the data was truncated prior to running the model, detailed information that might 
contain signals of  quantitative selection that could have been found at local scales or 
with these unidentified species is missing. Hence, the interpretation of  fits to model 
output becomes spurious. With the emphasis of  neutral theory primarily at regional 
scales of  diversity this does not mean it is incorrect per definition. Nor is it true that 
previous predictions made by neutral theory, perhaps even using only valid species 
names, have no value at all. In fact, in my opinion, using robust patterns with limited 
information available still allows neutral theory to be useful, for instance as a null 
model. Knowing, however, that neutral theory in many cases provides good fits to 
empirically observed patterns and can be used even with this limited information still 
leaves the question whether it can also provide a mechanistic insight into community 
dynamics. 

8.2 Does neutral theory provide insight? One of  the major issues in the debate 
between neutral and niche views of  ecology has been that neutral theory, despite 
its intuitive simplicity, provides such good fits for empirically observed patterns. 
However, knowing a theory or model provides good fits to empirically observed data 
does not necessarily mean it also provides mechanistical insight, or as Rosindell and 
colleagues stated: “pattern does not imply process” (288). In other words, one must 
be careful with interpretation of  models depending on the underlying assumptions 
and input parameters. Looking at neutral theory, in addition to the fundamental 
biodiversity number theta, migration also forms one its core parameters. Because 
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migration is such a fundamental parameter of  any neutral theory model there have 
been many methods developed for estimating it from empirical data. Strangely 
enough, estimation of  migration even for the spatially explicit models often is done 
using methods based on the spatially implicit neutral models and has a strong link 
with methods used to estimate gene flow between populations as measured by genetic 
differentiation and fixation of  specific alleles, e.g. the fixation index (52, 220, 289). 
Chapter five studied the effect and ability of  such methods to accurately estimate 
migration both from spatially implicit and semi-explicit neutral models. In a way it can 
be considered a practical review that was necessary before we could implement our 
own model at larger scales. By introducing a second level of  migration from adjacent 
plots in addition to that from the metacommunity as imposed in the classical UNTB, 
we studied the behaviour of  a number of  different estimation methods. We showed 
that estimation methods based on a spatial implicit model have difficulties to infer 
migration when this is larger from adjacent plots than from the metacommunity. In 
other words, estimation was only accurate when migration from the metacommunity 
outweighed that of  adjacent plots. When migration from adjacent plots outweighed 
that of  the metacommunity (which is the case for many taxa) it was in general an 
underestimate. Only when the spatially semi-explicit model approached a spatially 
implicit world, with the overarching connection to the metacommunity being the 
main supply of  migrating individuals, these methods proved to be accurate. This 
can be explained by looking into how these methods actually estimate migration. 
Many of  them are based on compositional differences among all samples to infer 
the amount of  migration, much like the earlier mentioned fixation index from 
population genetics. In Wright’s finite island model (52, 289) this same Fst index 
can be used to estimate migration rates with fixation of  alleles in samples indicating 
little to no migration whereas no fixation among samples indicating much migration 
(i.e. panmixis). This can be translated directly to the neutral model of  ecology. If  all 
samples are more or less similar in composition and thus are a direct sample from 
either the whole summed metacommunity or from a hypothetical metacommunity 
connected to each local community separately, this would imply there is much 
migration between samples, allowing for homogenization of  diversity and lowering 
betadiversity. However, if  there is little migration each local sample differentiates 
from the whole and betadiversity increases. It should be noted though that as in 
neutral models each plot will have random species being dominant due to genetic 
drift, there will be no clear pattern of  distance decay in similarity as observed in 
empirical data, even with little migration. We showed that estimations should be 
viewed more as an approximation of  the homogenization among local communities 
over time. In other words they approximate how each separate sample reflects the 
total diversity patterns rather than being an explicit measure of  migration and thus 
they have a direct relationship with beta diversity. But as betadiversity, or the amount 
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of  dissimilarity between samples, is the result of  many (non)-neutral processes (20 
and Fig 8.2), we have to admit that migration, as estimated in a spatial implicit world, 
encompasses not only direct dispersal but is an ecological aggregate of  all of  these 
processes. In other words, this core parameter of  the UNTB effectively takes into 
account everything that might influence betadiversity and cannot possibly reflect 
only migration of  individuals. The parameter m of  neutral models implemented in 
such a way then appears more as an emerging property revealed by neutral theory 
instead of  being an effective mechanistic parameter. With this in mind, neutral 
models should adapt a more direct way of  implementing a dispersal mechanism 
between local communities and set out the use similar sampling schemes to mimic 
the real world it tries to describe. Chapter six set out to do this by implementing 
a modified version of  Chisholm and Lichstein plot geometry method (138, 139) 
that was tested earlier in chapter five. With this method, dispersal is measured by a 
mathematical relation between plot geometry and actual average dispersal distance 
of  individuals instead of  estimating dispersal from species composition data (Fig. 
S4 and Supporting Information chapter five: S3). This allows for a more objective 
null model approach testing only the direct effect of  dispersal of  individuals instead 
of  indirectly introducing other (potentially niche-based) processes accounting for 
patterns in species composition. We used measured species characteristics to infer 
most likely dispersal distances and implemented these in a newly developed semi-
spatially explicit neutral model. Our results showed something rather peculiar, 
namely that simultaneous prediction of  patterns in diversity at different spatial scales 
were impossible to attain, raising doubts on the interpretability of  neutral models, 
which is the subject of  the next paragraph. 

8.3 Disagreement between regional and local predictions of  neutral models. Many 
neutral models, either spatially implicit or explicit, have primarily focused on regional 
scales of  diversity and neglected local level contribution, without much attention to 
scaling up or down. Scaling properties of  neutral theory have been addressed earlier 
(291) but were focused more on how niche dynamics could be masked, depending 
on scale, and seemingly would make communities act neutrally, while in reality they 
were not. As earlier results from this dissertation already showed, some large scale 
patterns are extremely robust (chapter three) and earlier neutral models used a 
process-aggregated migration parameter (chapter five), we are left wondering whether 
predictions from neutral models follow from accurate local dynamics. Chapter six 
combined regional and local results of  a newly developed semi-spatially explicit 
neutral model to test this more fundamental aspect of  neutral theory: do regional 
patterns reflect accurate local dynamics? To this end, we created a model that actually 
mimics not only accurate dispersal but also sampling schemes often encountered in 
empirical data. By adding such biological reality to predictions of  neutral theory 
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we showed a severe shortcoming in the scaling and hence interpretation of  such 
predictions: no matter how well parameterized they are or how exact their output fits 
with regional patterns, an accurate simultaneous prediction of  both regional and local 
diversity patterns was impossible to attain. Specifically the dominance of  species at 
local levels could not be predicted accurately, while maintaining regional diversity. 
This pattern of  some species being able to attain high dominance over others is not 
something that has gone unnoticed (14). Many have proposed several hypotheses 
explaining this pattern, ranging from resource competition environmental filtering 
and niche partitioning (292, 293), ecological drift (29) and predator-prey interactions 
(294). Neutral theory would advocate for severe ecological drift as the main driver of  
this dominance; continuous local replacement with limited input from outside leading 
to dominance of  some over others as the communities obey zero-sum dynamics. If  
neutral theory would be an accurate reflection of  community dynamics, we should 
expect such ecological drift at local scales would still result in regional patterns also 
having good fits to for instance rank abundance distributions. However, I showed 
in chapter six that the strength of  ecological drift necessary to approach patterns of  
maximum dominance resulted in a severe loss of  diversity at regional scales (Fig. 6.3). 
This disagreement indicates non-neutral processes other than dispersal limitation 
must be at work allowing for such dominance of  species, indicating violation of  
neutral theory assumptions. Here we can again draw a direct analogy to the Hardy 
Weinberg theorem from population genetics (222, 223). As a model of  the evolution 
of  populations, this theorem puts forward clear assumptions such as no migration, 
no mutation, no natural nor sexual selection and an infinite population size. It is 
considered a valuable null model allowing identification of  assumption violation and 
furthering understanding of  evolving populations, although a full understanding of  
interpretation remains difficult (295). Neutral theory has similar clear assumptions 
such as equal per capita probabilities of  birth and death, zero-sum dynamics and 
recruitment proportional to the relative abundance of  species. If  all assumptions 
hold, predictions at both local and regional scales should not deviate from empirically 
observed patterns. Given the results of  chapter six as outlined above it would seem 
that the assumptions of  neutral theory are violated in some manner in the hyper 
diverse communities of  the Amazon rainforests.

8.4 Violation of  neutrality assumptions. One of  the key assumptions of  neutral theory 
is to treat organisms identical in their probabilities of  birth, death, migration and 
speciation. These probabilities are defined at the individual level, or more specifically 
to quote Hubbell: “Neutrality […] is defined as per capita ecological equivalence 
among all individuals of  every species in a given trophically defined community” 
(29). Neutrality follows from this ecological equivalence, with all individuals obeying 
the same rules of  community assembly. Other key assumptions of  Hubbell’s 
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Fig. 8.3 Barplots showing distribution of  functional traits in binned classes for either mean 
abundance on plot level (orange) or overall abundance (blue). WD (wood density), SMC (seed 
mass class), N leaf  nitrogen content, C leaf  carbon content, SLA specific leaf  area, AlAcc ability to 
accumulate aluminium (discrete). Distributions show a clear trade-off  between life history strategies 
allowing for high local or high regional abundance depending on functional traits.
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Fig. 8.4 Barplots showing distribution of  functional traits per country and on either individual 
or genus level. For WD wood density, SMC seed mass class, distributions are shown for Guyana 
(blue), Ecuador/Peru (green) or the total dataset (orange). Patterns show a shift between individual 
and genus level distribution in relation to country as expected if  there is selection for traits depending 
on environmental context.
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neutral theory are zero-sum dynamics, meaning a filled and finite community size, 
a spatially implicit structure and a point mutation process as speciation. Some of  
these assumptions have been studied and relaxed in various attempts to reconcile the 
neutral and niche paradigms (32, 74, 180, 296–298). The first, however, of  ecological 
equivalence remains a key feature of  any neutral model, either spatially implicit, 
explicit with or without zero-sum dynamics and regardless of  the speciation process. 
This assumption of  ecological equivalence predicts that patterns in species diversity 
and abundance should be random. There should be no intrinsic fitness differences 
in relation to the environment or ecological strategy. In other words, there should 
be no relation between species identity in rank abundances and the environmental 
context. Let us focus on this assumption specifically and identify to what extend it 
is being violated in ecological communities, accounting for the results found in this 
dissertation. 

Categorization of  monodominance. By studying patterns of  dominance in 
relation to forest type we found that although there were some species able to reach 
high dominance in different forest types, there were also species who adhered more 
to the classic ecological notion of  being the best competitor in a specific niche, 
i.e. they were dominant only on a single forest type (Fig. 6.4). The first could be 
interpreted as potentially the result of  ecological equivalence, with resistance to 
frequency dependent mortality (FDM) and high dominance acquired regardless of  
habitat. The latter, however, would argue against ecological equivalence, a collection 
of  species not only able to cope with FDM allowing for high local abundance but 
also restricted in outcompeting others only within a specific habitat. If  species truly 
could be considered ecologically equivalent, such a categorization of  dominance 
acquisition depending on environmental context would not be expected. This 
indicates a first violation of  neutral theory assumptions. But what could account for 
such a categorization of  dominance? 

Distribution of  traits and relation with abundance. Ecological equivalence 
predicts there should be no relationship between specific functional traits and the 
relative abundance of  taxa per plot or total regional abundance across the Amazon 
in various habitats. In addition, there also should not be any difference between the 
proportional distributions of  how many individuals or genera have specific trait values. 
These traits should confer no fitness advantage or disadvantage, and according to 
the central limit theorem (299) we would expect a more or less normal distribution, 
regardless of  habitat, taxonomic level or ecological strategy. However, if  there were 
a relationship between traits and fitness we would expect to see some pattern other 
then a normal distribution. For instance, taxa with opposite life history strategies can 
also be expected to show opposite patterns in terms of  traits that are correlated with 
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higher abundances. This trade-off  should also be reflected in opposite patterns of  
high or low local versus regional abundances. Being a fast grower and rapid disperser 
(pioneers) would potentially allow taxa to gain high overall regional abundance while 
maintaining low local abundances. In contrast, taxa specialized in defense or slow 
growth (climax species) would show the opposite with high local abundances and 
not necessarily a high regional abundance. The distribution of  traits associated with 
either high or low local or regional abundances should then reflect this differential 
life history strategy, which according to neutral theory should not be there. Plotting 
either the overall (regional) or mean abundance per plot (local) on genus level against 
binned values of  functional traits (Fig. 8.3) shows for some continuous traits there 
is indeed a normal-like distribution, such as for wood density. However, for others 
it resembles more a Gaussian with exact opposite distributions. Seed Mass Class 
for example shows higher seed masses (limiting dispersal ability) are related with 
high local abundances yet lower SMC are related with higher regional abundances. 
Specific Leaf  Area shows the exact opposite: lower SLA values are associated with 
higher local abundances whereas higher SLA values are associated with low local but 
high regional abundances. Finally, leaf  N and C content show similar but opposite 
patterns, with low N and high C associated with high local abundances and high 
N but low C associated with low local but high regional abundances. The ability to 
accumulate aluminium is also related to high local abundance, yet as this is a specific 
trait related to relatively rare environmental conditions it does not confer high 
regional abundance. For some discrete traits there also is a clear relation between 
having a trait and an associated higher abundance (resin and ectomycorrhiza) or 
a lower abundance (winged fruits) without any difference in local and regional 
abundance (not shown). The above clearly shows relationships between relative 
abundance and traits, opposing the view of  ecological equivalence. 

Evolutionary ecology of  trait distributions. Looking at proportional distributions 
of  these same traits but on different levels of  organization (e.g. genus and individuals), 
neutral theory also predicts there should be no difference in distribution as there 
should be no selective regime. If, however, the assumption of  ecological equivalence 
is in fact violated we might expect a shift in trait distribution depending on the 
direction of  selection. Such a shift follows from John Endlers first expectation of  
evolutionary change: “trait frequency distributions will differ among age classes or 
life-stages… if  there is indeed selection” (300). Within regions of  similar conditions 
we could expect to see a shift between genus level trait distribution and individual 
level trait distribution. Genus level distributions represent the slower dynamics on 
higher taxonomic levels whereas individuals are portraying the shift that follows 
in the coming generations if  selection is constant. If  this selection pressure were 
dependent on certain environmental characteristics we would also expect that there 
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is a similar shift from trait distribution of  the total dataset in comparison with those 
from regions on different ends of  environmental gradients, both on individual and 
genus levels. When this is done for the whole ATDN with Ecuador/Peru and the 
Guiana Shield representing either side of  a known gradient (209) we see exactly this 
pattern in some of  the same functional traits as mentioned above. For example, 
there is a clear shift in the distribution of  wood density and SMC over the individuals 
for higher values in Guyana in comparison with both the total and Ecuador/Peru 
data. On genus level this shift is also visible, although less apparent (Fig. 8.4). Also 
within each region this shift for wood density and SMC becomes apparent when 
comparing distributions on individual or genus level, complying with Endlers first 
expectation. 

The patterns discussed above in trait distribution indicate a clear signal of  differential 
selection not only on individual but also higher levels or organization dependent 
on life history strategy and environmental context. Clearly the assumption of  
ecological equivalence is not only violated on species or individual level but also on 
this overarching level of  life history strategy and higher taxonomic ranks. This, in 
combination with results from previous chapters showing disagreement between 
local and regional predictions of  neutral theory, supports the view that neither 
neutral nor niche processes are solely responsible for determining the governing 
dynamics of  biological communities and that there are clear identifiable violations 
of  neutral theory assumptions to be found. In order to complete our understanding 
of  community ecology, we need to quantify these signals of  selection and see if  
we can identify not only the strength but also the direction of  selection relative to 
stochastic influences.
 
8.5 Quantifying natural selection and chance. Chapters three to six suggested that 
inferences from neutral models should be taken with a grain of  salt. However, 
as discussed earlier, neutral theory can still function as a proper null-model. 
After identifying the violation of  fundamental assumptions of  neutral theory as 
explained in the previous paragraphs, the next step was to quantitatively disentangle 
deterministic versus stochastic processes. As previous paragraphs have shown, 
this can be done indirectly by studying differences in for instance trait distribution 
among genera either at local or regional scales of  abundance. It would, however, 
be preferred if  this can be linked directly with variation in abundance across spatial 
scales. The Maximum Entropy Formalism (MEF) from information theory and 
statistical mechanics provides such a way when applied on ecological systems (40). In 
chapter seven I set out to apply this principle to the entire Amazon rainforest using 
forest inventory data of  over 2000 hectares. The principle of  maximum entropy is 
a mathematical approach without any a priori assumptions regarding community 
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dynamics. In other words, it does not predict relative abundances based on iterations 
from mechanistic models such as neutral theory but instead mathematically derives 
predicted relative abundances in the form of  Bayesian probabilities (Fig. 7.1 and 
Supporting Information chapter 7: boxes S1-S3 provide more detailed information 
on the MEF and the necessary calculations). Results showed that using over a dozen 
traits and inventory data on more than 800 genera across over 2000 hectares yielded 
clear quantifiable results in terms of  selection versus stochastic processes. Overall, 
we showed there were strong correlative relationships between functional traits, 
regional abundances and relative abundances of  taxa. However, less than 10% of  
the variation in composition on genus level could be explained by pure trait based 
filtering using the traits when corrected for model bias whereas dispersal limitation 
as approximated by pure metacommunity effects was as high as 30% for the entire 
dataset. In line with the above outlined explanations for violations of  ecological 
equivalence, the amount of  variation explained by selection was strongly dependent 
on environmental context. Plotting the ratio of  metacommunity relative to pure 
trait effects for specific forest types shows a clear trend (Fig. 7.3). White sand and 
swamp forests on one end of  the spectrum, indicating low metacommunity but 
high trait effects and terra firme forests on the other end showing the opposite. In 
other words, white sand forests appear to experience much more selection relative 
to the effects of  migration from a regional species pool, even when data was rarefied 
to accommodate differences in sample size. This was also apparent when looking 
at the specific strengths and direction of  selection with traits similar as described 
above strongly related to either high or low abundances dependent on forest type. 
For example, traits such as SMC and leaf  C content showed a clear positive relation 
between high trait values and higher local abundances as indicated by the positive 
lambda values from the MEF for white sand forests (Fig. 7.5). In contrast, high N 
and P leaf  content showed exact opposite patterns, which was expected, considering 
the severe nutrient limitation in white sand forests (301). 

The metacommunity relative to pure trait effects ratios become even more interesting 
when looked at from a spatial perspective for each plot. Mapping this across the 
Amazon shows a clear trend with the interior of  the Amazon having much higher 
ratios, indicating higher metacommunity effects relative to trait effects, in comparison 
with the edges of  the Amazon (Fig. 7.4). Furthermore, when plotting the distance 
decay of  metacommunity importance when the size of  the metacommunity is 
increased incrementally by a radius of  50 kilometers, two important observations can 
be made: first that different forest types experience similar decays of  metacommunity 
importance over distance and second that even at so much as 3500 kilometers there 
is still a relatively high importance of  the metacommunity. Again, the spatial pattern 
of  this distance decay of  metacommunity importance per plot shows a peculiar 
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pattern (Fig. 7.7). Taking the ratio of  metacommunity importance at regional species 
pools of  100 km and 2500 km in diameter shows that the interior of  the Amazon 
by far has the highest ratios, indicating the shallowest declines whereas the edges of  
the Amazon show the opposite pattern. This in itself  could account for the higher 
metacommunity effects found per plot. 
	
The interior part of  the Amazon has been shown to be one of  the most diverse areas 
of  the world (115, 209) containing many hotspots of  diversity. Many theories have 
been proposed to explain its diversity ranging from niche overlap to being refugia 
in dire times (302). We, however, propose a much simpler explanation. As shown by 
our calculations using the maximum entropy formalism, the relative importance of  
the regional species pool in comparison with trait based filtering is much higher for 
the interior then along the edges. We hypothesize this simply means that the potential 
source pool of  species is also much larger for the interior parts of  the Amazon akin 
to the hypothesis of  the mid-domain effect (265, 266). Regardless if  community 
dynamics lean more towards a neutral or niche perspective, this in itself  would allow 
for a higher diversity in comparison with the edges of  the Amazonian rainforest. Of  
course, we only have data of  tropical trees of  the Amazon so any input of  species 
from for instance the Cerrado (savannah) to the South or Andes (mountain) to the 
West along the edges of  the Amazon are not taken into account. In other words, our 
results do not indicate interior parts of  the Amazon are more diverse per se but do 
contain more of  the diversity found across the Amazonian rain forest. In fact, the 
high diversity of  Western Amazonian forests would indicate much influx from the 
species rich Andes, whereas the less diverse Eastern Amazonian forests potentially 
receive input from the Cerrado, which is not as rich as the Andes. This theory of  
a larger potential species pool, however, needs to be studied further to provide 
solid support but could have far reaching implications for nature conservation and 
restoration. Knowing this metacommunity is the main source of  diversity could ask 
for different strategies of  conservation. 

Maximum entropy and neutral theory. Our results regarding spatial patterns 
of  metacommunity importance can also provide insight into why neutral theory 
performs as well as it does. It showed that the proposed panmictic metacommunity 
in neutral theory might actually be true in some cases (at least on genus level 
taxonomy) with influences of  the regional species pool being as high as they are at 
even 3500 kilometers. It should be noted, however, that this panmictic community 
in neutral theory is viewed at ecological time-scales with actual dispersal coming 
from a hypothetical metacommunity. However, my argument would be to look at 
this more from an evolutionary time-scale perspective as the MEF does not estimate 
dispersal directly but its influence on species composition. From a genetic point 
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of  view, vicariance and limited dispersal would predict a certain amount of  genetic 
divergence between disjunct populations. When this is much less than expected 
under the timescale implied for the specific situation, then long-distance dispersal 
could be inferred as the potential cause. From this principle, such an evolutionary 
metacommunity in ecology has already been supported by studying DNA sequence 
phylogeography (303, 304). More recently similar methods have been used to show 
a distinct lack of  geographically based phylogenetic structure for tree genera in 
the Amazon, also supporting such an evolutionary metacommunity (264). Neutral 
theory then should perhaps not so much be regarded as an ecological theory per se, 
but perhaps more an evolutionary ecological theory encompassing vast spatial and 
temporal scales that should also be accounted for in the interpretation of  results. 
 

Conclusions

In this dissertation I have attempted to put together the proverbial puzzle of  
community dynamics. Explaining not only why neutral theory sometimes performs 
as good as it does but also determined how, and if  so, how much species are cheating 
in life’s casino. It is clear that although much still needs to be discovered regarding 
Amazonian tree flora we can work with what we have in terms of  inventory data and 
move on to further our understanding. Analyses have revealed a clear violation of  
the assumptions of  neutral theory and revealed important caveats in the foundation 
of  the theory itself  to take into account with respect to scaling predictions up or 
down from local to regional scales and vice versa. We show that adding biological 
reality to the general approach of  neutral theory revealed an inability to reconcile 
these local and regional predictions indicating that other processes must be operating 
in addition to stochasticity. Linking local and regional patterns of  abundance to trait 
distributions further identified violations of  its fundamental assumptions, similar to 
the use of  the Hardy Weinberg equation from population genetics. The world clearly 
is not solely neutral and long-term natural selection has changed the distribution of  
traits among geographically separated regions and among genera. In addition, this 
process of  selection has had different directions and strength dependent on habitat 
making sole neutral dynamics even on these smaller scales unlikely. However, low 
pure trait based filtering in general as shown by our calculations suggest hyper-
diverse communities such as the Amazonian forest may experience much overlap 
in niche differentiation with regard to functional traits in relation with interspecific 
competition, also accounting for good fits of  neutral theory. But even dispersal 
from the regional species pool accounted for only less than half  of  the variation 
in species composition, leaving more than half  of  variation in composition still 
unexplained. Using the largest known tree inventory database and over a dozen 
functional traits we have identified and established the ground rules of  life’s casino 
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in Amazonian rainforests but there is more than meets the eye to community 
assembly. I believe this large part still left unexplained, even on genus level, can be 
due to two main reasons: either more than half  of  this variation in composition 
is determined by large scale random events such as environmental stochasticity or 
there is something else lurking in the shadows of  community assembly. Although 
it is clear that such stochasticity could play a large part from time to time, I doubt 
whether it could explain so much of  variation in community composition over such 
large spatial and temporal scales. There must be more to ecological communities we 
have not yet discovered. My work and discussions with colleagues, friends and my 
students have urged me to look more with an evolutionary and integrated view of  
ecosystem dynamics. Just as theoretical physicists have been attempting for more 
than a hundred years, my ambition is to find a theory of  everything in evolutionary 
ecology. Explaining the ultimate foundations of  life, diversity and dynamics in 
one elegant solution. In a way, I am looking for the biologists’ equivalent of  string 

Fig. 8.5 Rank Abundance Distribution and hypothetical causes of  dynamics. Distribution is 
shown for empirical tree data (black) of  4962 species from (14) and in green the analytical expansion 
of  the logseries (Φn = (α/n)*xn) for S = 16,000 and N = 3.9e11. Solid arrows indicate taxa losing 
individuals whereas dashed arrow indicates taxa gaining individuals. Loss can be 1) a consequence of  
speciation, where populations are divided and each separate species takes a new position in the rank 
abundance distribution or 2) due to severe loss of  individuals due to invasive or specialized native 
pests or pathogens. Likewise, increasing in abundance can be due to 1) superior competitive ability 
allowing for slow increase, 2) rapid increase if  species is invasive and lacks any species specific pests 
or pathogens or 3) as described in the main text defence against specialized or generalist native pests 
or pathogens.
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theory, using various fundamental principles of  life from different dimensions (or 
in biological terms, different levels of  organization) into a single unifying concept. 
This dissertation is the first step towards such unification, starting by identifying the 
direction we should seek this solution. I believe it is time for a theory that remains 
simple in its foundation, one could say even neutral, but connects multiple trophic 
levels interacting in explaining dynamics of  community structure. To remain in the 
analogy of  life’s casino, I think that species do roll the dice of  life and from time to 
time struggle for survival using loaded dice but I also firmly believe that there are 
hidden players in the casino representing interactions between trophic levels that 
have a large impact on the structure and dynamics of  communities. In a way, there 
are sleeping armies of  pests and pathogens, co-evolving not only with each other 
but also with communities on other trophic levels, ever changing the rules of  the 
game with all interactions intertwined in some manner. My final words of  this thesis 
put forward this hypothesis, providing suggestions for future research. 
 
8.6 The sleeping army hypothesis. As stated earlier in this dissertation, the origin and 
maintenance of  the relative abundance distribution of  taxa in communities is still 
shrouded in much mystery. However, regarding the dynamics of  rank abundance 
distributions, there is ample evidence that, as Rosenzweig  already stated, “no species 
is safe” (120). There are numerous possibilities for (hyper-) dominant taxa to go 
down the proverbial drain of  the rank abundance distribution; examples such as 
the decimation of  the North American chestnut by an invading blight (305) or the 
Elms by the Dutch elm disease (306). The question still remains, however, how 
does a taxon move up the ladder of  abundance, i.e. how to become the top tree by 
becoming more common than others in the community. In this dissertation I have 
shown that the dominance of  species at local scales cannot be approximated by 
neutral theory alone (chapter 6). How then do we explain the excessive dominance 
seen in the field? 

Taxa that reach this high dominance must be good at some thing or the other, 
allowing for higher abundances. In general we could state they should be able to 
better defend against pests, pathogens and predators escaping effects of  frequency 
dependent mortality as hypothesized earlier (14), or (perhaps in combination) should 
be able to outcompete other taxa in terms of  resource competition (307). Such 
niche differentiation has received much attention, for instance with the broken-stick 
hypothesis by McArthur (308, 309), a never-ending division of  niches and resources 
allowing for hyper diversity. However, in highly diverse systems such as Amazonian 
rainforests it is my belief  that there has to be much niche overlap so that the latter 
argument becomes less likely. One reason for this is that as a taxon you simply 
cannot reach every site, which is especially true for trees, and a more profitable 
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life history strategy would be to have a wide niche to be able to cope with a variety 
of  environmental conditions. In addition, taxa in general also have to deal with 
the physical limitation of  the adaptive potential, i.e. much but not everything is 
possible immediately. Second, such strong evolutionary niche differentiation would 
require many interactions over time with other species. As a tree, however, you 
mainly compete with individuals around you and interspecific competition seems 
less likely as you do not move about all the time and individuals have relatively 
long generation times. Thus for the major part an individual interacts with only a 
few different species and not every species in the whole community. It is for these 
two reasons I believe scientific efforts should be focused at better understanding 
the role of  predator-prey interactions in shaping community structure of  these 
diverse ecological communities across trophic levels. Pests and pathogens have 
already been shown to have the capabilities of  significantly changing composition 
and dynamics of  communities (230, 310, 311) and were already hypothesized to 
be able to structure communities and influence life history strategy (58, 312). Such 
dynamics between predators and their specific prey obviously could account for the 
downward movement along the rank abundance distribution which has also been 
shown both theoretically (230, 313, 314) and empirically (229, 230, 315). The more 
interesting question, however, is if  such dynamics could also be shown to account 
for the excessive dominance of  prey species, i.e. the upward movement along the 
rank abundance distribution. Most studies have focused on the influence of  predator 
specialization and the associated negative feedback loops on abundance, but what if  
we look at the potentially larger population of  generalists? In addition to pathogen 
specialists, generalist pathogens also confer some fitness disadvantage, albeit less 
than a specific predator (316). Perhaps then running away from these generalists 
before they specialize on you could confer some fitness advantage to the prey over 
others, accounting for higher dominance in the population. So in an extension of  
the Red Queen hypothesis (317), what if  you could increase your fitness by running 
away from a sleeping army of  generalists that have not yet specialized, i.e. have 
not woken up yet. Perhaps this could account for the excessive dominance of  prey 
species without invoking any resource competitive abilities. Such fitness advantage, 
however, is most likely temporary, for no one sleeps forever and when the army does 
wake (i.e. starts specializing on abundant prey species) you most likely end up down 
in the abundance distribution again (see also Fig. 8.5). 

Although it is far for complete, the inclusion of  such a mechanism, in addition 
to the negative feedback of  predators on prey abundance, could provide the 
necessary explanations for not only the downward movement of  species but also 
the upward movement along the rank abundance distribution and provide testable 
hypotheses (318). I believe such an integrated approach can bring us a step further 
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in understanding community dynamics as it unifies concepts from ecology and 
evolution in an elegant way. Red queen dynamics have already been shown to 
emerge from adaptive dynamic approaches (319–321). Such an approach allows 
linking dynamics at ecological time scales to those at evolutionary time scales and 
generalizes fundamental ideas from game theory to an eco-evolutionary application 
(322). It is my belief  we can extend this principle towards explaining community 
dynamics as a whole using the theory described above, which I shall endeavour to 
accomplish in the coming years.
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The important thing is not to stop questioning. Curiosity has its own 
reason for existence. One cannot help but be in awe when he contemplates 
the mysteries of  eternity, of  life, of  the marvelous structure of  reality. It is 
enough if  one tries merely to comprehend a little of  this mystery each day.

Albert E. Einstein, LIFE Magazine (1955)

Although not a biologist, Einstein has meant much to me personally from a 
young age - reading Relativity sparked my enthusiasm of  understanding the  
world and so he too has a place amongst the giants that this thesis is build upon. 
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The forests surrounding Masakanari, a small village 
in the South of  Guyana - near the Cuyuwini river.



Summary

At every scale of  life, from microscopic bacteria to the towering giants of  
Amazonian trees we see a similar pattern of  diversity where not everybody gets to 
be equally abundant. Instead, there is a pattern in which common species are rare 
and rare species are common. But how does this seemingly universal pattern of  
diversity come to be and how is it is maintained? What mechanisms account for the 
rarity of  some and the commonness of  others? Its answer frames our fundamental 
understanding of  life and the driving forces of  diversity, in the past, present and 
future. This subject has been tried and tested for generations of  scientists, generating 
a vast body of  both theoretical and empirical attempts. The various approaches 
in solving this conundrum can, however, be broadly categorized in two different 
perspectives: either processes driven by generations of  natural selection that have 
shaped and altered taxa to outcompete others in specific areas or stochastic events, 
a never ending game of  chance that alters community structure according to fixed 
laws of  probability. In a sense, one might say that any organism is either struggling 
for life or rolling the dice in life’s casino. Quantifying the relative importance of  
these perspectives has been the main theme of  this dissertation.

In chapters 1 and 2 we start with an introduction into the debate described 
above, providing readers with the necessary background in the theoretical aspects 
of  evolutionary ecology. We explain that classic niche theory states that species 
are adapted to certain environmental characteristics and composition is dictated 
primarily by environmental filtering. In contrast, neutral theory proposes dynamics 
of  competition have neutral outcomes and composition is mainly governed by 
stochastic demographic events, dispersal and migration. In these first two chapters 
we present a short overview of  both niche and neutral based theories, providing a 
short historic and theoretical synthesis of  both perspectives. Regardless of  which 
of  these two perspectives is tested, however, empirical data on diversity is used to 
test ideas and theories. Data that is meticulously collected and identified. Despite 
ample efforts, ecologists are often unable to identify all collections, forcing them to 
either omit these unidentified records entirely, without knowing the effect of  this, or 
pursue very costly and time-consuming efforts of  identifying them. 
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In chapter three we therefor investigated the consequence of  omitting such 
unidentified records and provide an explanation for the results. Our results showed 
a high congruence for all analyses when using only the identified rather than all 
morphospecies, suggesting that patterns of  similarity and composition are very 
robust. In other words, having a large number of  unidentified species in a dataset 
may not affect our conclusions as much as is often thought, paving the way to 
make conscious decisions of  whether or not to use unidentified records in ecological 
analyses regarding species composition. 

For species diversity and richness, however, it did matter. This brings us to 
the important aspect of  accurately being able to estimate species diversity. For 
many ecological questions, one of  the first difficulties is how many species there 
presumably are in the total area given any inventory dataset representing a subset of  
this area. Hence, species richness estimation is one of  the most widely used analyses 
carried out by ecologists, and nonparametric estimators are probably the most used 
techniques to carry out such estimations. In chapter four, we tested the assumptions 
and results of  nonparametric estimators and those of  a logseries approach to species 
richness estimation for simulated tropical forests and five datasets from the field. 
We concluded that nonparametric estimators are not suitable to estimate species 
richness in tropical forests, where sampling intensity is usually low and richness is 
high, because the assumptions of  the methods do not meet the sampling strategy 
used in most studies. The logseries, while also requiring substantial sampling, is much 
more effective in estimating species richness than commonly used nonparametric 
estimators, and its assumptions better match the way field data is being collected. 

The results of  chapters three and four paved the way for developing our theoretical 
models in which we tested the importance of  migration and stochastic events on 
structuring community composition. The final necessary step before we could 
actually test our models was to accurately estimate one of  the core parameters 
of  neutral models: migration. With many sophisticated methods available for 
estimating migration, ecologists face the difficult decision of  choosing for their 
specific line of  work. In chapter five we tested and compared several methods, 
performing robustness tests, applying these methods to large-scale inventory data. 
We selected five different methods and compared their ability to estimate migration 
from a spatially implicit and semi-explicit model. In the former, there is no spatial 
relationship between local communities and the regional species community while in 
the latter there is, creating a dependency between the distance and the probability of  
migration. This spatial relationship is important as it mimics what we see in real life 
- not everything is able to get everywhere, as many organisms have limited dispersal. 
Most methods were able to accurately estimate migration from spatially implicit 
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simulations. For spatially semi-explicit simulations, estimation was shown to be the 
additive effect of  migration from adjacent plots and the regional (summed) pool 
of  species, i.e. the metacommunity. Estimation was only accurate when migration 
from the metacommunity outweighed that of  adjacent plots. We concluded that 
estimated migration is more an approximation of  the homogenization among local 
communities over time rather than a direct measurement of  migration and hence 
has a direct relationship with beta-diversity. But as beta-diversity is the result of  
many (non)-neutral processes, we also concluded that migration, as estimated from 
a spatial explicit world, encompasses not only direct migration but is an ecological 
aggregate of  these processes. The migration parameter of  neutral models then 
appears more as an emerging property, revealed by neutral theory instead of  being 
an effective mechanistic parameter. Thus, spatially implicit models should be rejected 
as an approximation of  forest dynamics and chapter six therefor uses the spatially 
semi-explicit approach to test an important distinction in patterns of  diversity: those 
at local and those at regional scales. 

Most of  the theoretical body of  work focused only on single scales of  diversity, 
either regional or local scales. In chapter six we added a level of  biological reality to 
predictions from neutral theory, simultaneously focusing on both local and regional 
scales of  ecosystems. We used the three different datasets introduced in chapter two, 
with estimates of  diversity from chapter four, and migration from chapter five and 
studied predictions at both local and regional scales to assess the scalability of  neutral 
theory and whether correct regional predictions follow from accurately reflected 
local dynamics. Our results presented a novel interpretation of  neutral models: no 
matter how well parameterized or how well the output of  simulations fitted the 
regional patterns, an accurate simultaneous prediction on both regional and local 
diversity patterns was impossible to attain. Specifically, the dominance of  species at 
local levels could not be predicted accurately. Thus, as dispersal limitation is the only 
mechanism in neutral models, we concluded that other non-neutral processes must 
be at work, at least at the local level. This, however, does not provide information on 
the relative importance of  both deterministic and neutral process, only that neither 
can be solely responsible for community assembly.  

Our analyses throughout the chapters of  this dissertation have revealed a clear 
violation of  the assumptions of  neutral theory and revealed important caveats in 
the foundation of  the theory itself  to take into account with respect to scaling 
predictions up or down from local to regional scales and vice versa. In chapter 
seven we therefor set to provide a new perspective by using principles from 
information theory to solve ecological problems. More specifically, we used the 
Maximum Entropy Formalism on a large scale by applying it to a large database 
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of  tropical tree diversity: the Amazonian Tree Diversity Network. We were able to 
quantify the relative importance of  deterministic and neutral based processes in 
structuring community composition. We were able, for the first time, to estimate the 
actual potential size of  the regional species pool from which local communities most 
likely draw recruits and studied the relative importance between relative abundance 
of  genera, their functional traits and the regional species pool abundances, providing 
a quantification of  selection for certain traits versus chance and migration. We 
showed an overall low, but strong, environmentally dependent effect of  specific 
functional traits on genus level composition. Traits associated with, for instance, 
nutrient limitation were indeed positively correlated with higher abundances in 
nutrient-limited habitats. In addition, we showed very strong effects of  dispersal 
from the regional taxonomic pool into each local community relative to functional 
traits across large distances, accompanied by a strong spatial pattern that depends 
on geographical distance. 

Chapter eight is the final chapter in which I synthesize all results and put them 
in a wider perspective. It not only provides the closing statement of  this thesis, 
addressing the questions posed at the start but also suggestions for future research. 
Given the results presented in this thesis I argue that we need a much more 
integrated view of  ecosystem dynamics, encompassing not only those on ecological, 
but also at evolutionary time-scales. Using various fundamental principles of  life 
from different dimensions (or in biological terms, different levels of  organization) 
into a single unifying concept I believe it is time for a theory that remains simple 
in its foundation, one could say even neutral, but connects multiple trophic levels 
interacting in explaining dynamics of  community structure. By linking dynamics 
at ecological time scales to those at evolutionary time scales and generalizing 
fundamental ideas from game theory to an eco-evolutionary application we can 
extend multiple principles from both fields such as specialization, competition, 
stochasticity, predator-prey interactions and adaptive fitness landscapes towards 
explaining community dynamics as a whole. 

In conclusion, we are still a long way off  from truly understanding the game of  life 
but at least we are getting closer. And providing an integrated approach unifying 
concepts from ecology and evolution can bring us a step further in understanding 
the origin and maintenance of  the vast diversity on our planet. 
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View from the Rupununi Savannah, Guyana.



Samenvatting

Op elke schaal van het leven, van microscopische bacteriën tot de torenhoge reuzen 
van bomen in het Amazonegebied, zien we een soortgelijk patroon van diversiteit 
waarin niet alle soorten even veel voor kunnen komen in een bepaald gebied. In plaats 
daarvan is er een patroon waarin de algemene soorten zeldzaam zijn en de zeldzame 
soorten juist veel voorkomen. Maar hoe is dit schijnbaar universele patroon van 
diversiteit ontstaan en hoe wordt het onderhouden? Welke mechanismen verklaren 
de zeldzaamheid van de ene soort en de algemeenheid van een ander? Het antwoord 
op deze vraag geeft ons een fundamenteel begrip van het leven en de drijvende 
krachten van diversiteit, in het verleden, het heden en de toekomst. Dit onderwerp is 
daarom al generaties lang beproefd en getest door een groot aantal theoretische en 
empirische studies. De verschillende benaderingen bij het oplossen van dit raadsel 
kunnen grofweg worden gecategoriseerd in twee verschillende perspectieven: 
ofwel processen die worden aangestuurd door generaties van natuurlijke selectie 
die taxa hebben gevormd en veranderd om anderen te overtreffen in specifieke 
gebieden of  stochastische gebeurtenissen, een nooit eindigend kansspel dat de 
gemeenschapsstructuur verandert volgens vaste wetten van kansberekening. In 
zekere zin zou je kunnen zeggen dat elk organisme worstelt voor overleving of  de 
dobbelstenen gooit in het casino van het leven. Het kwantificeren van het relatieve 
belang van deze perspectieven was het hoofdthema van dit proefschrift.

In de hoofdstukken 1 en 2 beginnen we met een inleiding in het hierboven beschreven 
debat, waarbij lezers de nodige achtergrondinformatie krijgen over de theoretische 
aspecten van de evolutionaire ecologie. We leggen uit dat de klassieke nichetheorie 
stelt dat soorten zijn aangepast aan bepaalde omgevingskenmerken en dat de 
samenstelling van populaties voornamelijk wordt bepaald door omgevingsfilters. 
De neutrale theorie stelt daarentegen dat de dynamiek van gemeenschappen een 
neutrale basis heeft en dat de samenstelling voornamelijk wordt bepaald door 
stochastische demografische gebeurtenissen en dispersie(limitatie). In deze eerste 
twee hoofdstukken presenteren we een kort overzicht van zowel niche als neutraal 
gebaseerde theorieën, een korte historische en theoretische synthese van beide 
perspectieven. Echter, ongeacht welke van deze twee perspectieven wordt getest, 
empirische gegevens over diversiteit worden vrijwel altijd gebruikt om ideeën en 
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theorieën te testen. Gegevens die zorgvuldig worden verzameld en geïdentificeerd. 
Ondanks grote inspanningen zijn ecologen echter vaak niet in staat om alle collecties 
te identificeren, waardoor ze gedwongen worden om deze niet-geïdentificeerde 
records volledig weg te laten, zonder het effect hiervan te kennen, of  om zeer 
kostbare en tijdrovende pogingen na te streven om ze te identificeren. In hoofdstuk 
drie hebben we daarom de consequentie onderzocht van het weglaten van dergelijke 
niet-geïdentificeerde records. Onze resultaten lieten een hoge overeenkomst zien 
tussen analyses wanneer alleen de geïdentificeerde in plaats van alle morphospecies 
(inclusief  de niet-geïdentificeerde records) werden gebruikt, wat suggereert dat 
patronen van gelijkenis en samenstelling erg robuust zijn. Met andere woorden, 
het hebben van een groot aantal ongeïdentificeerde soorten in een dataset hoeft 
onze conclusies niet altijd zo extreem te beïnvloeden als vaak wordt gedacht. Dit 
maakt het ook mogelijk om bewuste beslissingen te nemen over het al dan niet 
gebruiken van niet-geïdentificeerde records in ecologische analyses met betrekking 
tot soortensamenstelling.

Hoofdstuk drie liet echter zien dat voor soortendiversiteit dit onderscheid tussen 
volledig en onvolledig geïdentificeerde soorten wel van belang is. Dit brengt ons bij het 
belangrijke aspect van het accuraat kunnen schatten van soortenrijkdom. Voor veel 
ecologische vragen is een van de eerste problemen hoeveel soorten er vermoedelijk 
in het totale gebied voorkomen, gegeven een inventarisatie van een subset van dit 
gebied. De schatting van de soortenrijkdom is dan ook een van de meest gebruikte 
analyses door ecologen, en niet-parametrische schatters zijn daarbinnen waarschijnlijk 
de meest gebruikte technieken om dergelijke schattingen uit te voeren. In hoofdstuk 
vier hebben we de aannames en resultaten van niet-parametrische schattingen en 
die van een logserie benadering (een mathematische beschrijving van een continue 
kansverdeling) voor het schatten van soortenrijkdom voor gesimuleerde tropische 
bossen en vijf  datasets uit het veld getest. We concludeerden dat niet-parametrische 
schatters niet geschikt zijn om de soortenrijkdom in tropische bossen te schatten, 
waar de bemonsteringsintensiteit meestal laag is en de rijkdom hoog, omdat juist 
deze aannames van de methoden niet voldoen aan de bemonsteringsstrategie 
die in de meeste onderzoeken werd gebruikt. We laten ook zien dat de logserie, 
die ook substantiële bemonstering vereist, veel effectiever is in het schatten van 
soortenrijkdom dan algemeen gebruikte niet-parametrische schatters. De aannames 
ervan passen ook beter bij de manier waarop veldgegevens worden verzameld.

De resultaten van de hoofdstukken drie en vier baanden de weg voor de ontwikkeling 
van onze theoretische modellen waarin we het belang van migratie en stochastische 
gebeurtenissen bij het structureren van gemeenschapssamenstelling hebben getest. 
De laatste noodzakelijke stap voordat we onze modellen daadwerkelijk konden 
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testen, was om een van de kernparameters van neutrale modellen nauwkeurig te 
schatten: migratie. Met veel geavanceerde methoden beschikbaar voor het schatten 
van migratie, worden ecologen vaak geconfronteerd met de moeilijke beslissing 
van het kiezen voor hun specifieke lijn van onderzoek. In hoofdstuk vijf hebben 
we verschillende methoden getest en vergeleken, robuustheidstests uitgevoerd en 
deze methoden toegepast op grootschalige empirische data. We selecteerden vijf  
verschillende methoden en vergeleken hun vermogen om migratie te schatten vanuit 
een ruimtelijk impliciet en semi-expliciet model. In het eerste geval is er geen ruimtelijke 
relatie tussen lokale gemeenschappen en de regionale soortengemeenschap, terwijl 
in het laatste geval juist wel een afhankelijkheid bestaat tussen de afstand en de 
waarschijnlijkheid van migratie. Deze ruimtelijke relatie is belangrijk omdat het lijkt 
op wat we in het echte leven zien - niet alles kan overal komen, omdat veel soorten 
een beperkte verspreiding hebben (bijvoorbeeld omdat ze grote vruchten of  zaden 
hebben). De meeste methoden waren in staat de migratie van ruimtelijk impliciete 
simulaties nauwkeurig te schatten. Voor ruimtelijk semi-expliciete simulaties bleken 
schattingen echter het opgetelde effect van migratie van aangrenzende plots en de 
regionale (gesommeerde) collectie van soorten, d.w.z. de metagemeenschap. De 
schatting was alleen accuraat als de migratie uit de metagemeenschap groter was 
dan die van aangrenzende plots. We concludeerden dat geschatte migratie meer 
een benadering is van de homogenisatie onder lokale gemeenschappen door de tijd 
heen dan een directe meting van migratie en heeft daarom een directe relatie met 
bètadiversiteit. Maar aangezien bètadiversiteit het resultaat is van vele (niet) neutrale 
processen, hebben we ook geconcludeerd dat migratie, zoals geschat vanuit een 
ruimtelijk expliciete wereld, niet alleen directe migratie omvat, maar eigenlijk een 
ecologisch aggregaat is van al deze processen. De migratieparameter van neutrale 
modellen lijkt dan meer een intrinsieke eigenschap onthuld door neutrale theorie in 
plaats van een effectieve mechanistische parameter en ruimtelijk impliciete modellen 
moeten worden afgewezen als een benadering van bosdynamiek. Hoofdstuk zes 
gebruikt daarom dan ook de ruimtelijk semi-expliciete benadering om een belangrijk 
onderscheid te testen in diversiteitspatronen: die op lokaal niveau en die op regionale 
schaal.

Het grootste deel van de theoretische hoeveelheid werk concentreert zich alleen op 
enkele schalen van diversiteit, ofwel regionaal of  lokaal. In hoofdstuk zes hebben 
we daarom een niveau van biologische realiteit toegevoegd aan voorspellingen uit 
de neutrale theorie, waarbij zowel lokale als regionale schalen van ecosystemen 
tegelijkertijd worden bekeken. We gebruikten de drie verschillende datasets die in 
hoofdstuk twee werden geïntroduceerd, met schattingen van diversiteit uit hoofdstuk 
vier, en migratie uit hoofdstuk vijf  en bestudeerde voorspellingen op zowel lokale 
als regionale schaal om de schaalbaarheid van neutrale theorie te beoordelen en 
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of  correcte regionale voorspellingen volgen uit correct geïnterpreteerde lokale 
dynamiek. Onze resultaten gaven een nieuwe interpretatie van neutrale modellen: 
hoe goed geparametriseerd of  hoe goed de output van simulaties paste bij de 
regionale patronen, een nauwkeurige gelijktijdige voorspelling van zowel regionale 
als lokale diversiteitspatronen was onmogelijk te bereiken. Met name de dominantie 
van soorten op lokale niveaus kon niet nauwkeurig worden voorspeld. En aangezien 
gelimiteerde verspreiding van individuen het enige mechanisme is in neutrale 
modellen concludeerden we dat andere (niet-neutrale) processen aan het werk 
moeten zijn, in ieder geval op lokaal niveau. Dit gaf  echter nog geen informatie over 
het relatieve belang van zowel het deterministische als het neutrale proces, alleen 
dat geen van beide als enige verantwoordelijk kan zijn voor het structuren van de 
compositie van gemeenschappen.

Onze analyses in de hoofdstukken van dit proefschrift hebben een duidelijke 
schending van de veronderstellingen van de neutrale theorie onthuld en wezen op 
belangrijke kanttekeningen van de theorie zelf  om rekening mee te houden met 
het  omhoog of  omlaag schalen van voorspellingen, van lokale naar regionale 
schaalniveaus en vice versa. In hoofdstuk zeven hebben we daarom een nieuw 
perspectief  gegeven door principes uit de informatietheorie te gebruiken om 
ecologische problemen op te lossen. We hebben hiertoe het Maximum Entropy 
principe op grote schaal toegepast op een grote database van tropische boom 
diversiteit: het Amazonian Tree Diversity Network (ATDN). Op deze manier konden 
we het relatieve belang van deterministische en neutraal gebaseerde processen in het 
structureren van gemeenschapssamenstelling kwantificeren. Ook konden we voor 
het eerst de werkelijke potentiële omvang schatten van de regionale soortenpool 
waaruit de lokale gemeenschappen mogelijk hun rekruten trekken.  Ook hebben 
we de relaties tussen de lokaal relatieve abundantie van genera, hun functionele 
kenmerken en hun abundanties in de regionale soortenpool bestudeerd. Dit leidde 
uiteindelijk tot een kwantificering van de mate van selectie voor bepaalde kenmerken 
versus kans en migratie. We toonden een algemeen laag, maar sterk van het milieu 
afhankelijk, effect van specifieke functionele kenmerken op de samenstelling van 
compositie op genusniveau. Kenmerken in verband met bijvoorbeeld een lage 
hoeveelheid voedingsstoffen waren inderdaad positief  gecorreleerd met hogere 
abundanties in habitats met een beperkte hoeveelheid nutriënten. Ook toonden we 
zeer sterke effecten van verspreiding van de regionale taxonomische pool in elke 
lokale gemeenschap ten opzichte van functionele kenmerken over grote afstanden, 
vergezeld van een sterk ruimtelijk patroon dat afhankelijk is van geografische afstand.
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Hoofdstuk acht is het laatste hoofdstuk waarin ik alle resultaten samen heb gevoegd 
en in een breder perspectief  heb geplaatst. Het biedt niet alleen de slotverklaring van 
dit proefschrift, maar behandelt ook de vragen die aan het begin werden gesteld, 
alsmede suggesties voor toekomstig onderzoek. Gezien de resultaten gepresenteerd 
in dit proefschrift, betoog ik dat we een veel meer geïntegreerd beeld van de 
dynamiek van ecosystemen nodig hebben: niet alleen die op ecologische, maar ook 
op evolutionaire schalen. Door gebruik te maken van verschillende fundamentele 
principes van het leven vanuit verschillende dimensies (of  in biologische termen, 
verschillende organisatieniveaus) in een enkel verenigend concept, geloof  ik dat het 
tijd is voor een theorie die eenvoudig van opzet blijft, zelfs neutraal zou kunnen zijn, 
maar meerdere trofische niveaus integreert in het verklaren van de dynamiek van de 
gemeenschapsstructuur. Door dynamieken op ecologische tijdsschalen te koppelen 
aan die op evolutionaire tijdschalen en fundamentele ideeën te generaliseren van 
speltheorie tot een eco-evolutionaire toepassing, kunnen we meerdere principes 
uit beide gebieden uitbreiden, zoals specialisatie, competitie, stochasticiteit, 
roofdier-prooi-interacties en adaptieve fitnesslandschappen naar het verklaren van 
gemeenschapsdynamiek als geheel.

In conclusie, we zijn nog ver verwijderd van het echte begrip van het spel van het 
leven, maar we komen in ieder geval dichterbij. En door een geïntegreerde aanpak 
te bieden die concepten uit ecologie en evolutie verenigt, kunnen we een stap verder 
komen in het begrijpen van de oorsprong en het behoud van de enorme diversiteit 
op onze planeet.
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regional patterns of  diversity. In review at Ecology Letters

In review Pos, E.T. et al. Rolling the dice or struggling for survival, using Maximum 
Entropy to unravel drivers of  community composition. In review at Science 
Advances

In prep Kong, J, Pos, E.T., Hao, W. Macroscopic epidemiological cycles result from 
Microscopic bacteria-phage cycles. In preparation. 

In prep. Kong, J., Chadi, S.M., Cooney, D., Pos, E.T.. Dynamics of  an indirect 
cholera transmission model with immunological threshold and temporal immunity. 
In preparation. 

In prep. Pos, E.T., Hautier Y.. ExtractR, an R-package and practical guide to 
extract and visualize informative statistics: practicing what statisticians preach. 
In preparation.

Grants and Funding

2013	 Miquel Fund, funding for South-Guyana expedition (1.5K)
2013	 Alberta Mennega Foundation, funding for South-Guyana expedition (1K)
2008	 Alberta Mennega Foundation, funding for first MSc internship (.8K)
2008	 Kronendak, funding for first MSc internship (.6K)
2008	 Van Eeden Fund, funding for first MSc internship (.625K)
2008	 Miquel Fund, funding for first MSc internship (.8K)
2007	 Trajectum Scholarship (.23K)

Awards and Nominations

2017 Nominated teacher of  the year, department of  Biology Utrecht University
2015 Nominated and Awarded teacher of  the year
2014 Nominated teacher of  the year
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Presentations

2017	 Speaker on the Netherlands Annual Ecology Meeting, two-day event 	
	 organised by NERN and NecoV (Dutch - Flemish Ecological Society) 	
	 supported by the Netherlands Organisation for Scientific Research.
2016	 Speaker on the symposium “Current Research in Tropical Ecology in the 	
	 Netherlands”, organised by the University of  Amsterdam
2015	 Speaker on the launch of  the “Academy of  Ecosystem Services”, 		
	 organised by the University of  Utrecht.
2015	 Joint Scientific Thematic Research Programme: China Annonaceae 		
	 Meeting. Symposium on diverse research topics regarding Annonaceae to 	
	 plan further research opportunities.
2014	 Speaker for the “Childrens University” at Naturalis Biodiversity Center, 	
	 talks organised to stimulate children to pursue a scientific career.
2013	 Speaker on the Tropical Forest Careernight at the University of  Utrecht, 	
	 organised by the VTB (“Association Tropical Forests”)
2009	 Darwin Symposium, part of  the organizing team at the University of  	
	 Utrecht under the name: “Darwin’s legacy, the influence of  evolutionary 	
	 thinking on science”.

 
Other

2016 – Present 	Owner and founder of  Edwin Pos – Dog evolution and Behavior, 	
		  dog behaviour consultancy and symposia to educate on dog 	
		  evolution and behaviour. 
2012 – Present 	Part owner and founder at Dactylis VOF
		  Ecological consultant agency
2012 – 2014 	 Ministry of  Defence, soldier first class, National Reserve 11th 	
		  Airborne brigade, 20th Bataljon, Echo Company.


