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INTRODUCTION

Fungi	are	rich	in	complexes	of	cryptic	species,	i.e.,	morphologi-
cally	similar	but	genetically	isolated.	In	pathogenic	fungi,	cryptic	
sibling	species	are	often	specialized	on	different	hosts	(Le	Gac	
et	al.	2007,	Giraud	et	al.	2010,	Kobmoo	et	al.	2012),	so	that	it	
is essential to elucidate their genetic subdivision and species 
limits.	Taxonomy	is	therefore	an	essential	tool	for	understanding	
the	evolution	of	host	specificity	in	pathogens,	and	to	evaluate	
the	risk	of	attacking	untargeted	species	with	biocontrol	agents.
Beauveria bassiana	was	first	discovered	in	the	18th	century	as	
representative of the genus Botrytis	(Basalmo-Crivelli	1835),	
before	being	renamed	as	the	first	species	of	the	genus	Beau
veria	 (Vuillemin	1912).	 It	 is	distributed	worldwide	 (Rehner	&	
Buckley	2005,	Imoulan	et	al.	2017).	Being	recognised	as	a	rich	
source	of	efficient	mycoinsecticides,	in	particular	B. bassiana 
and B. brongniartii	(Zimmermann	2007),	the	genus	Beauveria 
has received a lot of attention as potential biological control 

agents	 (García-Estrada	et	 al.	 2016).	The	discovery	 of	 new	
species and their precise delimitation contribute to enlarge 
the	potential	for	finding	suitable	biocontrol	agents	and	for	their	
safe	use.	Beauveria is characterised by the formation of short, 
sympodial, globose to flask-shaped phialides with holoblastic 
conidia	(Khonsanit	et	al.	2020).	The	size	and	the	shape	of	co-
nidia are variable within the genus and historically constituted 
discriminant characters for delimitating and identifying species 
(Rehner	&	Buckley	2005,	 Imoulan	et	al.	2017,	Abdessamad	
2019).	However,	 these	morphological	characters	can	exhibit	
overlapping values between species, even between relatively 
distantly	 related	ones	 (Khonsanit	 et	 al.	 2020).	Furthermore,	
many new Beauveria species have been proposed in recent 
years, mainly based on the monophyly of clades in molecular 
phylogenies, but sometimes with only a few samples, without 
clear	morphological	distinction	(Chen	et	al.	2018).	Beauveria is 
thus a genus with potential cryptic species waiting to be eluci-
dated.	However,	there	has	never	been	a	thorough	morphometric	
analysis	with	solid	statistical	tests.
Although species of Beauveria are known to produce an array  
of	 secondary	metabolites	 (Xu	 et	 al.	 2008,	 2009,	Rohlfs	 &	
Churchill	2011,	Udompaisarn	et	al.	2020),	chemical	compounds	
produced	have	been	rarely	used	for	taxonomic	purpose	in	this	
genus;	the	potential	of	using	chemical	diversity	as	markers	for	
classification	and	species	identification	was	explored	several	
years ago for Beauveria	 (see	Mugnai	et	al.	1989,	Bridge	et	
al.	1990)	without	any	update	for	recently	discovered	species.	
Chemical compounds allowed the distinction between popula-
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Abstract			Fungi	are	rich	in	complexes	of	cryptic	species	that	need	a	combination	of	different	approaches	to	be	
delimited,	 including	genomic	 information. Beauveria	 (Cordycipitaceae, Hypocreales)	 is	 a	well-known	genus	of	
entomopathogenic	fungi,	used	as	a	biocontrol	agent.	In	this	study	we	present	a	polyphasic	taxonomy	regarding	
two	widely	distributed	complexes	of	Beauveria: B. asiatica and B. bassiana	s.lat.	Some	of	the	genetic	groups	as	
previously	detected	within	both	 taxa	were	either	confirmed	or	 fused	using	population	genomics.	High	 levels	of	
divergence were found between two clades in B. asiatica and among three clades in B. bassiana, supporting their 
subdivision	as	distinct	species.	Morphological	examination	focusing	on	the	width	and	the	length	of	phialides	and	
conidia showed no difference among the clades within B. bassiana	while	conidial	length	was	significantly	different	
among clades within B. asiatica.	The	secondary	metabolite	profiles	obtained	by	liquid	chromatography-mass	spectro-
metry	(LC-MS)	allowed	a	distinction	between	B. asiatica and B. bassiana,	but	not	between	the	clades	therein.	Based	
on these genomic, morphological, chemical data, we proposed a clade of B. asiatica as a new species, named 
B. thailandica, and two clades of B. bassiana to respectively represent B. namnaoensis and B. neobassiana	spp.	
nov.	Such	closely	related	but	divergent	species	with	different	host	ranges	have	potential	to	elucidate	the	evolution	
of	host	specificity,	with	potential	biocontrol	application.
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tions within B. bassiana	(Bridge	et	al.	1990)	but	this	finding	was	
not	compared	with	genetic	data.
The	abundant	genomic	resources	presently	available	for	Beau
veria	(Valero-Jiménez	et	al.	2016,	Toopaang	et	al.	2017,	Mei	
et	al.	2020),	combined	with	decreasing	cost	for	whole-genome	
sequencing	(WGS),	make	it	possible	to	access	novel	genetic	
information on a large number of samples with reasonable 
cost	and	time.	Next	generation	sequencing	(NGS)	has	in	fact	
recently	been	used	to	reveal	fungal	cryptic	species	(Sepúlveda	
et	al.	2017,	Kobmoo	et	al.	2019,	Matute	&	Sepúlveda	2019).
In	the	present	study,	we	aimed	at	revising	the	taxonomy	of	two	
important Beauveria	taxa,	B. bassiana and B. asiatica.	In	the	
past, populations of B. bassiana were studied using a limited 
numbers	 of	markers	 (Wang	et	 al.	 2003,	 2005,	Mitina	 et	 al.	
2011,	Meyling	et	al.	2012),	some	of	which	are	now	considered	
unreliable,	such	as	Amplified	Fragment	Length	Polymorphism	
(AFLP)	(Aquino	De	Muro	et	al.	2005,	Trissi	et	al.	2013).	A	re-
cent population genomics study of these species showed clear 
intraspecific	genetic	groups,	but	their	taxonomic	status	was	not	
evaluated with appropriate phylogenetic frameworks or detailed 
examination	of	their	morphology	and	chemistry	(Mei	et	al.	2020).
In	 our	 previous	 taxonomic	 revision	 of	Beauveria, we found 
poorly supported monophyletic clades based on multigene 
phylogenies within B. asiatica	(four	clades	named	A,	B,	C	and	
D)	and	B. bassiana	(three	clades	named	A,	B	and	C)	(Khonsanit	
et	al.	2020).	The	poor	node	supports	did	not	allow	the	recog-
nition of these clades as distinct species, and morphological 
traits	appeared	overlapping.	The	poor	node	support	may	have	
been	due	to	the	limited	number	of	markers.	In	the	current	study,	
our	objectives	were	 to	evaluate	 the	 taxonomic	status	of	 the	
genetic groups within B. asiatica and B. bassiana by a multi-
disciplinary approach including whole-genome sequencing  
(WGS),	as	well	as	statistical	analyses	of	morphological	charac-
ters	 (the	width	and	 the	 length	of	conidia	and	phialides)	and	
chemical	profiles	determined	by	liquid	chromatography-mass	
spectrometry	(LC-MS).	A	thorough	taxonomic	revision	should	
indeed	be	based	on	a	combined	dataset	 including	sufficient	 
genetic information, as well as morphological and chemical 
traits	 on	 a	 high	 number	 of	 individuals.	This	 constitutes	 the	
foundation	of	integrative	(or	holistic)	taxonomy	of	fungi.

MATERIALS AND METHODS

Fungal culture and DNA extraction
Seventy-eight strains of presumably 12 Beauveria species from 
the	BIOTEC	culture	 collection	 (BCC)	and	ARS	collection	 of	 
entomopathogenic	fungal	cultures	(ARSEF),	including	the	ex-
type	strains	of	known	species	and	strains	previously	identified	as	
B. asiatica or B. bassiana	as	well	as	some	unidentified	strains	fol-
lowing	Khonsanit	et	al.	(2020),	were	used	in	this	study	(Table	S1).	 
The	strains	were	cultured	in	50	mL	of	potato	dextrose	broth	and	
incubated	at	25	°C	for	a	week.	Fungal	mycelia	were	harvested	
by	filtering	with	a	sterilised	nylon	mesh	and	washed	with	ethyl-
ene	diamine	tetraacetic	acid	(EDTA)	and	distilled	water.	DNA	ex-
traction	was	done	using	a	cetrimonium	bromide	(CTAB)-based	
method	following	Kobmoo	et	al.	(2019);	the	DNAs	were	purified	
using	the	high	pure	PCR	template	preparation	kit	(Roche).	The	
quality	and	quantity	of	DNA	were	verified	using	NanodropTM	One	
Microvolume	UV-Vis	Spectrophotometry	(Thermo	Fisher)	and	
an	electrophoresis	on	0.8	%	agarose	gel	at	100	V	for	1/2	h.

DNA library construction and sequencing
For	whole	genome	shotgun	sequencing	of	78	strains,	approxi-
mately	300	ng	of	each	DNA	sample	was	used	for	a	library	con-
struction	following	the	protocol	in	the	MGIEazy	FS	library	prep	
kit	(MGI	Tech,	Shenzhen,	China).	The	samples	were	pooled	and	
sequenced	in	a	single	lane.	Paired-end	(150	bp)	sequencing	

was	performed	on	the	MGISEQ-2000RS	(MGI	Tech,	Shenzhen,	
China)	according	to	the	manufacturer’s	instructions.

Data processing and detection of single nucleotide poly-
morphisms (SNPs)
Using	the	MegaBOLT	v.	1.5.6.11	software	package,	raw	reads	 
were	 de-multiplexed	 according	 to	 their	 barcodes	 and	 the	
adapter/barcode	 sequences	were	 removed.	After	 remo	ving	
the low-quality regions, clean reads were mapped to the 
B. bassiana	reference	genome	ARSEF8028	(Valero-Jiménez	
et	al.	2016)	using	the	MegaBOLT	v.	1.5.6.11	alignment	software	
(Minimap2	v.	2.11-r797-v03)	and	the	variants	were	called	using	
GATK	HaplotypeCaller	v.	3.8.	SNP	markers	with	poor	quality	
data	were	filtered	out	using	the	following	criteria:
		–	a	minor	allele	frequency	<	0.1;	
		–	depth	coverage	less	than	10	×;
		–	more	than	20	%	missing	data.	
The	ploidy	was	set	as	haploid	as	all	the	strains	were	collected	
from	asexual	mycelia,	 i.e.,	 putatively	 haploid	 for	 this	 asco-
mycete	fungus.	The	raw	reads	data	were	deposited	at	NCBI	
Sequence	Read	Archive	associated	to	the	BioProject	accession	
PRJNA744643.	The	SNPs	data	were	deposited	at	Mendeley	
Data	repository	(Sonthirod	et	al.	2021).

Population structures, genetic diversity and linkage dis-
equilibrium
The	selected	SNPs	(729	549	SNPs)	were	aligned	and	subjected	
to	 a	maximum-likelihood	 based	phylogenetic	 tree	 inference	
using	RaxML	v.	8	(Stamatakis	2014),	by	specifying	GTRCAT	
model	with	Lewis	biases	ascertainment	correction.	The	 reli-
ability	of	the	resulting	tree	was	evaluated	with	1	000	bootstraps.	
Bayesian clustering analyses were conducted with FastStruc-
ture	(Raj	et	al.	2014)	and	a	principal	component	analysis	(PCA)	
was achieved using the package adegenet	in	R	(Jombart	2008).	
These	analyses	were	 intended	 to	 give	an	 initial	 insight	 into	
interspecific	divergence	and	intraspecific	population	structures,	
in	order	to	assess	the	taxonomic	status	of	the	samples	included	
as well and to reveal any genetic group that can potentially be 
identified	as	new	species.	We	calculated	the	fixation	index	(FST)	
and	metrics	of	absolute	divergence	(DXY)	between	B. asiatica 
and B. bassiana,	as	well	as	between	intraspecific	genetic	clus-
ters	as	revealed	by	previous	analyses.	The	nucleotide	diversity	
(Pi)	within	species	and	genetic	clusters	were	also	calculated	
using	the	PopGenome	package	in	R	(Pfeifer	et	al.	2014). The	
r2	(square	of	correlation	coefficient	representing	statistical	as-
sociation	between	pairwise	SNPs)	among	isolates	belonging	to	
B. asiatica, B. bassiana and	their	respective	intraspecific	genetic	
clusters	were	calculated	between	pairs	of	SNPs	using	VCFtools	
(Danecek	et	al.	2011).	The	decay	of	linkage	disequilibrium	was	
visualized	using	R.	Neighbour-net	phylogenetic	network	based	
on	p-distance	was	constructed	using	the	software	SplitsTree	
v.	4.14.18	(Huson	&	Bryant	2006).

Species tree
Gene	sequences	were	obtained	using	FasterAlternateRefe
renceMaker	 tool	 from	GATK	 (McKenna	 et	 al.	 2010)	which	
altered	the	reference	sequences	with	SNPs	and	simple	indels;	
all	complex	substitutions	were	masked	as	Ns	to	reduce	am-
biguous	alignment.	The	sequences	were	 then	aligned	using	
the	software	MAFFT	(Katoh	&	Standley	2013).	A	total	of	1	132	
genes	were	first	selected	based	on:
		–	 their	size	(1	Kbp	minimum	and	10	Kbp	maximum)	to	ensure	

an	absence	of	recombination	within	genes;
		–	 their	physical	distance	on	the	genome;	only	genes	with	at	

least 20 Kbp between the start and the end of consecutive 
genes	were	selected	to	avoid	the	linkage	disequilibrium;

		–	 the	number	of	SNPs	per	bp	(>	0.02)	to	provide	sufficient	
phylogenetic	signal.	



138 Persoonia	–	Volume	47,	2021

The	alignments	of	the	1	132	genes	were	subjected	to	Bayesian	 
analyses	with	MrBayes	(Ronquist	et	al.	2012),	each	with	2	Markov	 
chain	Monte	Carlo	(MCMC)	runs	 for	1	M	generations	with	a	
20	%	burn-in	phase,	allowed	 to	sample	across	 the	substitu-
tion	model	space.	Only	the	final	gene	trees	with	<	0.02	split	
frequencies	were	retained	for	1	034	genes.	The	1	034	genes	
sequences	were	also	concatenated	and	subjected	to	MrBayes	
with	 the	model	GTRGAMMAI,	 as	 chosen	by	ModelTest-NG	
(Darriba	et	al.	2020),	for	5	M	of	MCMC	generations.	The	final	
tree	was	obtained	after	a	25	%	burn-in	phase.

Bayesian Concordance Analyses (BCA)
To	evaluate	whether	the	genetic	clusters	within	species	were	
consistently recovered by different markers throughout the ge-
nome,	Bayesian	concordance	analyses	(BCA)	were	conducted	
for the three clusters of B. bassiana	with	ARSEF7032	(B. kipu
kae)	as	an	outgroup,	and	for	the	two	clusters	of	B. asiatica with 
ARSEF617	(B. brongniartii )	as	an	outgroup.	By	 focusing	on	
each	taxon	of	interest	with	its	respective	outgroup,	the	number	
of	genes	with	variable	SNPs	naturally	reduced.	The	BCA	were	
thus	done	by	selecting,	among	the	1	034	concatenated	genes,	
only those which had at least two SNPs with no missing data 
and	the	number	of	SNPs	per	bp	>	0.001,	resulting	in	887	genes	
for B. asiatica and 100 genes for B. bassiana.	The	single-gene	
trees obtained from Bayesian inferences were processed into 
BUCKy	(Larget	et	al.	2010)	which	evaluated	the	concordance	
between the selected loci for the clades by giving genome-wide 
concordance	factors	with	95	%	interval	which	can	be	0	(absence	
of	concordance)	to	1	(total	concordance).

Secondary metabolites profiling
Strains of Beauveria, selected to represent the various genetic 
groups within B. asiatica and B. bassiana	as	well	as	ex-type	
strains	of	other	species	(Table	S1),	were	grown	in	200	mL	of	
yeast	with	malt	extract	and	glucose	(YMG)	medium	(10	g	of	
malt	extract,	4	g	of	D-glucose,	4	g	of	yeast	extract	and	1	000	
mL	of	distilled	water,	pH	6.3),	incubated	at	25	°C	under	shaking	
condition	(140	rpm).	Since	growth	rate	varies	among	strains,	the	
prolonged fermentation after glucose depletion for an individual 
strain was set to be half the time required for that particular 
strain	to	reach	the	glucose	depletion	(Table	S2).	The	glucose	
content of each fermented broth was estimated using urine 
glucose	test	strips	(DIRUI®,	Jilin,	China).	The	mycelia	were	then	
separated	from	the	broth	either	by	filtration	or	centrifugation.
The	extraction	of	fungal	secondary	metabolites	was	performed	
according	 to	Phainuphong	et	al.	 (2017)	with	culture	filtrates	
passing	 through	 successive	 extraction	 using	 acetone,	 ethyl	
acetate	and	methanol,	resulting	in	a	final	methanol-based	cell	
extract	(CE).	A	single	extract	per	strain	was	obtained.	The	ex-
periment	of	liquid	chromatography-mass	spectrometry	(LC-MS)	
was done using ultra-high performance liquid chromatography 
(UHPLC)	 –	Orbitrap	Fusion™	Tribrid™	mass	 spectrometer	 
(Thermo	Scientific,	Massachusetts,	USA),	equipped	with	elec-
trospray	ionization	(ESI)	source.	The	separation	of	compounds	
was	done	on	an	Acquity	UPLC®	HSS	T3	C18	column	(1.8	µm	
diam,	 2.1	×	 100	mm)	maintained	at	 40	°C	with	 flow	 rate	 of	
0.4	mL/min.	A	mobile	phase	system	was	solvent	A	(water	with	
0.1	%	formic	acid)	and	solvent	B	(acetonitrile	with	0.1	%	for-
mic	acid).	The	optimized	gradient	for	the	best	separation	was	
0–12	min,	12–95	%	B;	12–14	min,	12–95	%	B;	14–16	min,	
12–95	%	B.	The	mass	spectrometer	was	operated	in	ESI	posi-
tive	which	covered	more	than	80	%	of	metabolites	present	in	
the	tested	pool	sample.	Each	sample	was	injected	in	triplicate.	
The	MS	calibration	was	conducted	using	Pierce	LTQ	Velos	ESI	
Positive	Ion	Calibration	(PSP3A	88323)	and	Pierce	ESI	Nega-
tive	Ion	Calibration	(PSP3A	88324)	according	to	manufacturer’s	
protocol.	Each	extract	was	injected	three	times	into	the	LC-MS	
as	technical	replicates.

The	software	Compound	Discoverer	v.	3.1	was	used	for	data	
pre-processing	steps.	The	MS	raw	files	were	subjected	to	peak	
alignment, peak picking, adduct grouping and normalization 
with	parameters	adjusted	 to	fit	 to	 the	chromatographic	data	
obtained	from	this	experiment.	The	area	under	curve	(AUC)	of	
each metabolite was determined and normalized with that of 
pooled	samples.	The	features	(m/z	at	specific	retention	time	
(rt))	with	relative	standard	deviations	over	30	%	and	average	
group	area	in	non-inoculated	YMG	media	over	5	× 105	were 
filtered	to	ensure	good-quality	peaks	and	to	cover	peaks	apart	
from	culture	media.	Top	200	highest	abundant	features	in	the	
CE pool sample were selected for statistical analyses including 
a	Euclidean	distance-based	neighbour-joining	 (NJ)	 tree	and	
principal	 component	 analysis	 (PCA)	 using	 respectively	 the	
packages	‘ape’	(Paradis	&	Schliep	2019)	and	‘FactoMineR’	(Lê	
et	al.	2008)	in	R	(R	Core	Team	2020).

Conservation of secondary metabolites gene clusters
We	examined	whether	the	distribution	of	secondary	metabolites	
production among clades and species was reflected by the 
conservation pattern of secondary metabolites gene clusters 
(SMGCs).	First,	we	inferred	and	annotated	SMGCs	present	in	
the	reference	genome	(ARSEF8028)	using	antiSMASH	fungal	
v.	4.1.0	(Blin	et	al.	2017).	The	deduplicated	and	filtered	mapped	
reads used in the phylogenomics above were proceeded to the 
pipeline	of	CNVnators	(Abyzov	et	al.	2011)	in	order	to	detect	
regions of deletion in each isolate, based on normalised read 
depth.	The	detected	blocks	of	deletion	were	intersected	with	
the	position	of	SMGCs	and	any	SMGC	with	more	than	50	%	
of its length overlapping a deletion is considered as absent or 
non-functional.	The	SMGCs	presence/absence	patterns	were	
used to infer a cladogram representing the clustering of the 
isolates of Beauveria	based	on	binary	distances.

Morphological examination and species description
A thorough morphological investigation was conducted follow-
ing	the	techniques	described	in	Khonsanit	et	al.	(2020).	The	
samples and culture plates were photographed using a digital 
Nikon	D5100	camera.	Colony	characteristics	and	microscopic	
measurements	of	phialides	and	conidia	(length	and	width)	were	
done	after	growth	on	potato	dextrose	agar	medium	(PDA,	20	g	
Difco	potato	dextrose	agar,	1	L	distilled	water)	and	incubation	
under	white	light/dark	cycles	at	room	temperature;	30	phialides	
and	 conidia	were	measured	 for	 each	 strain.	To	 statistically	
test the difference between the genetic groups within each 
of B. asia tica and B. bassiana,	 five	strains	 for	each	genetic	
group	were	examined	for	the	width	and	the	length	of	conidia	
and	phialides	(Table	S3).	The	data	were	analysed	with	one-
factor	ANOVA	for	testing	difference	between	species,	as	well	
as	between	the	genetic	groups	within	each	species.

RESULTS

Population structure and molecular diversity
The	maximum-likelihood	 tree	 inferred	 from	all	 the	 729	549	
SNPs showed clear differentiation between B. asiatica and 
B. bassiana	as	expected,	and	also	intraspecific	genetic	sub-
division	(Fig.	1a).	Two	and	three	clades	could	be	distinguished	
within B. asiatica and B. bassiana,	respectively.	One	of	the	two	
clades of B. asiatica corresponds to the Clade C as found in 
Khonsanit	et	al.	 (2020),	 including	 the	ex-type	strain	ARSEF	
4850;	the	other	clade	comprises	a	mix	of	individuals	from	the	
Clades	A–D	from	that	previous	study,	therefore	named	here	as	
‘Clade	Mixed’.	The	three	clades	from	B. bassiana correspond to 
the	Clades	A–C	established	in	this	species	by	Khonsanit	et	al.	
(2020);	the	Clade	C	includes	the	ex-type	strain	ARSEF	1564.	
The	principal	 component	 analysis	 (PCA)	also	 showed	clear	
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Fig. 1			Population	genomics	analyses.	a.	A	circular	NJ	tree	based	on	whole-genome	SNPs,	the	red	asterisks	represent	the	type	strains	of	Beauveria asiatica 
(ARSEF4850)	and	B. bassiana	(ARSEF1564),	thick	branches	correspond	to	those	supporting	100	%	bootstrap;	b.	principal	component	analysis	(PCA)	for	total	
sampling;	c.	Bayesian	clustering	for	total	sampling;	d.	Bayesian	clustering	for	B. asiatica;	e.	PCA	for	B. bassiana;	f.	PCA	for	B. asiatica.
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  B. asiatica  B. bassiana

	 	 Clade	C	 Clade	Mixed	 Clade	A	 Clade	B	 Clade	C

B. asiatica Clade C 0.009 0.0875	 0.651	 0.675	 0.669
 Clade	Mixed	 0.742	 0.036 0.630	 0.654	 0.648

B. bassiana Clade	A	 0.991	 0.969	 0.003 0.157	 0.119
 Clade	B	 0.970	 0.949	 0.893	 0.031 0.161
 Clade	C	 0.980	 0.958	 0.913	 0.848	 0.018

Table 1			Genetic	differentiation	(FST:	below	the	diagonal),	genetic	divergence	(DXY:	above	the	diagonal)	between	clades	of	B. asiatica and B. bassiana, and 
nucleotide	diversity	(Pi:	italic	values	forming	the	diagonal)	within	clades.
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Fig. 2			A	Bayesian	phylogenetic	tree	based	on	concatenated	1	034	genes	
in Beauveria	species.	The	red	dots	represent	the	nodes	supported	by	1.00	
posterior	 probability.	The	 highlighted	 clades	 are	 supported	 by	Bayesian	
concordance	factors	with	95	%	confidence	interval.

difference	as	expected	between	B. asiatica and B. bassiana 
as well as between these two species and the others included 
(Fig.	1b).	Not	enough	individuals	had	been	analysed	from	the	
other	species	to	assess	their	differentiation	from	each	other.	
The	Bayesian	clustering	within	each	of	the	two	species	recov-
ered	the	same	genetic	clusters	as	above	(Fig.	1c–d)	but,	for	B. 
asiatica, an additional subdivision was observed within Clade 
Mixed	(Fig.	1d).	The	PCA	also	confirmed	the	strong	differentia-
tion	between	the	clades	identified	in	the	analyses	above	(Fig.	
1e–f)	as	well	as	the	subdivision	within	B. asiatica	Clade	Mixed	
(clusters	hereafter	called	mix1	and	mix2:	Fig.	1f).	These	sub-
clusters	included	mixes	of	strains	from	various	genetic	groups	
from	Khonsanit	et	al.	(2020).	The	various	analyses	thus	consist-
ently	indicated	the	existence	of	intraspecific	subdivision.	The	
only	exception	was	the	strain	NHJ10436	which	clustered	with	
B. bassiana Clade B in the Bayesian clustering and the tree, but 
had	intermediate	coordinates	on	the	PCA	(Fig.	1b,	e).	This	is	
probably due to missing data as this strain only carried 14 427 
SNPs	(1.97	%	from	total	SNPs).	This	strain	was	though	kept	in	
our	analyses	as	it	personally	interested	us	for	use	in	biocontrol.

The	FST	between	the	two	species	was	high	(0.875)	as	expected	
for	interspecific	differentiation.	The	nucleotide	diversity	(Pi)	was	
higher in B. bassiana	(0.107)	than	B. asiatica	(0.057);	this	may	
be due to the use of B. bassiana genome as reference to call 
SNPs.	The	differentiation	levels	between	clades	within	species	
were also very high, with FST	reaching	more	than	0.7	(Table	1),	
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Fig. 3			Morphometric	analysis.	a.	Boxplots	representing	the	distribution	of	
the length and the width of phialides and conidia between Beauveria asiatica 
and B. bassiana.	The	red	asterisks	denote	significant	difference	between	
the	two	species;	b.	boxplots	representing	the	distribution	of	the	length	and	
the width of phialides and conidia between the clades within B. asiatica	(left	
panel)	and	within	B. bassiana	(right	panel).
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Fig. 4			Statistical	analyses	of	secondary	metabolite	profiles	resulting	from	
liquid	chromatography-mass	spectrometry	(LC-MS).	a.	Euclidean	distance-
based	NJ	 tree;	b.	principal	component	analysis	 (PCA)	 for	 total	sampling	
(top	panel)	and	for	 the	clades	within	Beauveria asiatica and B. bassiana 
(bottom	panel).

but the FST	between	the	sub-clusters	mix1	and	mix2	within	Clade	
Mixed	of	B. asiatica	was	relatively	weak	(0.262).	The	divergence	
estimated	by	DXY was also relatively high between clades, close 
to	or	higher	than	0.1	(Table	1),	but	that	between	the	sub-clusters	
mix1	and	mix2	was	much	lower	(0.041).	The	nucleotide	diversity	
(Pi)	was	higher	in	B. asiatica	Clade	Mixed	(0.024	and	0.036	for	
the	sub-clusters	mix1	and	mix2,	respectively)	than	in	Clade	C	
(0.009).	 In	B. bassiana,	Clade	B	had	the	highest	Pi	(0.031),	
followed	by	Clade	C	(0.018)	and	Clade	A	(0.003).	

Phylogenetic network and linkage disequilibrium
The	Neighbour-Net	network	inferred	from	p-distances	between	
the strains showed clear separation between clades within each 
species,	with	minimal	 reticulation	between	 them,	 confirming	
lack	of	gene	flow	among	clades	(Fig.	S1).	The	sub-cluster	mix1	
was	nested	within	the	sub-cluster	mix2	for	B. asiatica Clade 
Mixed.	Reticulations	were	observed	within	B. asiatica Clade C 
and	Clade	Mixed.	For	B. bassiana, reticulation events could be 
observed	only	within	Clade	B.	In	all	the	clades	within	species,	
the r2	dropped	to	rapidly	reach	a	plateau	except	B. bassiana 
Clade	A	which	sustained	a	longer	LD	with	r2 dropping under 
half	the	maximum	around	300	Kbp	(Fig.	S1).	These	results	are	
consistent with the absence of reticulation in the B. bassiana 
Clade A, for which the nucleotide diversity was also the lowest 
(0.002:	Table	1).	

Phylogenetics species recognition
The	species	tree	inferred	from	1	034	concatenated	genes	re-
covered strongly supported monophyletic clades corresponding  
to the genetic subdivisions within B. asiatica	 (Clade	C	and	
Clade	Mixed)	and	B. bassiana	(Clades	A–C)	(Fig.	2).	The	sub-
cluster	mix	1	within	B. asiatica	Clade	Mixed	was	recovered	as	
a well-supported monophyletic clade but not the sub-cluster 
mix	2	which	did	not	 form	a	monophyletic	clade,	 further	sup-
porting	the	view	that	mix1	is	a	lineage	having	originated	from	
mix2.	To	evaluate	whether	 these	genetic	subdivisions	could	
be considered as distinct species using phylogenetics species  
criteria, we conducted Bayesian concordance analyses between 
genes having no missing data for B. asiatica with its outgroup 
B. brongniartii	(ARSEF617)	(887	genes),	and	for	B. bassiana  
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with its outgroup B. kipukae	 (ARSEF7032)	(100	genes).	We	
found	 that	 the	Clades	A–C	within	B. bassiana were highly 
concordant throughout the genome with high Bayesian con-
cordance	 factors	 (BCF),	NHJ10436	being	well	 anchored	 in	
Clade	B.	For	B. asiatica,	Clade	C	had	a	high	BCF	(>	0.8)	but	
Clade	Mixed	had	a	low	BCF	(0.201)	(Fig.	2).	

Morphological variation
The	average	measurements	 of	 the	 length	 and	 the	width	 of	
phialides	and	conidia	are	reported	per	strain	in	Table	S3.	The	
average length and width of phialides and conidia of B. asia
tica	 s.lat.,	B. bassiana	 s.lat.	 and	 all	 clades	 inside	 each	 of	
them	can	be	found	 in	Table	S4.	The	 length	of	phialides	and	
conidia	were	 significantly	 different	 between	B. asiatica and 
B. bassiana (one-factor	ANOVA;	phialide	 length:	F	=	16.858,	 
p-value	=	4.324e-04;	 conidia	 length:	 F	=	79.566,	 p-value	=	
6.309e-09)	 but	 the	other	 traits	were	not	 significantly	 different	
between	the	two	species	(phialide	width:	F	=	0.199,	p-value	=	
0.659;	conidia	width:	F	=	79.566,	p-value	=	6.309e-09)	(Fig.3a).	
Between	Clade	C	and	Clade	Mixed	of	B. asiatica, only the length 
of	conidia	was	significantly	different	(F	=	7.219,	p-value	=	0.02,	
Fig.	3b).	For	B. bassiana,	none	of	the	examined	traits	was	signi-
ficantly	different	between	clades	(Table	S4)	(Fig.	3b).

Chemotaxonomy
Metabolite	profiles	obtained	with	LC-MS	are	shown	in	Fig.	S2–
S3.	Principal	component	analyses	(PCA)	and	 the	Euclidean	
distance-based tree showed a relatively clear separation be-
tween B. asiatica and B. bassiana with	some	exceptions	(Fig.	4);	
the	two	strains	MY11641	and	NHJ13734	of	B. asiatica showed 
a chemical similarity to B. bassiana.	The	other	species	included	
in the chemical analyses were not all well discriminated from 
B. asiatica and B. bassiana.	On	 the	NJ	 tree,	B. caledonica, 
B. pseudobassiana, B. sungii and B. vermiconia clustered within  
B. asiatica	(Fig.	4a).	Based	on	the	PCA,	B. amorpha, B. mala
wiensis, B. pseudobassiana, B. varraoe could be well distin-
guished from both B. asiatica and B. bassiana.	 In	 contrast,	
B. gryllotalpidicola and B. kipukae appeared nested within 

B. bassiana while B. caledonica, B. sungii and B. vermiconia 
were found very close to B. asiatica (Fig.	4b,	top	panel).	The	
intraspecific	clades	were	not	well	separated	based	on	these	
methods.
The	distribution	pattern	of	secondary	metabolite	production	cor- 
responded broadly to the presence/absence pattern of secon-
dary	metabolite	gene	clusters	 (SMGCs)	among	 the	species	
(Fig.	5).	There	were	41	SMGCs	 inferred	 from	 the	 reference	
genome	(Table	S4,	S5),	of	which	15	were	conserved	among	
all	the	isolates.	Twenty-five	Beauveria isolates possess all the 
SMGCs	most	of	which	belong	to	B. bassiana	s.lat.	The	three	
clades within B. bassiana	s.lat.	did	not	show	distinct	clustering	
patterns	with	most	of	the	strains	maintaining	all	SMGCs,	except	
Cluster	37	(Indole-Nrps)	that	was	randomly	lost	among	some	
strains	(Fig.	5).	The	isolates	of	B. asiatica	s.lat.	grouped	together	
with	a	few	SMGCs	deletions	shared	between	them	–	Cluster1	
(Terpene),	 Cluster11	 (NRPS),	Cluster41	 (Terpene-NRPS).	
No distinction could be observed between the two clades of 
B. asiatica.	The	other	species	included	tended	to	group	together	
outside	 the	 two	species	 complexes	but	 some	of	 them	were	
scattered among B. asiatica	(Fig.	5).

Taxonomy
Based on genomic and morphological results above, B. asi
atica	Clade	Mixed	is	proposed	as	B. thailandica;	B. bassiana 
Clade A and Clade B are proposed as B. namnaoensis and 
B. neobassiana,	respectively.	

Beauveria namnaoensis Khons.,	Kobmoo	&	Luangsa-ard,	
 sp. nov.	—	MycoBank	MB	838940;	Fig.	6

 Etymology.	Name	derived	from	the	 location	where	the	type	specimen	
was	found,	Nam	Nao	National	Park,	Nam	Nao	District.

 Holotypus.	Thailand,	Phetchabun	Province,	Nam	Nao	District,	Nam	Nao	 
National	Park,	Headquarter	Nature	Trail,	N16.74°	E101.57°,	on	adult	of	Xylo
copa latipes	(Hymenoptera, Apidae),	4	July	2012,	A.	Khonsanit, K.	Tasanathai,  
P.	Srikitikulchai, S.	Mongkolsamrit & W.	Noisripoom	(holotype	BBH	36158;	
ex-holotype	strain	BCC	64218).	
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Fig. 5			The	presence/absence	of	secondary	metabolites	gene	clusters	among	Beauveria	species.	The	isolates	were	ordered	from	left	to	right	according	to	a	
binary	distance-based	clustering.
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Sexual	morph	—	Unknown.
Asexual	morph	—	Hosts	covered	with	white	mycelium,	powdery	
when	sporulating.	Phialides hyaline, solitary, smooth-walled, 
base ampulliform, clavate, globose, mucronate, pyriform, sub-
globose,	subspherical	 to	 lageniform	(2–)2-3.2(–5)	×	 (1.5–) 
1.9-2.7(–3.5)	µm	(n =	150).	Conidia hyaline, smooth-walled, 
globose	to	subglobose,	occasionally	obovoid,	 (1.5–)1.9-2.8 
(–4)	×	(1.5–)1.7-2.3(–3)	µm	(n =	150).	
 Colony characteristics — Colony growing at room tempera-
ture	attaining	29-31	mm	diam	in	10	d,	and	42-43	mm	in	20	d.	
Surface mycelium dense, floccose, sporulation starts at 4 d after 
inoculation,	white	with	green-yellow	(1D),	becoming	to	green-
yellow	 (1C)	 and	powdery	while	 sporulating.	Colony	 reverse	
green-yellow	(1A),	white	at	the	margin.
	 Hosts	—	Specimens	found	on	blue	milkweed	beetle	(Coleop
tera),	stink	bug	(Hemiptera, Pentatomidae),	wasp	(Hymenop
tera),	pupa	and	adult	of	moth	(Lepidoptera)	and	grasshopper	
(Orthoptera). 

 Additional specimens examined. Thailand, Chanthaburi Province, Khao Soi 
Dao	District,	Khao	Soi	Dao	Wildlife	Sanctuary,	N13.10°	E102.19°,	on	stink	bug	
(Hemiptera, Pentatomidae),	1	Jan.	2000,	B.	Thongnuch, J.J.	Luangsaard,  
K.	Tasanathai, P.	Srikitikulchai, S.	Mongkolsamrit & W.	Chaygate	 (BBH	
14343:	BCC	18114);	Kanchanaburi	Province,	Thong	Pha	Phum	District,	
Thung	Yai	Naresuan	Wildlife	Sanctuary,	Krathon	Ruesi	Nature	Trail,	N15.33°	 
E98.92°,	on	moth	adult	(Lepidoptera),	2 Dec.	2005, B.	Thongnuch, K.	Tasa
nathai, P.	Srikitikulchai & W. Chaygate	 (BBH	15191:	BCC	19745);	Phet-
chaburi	Province,	Kaeng	Krachan	District,	Kaeng	Krachan	National	Park,	
Ban	Krang	Camp	Nature	Trail,	N12.88°	E99.63°,	on	blue	milkweed	beetle	
(Coleoptera),	26	Apr.	2006,	B.	Thongnuch, K.	Tasanathai, R.	Ridkaew & 
W. Chaygate	 (BBH	18375:	BCC	21293);	Nakhon	Ratchasima	Province,	
Pak	Chong	District,	 Khao	Yai	National	 Park,	 Bueng	Phai	Nature	Trail,	
N14.44°	E101.37°,	on	wasp	(Hymenoptera),	29	Nov.	2006,	B.	Thongnuch, 
P.	Puyngain, T.	Keokene & W. Chaygate	(BBH	23082:	BCC	23823);	Chiang	 
Mai	Province,	Doi	Inthanon	National	Park,	Mae	Chaem	District,	Mae	Chaem	
Junction	(KM.38)	Nature	Trail,	N18.54°	E98.52°,	on	grasshopper	(Orthop
tera),	27	Nov.	2008,	A.	Khonsanit, K.	Tasanathai & P.	Srikitikulchai	 (BBH	
25297:	BCC	34350).

 Notes — Beauveria namnaoensis is hardly distinguishable  
morphologically from other closely related species such as 

Fig. 6   Beauveria namnaoensis.	a–d.	Fungus	on	the	hosts;	e.	colony	obverse	on	PDA	after	10	d;	f.	colony	reverse	on	PDA	after	10	d;	g.	colony	obverse	on	
PDA	after	20	d;	h.	colony	reverse	on	PDA	after	20	d;	i– j.	phialides	and	conidia;	k.	conidia.	—	Scale	bars:	a,	e–h	=	10	mm;	b–d	=	5	mm;	i	=	10	µm;	j–k	=	5	µm.

Species	 Host/substrate	 Phialides	(µm)	 Conidia	(µm)	 Distribution	 References

B. bassiana	s.str.  Beetle	adults,	cucurbit	beetle,		 2.5–6	×	3–6		 2–3	×	2–3	 Brazil,	Canada,	Hungary,		 Rehner	et	al.	(2011),	
 mantid,	maple	leafcutter	moth	larva,		 	 	 Morocco,	Republic	of	Korea,		 Khonsanit	et	al.	(2020),
	 moth	adult,	mulberry	moth	pupa,		 	 	 Thailand,	USA	 This	study
 spittle bug, weevils

B. namnaoensis	sp.	nov.	 Blue	milkweed	beetle,	grasshopper,		 2–5	×	1.5–3.5	 1.5–4	×	1.5–3	 Thailand	 This	study
 moth, lepidopteran pupa, stink bug, 
 wasp

B. neobassiana	sp.	nov.	 Ant,	beetle	adults,	cicada	adults,		 2-3.5	× 2-3	 2–3	×	1.5–2.5	 Thailand	 This	study
 lepidopteran larva, queen ants, 
 moth, weevils

Table 2			Morphological	comparisons	of	Beauveria bassiana species	complex.
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B. bassiana and B. neobassiana (Table	2	and	refer	to	the	results	
on	morphological	variation).	However,	this	new	species	is	sup-
ported	as	distinct	based	on	phylogenetic	analyses.

Beauveria neobassiana Khons.,	Kobmoo	&	Luangsa-ard,	
 sp. nov.	—	MycoBank	MB	838939;	Fig.	7

 Etymology.	Name	derived	from	the	morphological	similarity	to	Beauveria 
bassiana.

 Holotypus.	Thailand,	Nakhon	Ratchasima	Province,	Pak	Chong	District,	
Khao	Yai	National	Park,	trail	from	Heo	Sawat	to	Heo	Sai	Waterfall	Nature	Trail,	
N14.44°	E101.37°,	on	adult	cicada	(Hemiptera),	20	May	1996,	K.	Tasanathai, 
N.L. HywelJones, S. Sivichai & S.	Thienhirun (holotype	BBH	5054;	 ex-
holotype	strain	BCC	1848).

Sexual	morph	—	Unknown.
Asexual	morph	—	Hosts	covered	with	white	mycelium,	powdery	
while	sporulating.	Phialides hyaline, solitary, smooth-walled, base 
ovoid,	subspherical	(2–)2.3-3.1(–3.5)	×	(2–)2.1-2.9(–3)	µm	 
(n =	150).	Conidia hyaline, smooth-walled, globose, occasion-
ally	 subglobose,	 (2–)2-2.6(–3)	×	 (1.5–)1.8-2.2(–2.5)	 µm	
(n =	150).	
	 Colony	characteristics	—	Colony	on	PDA	at	room	tempera-
ture attaining a diam of 20-21 mm in 10 d, 40-41 mm in 20 d, 
surface	mycelium	dense,	floccose.	Sporulation	starts	5	d	after	
inoculation,	white	with	green-yellow	(2D),	powdery	when	sporu-

lating.	Colony	reverse	yellow	(6C),	becoming	to	yellow-orange	
(20A)	and	white	at	the	margin.	
	 Hosts	—	Specimens	found	on	adult	beetles,	weevils	(Co
leoptera),	adult	cicadas	(Hemiptera),	ants	(Hymenoptera)	and	
larvae	and	adult	of	moth	(Lepidoptera).

 Additional specimens examined. Thailand, Kanchanaburi Province, Sang-
khla	Buri	District,	Khao	Laem	National	Park,	Sum	Nuk	Buhd	To,	N15.02°	
E98.60°,	 on	adult	 beetle	 (Coleoptera),	 21	 June	1995,	N.L.	HywelJones, 
R.	Nasit & S. Sivichai	(BBH	4614:	BCC	1446);	Phetchaburi	Province,	Kaeng	
Krachan	District,	 Kaeng	Krachan	National	 Park,	 Khlong	 1	Nature	Trail,	
N12.88°	E99.63°,	on	moth	(Lepidoptera),	J.J.	Luangsaard, K.	Tasanathai, 
N.L. HywelJones, P.	Srikitikulchai, R.	Nasit, S.	Mongkolsamrit & W. Chay
gate (BBH	14301);	Chiang	Mai	Province,	Mae	Chaem	District,	Doi	Inthanon	
National	 Park,	 N18.54°	 E98.52°;	 on	 ant	 (Hymenoptera),	 1	 Jan.	 2000,	
B.	Thongnuch, K.	Tasanathai, P.	Srikitikulchai, R.	Ridkaew, S.	Mongkolsamrit 
& W.	Chaygate	(BBH	14373:	BCC	18124,	BBH	14374:	BCC	18171);	Phetch-
abun	Province,	Nam	Nao	District,	Nam	Nao	National	Park,	trail	to	nature	study	
area,	N16.74°	E101.57°,	on	weevil	 (Coleoptera, Curculionoidea),	23	May	
2000, K.	Tasanathai, P. Lutthi sungneon, R.	Nasit & S. Sivichai	(BBH	7666:	
BCC	2660);	Tak	Province,	Umphang	District,	Umphang	Wildlife	Sanctuary,	Pi	
Tu	Kro	Waterfall	Nature	Trail,	N15.92°	E98.76°,	on	queen	ant	(Hymenoptera),	
26	June	2001,	A.	Khonsanit, B.	Thongnuch, J.J.	Luangsaard, K.	Tasanathai, 
P.	Srikitikulchai, S.	Mongkolsamrit & W. Chaygate (BBH	23919:	BCC	31619);	
Chiang	Mai	Province,	 Fang	District,	Doi	Phahompok	National	Park,	Doi	
Phahompok	Nature	Trail,	N20.00°	E99.14°,	on	queen	ant	(Hymenoptera),	
5	Feb.	2006,	B.	Thongnuch, K.	Tasanathai, S.	Mongkolsamrit & W. Chaygate 
(BBH	16599:	BCC	20197);	Nakhon	Ratchasima	Province,	Pak	Chong	District,	

Fig. 7   Beauveria neobassiana.	a–h.	Fungus	on	the	hosts;	i.	colony	obverse	on	PDA	after	10	d;	j.	colony	reverse	on	PDA	after	10	d;	k.	colony	obverse	on	PDA	
after	20	d;	l.	colony	reverse	on	PDA	after	20	d;	m–n.	phialides	and	conidia;	o.	conidia.	—	Scale	bars:	a–b,	d–h	=	5	mm;	c,	i– l	=	10	mm;	m	=	10	µm;	n–o	=	5	µm.
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Khao	Yai	National	Park,	Kong	Kaeo	Waterfall	Nature	Trail,	N14.44°	E101.37°,	
on	adult	beetle	(Coleoptera),	12	June	2007,	C. Chuaseeharonnachai, S. Sivi
chai & S.	Mongkolsamrit	(BBH	24543:	BCC	25950);	Chanthaburi	Province,	
Soi	Dao	District,	Khao	Soi	Dao	Wildlife	Sanctuary,	Headquarter	Nature	Trail,	
N13.10°	E102.19°,	on	adult	cicada	(Hemiptera),	22	July	2008,	A.	Khonsanit, 
J.J.	Luangsaard, K.	Tasanathai, P.	Srikitikulchai & S.	Mongkolsamrit	(BBH	
24402:	BCC	30545),	on	adult	beetle	(Coleoptera),	22	July	2008,	A.	Khon
sanit, J.J.	Luangsaard, K.	Tasanathai, P.	Srikitikulchai & S.	Mongkolsamrit 
(BBH	23856:	BCC	31604);	Chiang	Rai	Province,	Chiang	Khong	District,	
Phlu	Kaeng	Waterfall	Nature	Trail,	N20.26°	E100.39°,	on	Lepidoptera larva 
(Lepidoptera),	17	Jan.	2009,	A.	Khonsanit, K.	Tasanathai, P.	Srikitikulchai 
& S.	Mongkolsamrit	(BBH	26635:	BCC	35935);	Nakhon	Ratchasima	Pro-
vince,	Pak	Chong	District,	Khao	Yai	National	Park,	Mo	Sing	To	Nature	Trail,	
N14.44°	E101.37°,	on	adult	beetle	(Coleoptera),	20		July	2009,	K.	Tasanathai, 
P.	Srikitikulchai, R.	Ridkaew, S.	Mongkolsamrit & T.	Chohmee	(BBH	26358:	
BCC37372);	ibid.,	16	Aug.	2009,	K.	Tasanathai, P.	Srikitikulchai, R.	Ridkaew, 
S.	Mongkolsamrit & T.	Chohmee	(BBH	26797:	BCC	37938);	Chanthaburi	
Province,	Pong	Nam	Ron	District,	Suchin’s	Orchard,	N12.92°	E102.39°,	on	
adult	beetle	(Coleoptera),	16	Dec.	2014,	A.	Khonsanit, D.	Thanakitpipattana, 
N.	Wiriyathanawudhiwong & W.	Noisripoom (BBH	39718:	BCC	76579).

 Notes — Beauveria neobassiana is hardly distinguishable 
morphologically from other closely related species, such as 
B. bassiana and B. namnaoensis	 (Table	 2	 and	 refer	 to	 the	
results	on	morphological	variation).	However,	this	new	species	
is	based	on	phylogenetic	studies.	

Beauveria thailandica Khons.,	Kobmoo	&	Luangsa-ard,	
 sp. nov.	—	MycoBank	MB	838941;	Fig.	8

 Etymology.	The	epithet	refers	to	the	locality	where	the	type	specimen	
was	found,	Thailand.	

 Holotype. Thailand,	Chanthaburi	Province,	Soi	Dao	District,	Khao	Soi	Dao	
Wildlife	Sanctuary,	N13.10°	E102.19°,	 on	Coleoptera	 larva	 (Coleoptera),	
1	Jan.	2000,	N.L.	HywelJones	(holotype	BBH	13831;	ex-type	culture	BCC	
16585;	TBRC	8350).	

Sexual	morph	—	Stromata arising from the posterior part of Co
leoptera	larva,	cylindrical	with	rounded	apices,	yellow	(8B-8A)	
when	fresh	and	yellow-orange	(19B-19A)	when	dry,	38-50	×	0.8-
2.5	mm.	Perithecia	semi-immersed,	ovoid,	(420–)469.6-539 
(–580)	×	(150–)182.2-258.5(–290)	µm	(n =	30).	Asci hyaline,  
cylindrical,	 capitate,	 (180–)215.4-299.5(–335)	×	 (3–)3.2-
4.7(–6)	 µm	 (n =	50).	Ascicaps	 hyaline,	 hemispherical,	 (2–) 
2.2-3.1(–3)	×	 (3.5–)3.6-4.1(–4)	 µm	 (n =	30).	Ascospores 
hyaline,	filiform,	multiseptate,	241-320	×	1	µm	(n =	8),	breaking	 
into	64	part-spores.	Partspores hyaline, cylindrical with trun-
cated	end,	(4–)5.2-12.9(–23)	×	1	µm	(n =	50).	
Asexual	morph	—	Hosts	covered	with	white	mycelium,	powdery	
when	sporulating.	Phialides hyaline, solitary, smooth-walled, 
base ampulliform, mucronate, rostrate, subspherical to lageni-
form	(2–)2.5-3.7(–5)	×	(1.5–)2-3(–4)	µm	(n =	150).	Conidia 
hyaline, smooth-walled, obovoid, ovoid, occasionally globose 
to	 subglobose	 (2.5–)3.1-4.3(–6)	×	 (1.5–)1.6-2.3(–3)	 µm	
(n =	150).
 Colony characteristics — Colony growth at room tempera-
ture attaining a diam of 21-22	mm	in	10	d,	30-32	mm	in	20	d.	
Surface	mycelium	dense,	convex	to	the	agar	surface,	floccose,	
cottony, sporulation starts at 10 d after inoculation, white to 
green-yellow	(1C).	Colony	reverse	green-yellow	(1C),	white	at	
the	margin.
	 Hosts	—	Specimens	 found	on	 ladybugs,	 longhorn	 beetle	
(Coleoptera),	earwigs	(Dermaptera),	adult	cicada,	leafhoppers,	
stink	bug	(Hemiptera),	queen	ant	and	wasps	(Hymenoptera).

 Additional specimens examined. Thailand, Phetchabun Province, Nam  
Nao	District,	Nam	Nao	National	Park,	Lum	Nam	Cheun	Nature	Trail,	N16.74°	
E101.57°,	on	stink	bug	(Hemiptera, Podopidae),	11	Oct.	1994.	N.L. Hywel
Jones, R.	Nasit & S. Sivichai	(BBH	4362:	BCC	1442);	Phetchaburi	Province,	
Kaeng	Krachan	District,	Kaeng	Krachan	National	Park,	KM.	15	on	road	to	Tor	
Tip	Waterfall,	N12.88°	E99.63°,	on	adult	cicada	(Hemiptera),	23	May	1995,	
N.L. HywelJones	(BBH	4541:	BCC	1654);	ibid.,	on	adult	beetle	(Coleoptera),	
23	May	1995,	N.L.	HywelJones	(BBH	4542:	BCC	1655);	ibid.,	on	earwigs	

(Dermaptera, Chelisochidae),	25	May	1995,	N.L.	HywelJones	(BBH	4563:	
BCC	2044);	Kanchanaburi	Province,	Sangkhla	Buri	District,	Khao	Laem	
National	Park,	Sum	Nuk	Buhd	To,	N15.02°	E98.60°,	on	adult	beetle	(Coleop
tera),	21	June	1995,	N.L. HywelJones, R.	Nasit & S. Sivichai	(BBH4561:	
BCC1665);	Chanthaburi	Province,	Khao	Soi	Dao	District,	Khao	Soi	Dao	
Wildlife	Sanctuary,	Behind	office	on	the	Nature	Trail,	N13.10°	E102.19°,	on	
Lepidoptera	larva	(Lepidoptera),	20	June	1996,	K.	Tasanathai, R.	Nasit & 
S.	Sivichai (BBH	5182:	BCC	1906);	Phetchabun	Province,	Nam	Nao	District,	
Nam	Nao	National	Park,	behind	office	to	bungalow	1	Nature	Trail,	N16.74°	
E101.57°,	on	Coleoptera	larva	(Coleoptera),	20	Aug.	1996,	K.	Tasanathai, 
R.	Nasit & S. Sivichai	(BBH	5227:	BCC	2086);	Phetchaburi	Province,	Kaeng	
Krachan	District,	Kaeng	Krachan	National	Park,	KM.	15	on	road	to	Tor	Tip	
Waterfall,	N12.88°	E99.63°,	 on	weevil	 bug	 (Coleoptera, Curculionidae),	
2 June 2000, N.L. HywelJones	 (BBH	7769:	BCC	2676);	Mae	Hong	Son	
Province,	Mae	Hong	Son	Road	marker	KM.	5.7,	N19.30°	E97.97°,	on	earwigs	
(Dermaptera, Chelisochidae),	30	June	2002,	N.L. HywelJones & R.	Nasit, 
(BBH	16766:	BCC	12907);	Surat	Thani	Province,	Phanom	District,	Khao	
Sok	National	Park,	Sip	Et	Shin	Waterfall	Nature	Trail,	N8.99°	E98.63°,	on	
adult	beetle	(Coleoptera),	30	Sept.	2003,	K.	Tasanathai, N.L. HywelJones & 
S. Sivichai	(BBH	5353:	BCC	2120);	Phetchabun	Province,	Nam	Nao	District,	
Nam	Nao	National	Park,	Headquarter	Nature	Trail,	N16.74°	E101.57°,	on	
adult	leafhoppers	(Hemiptera, Cicadellidae),	30	June	2004,	B.	Thongnuch, 
K.	Tasanathai & W. Chaygate	 (BBH	10140:	BCC	16183);	Tak	Province,	
Umphang	District,	Umphang	Wildlife	Sanctuary,	Pi	Tu	Kro	Waterfall	(Preto	Lo	
Su),	N15.92°	E98.76°,	on	adult	longhorn	beetle	(Coleoptera, Cerambycidae),	
26	June	2008,	A.	Khonsanit, J.J.	Luangsaard, K.	Tasanathai, P.	Srikitikul
chai & S.	Mongkolsamrit	 (BBH	23918:	BCC	31618);	Nakhon	Ratchasima	
Province,	Pak	Chong	District,	Khao	Yai	National	Park,	Mo	Sing	To	Nature	
Trail,	N14.7116666666667	E101.421666666667,	 sexual	morph	emerging	
between	head	and	 thorax	 of	 adult	 click	 beetle	 (Coleoptera, Elateridae),	
18	June	2009,	N.L. HywelJones, K.	Tasanathai, R.	Ridkaew, S.	Mongkol
samrit & T.	Chohmee	 (BBH	38825:	BCC	36657);	Chanthaburi	Province,	
Khao	Soi	Dao	District,	Khao	Soi	DaoWildlife	Sanctuary,	N13.10°	E102.19°,	
on	longhorn	beetle	(Coleoptera),	21	Aug.	2009,	B.	Thongnuch, J.J. Luang
saard, K.	Tasanathai, P.	Srikitikulchai, S.	Mongkolsamrit & W. Chay 
gate	(BBH	14344:	BCC	18115);	Nakhon	Ratchasima	Province,	Pak	Chong	
District,	Khao	Yai	National	Park,	Mo	Sing	To	Nature	Trail,	N14.44°	E101.37°,	
on Coleoptera	larva	(Coleoptera),	27	Sept.	2011,	A.	Khonsanit, K.	Sansatcha
non, K.	Tasanathai, S. Mongkolsamrit & W.	Noisripoom	(BBH	32175:	BCC	
49762);	Chiang	Mai	Province,	Chiang	Dao	District,	Chiang	Dao	Wildlife	
Sanctuary,	Chiang	Dao	Wildlife	Research	Station,	N19.39°	E98.84°,	 on	
Lepidoptera	larva	(Lepidoptera),	5	Oct.	2012,	A.	Khonsanit, K. Tasanathai, 
P. Srikitikulchai, R.	Promharn & W.	Noisripoom	(BBH	38847:	BCC	56283);	
Chiang	Mai	Province,	Chiang	Dao	District,	Ban	Hua	Thung	Community	For-
est,	N19.39°	E98.84°,	on	adult	wasp	(Hymenoptera),	31	Oct.	2014,	A. Khon
sanit, D.	Thanakitpipattana, K.	Tasanathai, P.	Srikitikulchai, S.	Wongkanoun 
& W.	Noisripoom	(BBH	40622:	BCC	76509).

 Notes — Phylogenetically, B. thailandica is closely related 
to B. asiatica.	It	occurs	on	a	wide	range	of	insect	hosts.	Mor-
phologically, B. thailandica occasionally has smaller perithecia, 
shorter asci and ascospores as well as longer part-spores than 
B. asiatica (Table	3).	Detailed	statistical	analyses	showed	a	
significant	difference	in	terms	of	conidial	length	and	a	notable	
higher variation for the length and the width of phialides and 
conidia.

DISCUSSION

Beauveria	is	a	genus	with	many	cryptic	species.	There	has	been	
no comprehensive comparison between genetic, morphological 
and	chemical	data.	In	this	study,	our	objectives	were	to	assess	
the species status of genetic groups found within B. asiatica 
s.lat.	and	B. bassiana	 s.lat.	based	on	population	genomics,	
morphological	and	chemical	data.

Phylogenetics species criterion
The	intraspecific	genetic	groups	as	found	in	these	two	species	
complexes	by	Khonsanit	et	al.	(2020)	were	recovered	by	popu-
lation	genomics	data	in	this	study.	The	main	question	is	whether	
they	should	be	considered	as	distinct	species.	The	evolutionary	
species	concept	(ESC)	defines	a	species	as	‘a	single	lineage	
of ancestor-descendant populations which maintain its identity 
from other such lineages, and which has its own evolutionary 
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Fig. 8   Beauveria thailandica.	a.	Stromata	on	host	(Coleoptera	larva);	b–g.	fungus	on	the	hosts;	h.	fertile	head;	i.	perithecia;	j.	asci;	k.	asci	with	asci	caps;	 
l.	ascospore;	m.	part-spores;	n.	colony	obverse	on	PDA	in	10	d;	o.	colony	reverse	on	PDA	in	10	d;	p.	colony	obverse	on	PDA	in	20	d;	q.	colony	reverse	on	
PDA	in	20	d;	r–s.	phialides	and	conidia;	t.	conidia.	—	Scale	bars:	a,	n–q	=	10	mm;	b–g	=	5	mm;	h	=	1	mm;	i	=	200	µm;	j,	l	=	50	µm;	k,	r–t	=	5	µm;	m	=	10	µm.
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tendencies	and	historical	fate’	(Wiley	1978).	This	concept	is	not	
debated but is not an operational species delimitation criterion 
(De	Queiroz	2007,	Giraud	et	al.	2008).	For	fungi,	the	so-called	
phylogenetic	species	concept	(PSC)	is	an	operational	concept	
that has been predominant and proposed as the most consist-
ent	 to	ESC	(Taylor	et	al.	2000).	According	 to	 the	 theoretical	
concept related to the most common ancestor and descending 
progenies, PSC is naturally associated to the monophyly and 
consistency of clades across genes, which became the basis to 
phylogenetic	species	recognition	(PSR)	(Cracraft	1983,	Mishler	
&	Brandon	1987,	Mishler	&	Theriot	2000).	According	 to	 this	
criterion, B. asiatica	Clade	C,	Clade	Mixed	and	B. bassiana 
Clade	A–C	should	be	considered	as	distinct	species.	However,	
monophyly-based species recognition received also some criti-
cisms;	monophyly-based	species	recognition	cannot	apply	to	
asexual	species	because,	without	recombination,	all	lineages	
are	monophyletic	and	with	consistent	gene	genealogies.	Beau
veria	had	actually	long	been	thought	to	be	an	asexual	genus	
(Basalmo-Crivelli	1835).	Our	analyses	of	linkage	disequilibrium	
(LD)	decay	suggested	substantial	recombination	within	some	
of	these	clades,	which	is	consistent	to	observations	of	sexual	
morphs for several Beauveria species, including B. bassiana 
(Rehner	et	al.	2011,	Khonsanit	et	al.	2020).	The	phylogenetic	
networks which take into account reticulated evolution still 
showed	clear	separation	between	them.
However,	PSC	can	be	arbitrary	in	regard	of	the	limit	of	where	
to put species boundaries as any kind of molecular markers 
with polymorphisms would allow grouping individuals into 
monophyletic	clades	based	on	 their	 respective	alleles.	PSC	
was thus proposed to rely on the concordance between distinct 
gene	genealogies	(Avis	&	Ball	1990,	Baum	&	Shaw	1995),	re-
sulting in the genealogical concordance phylogenetic species 
recognition	 (GCPSR)	 criterion	 for	which	 the	 limit	 of	 species	
is placed where there is a transition from the concordance 
among branches connecting different species to the conflict 
between	branches	within	species	due	to	intraspecific	recom-
bination	(Taylor	et	al.	2000).	Some	fungal	species	were	in	fact	
erroneously	defined	based	on	only	concatenated	analysis	of	
multi-gene phylogenies without concordance between mark-
ers and any corroboration from morphological, chemical and 
ecological	data	(Liu	et	al.	2016).	Our	results	showed	that	the	
different genetic clades actually had high concordance factors 
except	for	B. asiatica	Clade	Mixed.	Except	for	this	latest	case,	
the clades as revealed by whole-genome data are thus sup-
ported	as	distinct	phylogenetic	species.

Insights from the chemotaxonomy and morphology
Chemotaxonomy	is	an	approach	of	classifying	and	identifying	
microorganisms based upon the similarities and differences 
in	 biochemical	 compositions.	 In	 filamentous	 fungi,	 chemo-
taxonomy	 in	 the	broadest	sense	usually	 involves	secondary	
metabolites	which	have	been	extensively	studied	particularly	
in Ascomycota.	Penicillium	was	the	first	asexual	genus	to	be	
chemotaxonomically	examined	(Frisvad	1981).	Therein,	thin-
layer	chromatographic	profiles	of	mycotoxins	 in	combination	
with	classical	 taxonomy	allowed	 the	 recognition	of	 four	new	
groups within Penicillium	 subg.	Penicillium.	 Later,	 several	
genera including Alternaria	(Andersen	et	al.	2008), Aspergillus 
(Frisvad	&	Samson	1990,	Samson	et	al.	2004,	Frisvad	&	Larsen	
2015), Talaromyces	(Frisvad	et	al.	1990),	Fusarium	(Thrane	&	
Hansen	1995,	Schmidt	et	al.	2004,	Zain	2010),	Stachybotrys 
(Andersen	et	al.	2003), Trichoderma	(Thrane	et	al.	2001)	and	
many	more,	were	subjected	to	chemotaxonomic	examinations	
showing	highly	species-specific	metabolic	profiles.	The	chemo-
taxonomic	concept	has	also	been	proven	to	be	successfully	ap-
plied	in	polyphasic	taxonomy	within	xylarialean	fungi	which	led	
to	the	discovery	of	potential	chemotaxonomic	markers	(Stadler	
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et	al.	2001a,	b,	2003,	2014,	Stadler	&	Hellwig	2005,	Kuhnert	et	
al.	2017,	Kuephadungphan	et	al.	2021).	For	instance,	sporothric	
acid, isosporothric acid and dihydroisosporothric acid appeared 
to	be	specific	to	Hypoxylon monticulosum	(Surup	et	al.	2014),	
viridistratin	A–C	to	Annulohypoxylon viridistratum	(Becker	et	al.	
2020),	Minutellins	A–D	to	Annulohypoxylon minutellum	(Kuh-
nert	et	al.	2017)	and	lenormandin	A–G	to	Hypoxylon jaklitschii 
and Hypoxylon lenormandii	(Kuhnert	et	al.	2015).
Considering Beauveria,	chemotaxonomy	was	adopted	and	ap-
plied	more	than	three	decades	ago	(Mugnai	et	al.	1989,	Bridge	
et	al.	1990),	revealing	chemical	profiles	corresponding	more	
or less to species based on morphological criteria, but were 
heterogeneous and overlapping between populations within 
species	(e.g.,	B. bassiana).	Recently,	Berestetskiy	et	al.	(2018)	
demonstrated	that	the	chromatographic	profiles	could	be	used	
to distinguish B. bassiana from B. pseudobassiana while Yin 
et	al.	(2020)	expressed	doubts	on	using	chemotaxonomy	for	
species	 identification	 in	Beauveria.	The	 latter	study	showed	
that, although the two species appeared to produce structurally 
different congeners of the cyclodepsipeptide beauveriolides, 
they also produced similar compounds found in fungi from other 
genera.	This	is	not	surprising	since	several	fungal	species,	not	
only Beauveria,	can	have	abundant	compounds	in	common.	
In our study, we found a discriminant pattern of secondary 
metabolites distribution between B. asiatica and B. bassiana, 
but	not	between	the	clades	within	each	species.	This	pattern	
reflected a conservation of all secondary metabolite gene 
clusters shared between most of the B. bassiana	s.lat.	strains	
while some were lost in B. asiatica	s.lat.	and	other	species.	
However,	between	 the	clades	within	each	species	complex,	
no	distinctive	discriminatory	pattern	was	found.
It	is	still	too	early	to	conclude	that	the	chemotaxonomic	concept	
has failed to discriminate these clades apart as the secondary 
metabolites	were	only	obtained	under	a	single	growth	condition.	
The	YMG	medium	used	in	our	study	has	been	proven	to	allow	
expression	 of	many	 species-specific	metabolites	 in	 various	
ascomycetes	and	is	even	used	to	reveal	the	existence	of	cryp-
tic	species	in	certain	genera,	i.e.,	Xylaria	(Stadler	et	al.	2003,	
Kuephadungphan	et	al.	2021).	The	metabolic	profiles	derived	
from	YMG	seemed	to	allow	discrimination	only	between	some	
Beauveria	species	in	our	study.	As	culture	media	composition	
has influences on secondary metabolite production, other media 
should	be	evaluated.	For	now,	it	can	thus	be	concluded	that	
the	metabolic	profiles	generated	under	these	conditions	could	
only be used to distinguish B. asiatica from other Beauveria 
species	with	some	exceptions.
Previous studies have shown that the size and the shape of 
conidia	can	be	used,	to	some	extent,	to	discriminate	between	
species but these characters were largely overlapping across 
species of Beauveria	 (Rehner	&	Buckley	 2005,	 Imoulan	 et	
al.	2017,	Khonsanit	et	al.	2020).	Our	study	revealed	that	the	
morphological differences among clades within B. asiatica and 
B. bassiana	were	much	less	evident	than	the	genomic	data.	
Nevertheless, the morphology, particularly the conidial length, 
was	 significantly	 different	 between	B. asiatica Clade C and 
Clade	Mixed	(conidial	length).	Altogether,	our	findings	support	
the idea that the two Beauveria species are composed of sibling 
species	with	similar	phenotypes,	i.e.,	cryptic	species.

Taxonomy
Given	the	evidence	discussed	above,	we	propose	B. bassiana 
Clade A and Clade B as new species, named as B. namnaoen
sis and B. neobassiana,	while	Clade	C	which	includes	the	ex-
type	strain	ARSEF1564	can	be	considered	as	B. bassiana	s.str.	
Regarding	B. asiatica	s.lat.,	the	Clade	Mixed	is	proposed	here	
as a new species, B. thailandica, and the Clade C containing 
the	ex-type	strain	ARSEF4850	remains	B. asiatica	s.str.	The	

description and photographic materials for the novel species are 
given	above	in	the	results.	These	species	are	largely	overlap-
ping	in	their	distribution,	e.g.,	sympatric	species	(Fig.	S4),	but	
are genetically well isolated with limited recombination between 
them.	Despite	lack	of	distinctive	distribution	pattern	of	second-
ary metabolites, the genomic, morphological and ecological 
data	supported	that	they	are	distinct	species.

Future studies
Investigating	the	sexual	compatibility	between	closely	related	
species	within	each	of	the	two	species	complexes	should	be	
conducted	in	future	to	assess	whether	they	could	fit	the	criterion	
of	 reproductive	 isolation	 for	 biological	 species	 (De	Queiroz	
2005).	Reproduction	mode	and	mating	systems	are	extremely	
variable	 in	 fungi,	 from	pure	 clonality	 to	 outcrossing	 sexual	
reproduction,	with	significant	implications	in	genetic	diversity	
and	adaptability	(Billiard	et	al.	2011,	Taylor	et	al.	2015).	Some	
studies in fungal pathogens have already shown that closely 
related	cryptic	species	could	be	intersterile	(e.g.,	Calonectria 
spp:	Lombard	et	al.	2010,	Li	et	al.	2020)	or	sexually	compatible	
with	post-mating	isolation	(e.g.,	Microbotryum	spp.:	De	Vienne	
et	al.	2009).	Beauveria	was	initially	proposed	to	be	an	asexual	
genus,	 i.e.,	being	present	naturally	only	under	asexual	 form	
(Basalmo-Crivelli	1835).	Sexual	reproduction	structures	could,	
however,	occasionally	be	observed	in	natural	habitats	(Sanjuan	
et	al.	2014,	Khonsanit	et	al.	2020).	Our	study	furthermore	sug- 
gested	some	extent	of	genetic	recombination	and	sexual	re-
production	in	all	the	newly	proposed	species.

CONCLUSIONS

Our	work	 showed	 that	whole-genome	sequence	data	 could	
provide strong support for intra-species genetic groups and be 
powerful	for	delimiting	species.	During	the	last	decade,	geno-
mics data have greatly contributed to the elucidation of species 
complexes	in	many	organisms	(Chan	et	al.	2017,	Cerca	et	al.	
2021)	 including	fungi	(Sepúlveda	et	al.	2017,	Kobmoo	et	al.	 
2019,	Matute	&	Sepúlveda	2019).	For	hypocrealean	entomo-
pathogenic fungi, such approaches should be particularly use-
ful as there are likely many cryptic species in different genera 
(Blackwellomyces and Cordyceps:	Mongkolsamrit	et	al.	2020b,	
Isaria:	Mongkolsamrit	et	al.	2018,	Metarhizium:	Mongkolsam-
rit	et	al.	2020a,	Ophiocordyceps:	Kobmoo	et	al.	2012,	2019,	
Araújo	et	al.	2018,	Khonsanit	et	al.	2019).	Many	 taxonomic	
studies were based on a few samples with a limited number 
of markers which has likely led to the underestimation of the 
diversity	in	this	fungal	group.	Combining	whole-genome	data,	
thorough	morphological	examination	with	statistical	analyses	
and	chemical	profiling	will	contribute	to	establish	a	solid	basis	
for	species	discovery	in	fungi.
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Fig. S1			Analyses	of	recombination	footprint	for:	a.	Beauveria asiatica;	b.	B. 
bassiana.	The	left	panel	represents	phylogenetic	networks	based	on	SNPs	
from	respective	species.	The	right	panel	represents	the	analyses	of	linkage	
disequilibrium	(LD)	decay.
Fig. S2			Liquid	 chromatography-mass	 spectrometry	 (LC-MS)	 profiles	 of	
mycelia	extracts	from	Beauveria asiatica and B. bassiana	species	complexes.
Fig. S3			Liquid	 chromatography-mass	 spectrometry	 (LC-MS)	 profiles	 of	
mycelia	extracts	from	Beauveria spp.	included	for	comparison	with	B. asiatica 
and B. bassiana.
Fig. S4			Distribution	map	of	Beauveria asiatica	s.lat.	(left	panel)	and	B. bassi
ana	s.lat.	(right	panel).
Table S1			List	of	Beauveria strains	used	in	the	study.	The	species	were	at-
tributed	according	to	previous	studies	or	routine	identification	in	our	laboratory.	
Specimens of B. asiatica were proposed to be a novel species, B. thailandica, 
while some of B. bassiana were proposed as new species, B. neobassiana 
or B. namnaoensis sp.	nov.,	based	on	phylogenomics	results.	
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Table S4			The	 results	 of	 statistical	 analyses	 on	morphological	 traits.	 a.	
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