Microcionid sponges from Northwest Africa and the Macaronesian Islands (Porifera, Demospongiae, Poecilosclerida)

R.W.M. van Soest, E.J. Beglinger & N.J. de Voogd

R.W.M. van Soest, E.J. Beglinger & N.J. de Voogd, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands (rob.vansoest@naturalis.nl).

Keywords: Porifera; sponges; taxonomy; Clathria; Antho; Artemisina; Northwest Africa; Macaronesia; Saharan Upwelling; Sahelian Upwelling.

A monographic treatment is presented of sponges belonging to the family Microcionidae occurring in Northwest African waters and around the offshore oceanic islands (Cape Verde Islands, Canary Islands, Madeira Archipelago, Azores, and Ascension Island). The material examined was obtained by Dutch expeditions to these waters during the period 1976-1988, complemented with a few additional samples, all of which are incorporated in the sponge collection of the Naturalis Biodiversity Center. In these collections we identified 29 microcionid species, including 17 species new to science, which are all extensively described and illustrated with SEM photos of the spicules, light microscopy photos of the skeletal structure, and photos of the habit of – usually preserved – specimens. The research was supported by re-examined type and other original specimens obtained on loan from major museum collections, and many additional illustrations of these specimens are added for comparison. We also reviewed published descriptions of sponge specimens from the study area, which we were unable to obtain for reexamination, and attempted to draw conclusions about their identity. We conclude that the microcionid fauna of the region comprises approximately 45-48 species (several of the unverified published records remain of uncertain identification), belonging to the genera Clathria (subfamily Microcioninae), Antho, Artemisina and Ophlitaspongia (subfamily Ophlitaspongiinae). Based on the review of this fauna, we propose to revive two previously synonymized subgenera, Clathria (Paresperia) Burton, and Antho (Placamia) Schmidt. We provide a key for the identification of microcionid species of the region. We discuss the morphological characters used to distinguish microcionid sponges and comment on distribution patterns.

Contents

Abstract .. 275
Introduction .. 277
Material and methods .. 277
Results .. 280
Systematic Descriptions .. 280
Family Microcionidae Subfamily Microcioninae ... 281
Genus Clathria ... 281
 Subgenus Clathria (Clathria) ... 281
 Clathria (Clathria) hjorti comb. nov. ... 281
 Comparison with C.(C.) coralloides ... 286
 Subgenus Clathria (Microciona) .. 292
 Clathria (Microciona) armata ... 292
 Clathria (Microciona) ascensionis spec. nov. .. 297
Clathria (Microciona) atoxa ... 299
Clathria (Microciona) aurea spec. nov. ... 301
Clathria (Microciona) bicleistochelifera spec. nov. 306
Clathria (Microciona) bitoxa ... 308
Clathria (Microciona) Boavistae spec. nov. 311
Clathria (Microciona) calloides spec. nov. 313
Clathria (Microciona) cancapseptima spec. nov. 316
Clathria (Microciona) capoerdenisis spec. nov. 320
Clathria (Microciona) conchicola spec. nov. 322
Clathria (Microciona) gorgadensis spec. nov. 325
Clathria (Microciona) spinarcus .. 329
Subgenus Clathria (Axosuberites) .. 331
Clathria (Axosuberites) papillata spec. nov. 331
Subgenus Clathria (Thalysias) ... 333
Clathria (Thalysias) minutoides spec. nov. 333
Clathria (Thalysias) vacata spec. nov. ... 336
Subgenus Clathria (Cornulotrocha) ... 338
Clathria (Cornulotrocha) cheliglomerata spec. nov. 338
Subgenus Clathria (Paresperia) .. 341
Clathria (Paresperia) anchorata ... 341
Additional Northwest African Microcioninae species 343
Subfamily Ophlitaspongiinae ... 351
Genus Antho .. 351
Subgenus Antho (Antho) ... 351
Revision of type species A(A.) involvens .. 352
Antho (Antho) atlantidae spec. nov. .. 357
Antho (Antho) mediterranea ... 359
Antho (Antho) morisca ... 362
Antho (Antho) nuda spec. nov. ... 366
Antho (Antho) paradoxa ... 368
Subgenus Antho (Acarnia) ... 372
Antho (Acarnia) elegans ... 372
Antho (Acarnia) signata ... 375
Subgenus Antho (Plocamia) .. 378
Antho (Plocamia) erecta .. 378
Antho (Plocamia) hallezi ... 382
Genus Artemisina ... 384
Artemisina incrustans spec. nov. .. 384
Artemisina melanoides spec. nov. ... 386
Additional Northwest African Ophlitaspongiinae species 388
Key to the species of Microcionidae occurring in Northwest Africa and
the Macaronesian Islands ... 392
Discussion .. 395
Taxonomic significance of morphological characters 395
Endemism in the region ... 397
Acknowledgements ... 398
References .. 399
Introduction

The sponge fauna of the Macaronesian islands is relatively well known with several monographic reports by Topsent (1892, 1904a, 1928), Boury-Esnault & Lopes (1985) and Cruz (2002). In contrast, sponges of the adjacent continental Northwest African coasts are poorly documented, with few recent publications and older papers usually based on wide-ranging expeditions with often only summary descriptions (Lendenfeld, 1907; Topsent, 1918, 1928; Arnesen, 1923; Lévi, 1952, 1956, 1959, 1960a; Burton, 1956; Van Soest, 1993a). Preliminary analysis (van Soest, 1993b) suggests that – next to some endemic taxa – the main affinity of the sponge fauna of Northwest Africa lies with the Lusitanian and Western Mediterranean faunas, with a minor affinity with the Tropical Western Atlantic.

Dutch expeditions in the 1980’s (CANCAP 1-7 and Mauritania II expeditions, see Van der Land, 1987, 1988) yielded ample materials from the Cape Verde Islands, the Canary Islands, the Madeira Archipelagoes, the Azores (collectively called the Macaronesian islands), and the coasts of Mauritania. Sponges were collected by various methods from shallow water down to >1000 m. This material is supplemented by older specimens collected by F.P. Vermeulen in Mauritanian and Senegalese waters and several samples from Ascension Island collected by R. Irving during the Oxford University Expedition to Ascension Island, ‘Operation Origin’, 1986. The combined collections contain sponges new to science and many interesting new finds of ill-known sponges. An ongoing series of reports on these sponges has the aim to bring our knowledge to a level comparable to that of the European regions; for details of already published contributions see Van Soest et al. (2012).

The present paper addresses the taxonomy of Northwest African species of the poecilosclerid family Microcionidae, including those of the Macaronesian islands. Until now, a total of 22 microcionid species considered valid have been reported from this area (see Van Soest et al. 2013). The collection treated here is dominated by species of the genera Clathria Schmidt, 1862 and Antho Gray, 1867, but including also a few species of Artemisina Vosmaer, 1885. Together the present collection comprises 29 species, but we will also briefly review species not found in the collection but reported from the region previously. For comparison, we studied Mediterranean and Caribbean specimens of microcionid species presumed conspecific with or closely related to Northwest African species, based largely on the examination of type and other original specimens.

Material and methods

Specimens were collected by wading, snorkeling, SCUBA, Van Veen grab, 1.2, 2.4 and 3.5 m Agassiz trawl and rectangular dredge during the CANCAP 1 (March 1976, Madeira), 3 (October 1978, Madeira and Mauritania), 4 (May-June 1980, Canary Islands and Madeira), 5 (June 1981, Azores), 6 (June 1982, Cape Verde Islands and Senegal) and 7 Expeditions (August 1986, Cape Verde Islands), on board of H.M.S. ‘Onversaagd’ and ‘Tydemann’, and Mauritania II Expedition (June 1988), on board of RV ‘Tyro’. See for details of stations Van der Land (1987, 1988). We also included material from the Gulf of Cadiz collected by boxcore during the Moundforce 2004 Expedition (organized
by the Royal Netherlands Institute for Sea Research at Texel) and the Belgian CADIPOR III Program. Marine Ecoregions (Spalding et al. 2006) in which the collecting activities of all treated samples were located are presented in fig. 1. All material was provisionally identified on board and subsequently preserved in 96% ethanol. Until recently, most of the material was incorporated in the collections of the Zoölogisch Museum of the University of Amsterdam (ZMA), but at present the ZMA collection is housed in the Naturalis Biodiversity Center at Leiden. A minor part of the studied specimens was incorporated in the collections of the Rijksmuseum van Natuurlijke
Historie at Leiden (RMNH), now also housed in the Naturalis Biodiversity Center. Precise collection data are provided with each treatment of the species below. To study the skeletal structure, thick sections were made by hand, air-dried on a hotplate and mounted in Canada Balsam. Stacked (automontage) light microscopy images of these thick sections were made using a Leica DM5500 microscope. For measurements of the spicules and SEM examination dissoluted spicule suspensions were made with concentrated sodium hypochlorite (NaClO), washed five times in distilled water and mounted on light microscopic slides and SEM stubs. Spicule measurements (minimum-mean-maximum) are based on 25 spicules of each category or type for each individual specimen, unless otherwise indicated. SEM photos of spicules were combined in plates, aligned, and cleaned using Photoshop CS3 licensed to R.W.M. van Soest.

Terminology.— Choanosomal skeletons in the family Microcionidae may be distinguished by descriptive terms partially derived from Lévi (1960a) and Hooper (1996: Fig. 1) as being ‘hymedesmioid’, ‘microcionid’, ‘renieroid’ or ‘plumo-reticulate’. These terms are not exact, and intermediate skeletal conditions are frequent, both among different species and within specimens belonging to the same species. Megascleres in Microcionidae usually consist of (1) ectosomal subtylostyles, (2) structural or principal styles, (3) echinating (acantho-)styles, and we will employ these terms in that order in most of the descriptions below. Occasionally distinctive variations of these may be described as a separate spicule type, e.g. derivates of subtylostyles with tylote or spined-mucronate endings where in normal condition the endings are gradually tapering to a point, which are here called quasitylotes following Hooper (1996). In Antho species the basal reticulation is usually made up of short (acantho-)styles or (acantho-)strongyles, but several species have ‘dumbbell’ shaped spicules (thick acanthotylotes) which take the position of (and are probably derived from) acanthostrongyles. Microscleres usually consist of toxas, in one or more distinct shapes, which were named by Hooper (1996: Fig. 6) ‘oxhorn’, ‘wing-shaped’, ‘accolada’, ‘oxeote’ and ‘(sinuous) raphidiform’ toxas, and palmate isochelae named ‘typical’ and ‘contorted’ (where the upper and lower alae are not arranged in one plane). In addition to these toxas terms and chelae terms proposed by Hooper (1996), we will employ the term ‘strepsitoxas’ for long thin toxas with a spiral twist in the curvature, and the term ‘cleistochelae’ (cf. Topsent, 1925) for chelae in which the free alae from opposite sides (almost) touch and the shaft has a plate-like ridge (almost) filling the space between the alae.

Higher taxa classification (subfamilies, genera, subgenera) follows the Systema Porifera (Hooper, 2002 in Hooper & Van Soest, 2002). Definitions of subfamilies and (sub-)genera are to be taken as conforming to those in the Systema Porifera, and are not repeated here unless they are proposed to be changed or revived, in which case an emended definition is provided. The order in which the species are treated is alphabetical within the respective (sub-)genera.
Results
Systematic descriptions

Phylum Porifera
Class Demospongiae
Order Poecilosclerida
Suborder Microcionina
Family Microcionidae

The family Microcionidae was extensively reviewed by Hooper (1996, 2002). The genus *Clathria* Schmidt, 1862 is relatively well-studied in the Mediterranean and along the North East Atlantic coasts of Europe (see e.g. Topsent, 1925; Sarà, 1958, 1959; Sarà & Siribelli, 1960; Lévi, 1960a; Pulitzer-Finali, 1983; Ackers et al. 1992; Van Soest et al. 2000), but not well-known from Northwest Africa. For instance, in a preliminary overview Van Soest (1993b: table 4) lists 14 unidentified *Clathria* species from the Cape Verde islands alone. Many species are encrusting, small, and their descriptions appear to show considerable overlap or uncertain differences with Mediterranean and northern species. The taxonomy of some species groups, e.g. those with long thin toxas, appears confused and may need extensive revision, which unfortunately exceeds the limits of the present study. The genus is subdivided into eight subgenera in the Systema Porifera, one of which, encrusting *Clathria (Microciona)* Bowerbank, 1862, is dominating in the region. Subgenera *Clathria (Clathria)*, *Clathria (Thalysias)* Duchassaing & Michelotti, 1864, and *Clathria (Axosuberites)* Topsent, 1893 have only few species in the region. Below, we report the occurrence in the study area of *Clathria (Cornulotrocha)* Topsent, 1927, known so far from a seamount off the coast of Portugal. The remaining subgenera (*Wilsonella* Carter, 1885, *Dendrocia* Hallmann, 1920, *Isociella* Hallmann, 1920) are not represented in our material. We propose here to revive a ninth subgenus, *Paresperia* Burton, 1930, erected for type species *P. intermedia* Burton, 1930, a junior synonym of *Clathria anchorata* Carter, 1874, which is reported from the present region. This was assigned with hesitation to the synonymy of *Clathria (Clathria)* by Hooper (2002), but its characters deviate considerably from that group necessitating recognition as a separate subgenus. Several species were found to be morphologically close or virtually indistinguishable from Caribbean species. These are described as separate species on very small differences based on the assumption that further non-morphological differences likely exist between populations separated by the depths of the Atlantic Ocean. An important substratum of *Clathria (Microciona)* species in Mauritanian waters are living or recently dead gastropods (see also Van Soest, 1993a), with at least four species occurring on these. In Cape Verdian waters limestone conglomerates such as living or dead coralline algae are the main substratum for such thin *Clathria* species.

The genus *Antho* Gray, 1867 is also well-known in adjacent areas of the North East Atlantic and Mediterranean, and so far three subgenera are distinguished (Hooper, 2002), two of which are common in the region: *Antho (Antho)* comprises species with (acantho-)styles and/or -strongyles making up a basal renieroid reticulation but they lack a category of echinating acanthostyles. *Antho (Acarnia)* Gray, 1867 has similar structure but its species possess echinating acanthostyles. The third subgenus, *Antho (Isopenectya)* Hallmann, 1920 with axial compressed skeleton without microscleres, has not
been found in the region so far. The distinction between *Acarnia* and *Antho* is practical, but the possession or lack of echinating acanthostyles is probably of little phylogenetic significance. Both subgenera contain species possessing dumbbell-shaped diactinal spicules, formerly assigned to the genus *Plocamia* Schmidt, 1870 (with type species the West Indian *P. gymnazusa* Schmidt, 1870). Northwest African waters were found to contain several of such species and this opportunity is taken to erect a separate fourth infrageneric taxon, *Antho* (*Plocamia*) for them.

Finally, we report the presence of species of the genus *Artemisina* Vosmaer, 1885, known from several Western European and Arctic records, but so far not described from West African waters. The genus is recognizable by a reduction of megasclere diversity and lack of echinating styles.

Subfamily Microcioninae

Genus Clathria Schmidt, 1862

Subgenus Clathria Schmidt, 1862

Clathria (*Clathria*) *hjorti* (Arnesen, 1932) comb. nov.

(figs 2, 3A-D, 4A-J)

Echinoclathria hjorti Arnesen, 1932: 21, pl. II fig. 5; pl. V fig. 3; Hooper, 1996: 482 (holotype deposition cited incorrectly as Uppsala Museum, Sweden).

Dictyoclathria morisca; Lévi, 1959: 134, pl. 5 fig. 1, text-fig. 27 (not: Schmidt, 1868)

Clathria coralloides sensu Van Soest, 1993b: table 2 (not: Scopoli, 1772: 412, pl. 64 fig. 1455); nec Boury-Esnault & Lopes, 1985: 194, fig. 43 (see below).

Not: *Ophlitaspongia hjorti*; Burton, 1959a: 43.

Material.— Holotype (ZMUB 25643), Morocco, off Cape Bojeador (Boujdour), 26.1°N 14.55°W, 39 m, trawl, Michael Sars Expedition stat. 37, 20.v.1910; (ZMA Por. 05050), Mauritania, off Cap Blanc, 20.7°N 17.1667°W, 11-35 m, F.P. Vermeulen, 1906; (ZMA Por. 06605), Mauritania, S of Cap Timiris, 18.8333°N 16.3667°W, 26 m, sandy bottom with shells, 1.2 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 18/02, 8.vi.1988; (ZMA Por. 06741), Mauritania, off Banc d’Arguin, 20.0°N 17.15°W, 20 m, sandy bottom, 1.2 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 63/05, 8.vi.1988; (ZMA Por. 06778), Mauritania, off Banc d’Arguin, 20.0°N 17.4°W, 48-52 m, muddy sand bottom, 3.5 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 72/17, 13.vi.1988; (ZMA Por. 09958), Mauritania, off Cap Blanc, 20.7°N 17.1667°W, 11-35 m, F.P. Vermeulen, 1906; (ZMA Por. 09964), Senegal, J.J. Vermeulen, Plancius Expedition 1986; (ZMA Por. 09965), Mauritania, off Cap Blanc, 20.7°N 17.1667°W, 11-35 m, F.P. Vermeulen, 1906; (ZMA Por. 09967), Mauritania, off Cap Blanc, 20.7°N 17.1667°W, 11-35 m, F.P. Vermeulen, 1906; (ZMA Por. 17561), ‘Gulf of Guinea’, old collection.

Examined for comparison.— (LMJG 15236), Schmidt fragments of *Clathria coralloides* (see Desqueyroux-Faúndez & Stone, 1992: 9, pl. 25 figs 145-149); (MNHN LBIM D.T. 331 and 332) *Clathria coralloides*, Naples, 1920, Topsent collections, 3 slides; (RMNH 266) Triest, Italy, North Adriatic Sea; type and fragment (RMNH Por. 274 and 275), *Clathria coralloides var. molissima* Vosmaer, 1880, Gulf of Genoa, Italy; type and fragments (RMNH Por. 271, 272, and 273), *Clathria coralloides var. ceratodes* Vosmaer, 1880, Gulf of Genoa, Italy; (ZMA Por. 09944), *Clathria* (*Clathria*) *coralloides*, Adriatic, Croatia, Dalmatia, Splitski Canal, 43.45°N 16.7167°E, 50-60 m, trawl, Excursion Yugoslavia 1954, 7.v.1954; holotype (MNHN LBIM D.T. 764), *Desmacidon arctiferum* Schmidt, 1868, Exploration scientifique de l’Algérie, 1868.
Fig. 2. Holotype (ZMUB 25643) of *Echinoclathria hjorti* Arnesen, 1932, reassigned to *Clathria (Clathria) hjorti* comb. nov. (scale bar = 1 cm).
Fig. 3. Clathria (Clathria) hjorti comb. nov. (ZMA Por. 06605), A, on deck photo of specimen trawled from 26 m depth off Cape Timiris during the 1988 Mauritania II Expedition, photographed immediately after collection by W. Kolvoort (scale bar = 1 cm), B, the same after preservation (scale bar = 1 cm), C, light microscopy photo of choanosomal skeleton (scale bar = 200 µm), D, ditto of peripheral skeleton.
Fig. 4. *Clathria (Clathria) hjorti* comb. nov., A-E, SEM images of the spicules of holotype (ZMUB 25643), A, structural style, A1, details of head and pointed end, B, subtylostyle, B1, detail of head and pointed end, C-C1, larger and smaller echinating styles, C2, detail of head of C1, D, tox, E, cleistochela, F-G, SEM images of the spicules of Mauritania specimen (ZMA Por. 06605), F, structural style, F1, details of head and pointed end, G, subtylostyle, G1, detail of head and pointed end, H-H1, larger and smaller echinating styles, I, tox, J, cleistochela.
Description.— Bright red bushes made up of thick branches with irregular outline, dividing, anastomosing and coalescing from a thick stem. The holotype (fig. 2) is 24 cm high and 18 cm wide, consisting of five partly flattened anastomosing branches dividing into one plane. Additional specimens, including ZMA Por. 06605 which was examined and photographed freshly collected on-deck (fig. 3A), may vary from 5 up to 30 cm high and 6 up to 40 cm wide, and may be dividing three-dimensionally. Individual branches in the upper part approximately 1 cm in diameter, usually blunt-ending, occasionally tapering to a thinner apex, near the substratum up to 2 cm or more in diameter, forming flattened basal masses by anastomosis of several individual branches. Stem of holotype 4 cm diameter, but almost absent in other specimens. Branches occasionally with short stubby side branches. No apparent oscules but surface distinctly punctate (fig. 3B), uneven, hispid. Consistency firm, corky.

Skeleton.— Anisotropic rectangular- to plumose reticulation of spongin fibers cored and echinated by fusiform thick styles (fig. 3C). Meshes of the skeleton variable, 600 × 250 µm to 200 × 300 µm, ascending fibers 60-120 µm in thickness cored by three or more spicules in cross section; connecting fibers 20-90 µm in thickness mostly uncored. Both ascending and connecting fibers echinated sparingly by short fusiform (acantho-)styles (fig. 3D).

Spicules.— (figs 4A-J) Subtylostyles, coring styles, echinating (acantho)styles, toxas, palmate cleistocheleae.

Subtylostyles (figs 4B, G), straight, with elongate microspined, heads, quite variable in size, 122-238.0-324 × 2-3.1-7 µm.

Principal coring styles (figs 4A, F), smooth, thick, fusiform, curved, subterminal constriction common, quite variable in size within a single specimen, overall size 136-336.8-726 × 16-21.1-36 µm.

Echinating styles (figs 4C, H), thick, fusiform, subterminally constricted, not clearly morphologically distinct from coring styles, but the ornamentation of the heads is variable: occasionally spined or warty (figs 4C1-2, H1), occasionally only rugose or entirely smooth, shaft smooth or rarely with a few spines, 72-123.8-204 × 6-10.2-22 µm.

Toxas (figs 4D, I), wing-shaped, with shallow angular curvature and upturned apices, in a large size variation (smaller-thinner to larger-thicker), but not readily divisible into distinct categories, 18-68.9-135 µm.

Palmate isochelae (figs 4E, J), invariably cleistocheleate, alae almost touching, with space between the alae filled in with a blade-like extension of the shaft, 14-16.6-21 µm.

Ecology.— On sandy bottom, at 10-52 m depth.

Distribution.— Morocco, Western Sahara, Mauritania, Senegal; “Gulf of Guinea” (old collection); possibly Northern Spain (Solórzano, 1991 as C. coralloides, but no description provided).

Remarks.— Arnesen (1932: 22, left hand column) describes and pictures (his pl. 5 fig. 3) strongylote forms of the structural styles, but these were not observed by us, and most likely constitute a rare deviation of the styles. Arnesen failed to notice the cleistocheleate condition of the chelae, which is indeed not easy to observe under light microscopy. Lévi’s (1959) record of Dictyoclathria morisca from Rio de Oro (depth 43-45 m, between approximately 21° and 26°N, Western Sahara, near the type locality of C. (C.) hjorti comb. nov.), conforms in all aspects to the present species, with long thick branches (up to 25 cm high and 1.5 cm in diameter), subtylostyles up to 275 × 4 µm, long
smooth styles up to 650 × 30 µm, smaller smooth echinating styles of 120 × 12 µm, shallow-angled wing-shaped toxas of 40-120 µm, and palmate isochelae, with alae drawn as nearing each other closely, 14-18 µm. Burton (1959a: 43) reported the present species (as *Ophlitaspongia* Bowerbank, 1866) from the deep sea (down to 913 m) W of Iceland without sufficient description (‘the skeleton varies in the usual way’). It is unlikely that this record is correct, but this needs to be verified.

Initially the Mauritanian material was assigned to the Mediterranean species *Clathria (Clathria) coralloides* (Scopoli, 1772) (see Van Soest, 1993b: table 2) because of its similarity to it. Both species consist of anastomosed red branches with rectangular spongin skeletons, and they lack a separate category of echinating acanthostyles, instead of which shorter versions of the structural styles take up that position. The present holotype and the ZMA West African material possess wing-shaped toxas with a shallow curvature, with upturned smooth apices, and in a large size range. In the fragments from Schmidt’s collection of *C. coralloides* from the Adriatic (figs 5C, 6A-E), and in type specimens of *C. coralloides* var. *mollis* Vosmaer, 1880 (fig. 5A) and *C. coralloides* var. *cera­todes* Vosmaer, 1880 from Naples and Genoa, toxas are absent. Still older records of *C. (C.) coralloides* (Spongia coralloides Scopoli, 1772: 412, and Olivi, 1792: 264; Spongia clath­rus Esper, 1794: 200, pl. 9 figs 1-2; Grantia coralloides Nardo, 1833: 522; Halichondria co­rona Lieberkühn, 1859: 521, pl. XI fig. 3) do not provide sufficient spicular information (if any at all). Pansini (1987: 48, figs 5-6) also remarked that toxas were absent in his specimens from the Adriatic. Finally, a specimen from the Splitski Canal kept in ZMA (Por. 09944, figs 5B, 6F-I) also did not contain any toxas. However, Babic (1922, as *Clath­ria seriata*) described a *C. (C.) coralloides*-like sponge with toxas, and Topsent (1925) also described under the name *C. coralloides* from Naples a ramose specimen(s) with branches 1-2 mm in diameter possessing toxas. Later, Topsent (1938: 15) redescribed the holotype of *Desmacidon arciferum* Schmidt, 1868 as junior synonym of *Clathria coralloides*, likewise with toxas. We borrowed the type of *Desmacidon arciferum* (see fig. 7A) and made sections (fig. 7B) and SEM images of the spicules (figs 7C-G), and this has abundant toxas. Pulitzer-Finali (1983: 569) also found abundant toxas in encrusting Mediterranean specimens assigned by him to *Clathria coralloides*. Possibly all the records with toxas belong to *C. (C.) arcifera* comb. nov. and/or *C. (C.) hjorti* comb. nov. rather than to *C. (C.) coralloides*, and ultimately this could mean that *C. (C.) arcifera* comb. nov. is a senior synonym of *C. hjorti* comb. nov.

Since no neotype designation of *C. coralloides* has been made so far and the descriptions of *C. (C.) coralloides* differ among authors (and may well include misapplied identifications), it is not easy to pinpoint absolute differences with *C. (C.) hjorti* comb. nov. We provide images and SEMs of the spicules of selected Mediterranean *C. (C.) coralloides* specimens (see figs 5-6), which all lack toxas, and the holotype of *Desmacidon arciferum* (fig. 7) as a representative for *C. (C.) coralloides*-like specimens possessing toxas, to facilitate comparison with the *C. (C.) hjorti* comb. nov. We examined three MNHN slides, (LBIM nrs. D.T. 331 (2 slides) and 332), labeled ‘Clathria coralloides O. Schmidt, Naples 1920’, presumably these are from the specimen(s?) described by Topsent (1925: 645), but remarkably no toxas were found in these slides, while Topsent gives measurements and a drawing of toxas, stating that these were rare in certain individuals but rather abundant in others. Spicule size data of all examined specimens and additional literature data are presented in Table 1. The major difference between the *C. (C.) hjorti*
comb. nov. specimens and the C. (C.) coralloides s.l. specimens is a matter of grade: the size and thickness of the branches, which in typical C. (C.) coralloides usually are only a few mm in diameter (up to 6 mm), whereas they are up to 2 cm thick in the present material. The bushes of C. (C.) coralloides are much more crowded and denser anasto-
Fig. 6. *Clathria (Clathria) coralloides* from the Adriatic Sea, A, one of Schmidt’s 1862 specimens (LMJG 15336), reproduced from Desqueyroux-Fauández & Stone, 1992, figure 145 (scale bar = 1 cm), B-E, SEM images of the spicules from LMJG 15336, B-B1, structural style and detail of head and pointed end, C-C1, echinating style and detail of head, D-D1, ectosomal subtylostyle and detail of head, E, cleistochela, F-I, SEM images of the spicules of (ZMA Por. 09944), F-F1, structural style and detail of head and pointed end, G-G1, echinating style and detail of head and pointed end, H-H1, ectosomal subtylostyle and detail of head, I, cleistochela.
Fig. 7. *Clathria (Clathria) arcifera* (Schmidt, 1868 as *Desmacidon*) comb. nov. from Algeria, A, habitus of remaining fragment of holotype (MNHN D.T.764) and labels (scale bar = 1 cm), B, cross section of peripheral skeleton (scale bar = 200 µm), C-G, SEM images of spicules, C-C1, structural style and detail of head and pointed end, D-D1, ectosomal subtylostyle and detail of head and pointed end, E-E1, echinating style and detail of head and pointed end, F, tox, G, cleistochela.
Table 1. Data on morphology and spicule sizes of studied specimens of the ‘Clathria (Clathria) coralloides complex’ (including *Clathria hjorti*, *Clathria coralloides* and *Clathria arcifera*). Abbreviations. — msp = microspined heads, sm = smooth, sp = spined.

<table>
<thead>
<tr>
<th>specimen</th>
<th>proposed name</th>
<th>subtylostyles (µm)</th>
<th>coring styles (µm)</th>
<th>echinating styles (µm)</th>
<th>to×as (µm)</th>
<th>cleistochelae (µm)</th>
<th>habit</th>
<th>locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZMA Por 05050</td>
<td>hjorti</td>
<td>192–276 × 2,5–4 (msp)</td>
<td>360–600 × 26–32 (sm)</td>
<td>78–186 × 9–22 (sm)</td>
<td>41–91</td>
<td>17–20</td>
<td>arborescent-anastomosing</td>
<td>Mauritania</td>
</tr>
<tr>
<td>ZMA Por 06778</td>
<td>hjorti</td>
<td>186–315 × 2–7 (msp)</td>
<td>231–558 × 22–27 (sm)</td>
<td>84–168 × 8–14 (sm+sp)</td>
<td>16–96</td>
<td>16–18</td>
<td>arborescent</td>
<td>Mauritania</td>
</tr>
<tr>
<td>ZMA Por 09958</td>
<td>hjorti</td>
<td>159–306 × 2–6 (msp)</td>
<td>211–468 × 18–25 (sm)</td>
<td>84–156 × 6–12 (sm+sp)</td>
<td>51–69</td>
<td>14–17</td>
<td>arborescent</td>
<td>Mauritania</td>
</tr>
<tr>
<td>ZMA Por 09964</td>
<td>hjorti</td>
<td>159–306 × 2–6 (msp)</td>
<td>211–468 × 18–25 (sm)</td>
<td>87–156 × 6–12 (sm+sp)</td>
<td>51–61</td>
<td>14–17</td>
<td>arborescent</td>
<td>Senegal</td>
</tr>
<tr>
<td>ZMA Por 09967</td>
<td>hjorti</td>
<td>162–309 × 2–5 (msp)</td>
<td>197–573 × 18–36 (sm)</td>
<td>90–149 × 7–11 (sm+sp)</td>
<td>18–114</td>
<td>18–21</td>
<td>arborescent</td>
<td>Mauritania</td>
</tr>
<tr>
<td>ZMA Por 17561</td>
<td>hjorti</td>
<td>153–318 × 2,5–4 (msp)</td>
<td>136–456 × 20–26 (sm)</td>
<td>93–126 × 7–12 (sm+sp)</td>
<td>33–89</td>
<td>19–20</td>
<td>arborescent</td>
<td>Gulf of Guinea</td>
</tr>
<tr>
<td>Lévi, 1959* morisca</td>
<td>hjorti</td>
<td>up to 275 × 4</td>
<td>up to 650 × 30 (sm)</td>
<td>120 × 12 (sm)</td>
<td>40–120</td>
<td>14–18</td>
<td>thick branches</td>
<td>Western Sahara</td>
</tr>
<tr>
<td>LMJG 15236</td>
<td>coralloides</td>
<td>194–391 × 1–4 (sm)</td>
<td>198–558 × 14–21 (sm)</td>
<td>105–174 × 8–16 (sm)</td>
<td>not found</td>
<td>18–22</td>
<td>arborescent bush</td>
<td>Adriatic</td>
</tr>
<tr>
<td>ZMA Por 09942</td>
<td>coralloides</td>
<td>183–426 × 1,5–4 (sm)</td>
<td>198–462 × 13–20 (sm)</td>
<td>93–138 × 6–14 (sm)</td>
<td>not found</td>
<td>17–18</td>
<td>arborescent bush</td>
<td>Adriatic</td>
</tr>
<tr>
<td>ZMA Por 09944</td>
<td>coralloides</td>
<td>153–402 × 1,5–3,5 (sm)</td>
<td>213–474 × 15–21 (sm)</td>
<td>93–144 × 7–13,5 (sm)</td>
<td>not found</td>
<td>16–19</td>
<td>arborescent bush</td>
<td>Adriatic</td>
</tr>
<tr>
<td>Coralloides sensu Pansini, 1987*</td>
<td>coralloides</td>
<td>245–460 × 1,5–6</td>
<td>115–450 × 7–18 (sm)</td>
<td>present</td>
<td>not found</td>
<td>10–15</td>
<td>lobes and branches</td>
<td>Adriatic</td>
</tr>
</tbody>
</table>
Table 1. Data on morphology and spicule sizes of studied specimens of the ‘Clathria hjorti, Clathria coralloides’ complex (including Clathria arcifera specimen proposed subtylostyles coring echinating to as cleistochelae habit locality name (µm) styles (µm) styles (µm) (µm) (µm) (µm)

- *hjorti* × 2.5–4 (msp) × 26–32 (sm) × 9–22 (sm) anastomosing ZMA Por.06605

- *hjorti* × 2.5–3 (msp) × 21–31 (sm) × 12–20 (sm) anastomosing ZMA Por.06741

- *hjorti* × 2–5 (msp) × 18–26 (sm) × 7–11 (sm+sp) flabellate 186–315 231–558 84–168 16–96 16–18 arborescent Mauritania

- *hjorti* × 2–7 (msp) × 22–27 (sm) × 8–14 (sm+sp) ZMA Por.09958

- *hjorti* 159–306 211–468 84–156 51–69 14–17 arborescent Mauritania

- *hjorti* × 3–4 (msp) × 18–32 (sm) × 9–15 (sm+sp) ZMA Por.09967

- *hjorti* × 2–5 (msp) × 18–36 (sm) × 7–11 (sm+sp) ZMA Por.09965

- *hjorti* × 4 × 30 (sm) × 12 (sm) ZMA Por.09967

- *coralloides* 194–391 198-558 105-174 not 18–22 arborescent bush Adriatic

- *coralloides* × 1.5–4 (sm) × 13–20 (sm) × 6–14 (sm) found ZMA Por.09944

- *coralloides* 153–402 213–474 93–144 not 16–19 arborescent bush Adriatic

- *coralloides* × 1.5–3.5 (sm) × 15–21 (sm) × 7–13.5 (sm) found MNHN D.T. 331 & 332

- *coralloides* × 1.5–3 (sm) × 5–17 (sm) × 4–9 (sm) found coralloides sensu coralloides Pansini, 1987* × 1.5-6 × 7-18 (sm) found MNHN D.T. 764

- *arcifera* 155-165 175-215 80-135 60–75 15 massive Algeria

- *arcifera* × 3 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm)

- *arcifera* MNHN D.T. 1764

- *arcifera* × 4 × 30 (sm) × 12 (sm) LMJG 15236

- *arcifera* × 1.5–6 × 7–18 (sm) found MNHN D.T. 764

- *arcifera* × 2-5 (msp) × 12-15 (sm) sensu seriata Babiç, 1922* × 4-22 (sm) × 5-20 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm)

- *arcifera* sensu arcifera Pulitzer-Finali, 1983* × 2-4 × 13-21 (sm) × 8-18 (sm) × 5-22 (sm) × 8-14 (sm) × 2-14 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm)

- *arcifera* Babiç, 1922* × 1.5–4 × 8–15 (sm) × 2–14 (sm) × 5-22 (sm) × 8-14 (sm) × 2-14 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm)

- *arcifera* MNHN D.T. 1764

- *arcifera* × 4 × 30 (sm) × 12 (sm) LMJG 15236

- *arcifera* × 1.5–6 × 7–18 (sm) found MNHN D.T. 764

- *arcifera* × 2-5 (msp) × 12-15 (sm) sensu seriata Babiç, 1922* × 4-22 (sm) × 5-20 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm)

- *arcifera* sensu arcifera Pulitzer-Finali, 1983* × 2-4 × 13-21 (sm) × 8-18 (sm) × 5-22 (sm) × 8-14 (sm) × 2-14 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm)

- *arcifera* Babiç, 1922* × 1.5–4 × 8–15 (sm) × 2–14 (sm) × 5-22 (sm) × 8-14 (sm) × 2-14 (sm) × 7-12 (sm) × 4-9 (sm) × 5-15 (sm) × 2-14 (sm)

- *arcifera* MNHN D.T. 1764
are ‘typical’ in the first two. *C. (C.) axociona* is similar to *C. (C.) hjorti* comb. nov. in the spicule morphologies and sizes, but palmate isochelae are large (22-26 µm), not overlapping in size with those of the present species. *C. (C.) parva* is dissimilar in spicule characters, e.g. by having spined endings on the toxas and very small echinating acanthostyles. Perhaps the most similar species is Namibian *C. (C.) tortuosa*, because it has cleistochelae, and skeletal structure and spiculation generally similar to that of the present species. Points of difference are the larger and thicker styles with spined or rugose heads, longer subtylostyles with apparently smooth heads, and two distinct size classes of toxas. Finally, considerable similarity is also found in *Ophlitaspongia dichotoma* Lévi, 1963 (assigned to *Echinoclathria* by Hooper, 1996), which shares the habit and smooth fusiform styles with *C. (C.) hjorti* comb. nov.; however, it has no chelae and the toxas are up to 7 µm thick.

The present species is transferred to the genus *Clathria* subgenus *Clathria*, because the skeleton is plumoreticulate, not renieroid. Hooper (1996) kept the species in *Echinoclathria*, because the original description in Arnesen (1932) is ambiguous with respect to the skeletal structure. The skeleton of the species is virtually indistinguishable from that of *C. (C.) coralloides*, kept in *Clathria* (*Clathria*) by Hooper (1996). Lévi (1963) suggested that this species along with *C. (C.) axociona* and several other species (*Clathria transiens* Hallmann, 1912 and *Ophlitaspongia minor* Burton, 1959) are part of a group of species intermediate between *Clathria* and *Ophlitaspongia* by their lack of a special category of spined acanthostyles.

The cleistochelate condition of the palmate isochelae is shared with encrusting *C. (Microciona) cleistochela* Topsent (1925), originally described from Naples and other localities in the Mediterranean, but subsequently recorded from the Azores (Boury-Esnault & Lopes, 1985) and the Canary Islands (Cruz, 2002). The species is so far only known as thin crusts, and the echinating spicules are a clearly separate category of acanthostyles, not modified or shorter versions of the coring styles. The same arguments are valid for *Clathria (Microciona) tunisiae* Hooper, 1996 (= *chelifera* sensu Lévi, 1960a), which is very similar to *C. (M.) cleistochela*, differing only in spicule sizes. Skagerrak species *C. (M.) elliptichela* Alander, 1942 also has cleistochelae. Below, we describe two additional encrusting species with cleistochelae. The similarity in chela micromorphology between all the mentioned species is striking and indicates the existence of a possibly related group of species in the Atlantic region transgressing the subgenus boundaries.

Subgenus *Microciona* Bowerbank, 1862

Clathria (Microciona) armata (Bowerbank, 1862)
(figs 8A-C, 9A-E)

Clathria atrasanguinea; Van Soest, 1993a: 103, plate 1 fig. E, Table 1 (not: *Microciona atrasanguinea* Bowerbank, 1862).
Material.— (ZMA Por. 06555, photo Fig. 8A), Mauritania, Baie de Cansado, on shipwreck, 20.9°N 17.0333°W, 0-6 m, snorkeling, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 03/03, 6.vi.1988; (ZMA Por. 06559), Mauritania, Baie de Cansado, on shipwreck, 20.9°N 17.0333°W, 0-6 m, snorkeling, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 03/08, 6.vi.1988; (ZMA Por. 06571), Mauritania, E coast of Cap Blanc, 20.7833°N 17.05°W, 0-2 m, snorkeling, R.W.M. van Soest & J.J.

Examined for comparison.— Holotype (BMNH 1930.7.3.210), Microciona armata Bowerbank, 1862, dry red-brown encrustation on mussel shell, labeled TYPE, Loc: Strangford Lough, Dr Dickie (15), and three slides made from the type, #R1844 labeled Microciona Dickie no. 15, section at right angles to surface, TYPE Strangford Lough’, #R1845 labeled ‘New Microciona species No. 15, Dickie’s specimen no. 23, dermal membrane, Strangford Lough’, and #R1846, labeled ditto, with ‘spicules’ in stead of ‘dermal membrane’ (see photos Figs 8D-F); (RMNH Por. 265), O. Schmidt fragment presumably obtained by Vosmaer and labeled ‘Microciona prolifera (Ell. & Sol.) (?type v Scopalina toxotes O.S.), Mus. Graz, coll. G.C.J. Vosmaer R94, Adria’; (ZMA Por. 14133), Clathria (Microciona) armata, France, Roscoff, Ar Tourtu, 46.688°N 3.884°W, 20 m, M.J. de Kluijver, SYMBIOSPONGE 98/FR/SEP15/MK049, 15.ix.1998; holotype spicule slide (MNHN LBIM D.T.328, #56a=71bis), Clathria gradalis Topsent, 1925, Naples.

Description.— Encrusting dead and live gastropods (fig. 8A), bivalves (mussels), dead shells and limestone ridges in shallow water. Size depending on substratum, up to 5 cm in lateral expansion, thickness approximately 1 mm. Colour various shades of orange and red. Surface finely hispid.

Skeleton.— (figs 8B-C) Microcionid, with plumose spongin-enforced spiculofibers cored by choanosomal styles with warted heads, echinated by relative robust acantho-
Fig. 9. *Clathria (Microciona) armata* (Bowerbank, 1862), SEM images of spicules, A-E, Mauritanian specimen (ZMA Por. 15347), A-A1, structural style and detail of head and pointed end, B-B1, ectsosomal subtylostyle and detail of head and pointed end, C, echinating acanthostyle, D-D1, toxas and detail of ending, E, chela, F-J, holotype (BMNH 1930.7.3.210), F-F1, structural style and detail of head and pointed end, G-G1, ectsosomal subtylostyle and detail of head and pointed end, H, echinating acanthostyle, I-I1,2, toxas with details of endings of a more or less smooth and a spined ending, J, chela.
styles. Ectosomal skeleton a partially tangential mass and alternated by bouquets of smaller ectosomal subtylostyles carried by bundles of longer subtylostyles erected on the ends of the fibers.

Spicules.— (Figs 9A-J) Subtylostyles, coring styles, echinating acanthostyles, toxas, palmate isochelae.

Subtylostyles (Figs 9B, G), with slightly swollen microspined heads, in two overlapping size categories, the smaller (102-144 µm) somewhat flexuous and often with blunt or mucronate pointed end, the larger (225-350 µm) straight, sharply pointed; overall size 102-217.0-359 × 1.5-2.8-4.5 µm.

Styles (Figs 9A, F), straight or slightly curved, with warty/spined heads, occasionally smooth, shaft smooth or with a few spines in the region underneath the head, with sharply pointed end, 172-296.9-438 × 8-11.6-15 µm.

Echinating acanthostyles (Figs 9C, H), relatively robust, entirely heavily spined, many with recurved spines, also in the lower half of the shaft, 72-117.1-153 × 6-7.5-10 µm.

Toxas (Figs 9D, I), wing-shaped, deeply curved, with upturned, frequently bumpy or wobbly apices, larger may have thickness up to 1.5 µm, length 45-92.1-144 µm.

Palmate isochelae (Figs 9E, J), typical shaped but relatively narrow, 12-15.5-18 µm.

Ecology.— Encrusting shells on nearshore sandstone ridges, depth down to 70 m.

Distribution.— Mauritania, Senegal, elsewhere reported from most coastal regions of Western Europe and the Mediterranean.

Remarks.— The specimens from Mauritania reported here show a strong resemblance to the holotype of *Microciona armata* from Northern Ireland (figs 8D-F), and to specimens described from the west coasts of Europe (ZMA Por. 14133) and from the Mediterranean (RMNH Por. 265), although it appears that the upper size of the styles is usually larger northwards (see also e.g. Van Soest et al. 2000). In SEM many toxas, espe-

Fig. 10. *Clathria (Microciona) gradalis* Topsent, 1925, light microscopy images of spicules of holotype (MNHN LBIM D.T.328) from Naples, A, overview of spicules showing structural styles, ectosomal subtylostyles, echinating acanthostyles, toxas and palmate isochelae (scale bar = 100 µm), B, large tox with smooth apices (scale bar = 50 µm).
cially the larger thicker ones, show incipient spination in the form of bumpy or wobbly apices, which is barely visible in light microscopy. Lévi (1956) reported Microciona ar
mata from Senegal, and his description bears considerable likeness to our specimens, including the toxas with spined apices. If these specimens turn out to be conspecific then the distribution of C. (M.) armata extends over a considerable area. The size variation in the subtylostyles is here considered to fall within the subgenus Microciona, as there is no continuous ectosomal skeleton of bouquets.

From the Celtic Seas species C. (M.) atrasanguinea (Bowerbank, 1862), to which this material was originally assigned, the present species differs in the shape and spination of the echinating acanthostyles, which are essentially similar to the structural styles, although a smaller version with a few more spines, whereas the echinating acantho-
styles in C. (M.) armata are heavily spined proper acanthostyles, different from the structural styles.

The Mediterranean Clathria (Microciona) gradalis Topsent, 1925 is similar in spiculation (figs 10A-B). We examined a spicule slide of the holotype from Naples, MNHN D.T.328, with spicule size data: subtylostyles 203-274.7-401 × 1-1.9-3 µm, styles with subterminally constricted smooth or lightly spined heads 296-605.9-822 × 7-8.6-12µm, acanthostyles entirely spined, 93-150.2-202 × 7-8.1-10 µm, deeply curved toxas with smooth apices (fig. 10B), 30-154.5-252 µm, and typical shaped palmate isochelae, 12-13.7-16 mm. A distinct difference with our C. (M.) armata is the shape and sizes of the principal styles, which are clearly shorter and thicker, with warty heads, as opposed to the relatively long and thin, almost smooth styles of C. (M.) gradalis.

Another similar species, Mediterranean C. (M.) duplex Sarà, 1958 was reported from Roscoff and this has larger echinating acanthostyles and the toxas are always small (up to 58 µm); see for comparison Van Soest et al. 2000. There is also a resemblance with the Senegalese species C. (M.) africana (Lévi, 1956). That is described as a red sponge en

Clathria (Microciona) ascensionis spec. nov.
(figs 11A-G)

Material.— Holotype (ZMA Por. 20827), Ascension Island, North Point (site nr. 6), 7.8833°S 14.3833°W, 18 m, SCUBA, R. Irving, Operation Origin # 325, 29.xi.1985.

Description.— Very thin (less than 1 mm) red patches (fig. 11A), together occupying approximately 2 × 1 cm, on dead bivalve shell. Surface optically smooth, easily dam-
eged.

Skeleton.— Hymedesmioid, with single long styles with head embedded in the basal spongin plate, surrounded by groups of heavily spined acanthostyles, with bou-
quets of ectosomal subtylostyles at the surface (fig. 11B).

Spicules.— (figs 11C-G) Subtylostyles, styles, echinating acanthostyles, rhaphidi-
form toxas, palmate isochelae.
Fig. 11. *Clathria (Microciona) ascensionis* spec. nov., holotype (ZMA Por. 20287), from Ascension Island, A, habit encrusting a shell (scale bar = 1 cm), B, light microscopy image of cross section of skeleton (scale bar = 200 μm), C-G, SEM images of spicules, C-C1, structural style and detail of head and pointed end, D-D1,2, ectosomal subtylostyle, and details of head and pointed end of a larger and smaller one, E, echinating acanthostyle, F, palmate isochela, G-G1, rhaphidiform tox with details of centre and ending.
Ectosomal subtylostyles (figs 11D), with microspined elongate heads, shaft often somewhat curved, pointed end sharp, or occasionally bifid, size variable, 186-244.5-309 × 1.5-2.3-3 µm.

Styles (figs 11C), with spined-warty-rugose heads, rugosity extending some distance along the shaft, 254-328.1-388 × 7-8.2-9 µm.

Acanthostyles (fig. 11E), straight or somewhat curved, variable in length, densely spined all-over, 63-77.6-93 × 3-4.2-5 µm.

Raphidiform toxas (figs 11G), long, thin (less than 1 µm thick), with shallow or distinct median curvature, and endings faintly and finely rugose, 334-373.2-444 µm.

Palmate isochelae (fig. 11F), typical shaped, numerous, tiny, 5-6 µm.

Etymology.— The name refers to the type locality, Ascension Island.

Ecology.— Sublittoral.

Distribution.— Known only from the type locality.

Remarks.— The new species is characterized by its extremely small palmate isochelae, the raphidiform toxas, and the presence of numerous pigment grains in the surface. The fact that the raphidiform toxas are faintly spined at the apices was unobserved with the light microscope and could only be detected by SEM. *Clathria (Microciona) gorgadensis* spec. nov. (see below) also has thin raphidiform toxas, but these are sinuously curved and do not have spined apices. Similar raphidiform toxas known from other *Clathria* species [e.g. West Indian *Clathria (Microciona) spinosa* Wilson, 1902, *Clathria (Thalysias) virgultosa* (Lamarck, 1814), *Clathria (Thalysias) curacaoensis* (Arndt, 1927), including its synonym *Clathria (Thalysias) raraechelae* (Van Soest, 1984), *Clathria (Thalysias) isodictyoides* (Van Soest, 1984), *Clathria (Thalysias) oxeota* (Van Soest, 1984), and further Indo-West Pacific species of various subgenera, see Hooper (1996)] need to be reexamined with magnifications higher than 10,000x to establish whether they could have spines as well. *Clathria (Microciona) capverdensis* spec. nov. (see below) also possesses small palmate isochelae, but that species has an additional larger normal sized category of palmate isochelae. It differs further by the microcionid skeletal structure, where *C. (M.) ascensionis* spec. nov. is hymedesmioid. Styles are more or less smooth in *C. (M.) capverdensis* spec. nov. and toxas are much shorter. None of the other regional species has such small isochelae, and the combination of further characters such as the present new species. Mediterranean *Clathria (Microciona) assimilis* Topsent, 1925 also possesses very small isochelae, but its toxas are deeply curved wing-shaped.

Clathria (Microciona) atoxa Topsent, 1928
(figs 12A-F)

Clathria gradalis var. atoxa Topsent, 1928: 299, pl. x fig. 14

Material.— (ZMA Por. 07499), Cape Verde Islands, São Nicolau, S of Branco, 16.6167°N 24.6333°W, 110-120 m, calcareous gravel and nodules, 1.2 m Agassiz trawl, R.W.M. van Soest, CANCAP 7 Exped. stat. 150/04, 5.ix.1986; (ZMA Por. 22371b), Cape Verde Islands, Sal, W coast, Baia de Palmeira, 16.75°N 23.0°W, 5-15 m, volcanic stones at the base of vertical cliff down to 8 m and on slope down to 25 m, SCUBA diving, R.W.M. van Soest, CANCAP 7 Expedition stat. D09/10, 30.viii.1986. Examined for comparison.— Holotype slide (MNHN LBIM D.T.1123), *Clathria gradalis var. atoxa* Topsent, 1928, Cape Verde Islands, 4 miles SW of Boa Vista, 15.9°N 22.9125°W, hard bottom, 91 m, Princesse-Alice 1901 Campagne stat. 1203.
Description.— Orange encrustation (fig. 12A) on dead bryozoan crust on volcanic stone. Size, up to 1.5 × 1 cm in largest expansion, 1 mm or less in thickness. Surface hispid.

Skeleton.— Hymedesmioid (fig. 12B), i.e. with all megascleres erect on the substratum, heads down in the basal spongin plate.

Spicules.— (figs 12C-F) Subtylostyles, structural styles, echinating acanthostyles, palmate isochelae (no toxas).

Fig. 12. Clathria (Microciona) atoxa Topsent, 1928, A, habit of Cape Verde specimen encrusting a stone (ZMA Por. 22371b) (scale bar = 1 cm), B, cross section of skeleton of holotype (MNHN LBIM D.T.1123) (scale bar = 200 µm), C-F, SEM images of spicules of Cape Verde specimen (ZMA Por. 22371b), C-C1, structural style and detail of head and pointed end, D-D1, ectosomal subtylostyle and detail of head and pointed end, E, echinating acanthostyles, F, palmate isochela.
Subtylostyles (fig. 12D), straight with prominent microspined globular heads, gradually sharply pointed ends, 149-190.3-255 × 1.5-1.9-2 µm.

Styles (fig. 12C), robust, fusiform, with warty/spined heads, with pointed ends gradually tapering to sharp apices, 192-396.9-660 × 7-17.8-26 µm.

Echinating acanthostyles (fig. 12E), entirely densely and strongly spined, 66-108.1-209 × 5-6.8-10 µm.

Palmate isochelae (fig. 12F), ‘typical’ shaped, 13-14.3-16 µm.

Ecology.— Sandy gravel bottom, 5-120 m.

Distribution.— Cape Verde Islands: Boa Vista, Sal and São Nicolau.

Remarks.— The skeletal structure of our specimens matches Topsent’s (1928) description. Subtylostyles measure 189-214.5-237 × 1.5-2.1-3 µm, styles with warty heads, occasionally smooth 273-519.4-710 × 7-18.3-25 µm, acanthostyles with entirely spined curved shaft, the smaller mostly straight, 90-124.9-183 × 4.8-11-26 µm, and palmate isochelae, typical shaped, 13-15.1-18 µm. Apart from the styles, which are longer and more curved in Topsent’s material, the spicules of the two specimens match reasonably closely. Our orange specimens encrusted a volcanic stone, whereas Topsent reported his specimen as rosy in alcohol and encrusting calcareous algae.

Records of Clathria atoxa from the Northeast Atlantic should be critically evaluated, as the lack of toxas is not necessarily sufficient for conspecificity.

Clathria (Microciona) aurea spec. nov.
(figs 13A-F)

Material.— Holotype (ZMA Por. 07420), Cape Verde Islands, W of Sal, off Palmeira, 16.7°N 23.0167°W, 224-248 m, calcareous nodules, 1.2 m Agassiz trawl, R.W.M. van Soest, CANCAP 7 Expedition stat. 113/06, 31.viii.1986; paratype (ZMA Por. 07278), Cape Verde Islands, São Tiago, Ilheus Rombos, SE of Cima, 155-170 m, 14.95°N 24.65°W, hard calcareous bottom, Van Veen grab, R.W.M. van Soest, CANCAP 7 Expedition stat. 30/01, 23 August 1986.

Description.— Bright yellow patches encrusting limestone conglomerates and calcareous tubes (fig. 13A). Approximately 1 mm in thickness, lateral expansion 0.2-2 cm. Surface hispid, rather slimy, consistency soft.

Skeleton.— (fig. 13B) Hymedesmioid to microcionid, with choanosomal styles and echinating acanthostyles erect on the basal spongin plate.

Spicules.— (figs 13C-F) Subtylostyles, styles, echinating acanthostyles, toxas; no palmate isochelae.

Ectosomal subtylostyles (fig. 13D), relatively long and straight, with microspined heads, 162-354.7-520 × 2-4.6-5 µm.

Choanosomal styles (fig. 13C), relatively robust, with strongly warty heads and smooth shaft, subterminally abruptly curved, 418-452.1-660 × 18-21.7-25 µm.

Echinating acanthostyles (fig. 13E), relatively robust, the larger ones resembling the
choanosomal styles in being also subterminally curved, strongly spined all over, especially at the heads, the smaller ones are straight, 65-149.9-198 × 8-11.5-13 µm.

Strepsitoxas (fig. 13F), thin, long, accolada type, but with small characteristically twisted median curvature, 105-263.2-423 µm.

Etymology. — Aureus (L.) means golden, referring to the bright yellow colour of this species.

Ecology. — Deep water (155-248 m), on hard bottom.

Distribution. — Cape Verde Islands.

Remarks. — Four candidate species were considered to accommodate this characteristic species, Celtic Seas Clathria (Microciona) strepsitoxa (Hope, 1889), also reported
from the Mediterranean (Topsent, 1892b), Tenerife (Cruz, 2002), and the Azores (Boury-Esnault & Lopes, 1985), and the Naples species *Clathria toxitenuis* Topsent, 1925, *Clathria toxistricta* Topsent, 1925, and *Clathria toximajor* Topsent, 1925.

We examined two slides of the type of *Clathria toxitenuis* from Naples (figs 14A-B),
one skeletal slide and one spicule slide. The skeleton is hymedesmioid like our new species, and also the spicule measurements appear closely similar: subtylostyles 174-468 \times 2-5 \mu m, structural styles 195-624 \times 9-13 \mu m, acanthostyles, 99-123 \times 7-9 \mu m, and accolada toxas 142-327 \mu m. There are nevertheless compelling differences with our new species in the shape of all spicules except the subtylostyles: many of the structural styles are entirely smooth and more or less straight, a minority has some spines or a few warts on the head, whereas the styles of the new species have strongly warty heads with rounded excrescences. The acanthostyles of \textit{C. toxitenuis} are straight and although entirely spined have a distinct smoother region in the upper half of the shaft, whereas those of our new species are more curved and more heavily spined-warty in the upper half of the shaft; the acanthostyles of \textit{C. toxitenuis} also are more uniform in shape and size compared to the diversity of shapes and sizes in the new species. The toxas of \textit{C. toxitenuis} have a shallow barely spirally curvature, whereas those of the new species have a strikingly deep spirally curvature. The colour of \textit{C. toxitenuis} is given as orange, not golden-yellow like our new species. It has been reported from Marseille (Lévi, 1960), Banyuls (Boury-Esnault, 1971) and the Canary Islands (Cruz, 2002), but these records were of specimens possessing palmate isochelae, and possibly concern a different species, because the type slides did not contain a single chela, and Topsent also did not mention them in his description.

We examined two slides of the type of \textit{C. toxistricta} from Naples (figs 14C-E) incorporated in the collections of the Paris Museum, one slide containing fragments showing the skeletal structure, the other the dissociated spicules. The skeleton is plumoreticulate with a more or less rectangular reticulation of spongin fibers, cored by structural styles and echinated sparingly by acanthostyles. The ectosomal spicules are modified subtylostyles, taking the form of strongyles or quasitylotes, rather uniform in size, 220-273 \times 1.5-2 \mu m, the structural styles have a more or less straight smooth shaft and warty or smooth heads, strikingly uniform in size, 159-261 \times 9-12 \mu m, acanthostyles resemble the structural styles but are smaller and entirely spined, 97-143 \times 6.5-8 \mu m, toxas are of the accolada type with a shallow or vaguely spiral curvature, 135-444 \mu m; no chelae were observed in the slides (nor were they mentioned by Topsent). From \textit{C. (C.) toxistricta} our specimens differ in the shape and size of the toxas, in the shape and greater length and thickness of the structural styles, in the shape and size of the ectosomal subtylostyles, and in the overall skeletal structure (hymedesmioid, not plumoreticulate). Live colour of \textit{C. (C.) toxistricta} is given as red (‘un beau rouge’), contrasting with our bright yellow specimens. Like our specimens, \textit{C. (C.) toxistricta} lacks chelae, and in combination with the long thin accolada toxas, there is considerable resemblance, but insufficient for conspecificity.

We examined a slide of the type of \textit{C. toxinajor} from Naples (figs 14F-G), likewise from the MNHN collections. The skeletal structure is hymedesmioid like in our new species. The subtylostyles are predominantly ‘normal’ but occasionally they are stronylote, 231-441 \times 2.5-6 \mu m; the structural styles are straight or slightly curved, most are smooth, but spines on the heads are not infrequent, 309-696 \times 9.5-18 \mu m; acanthostyles are straight, entirely spined but with a relatively smooth upper shaft, 91-149 \times 5-9 \mu m; toxas occur in two distinct categories, rhaphidiform with shallow curvature, 181-841 \mu m, and thin ‘tricurvate’, technically wing-shaped, smaller toxas, very uniform in shape and size, 51-66 \mu m; typical shaped palmate isochelae measure 16-21 \mu m. The presence
of chelae, the two toxa categories, and the greater length of the rhaphidiform toxas are a clear difference with our new species. Details of the other spicules are also different.

We borrowed the type of *Microciona strepsitoxa* from the Natural History Museum (BMNH 1889.11.16.1) and also examined slides of Topsent’s (1892b) record of the species from Banyuls present in the Vosmaer collection of slides in RMNH (both these specimens are closely similar and are very likely conspecific). For comparison purposes we present SEM images (figs 15A-F) and spicule measurements of the type of *Microciona strepsitoxa*: subtylostyles with microspined heads, 198-285 × 2.5-3 µm, styles with warty heads, 225-478 × 6-12 µm, acanthostyles straight, entirely spined, 78-136 × 5-8 µm, long thin strepsitoxas, 273-390 µm, numerous small wing-shaped toxas, 28-156 µm, and typical-shaped palmate isochelae 14-19 µm; the skeleton is typically hymedesmioid. Although skeletal structure, spicule sizes and the twisted condition of the long thin toxas resemble *C. (M.) strepsitoxa*, the choanosomal styles in our specimens are on aver-
age twice as thick as those of strepsitoxa and are characteristically curved subterminally, while also the echinating acanthostyles are thicker, and most importantly, no chelae and small oxhorn or wing shaped toxas were observed in any of the slides we made. We also noted, that in C. (M.) strepsitoxa the small toxas have a faint apical spination, which has not previously been reported for that species. Perhaps of lesser importance is the unusual live colour of our specimens, bright yellow, which is not reported for C. (M.) strepsitoxa.

C. (M.) aurea spec. nov. is a member of the species-rich group of Clathria (Microciona) possessing accolada toxas, long straight thin toxas with small median curve. Four species in the Northeast Atlantic are distinct by sharing two toxa types: next to the long straight thin toxas they have ‘normal’, smaller toxas with a deeper and more gradual median curve; these are C. (M.) strepsitoxa discussed above, C. (M.) osismica (Cabioch, 1968) described from Roscoff, with essentially the same spicule complement, but thinner and shorter megascleres, and the Irish bathyal species C. (M.) ditoxa (Stephens, 1916), which has the long thin toxas up to 800 µm and the shorter toxas are thick, up to 2.5 µm in thickness. C. (M.) toximajor Topsent, 1925 from Naples also has much longer toxas (up to 900 µm), and the small toxas have a shallow curve (fig. 14G), while those of C. (M.) strepsitoxa have a deep curve (fig. 15E). Perhaps Clathria (Microciona) bitoxa (Burton, 1930) should also be mentioned here, but this differs clearly by the lack of chelae and the possession of peculiar thick oxhorn toxas, next to the thin accolada toxas (see below).

The remaining members of the group, including the above discussed C. (M.) toxitenus Topsent, 1925 and C. (C.) toxistricta, as well as C. (M.) tenuissima (Stephens, 1916), C. (M.) levii (Sarà & Siribelli, 1960), and C. (M.) ascendens (Cabioch, 1968), lack a second category of smaller normal toxas next to the long thin ones like our new species. None of these species is reported as having a bright yellow colour, and none of them have the curved highly warted styles and deeply spirally curved toxas like our new species. The absence of chelae and the rather distinctly curved and heavily warted styles of this new species remind of Clathria (Microciona) anancora (Topsent, 1904a), described from deep water off the Azores. However, that species has abundant wing-shaped toxas of up to 120 µm in length, not strepsitoxas.

Clathria (Microciona) bicleistochelifera spec. nov.
(figs 16A-I)

Clathria cleistochela; Van Soest, 1993a: 210 (Table 2, in part).

Description. — Blood-red or bright red crust on stones, shells, and wormtubes, surface conulose-hispid due to protruding fibers. Size of holotype 6 × 5 × 0.2 cm (detail shown in fig. 16A), paratype 1 × 4 × 0.1 cm. Consistency soft, but fibrous.
Fig. 16. Clathria (Microciona) bicleistochelifera spec. nov., holotype (ZMA Por. 06986), A, habit of holotype growing on an empty shell (scale bar = 1 cm), B-F, SEM images of the spicules, B-B1, structural style and detail of head and pointed end, C-C1, ectosomal subtylostyle and detail of head and pointed end, D, typical shaped palmate isochelae, E, large category of cleistochela, F, small category of cleistochela, G-F, light microscopy images of the skeleton, G, cross section showing plumoreticulate skeleton (scale bar = 500 µm), H, detail of skeleton showing cored main fibers (scale bar = 200 µm), I, surface membrane crowded with larger category of cleistochelae (scale bar = 50 µm).
Skeleton.— (figs 16G-H) Microcionid to plumo-reticulate. The basal spongin plate carries erect parallel spongin fibers, which branch outward near the surface, but are not anastomosed. Spongin columns up to 150 µm wide, peripheral branches have a diameter up to 45 µm. The columns are sparingly cored by 2-4 spicules (principal styles) in cross section and not echinated. Subtylostyles are scattered in the ectosomal region and crown the fiber endings.

Spicules.— (figs 16B-F) Subtylostyles, coring styles, palmate ‘typical’ isochelae and cleistochelae. No echinating acanthostyles, no toxas.

Subtylostyles (fig. 16C), thin and slightly flexuous, heads smooth, 204-283.9-363 × 1-1.9-2.5 µm.

Styles (fig. 16B), relatively long and thin, with smooth heads, in a large length range, 183-370.2-492 × 6-8.2-11 µm.

Palmate isochelae (fig. 16D) with typical shape, 16-19.3-22 µm.

Cleistochelae in two non-overlapping size categories, larger (fig. 16E) 22-27.1-31 µm and smaller (fig. 16F) 13-16.9-20 µm.

Etymology.— The name refers to the two size categories of cleistochelae.

Ecology.— Intertidal and shallow-water, in bays.

Distribution.— So far only known from the islands of São Vicente and Maio, Cape Verde Islands.

Remarks.— The new species differs from the cleistocheliferous species *C. (M.) cancapseptima* spec. nov. described below in the possession of two distinct size categories of cleistochelae, the plumoreticulate skeletal structure, the lack of echinating acanthostyles and toxas. As described below in the discussion of *C. (M.) cancapseptima* spec. nov. these features distinguish the new species also from the other encrusting cleistocheliferous species of the region. From *C. (Clathria) hjorti* described above the present species differs clearly in the encrusting vs ramose habit. From *C. (M.) cleistochela* Topsent, 1925, recorded from the Azores (Boury-Esnault & Lopes, 1985) and the Canary Islands (Cruz, 2002), our new species differs in having two size categories of cleistochelae and in the lack of echinating acanthostyles and toxas.

Clathria (Microciona) bitoxa (Burton, 1930)
(figs 17A-H)

Hymantho bitoxa Burton, 1930: 503, text-fig. 2; Alander, 1942: 63.
Microciona bitoxa; Solórzano et al., 1991: 37.

Material.— (ZMA Por. 07276), Cape Verde Islands, S of São Tiago, 14.8667°N 23.55°W, 515 m, 1.2 m Agassiz trawl, R.W.M. van Soest, CANCAP 7 Exped. stat. 026/03, 22.viii.1986.

Description.— Thin hispid red crust on a shell, becoming transparent in preserved state (fig. 17A); size approximately 1 × 0.5 cm in lateral expansion, thickness less than 1 mm.

Skeleton.— (fig. 17B) Hymedesmioid, with long styles erect on the substratum, with pointed ends protruding beyond the surface. Heads embedded in a basal spongin plate,
Fig. 17. *Clathria (Microciona) bitoxa* (Burton, 1930), Cape Verde Islands specimen (ZMA Por. 07276), A, habit (circled area) encrusting a dead bivalve (scale bar = 1 cm), B, overview of the skeleton and spicules (scale bar = 100 µm), C-H, SEM images of the spicules, C-C1, structural style and detail of head and pointed end, D-D1,2, ectosomal subtylostyle and detail and variation of head and pointed end, E, larger echinating acanthostyle, F, smaller echinating acanthostyle, G-G1, shallow-curved oxhorn tox and detail of central curve, H-H1, accolada tox and detail of central curve.
surrounded by echinating acanthostyles. Ectosomal subtylostyles scattered in the dermal membrane. Microscleres densely crowded in the dermal membrane and in the interior.

Spicules.— (figs 17C-H) Ectosomal subtylostyles, structural styles, echinating acanthostyles, two categories of toxas. No chelae.

Subtylostyles (fig. 17D), straight, with swollen microspined heads, 275-325.2-360 × 2.5-3.6-4.5 µm.

Styles (fig. 17C), straight, thick, with smooth, or rarely spined heads, 868-1111.2-1234 × 14-20.8-25 µm.

Acanthostyles (figs 17E-F), entirely spined, although the larger have the lower shaft smooth, in a large size variation, 54-95.3-162 × 4-5.4-7 µm.

Toxas in two distinct categories, (1, fig. 17G) short thick, oxhorn-shaped, with small median curvature and straight apices, 36-49.5-63 × 2-3.1-4 µm, and (2, fig. 17H) accolada type, long thin with small shallow median curve 160-195.1-210 µm.

Ecology.— Bathyal species.

Fig. 18. *Hymantho bitoxa* Burton, 1930 (= *Clathria (Microciona) bitoxa*), SEM images of the spicules of the holotype (BMNH 1910.1.1.787) from Norway, A-A1,2, structural style and detail of variously ornamented heads, B-B1, ectosomal subtylostyle and detail of head and pointed end, C, large acanthostyle, D, small acanthostyle, E, oxhorn tox, F, accolada tox.
Distribution.— Norway (Burton, 1930), Skagerrak (Alander, 1942), NW Spain (Solórzano et al., 1991), Cape Verde Islands.

Remarks.— The present material conforms to the type specimen (see figs 18A-F), of which we present SEM images of the spicules for comparison purposes. The combination of thin accolada toxas and fat shallow oxhorn toxas is very characteristic. There are some discrepancies between the Cape Verde and Norwegian specimens: the former has predominantly smooth structural styles and the acanthostyles are less easily divisible in two distinct sizes, whereas in the type the spination of the style heads and acanthostyle shafts are more obvious. The short thick toxas combined with the lack of isochelae remind of the Mediterranean deep-water species Clathria (Microciona) frogeti (Vacelet, 1969), but that species lacks the long thin toxas. The species differs from the similar C. (M.) ditoxa (Stephens, 1916) from bathyal waters on the west coasts of Europe in the shape of the two toxa categories, the smaller size of the structural styles and the presence of isochelae.

The large distance between the type locality and Alander’s Sweden record versus the present locality extend the distribution of this species over a very large area. We can further support this with the so far unpublished occurrence of C. (C.) bitoxa at Rockall Bank, W of Ireland and Mingulay Reef, W of Scotland (Van Soest in prep.), while Solórzano et al.’s (1991) record from the coast of Northwest Spain, although not substantiated with a description or illustration, neatly connects the present locality with the North European localities.

By the possession of two separate toxa categories (accolada- and oxhorn-like), the present species seems to resemble the shallow-water Senegalese species Clathria (Microciona) africana (Lévi, 1956 as Microciona), but that has much smaller styles (250 × 12-13 µm).

Clathria (Microciona) boavistae spec. nov. (figs 19A-H)

Description.— Thin lightly hispid dull-red patches on calcareous stones. Individual patches usually less than 1 × 1 cm (holotype, fig. 19A), many are smaller; thickness 1-2 mm. Consistency soft, easily damaged.

Skeleton.— Microcionid (fig. 19B), with spongin-ensheathed plumose columns of spicules rising from the spongin-plate on the substratum. The columns are cored by robust styles and echinated by shorter but more or less equally thick acanthostyles. Ectosomal spicules inconspicuous, crowning the columns near the surface of the sponge. Small toxas numerous, densely distributed among the columns.
Fig. 19. *Clathria (Microciona) Boavistae* spec. nov., holotype (ZMA Por. 07346) from the Cape Verde Islands, A, the fragmented holotype (scale bar = 1 cm), B, cross section of skeleton showing microcionid structure (scale bar = 200 µm), C-H, SEM images of spicules, C-D, structural styles, C-C1, smooth style and detail of head and pointed end, D-D1, smaller rugose style with detail of head, E-E1, ectosomal subtylostyle and detail of head and pointed end, F-G, echinating acanthostyles, F, larger acanthostyle resembling structural style, G, genuine echinating styles, H, shallow-curved wing/oxhorn tox.
Spicules.— (figs 19C-H) Subtylostyles, styles, echinating acanthostyles, toxas. Che-lae absent.

Subtylostyles (fig. 19E) relatively short and thin, with elongately swollen smooth heads, 132-176.8-204 × 1-1.2-1.5 µm.

Coring styles (figs 19C-D), predominantly smooth (fig. 19C), but occasionally with spined-warty heads (fig. 19D), somewhat fusiform but slightly curved or straight, 192-295.4-341 × 8-10.5-18 µm.

Echinating styles (figs 19F-G), spined all-over, but varying from short truly echinating acanthostyles (fig. 19G) to larger lesser spined partly coring, partly echinating spicules (fig. 19F), grading in shape towards larger coring styles, 64-110.9-183 × 5-6.8-10 µm.

Toxas (fig. 19H), thin, wing-shaped, with shallow curve and relatively straight smooth apices, 18-30.9-50 µm.

Etymology.— The name refers to the type locality, the island of Boa Vista, Cape Verde Islands.

Ecology.— Encrusting hard substratums at 20-27 m.

Distribution.— Known only from the island of Boa Vista, Cape Verde Islands.

Remarks.— The species resembles Clathria (Microciona) angularis Sarà & Siribelli (1960 as Microciona) from Naples, which also lacks palmate isochelae (or at least these were not observed) and the toxas were also small and shallow-curved. However, megascleres described and drawn by Sarà & Siribelli are clearly different: much longer and thinner (474-544 × 8-10 µm), and spined. Requests to obtain type material were unsuccessful (not present in the collection of the Stazione Zoologica of Naples, Dr F. Bentivegna, in litteris). A further similar species is Clathria plurityla Pulitzer-Finali, 1983 (from the Ligurian coast, Italy), lacking chelae and with short toxas, but the styles of that species are poltylote and the subtylostyles are much longer and thicker than C. (M.) boavistae spec. nov.

The absence of chelae is also shared with the bathyal C. (M.) bitoxa (Burton, 1930) (see above), but the sizes of the megascleres are clearly larger in that species and the toxas occur in two morphologically distinct types. Northern European Clathria (Microciona) laevis (Bowerbank, 1866) as redescribed by Picton & Goodwin (2007) from Northern Ireland also lacks chelae and has rather similar toxas, but it has a hymedesmioid skeleton, its subtylostyles are twice as long (up to 750 µm) and structural styles are much longer and thinner (up to 1000 × <10 µm) than those of our new species. The absence of chelae aside, the high density of small thin toxas with shallow curve, and the variation in size of echinating acanthostyles are characteristic features delimiting the new species from other thinly encrusting red Clathria (Microciona) species in the Cape Verde Islands.

Clathria (Microciona) calloides spec. nov.
(figs 20A-C, 21A-E)

Clathria calla; Van Soest, 1993b: 212 (Table 3).
Not: Axociella calla De Laubenfels, 1934: 16; nec: Clathria (Microciona) calla; Van Soest, 1984: 100, pl. VII fig. 1, text-fig. 39.

Material.— Holotype ZMA Por. 07119 (Fig. 19B), Cape Verde Islands, São Vicente, W coast near Ponta do Manellinho Cambado, vertical cliff above sandy bottom with corals, 16.8667°N 25.0667°W, 10-12 m,
Fig. 20. *Clathria (Microciona) calloides* spec. nov., A, paratype (ZMA Por. 07910) from Boa Vista, Cape Verde Islands (scale bar = 1 cm), B, holotype (ZMA Por. 07119) from São Vicente, Cape Verde Islands (scale bar = 1 cm), C, paratype (ZMA Por. 7200) from Sal, Cape Verde Islands, cross section of skeleton showing rectangular spongin reticulation (scale bar = 500 µm).

SCUBA diving, R.W.M. van Soest, CANCAP 7 Expedition stat. D16/09, 7.ix.1986; paratype (ZMA Por. 07185), Cape Verde Islands, Boa Vista, W coast, NW coast of Ilhéu de Sal Rei, sandy bottom with stones, rocks, sabellariid reefs, 16.1667°N 22.9667°W, 1-4 m, snorkeling, R.W.M. van Soest, CANCAP 7 Expedition stat. K16/09, 28.viii.1986; paratype (ZMA Por. 07190) (Fig. 19A), Cape Verde Islands, Boa Vista, W coast, NW coast of Ilhéu de Sal Rei, sandy bottom with stones, rocks, sabellariid reefs, 16.1667°N 22.9667°W, 1-4 m, snorkeling, R.W.M. van Soest, CANCAP 7 Expedition stat. K16/14, 28.viii.1986; paratype (ZMA Por. 07200), Cape Verde Islands, Sal, W coast, Baia de Palmeira, 16.75°N 23.0°W, 0-4 m, snorkeling, coll. R.W.M. van Soest, CANCAP 7 Expedition stat. K19A/02, 30.viii.1986; paratype (ZMA 07226), Cape Verde Islands, São Nicolau, Branco, S coast, 16.65°N 24.683°W, 0-4 m, snorkeling, R.W.M. van Soest, CANCAP 7 Expedition stat. K28/09, 6.ix.1986; paratype (ZMA Por. 07245), Cape Verde Islands, São Vicente, NE coast, Baia das Gatas, 16.9617°N 24.9617°W, 0-2 m, snorkeling, R.W.M. van Soest, CANCAP 7 Expedition stat. K28/10, 6.ix.1986; (ZMA Por. 20833), Ascension Island, W part, site nr. 12, coll. R. Irving, Operation Origin #163, 11.xi.1985.

Fig. 21. A-F, *Clathria (Microciona) calloides* spec. nov., holotype (ZMA Por. 07119), SEM images of spicules, A-A1, structural style and detail of head and pointed end, B-B1, echinating style and detail of head, C-C1, ectosomal subtylostyle and detail of head and pointed end, D, toxas, E, palmate isochela, F-J, *Clathria (Microciona) calloides* (De Laubenfels, 1934), specimen from Florida (ZMA Por. 03817), SEM images of the spicules, F-F1, structural style and detail of head and pointed end, G-G1, echinating style and detail of head, H-H1, ectosomal subtylostyle and detail of head and pointed end, I, toxas, J, palmate isochela.
Description.— Thickly encrusting on dead corals (figs 20A-B), colour red, yellow-orange, orange. Size 0.5-3 cm in lateral expansion, thickness up to 3 mm. Surface hispid, clathrous. No discernible oscules. Consistency fibrous.

Skeleton.— Rectangular spongin reticulation (fig. 20C) with ascending fibers 30-60 µm in diameter, cored by up to 4 spicules per cross section, connected by thinner uncored fibers. Meshes 150-200 µm in diameter. Fibers sparingly echinated. Ectosomal skeleton consisting of loosely arranged subtylostyles surrounding protruding choanosomal styles.

Spicules.— (figs 21A-E) Subtylostyles, styles, echinating styles, toxas, palmate isochelae.

Subtylostyles (fig. 21C), thin, straight, with elongate smooth heads, 219-242.4-264 × 1.5-2.1-2.5 µm.

Styles (fig. 21A), fusiform, with narrower heads, smooth, 108-148.7-201 × 5-7.0-10 µm.

Echinating styles (fig. 21B), similar to the coring styles, but smaller, 66-72.1-84 × 5-5.6-7 µm.

Toxas (fig. 21D), wing-shaped, thin, with shallow curvature, in a large size range, possibly divisible in a smaller (18-78) and a larger (117-159) category, overall length 18-84.9-159 µm.

Palmate isochelae (fig. 21E), typical shaped, 18-21.2-22 µm.

Etymology.— The name reflects the similarity in shape, skeleton and spiculation with the West Atlantic species Clathria (Microciona) calla.

Ecology.— Encrusting on shells and other hard objects, shallow-water down to 12 m.

Distribution.— Cape Verde Islands, Ascension Island.

Remarks.— Although Clathria (Microciona) calla (De Laubenfels, 1934 as Axociella) is reported so far only from Central West Atlantic localities, the present material cannot be easily separated from it on morphological grounds. Shapes and detailed measurements of all spicules are so similar (compare figs 21A-E with the comparable spicule images of the Florida specimen in figs 21F-J) that only minor differences are available to distinguish the East Atlantic from the West Atlantic populations: Caribbean subtylostyles are normally microspined, whereas this is absent or rare in West African specimens. Caribbean toxas are on the average shorter and the largest may be distinctly thicker compared to those of West African specimens. It remains to be seen whether these minor differences, which are also subject to considerable variation, will be found to be consistent. However, in view of the ocean depths separating the two populations, specific difference is likely.

Clathria (Microciona) cancapseptima spec. nov. (figs 22A-I)

Clathria cleistochela; Van Soest, 1993b: 210 (Table 2, in part) (not: Topsent, 1925: 650, fig. 9).

Material.— Holotype (ZMA Por. 07533), Cape Verde Islands, NE of São Vicente, Baia das Gatas, 16.9°N 24.9°W, 60 m, bottom calcareous nodules, rectangular dredge, R.W.M. van Soest, CANCAP 7 Expedition stat. 164/02, 6.ix.1986; paratype (ZMA Por. 07333), Cape Verde Islands, SW of Maio, Ponta Inglez/Ponta Preta, 15.1167°N 23.2333°W, 16 m, bottom calcareous nodules, rectangular dredge, R.W.M. van Soest, CANCAP 7 Expedition stat. 59/22, 26.viii.1986; paratype (ZMA Por. 07336), Cape Verde Islands, SW of Maio, Ponta Inglez/Ponta Preta, 15.1167°N 23.2333°W, 16 m, bottom calcareous nodules, rectangular
Fig. 22. A-I, *Clathria (Microciona) cancapseptima* spec. nov., holotype (ZMA Por. 07533) from the Cape Verde Islands, A, habitus encrusting calcareous module (scale bar = 1 cm), B, cross section of skeleton (scale bar = 200 μm), C-I, SEM figures of spicules, C-C1, structural style and detail of head, D-D1, ‘normal’ subtylostyle and detail of head and pointed end, E-E1, qua stylote and details of endings, F, echinating acanthostyle, G, tox, H, cleisto chela, I, pal mate isochelae with incipient ridge on shaft, J-K, holo type (MNHN LBIM D.T. 329), *Clathria (Microciona) cleisto chela* Topsent, 1925 from Naples, J, overview of microscleres including cleisto chela e and two size categories of wings-shaped shallow-curved toxas (scale bar = 50 μm), K, echinating acanthostyles (scale bar = 50 μm).
dredge, R.W.M. van Soest, CANCAP 7 Expedition stat. 59/25, 26.viii.1986; paratype (ZMA Por. 07337), Cape Verde Islands, SW of Maio, Ponta Inglez/Ponta Preta, 15.1167°N 23.2333°W, 16 m, bottom calcareous nodules, rectangular dredge, R.W.M. van Soest, CANCAP 7 Expedition stat. 59/26, 26.viii.1986; paratype (ZMA Por. 07341), Cape Verde Islands, SW of Maio, Ponta Inglez/Ponta Preta, 15.1167°N 23.2333°W, 16 m, bottom calcareous nodules, rectangular dredge, R.W.M. van Soest, CANCAP 7 Expedition stat. 59/30, 26.viii.1986; paratype (ZMA Por. 07348a), Cape Verde Islands, W of Boa Vista, WSW of Ilheu Calheta do Velho, 16.1833°N 22.9833°W, 40 m, bottom fine yellow sand, van Veen grab, R.W.M. van Soest, CANCAP 7 Expedition stat. 68/01D, 27.viii.1986; paratype (ZMA Por. 07400), Cape Verde Islands, W of Sal, off Palmeira, 16.75°N 23.0°W, 70 m, bottom calcareous nodules, 1.2 m Agassiz trawl, R.W.M. van Soest, CANCAP 7 Expedition stat. 107/02, 30.viii.1986; paratype (ZMA Por. 07491), Cape Verde Islands, S of Branco, 16.6667°N 24.7°W, 64 m, bottom calcareous nodules, rectangular dredge, R.W.M. van Soest, CANCAP 7 Expedition stat. 146/01, 4.ix.1986; paratype (ZMA Por. 21287), Cape Verde Islands, CANCAP 6 Expedition, no further data.

Examined for comparison.— Holotype slide (MNHN LBIM D.T.329), Clathria cleistochela Topsent, 1920, Naples, '7', one slide.

Description.— Encrusting sponge (fig. 22A) with colours varying from yellow to orange to red, thickness up to 2 mm, lateral size of holotype 4 × 2 cm, overall measurements 1-6 cm, depending on size of substratum, which are mostly coralline algae, shells, calcareous nodules, and dead bryozoans. Consistency soft.

Skeleton.— Hymedesmioid or microcionid (fig. 22B), with choanosomal styles singly or in groups erect on the substratum surrounded by echinating acanthostyles. At the surface longer ‘typical’ subtylostyles are perpendicularly arranged around the protruding points of the choanosomal styles, whereas a shorter derived category of quasitylote subtylostyles are more tangentially arranged.

Spicules.— (figs 22C-I) Subtylostyles, quasitylotes, choanosomal styles, acanthostyles, toxas, palmate isochelae.

Subtylostyles (figs 22D), straight with smooth or microspined tyles, and gradually and sharply pointed or mucronate ends, 243-363.5-516 × 2.4-7.8 µm.

Quasitylotes (fig. 22E), curved, with elongate, unequal, smooth or microspined tyles, 238-288.6-345 × 2.5-3.8-5 µm.

Styles (fig. 22C), spined or warty at the head, lightly spined on the shaft, with large parts near the pointed end smooth, 186-369.7-564 × 7.12-6.19 µm.

Echinating acanthostyles (fig. 22F), similar to the choanosomal styles but shorter and more heavily spined, 75-113.0-168 × 4.6-9.11 µm.

Toxas (fig. 22G), wing-shaped, with deeply arched middle part and upturned endings, in a large size range but not divisible in size categories, 30-108.6-294 µm.

Palmate isochelae of two types, approximately equal in number, (1, fig. 22I) typical shaped, slightly smaller, but in SEM an expanded ridge is visible (‘ctenichelate’ condition), 13-15.8-19 µm, and (2, fig. 22H) cleistochelate, slightly larger, 16-21.3-27 µm.

Etymology.— The name literally means ‘seventh CANCAP’, referring to the CANCAP 7 Expedition 1986, which yielded all but one of the above-cited specimens.

Ecology.— Encrusting dead shells and calcareous nodules at 16-70 m.

Distribution.— Cape Verde Islands, spread over the islands of Maio, Boa Vista, Sal, Branco and São Vicente.

Remarks.— The quasitylotes are obviously derived from ectosomal subtylostyles. They usually have microspines on the larger of the two tyles, but frequently both ends have spines. They are on average distinctly shorter than the ‘typical’ subtylostyles, but
overlap. The new species is assigned to the subgenus Microciona and not to the subgenus Thalysias, despite the occurrence of two categories of ectosomal spicules, because Thalysias has the smaller category erected as bouquets or a palisade. This is not the case in the arrangement of the quasitylotes. Although microcionid sponges are defined to have predominantly ectosomal subtylostyles, several other species of Clathria have been described with ectosomal quasitylotes or anisotylotes (e.g. Clathria (Clathria) chelifera (Hentschel, 1912) and Clathria (Thalysias) basilana Lévi, 1961). More unusual is the combination of the two and also the fact that they are differentiated in their position in the skeleton (forming a sheath around the choanosomal styles vs. arranged tangentially). Indonesian C. (Thalysias) major Hentschel, 1912 was redescribed by Hooper (1996) as possessing also this feature of differentiated (sub-)ectosomal subtylostyles and tylostyles. All the mentioned species were assigned to Clathria by Hooper (1996), and not to e.g. Megaciella, which is a member of the family Acarnidae, defined as having microspined tylostyles as ectosomal spicules. If such species indeed fall within the variation of Clathria, then perhaps Caribbean Megaciella incrustans Van Soest, 2009 should be transferred to Clathria (Microciona).

Several other encrusting Clathria species of the Mediterranean-Atlantic region possess cleistochelae, the best known of which is Mediterranean C. (Microciona) cleistochela Topsent, 1925 (see also Lévi, 1960a: 70, fig. 14), reported also from the Azores [Boury-Esnault & Lopes (1985:193, fig. 42)] and the Canary Islands (Cruz, 2002). We examined a slide from the type of C. cleistochela from Naples, containing tissue fragments, showing that the species has a hymedesmioid structure with structural styles and acanthostyles erect on the spongion plate at the base. Spicules are subtylostyles with microspined heads, 204-339 × 2.5-4 µm, smooth styles with spined-rugose heads, 172-618 × 12-22 µm, rare entirely spined acanthostyles (fig. 22K), 54-141 × 5.5-10 µm, wing-shaped toxas (fig. 22J) appearing in two non-overlapping size categories, thin short ones, 12-52 µm, thicker ones with shallow curvature, 63-96 × 3 µm, and a single category of cleistochelae (fig. 22J), 13-19 µm. C. cleistochela differs from the present new species in the absence of quasitylotes, the shorter and thinner subtylostyles, the smaller toxas which are divisible in two categories, the absence of typical shaped chelae, and the smaller size of the cleistochelae. Data on C. (M.) cleistochela differ between the various records, possibly indicating specific distinctness: the type does not have two types of chelae, nor does the Azorean record of Boury-Esnault & Lopez (1985), but Lévi (1960) distinguishes larger normal chelae and smaller cleistochelae in a specimen from Banyuls, as did Cruz (2002) from La Palma. Boury-Esnault & Lopes (1985) distinguished the two size categories of toxas (30 and 75 µm), but this was not described by other authors. There are also differences in spination of the structural styles in the recorded specimens, rugose-spined in the type, smooth in the other specimens. All specimens of C. (M.) cleistochela have the toxas more shallow-curved and the apices are barely upturned.

Further cleistochelate species are Mediterranean C. (Microciona) tunisiae Hooper, 1996 (= chelifera sensu Lévi, 1960a), Mediterranean Clathria (Microciona) toxirecta (Sarà & Siribelli, 1960 as Microciona), boreal Atlantic C. (Microciona) elliptichela Alander, 1942, and C. (M.) bicleistochelifera spec. nov. (see above). None of these have quasitylote ectosomal spicules. C. (M.) elliptichela like our new species has normal-looking chelae next to the cleistochelae, whereas C. (M.) tunisiae and C. (M.) toxirecta only have cleistochelae. Possibly, C. (M.) cleistochela and C. (M.) tunisiae are part of a single variable species,
which differs collectively from our new species in the lack of quasitylotes, smaller cleistochelae, and shorter shallow-curved toxas. C. (M.) toxirecta apparently has toxa-like spicules without a median curve. C. (M.) elliptichela has the toxas deeply curved like our new species, but it has additionally a small thicker category of toxas. Its subtylostyles and styles are clearly longer than those of the new species and the other two species. C. (M.) bicleistochelifera spec. nov. has the cleistochelae in two distinct size categories and it lacks toxas and echinating acanthostyles.

On the opposite side of the Atlantic, there is another species possessing cleistochelae, Clathria (Microciona) echinata (Alcolado, 1984 as Axociella), with junior synonym Clathria (Microciona) simpsoni Van Soest, 1984. This differs clearly in lacking echinating acanthostyles and having differentiated short toxas and long toxiform oxeotes. In contrast to our new species the cleistochelae are here larger than the typical isochelae.

Clathria (Microciona) capverdensis spec. nov.
(figs 23A-H)

Material examined.— Holotype (ZMA Por. 07380), Cape Verde Islands, W of Boa Vista, W of Ilheu de Sal Rei, 16.183°N 23.0°W, 70 m, 1.2 m Agassiz trawl, R.W.M. van Soest, CANCAP 7 Exped. stat. 081/07, 28.viii.1986; paratype (RMNH Por. 8120), Cape Verde Islands, W of Boa Vista, W of Ilheu de Sal Rei, 16.183°N 23.0°W, 70 m, 1.2 m Agassiz trawl, J. van der Land, CANCAP 7 Exped. stat. 081, 28.viii.1986.

Description.— Hispid-hairy, bright orange cushion (fig. 23A) on a dead solitary coral, size 1.5 × 0.5 × 0.5 cm. No apparent oscules. Consistency compressible, fibrous.

Skeleton.— A reticulation (fig. 23B) of spongin-encased spicule bundles, with smooth coring styles and echinated by acanthostyles. Ectosomal subtylostyles scattered near the surface.

Spicules.— (figs 23C-H) Subtylostyles, coring styles, echinating acanthostyles, toxas, palmar isochelae.

Subtylostyles (fig. 23D), thin, relatively short, heads barely developed, microspined, with sharply pointed ends or strongylote modifications, 177-229.6-285 × 1.5-2.4-3 µm.

Styles (fig. 23C), long, thick, straight or slightly curved, with sparingly spined or occasionally smooth heads, 255-351.4-624 × 8-13.4-18 µm.

Acanthostyles (fig. 23E), relatively robust, spined entirely and densely with hook-like spines, 78-99.4-147 × 6-8.4-12 µm.

Toxas (fig. 23F), accolada-type, curved or straight, long and thin, with small median curve, 120-215.5-301 µm.

Palmar isochelae, in two distinct size categories, both typical shaped, larger (fig. 23G) 13-14.8-17 µm, smaller (fig. 23H) 4.5-5.6-7 µm.

Etymology.— The name refers to the type locality, the Cape Verde Islands.

Ecology.— On hard bottom with corals, at lower depth (70 m).

Distribution.— So far known only from the type locality, near Ilheu de Sal Rei, Cape Verde Islands.

Remarks.— The new species is characterized by the occurrence of two sizes of typical palmar isochelae, which has not been reported in Northeast Atlantic Clathria so far (except perhaps the above described C. (M.) bicleistochelifera spec. nov. but there the chelae include cleistochelae). The combination with long thin toxas with small median curvature is unique in the region. It is similar in spiculation to the Mediterranean Clathria
(Microciona) poecilosclera (Sarà & Siribelli, 1960 as Microciona), which has two size categories of chelae, and comparable megascleres. However, the toxas of this species are deeply curved and have spines on the ends, which is a clear and definite difference. Mediterranean Clathria (Microciona) gradalis Topsent (1925) (see also Lévi, 1960a: 75), shares the large size of the structural styles (up to 700 × 20 μm), strongly spined echinating acanthostyles,
thin toxas and relatively small isochelae (11-14 in the type). However, the isochelae of that species occur in a single size category. Also, the ectosomal subtylostyles are larger in C. (M.) gradalis and the toxas have a deep curvature, not accolada shaped. A species with very small palmate isochelae is the Mediterranean C. (M.) assimilis Topsent (1925), with sizes down to 5 µm according to Lévi (1960: 76). That species has thicker toxas with spined apices and the principal styles are shorter in length. The possibility that C. (M.) poecilosclera is conspecific with C. (M.) assimilis cannot be excluded.

Across the Atlantic, two chelae size categories occur in the Caribbean species Clathria (Thalysias) curacaoensis Arndt, 1927 (= schoenus De Laubenfels, 1936), but that species has two sizes of subtylostyles and toxas (Van Soest, 1984: 112 as Raphidophalus schoenus). N.B. The name C. (T.) schoenus (De Laubenfels, 1936 as Aulospongus) is a junior synonym of Clathria copiosa var. curacaoensis Arndt, 1927. Van Soest (1984: 112) erroneously concluded that the varietal status of Arndt’s name precluded its use as a valid senior synonym. According to ICZN Art. 45.6.4. Arndt’s variety is to be treated as a name of subspecific rank, and thus it is subject to the Principle of Priority. The history of its use also prevents suppression of the name as an unused name, so the name for that common Caribbean species is Clathria (Thalysias) curacaoensis Arndt, 1927 with C. (T.) schoenus as a junior synonym.

Clathria (Microciona) conchicola spec. nov. (figs 24A-H)

Clathria spec.; Van Soest, 1993a: 103, Table 1.

Material.— Holotype (ZMA Por. 06590), Mauritania, off Banc d’Arguin, 18.8333°N 16.3333°W, 20 m, coarse yellow sand with shell gravel, Van Veen grab, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 013/01, 8.vi.1988; paratype (ZMA Por. 06591), Mauritania, 18.8333°N 16.3333°W, 20 m, coarse yellow sand with shell gravel, Van Veen grab, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 013/02, 8.vi.1988; paratypes (ZMA Por. 06594), Mauritania, off Banc d’Arguin, 18.8333°N 16.3167°W, 20 m, sandy with diverse bottom fauna, 1.2 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 017/02, 8.vi.1988; paratype (ZMA Por. 06750), Mauritania, 17.15°W, 20 m, hard bottom with some muddy sand, gorgonians, Van Veen grab, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 063/14, 13.vi.1988; paratype (ZMA Por. 06814), Mauritania, 16.9833°W, 61-78 m, bottom sticky grey mud with shell gravel, spicercabs and gastropods, 2.4 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 101/01, 16.vi.1988; (ZMA Por. 06825), Mauritania, off Banc d’Arguin, 20.5167°N 17.0833°W, 22 m, bottom shell gravel with diverse fauna, 2.4 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 110/03, 18.vi.1988; paratype (ZMA Por. 06827), Mauritania, off Banc d’Arguin, 20.5167°N 17.1667°W, 29 m, 2.4 m Agassiz trawl, coarse sand and shell gravel, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 112/02, 18.vi.1988; paratype (ZMA Por. 06828), Mauritania, off Banc d’Arguin, 20.4833°N 17.2333°W, 36 m, 2.4 m Agassiz trawl, bottom shell gravel with calcareous tubes, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 114/01, 18.vi.1988; paratype (ZMA Por. 06835), Mauritania, off Banc d’Arguin, 20.4167°N 17.1°W, 17 m, 2.4 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 119/03, 19.vi.1988; paratype (ZMA Por. 06864), Mauritania, off Cap Blanc, 20.7°N 17.4167°W, 63-71 m, diverse bottom fauna, 3.5 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 139/03, 21.vi.1988.

Description.— Thin, light beige, orange or pale reddish encrustations, on living or
death gastropods (fig. 24A). Colour apparently dependent of depth: red in shallow sam-
ple, beige or greyish below 30 m. Size dependent on substratum, up to 2 cm in lateral
expansion, thickness approximately 1 mm. Consistency soft, surface hispid, somewhat
bumpy.

Skeleton.— (fig. 24B) Hymedesmioid, with all megascleres erect on the substratum,
or microcionid, with basal spongin plate slightly elevated to form low spongin cushions

Fig. 24. Clathria (Microciona) conchicola spec. nov., A, paratypes (ZMA Por. 06594) from Mauritania en-
crusting on gastropods (scale bar = 1 cm), B, holotype (ZMA Por. 06590) from Mauritania, cross section
of skeleton (scale bar = 200 µm), C-H, SEM images of spicules of the holotype, C-C1, structural style and
detail of head, D-D1, echinating acanthostyles and details of variation of ornamentation of the heads,
E-E1, quasitylotes and details of endings, F-F1, normal ectosomal subtylostyles and details of head and
pointed ending, G-G1, accolada tox and details of central curvature, H, palmate isochela.
filled with erect and plumose groups of styles. Structural styles more common than echinating acanthostyles. Larger ectosomal subtylostyles are perpendicularly arranged, flanking the structural styles, while the smaller subtylostyles are arranged at all angles. The surface membrane contains small subtylostyles and microscleres in moderate abundance.

Spicules.— (figs 24C-H) Subtylostyles, quasitylotes, styles, echinating acanthostyles, toxas, isochelae.

Subtylostyles (fig. 24F) and quasitylotes (fig. 24E), with microspined heads, apparently occurring in partially overlapping size categories, the smaller are invariably quasitylotes, which are swollen-mucronate at the pointed ends (99-147 µm), the larger are straight (141-402), overall size of subtylostyle spicules 99-225.9-402 × 1-2.8-6 µm.

Styles (fig. 24C), straight, fusiform, with warts or spines on the head and the region immediately under it, smooth along the remaining shaft, pointed end sharp, occasionally bluntly rounded, variable in size, 119-306.7-495 × 5-14.7-21 µm.

Echinating acanthostyles (fig. 24D), similar in shape to structural styles, but spines also along the shaft, 57-80.8-111 × 3.5-7.2-13 µm.

Toxas (fig. 24G), accolada-type, long, thin, with a small median curvature, and straight or low-angled legs, 141-215.6-321 µm.

Palmate isochelae (fig. 24H), typical shaped, 12-16.1-19 µm.

Etymology.— The name is a combination of concha (L.) = shell or snail, and -cola (L.) = dweller or inhabitant, reflecting the preferred substratum of the new species.

Ecology.— On hard objects, almost exclusively gastropod shells, in sandy shelf environment, at depths from 20 to 78 m.

Distribution.— Mauritania.

Remarks.— Of the numerous species with long thin accolada shaped toxas occurring in the Mediterranean-Atlantic region, the Mauritanian specimens described above appear closest to C. (M.) levii (Sarà & Siribelli, 1960 as Microciona). We were unable to borrow the type material (this has not been traced to any known collection so far), so some doubt over its identity vis à vis our new species remains. Differences appear to be the smaller acanthostyle size in our specimens (the length is about half of those of C. (M.) levii) and the quasitylotes, which were not observed by Sarà & Siribelli; presumably these were not present. The toxas of C. (M.) levii appear more diverse in shape and size than those of our new species.

There is also considerable similarity with Clathria (Microciona) toxitenuis Topsent, 1925 from Naples and its close sister species C. (C.) toxistricta and C. (M.) toximajor. For comparison, we borrowed slides from MNHN of these species (see above figs 14A-F). The presence of a minority of anisotylote modifications of the ectosomal subtylostyles has been reported previously for Clathria (Clathria) toxistricta Topsent, 1925 from Naples and the same was reported in Clathria (Microciona) toxivaria (Sarà, 1959) by Pulitzer-Finalli (1983: 568). However, these were not clearly differentiated from the normal straight subtylostyles, having the same length and merely being bluntly rounded, rather than swollen at the ‘pointed’ end as in our new species (see Fig. 14D). The acanthostyles of our material are smaller than those of Topsent’s species and the upper size of the structural styles is also consistently higher in Mediterranean specimens. The structural styles of our new species are also different from the three Naples species, ours have warty heads and relatively short and thick shaft, whereas the Naples species have relatively
long and thin styles with only modestly rugose or bumpy heads, not warty. Furthermore, the type slides of C. (M.) toxitenius and C. (M.) toxistricta did not contain any palmate isochelae, and these were also not described by Topsent. However, Lévi (1960) mentions rare chelae in material he examined and ascribed to these species. C. (C.) toxistricta differs from our new species is having a plumoreticulate skeleton, for which reason it is assigned to the subgenus Clathria. C. (M.) toximajor differs by having two clearly distinct categories of toxa, the longer are rhaphidiform, the smaller ‘triangular’, technically probably wing-shaped.

C. (M.) toxitenius was reported outside the Mediterranean at Roscoff (60 m) by Cabioch (1968, but because he did not supply a description, this record remains uncertain. Cruz (2002) reports occurrence on Tenerife, Canary Islands, but his account and drawings look different from our material, but also from Topsent’s Naples specimens (see also below).

C. (M.) conchicola spec. nov. is part of a complex of closely similar species sharing the possession of long thin toxas with a small median curve, accolada toxas in the terminology of Hooper (1996), including apart from the species discussed above several more East Atlantic and Mediterranean species. Topsent (1925) compared C. (M.) toxitenius with Clathria (Microciona) tenuissima (Stephens, 1916 as Eurypon). This was described from 700 m depth off the coast of Ireland. It shares the long thin toxas with C. (M.) toxitenius, but its styles and subtylostyles considerably exceed those of the latter species (styles up to 1500 µm, subtylostyles up to 700 µm). Clathria (Microciona) ascendens Cabioch, 1968 possesses also similar toxas but it has smooth and spined oxees among the spicule complement. Another close species is the widespread Atlanto-Mediterranean Clathria (Microciona) strepsitoxa (Hope, 1889) (see above), but this has two categories of toxas, the smaller of which has a gradual curve, while the larger have a twisted median curve. Clathria (M.) aurea spec. nov. described here (see above), has also twisted long thin toxas like C. (M.) strepsitoxa, but it lacks a second category of toxas and has bright yellow live colour. Two separate toxa categories also occur in bathyal Irish Clathria (Microciona) ditoxa (Stephens, 1916 as Eurypon), and C. (M.) osismica Cabioch, 1968 from Bretagne on the W coast of France.

Clathria (Microciona) gorgadensis spec. nov.
(figs 25A-J)

? Tenacia jolicoeuri; Lévi, 1959: 133, fig. 26

Material examined.— Holotype (ZMA Por. 07156), Cape Verde Islands, São Tiago, S coast near Praia, intertidal to shallow sublittoral, in small bay, 14.9°N 23.5167°W, 0.5-1.5 m, snorkeling, R.W.M. van Soest, CANCAP 7 Expedition stat. K01/21, 22.viii.1986; paratype (ZMA Por. 06961), Cape Verde Islands, São Tiago, Ilheus Rombos, Ilheu Cima, SE coast, 5-15 m, rock platform, 14.95°N 24.65°W, SCUBA diving, R.W.M. van Soest, CANCAP 7 Expedition stat. D03/22, 23.viii.1986; paratype (ZMA Por. 06999b), Cape Verde Islands, Maio, SW coast off Ponta Preta, 15.1167°N 23.3°W, 5-8 m, exposed sandy bottom with large rocks, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D05A/16, 26.viii.1986; paratype (ZMA Por. 07043), Cape Verde Islands, Sal, S coast near Santa Maria, 16.5833°N 22.9167°W, 5-15 m, SCUBA diving, R.W.M. van Soest, CANCAP 7 Expedition stat. D08/14, 29.viii.1986; paratype (ZMA Por.
Fig. 25. *Clathria (Microciona) gorgadensis* spec. nov., A, holotype (ZMA Por. 07156), encrusting a stone (scale bar = 1 cm), B, cross section of skeleton (scale bar = 200 µm), C-J, SEM figures of spicules, C-C1, structural style and detail of head and pointed end, D, smaller structural style, E-E1, ectosomal subtylostyle and detail of head, F, acanthostyle, G, larger typical shaped category of isochelae, H, smaller contorted isochela, I, smaller accolada-type tox, J, larger rhaphidiform tox.

07151a), Cape Verde Islands, São Tiago, S coast near Praia, intertidal to shallow sublittoral, in small bay, 14.9°N 23.5167°W, 0.5-1.5 m, snorkeling, R.W.M. van Soest, CANCAP 7 Expedition stat. K01/16A, 22. viii.1986; paratype (ZMA Por. 07160), Cape Verde Islands, São Tiago, S coast near Praia, intertidal to shallow sublittoral, in small bay, 14.9°N 23.5167°W, 0.5-1.5 m, snorkeling, R.W.M. van Soest, CANCAP

Expedition stat. K01/25, 22.viii.1986; paratype (ZMA Por. 07166), Cape Verde Islands, S\ø Tiago, S coast near Praia, intertidal to shallow sublittoral, in small bay, 14.9°N 23.5167°W, 0.5-1.5 m, snorkeling, R.W.M. van Soest, CANCAP 7 Expedition stat. K01/31, 22.viii.1986; paratype (ZMA Por. 07199), Cape Verde Islands, Sal, W coast, Bay of Palmeira, intertidal to shallow sublittoral, sandy bottom with stones, rocks and sabellariid reefs, 16.75°N 23.0°W, 0-4 m, snorkeling, R.W.M. van Soest, CANCAP 7 Expedition stat. K19A/01, 30.viii.1986; paratype (ZMA Por. 07212), Cape Verde Islands, Sal, W coast, Bay of Palmeira, intertidal to shallow sublittoral, sandy bottom with stones, rocks and sabellariid reefs, 16.75°N 23.0°W, 0-4 m, snorkeling, R.W.M. van Soest, CANCAP 7 Expedition stat. K19A/14, 30.viii.1986.

Examined for comparison.— holotype slides (MNHN LBIM D.T.323 (‘8’) & D.T. 324 (‘47’) of *Rhaphidophlus jolicoeuri* Topsent, 1925 (= *Clathria (Thalysias) jolicoeuri*), from Naples, A, cross section of peripheral skeleton (scale bar = 200 µm), B, cross section of choanosomal skeleton (scale bar = 200 µm), C, overview of toxas diversity (scale bar = 50 µm).

Fig. 26. Holotype slides (MNHN LBIM D.T.323 and 324) of *Rhaphidophlus jolicoeuri* Topsent, 1925 (= *Clathria (Thalysias) jolicoeuri*), from Naples, A, cross section of peripheral skeleton (scale bar = 200 µm), B, cross section of choanosomal skeleton (scale bar = 200 µm), C, overview of toxas diversity (scale bar = 50 µm).

Description.— Yellow, yellow-brown, yellow-green, to orange or red crust on stones (fig. 25A). Lateral expansion 0.5-4 cm, thickness about 1 mm. Surface punctate, optically smooth. Consistency soft.

Skeleton.— (fig. 25B) Basically hymedesmioid with single styles and echinating acanthostyles erect on the basal plate of sponging. Styles may be grouped and then verge towards microcionid condition, but echinating acanthostyles remain most common at the substratum. Ectosomal skeleton formed by bouquets of subtylostyles, which carry a loose tangential crust of smaller subtylostyles. Surface membrane crowded with toxas.
Spicules.— (figs 25C-J) Ectosomal subtylostyles, choanosomal styles, echinating acanthostyles, toxas, palmate isochelae.

Subtylostyles (fig. 25E), variable in size but relatively long and straight, with microspined heads, 182-277.1-345 × 2-3.4-4.5 μm.

Styles (figs 25C-D), entirely smooth, with narrow smooth heads, pointed end variably sharply pointed or bluntly rounded, 165-305.3-384 × 7-11.4-15 μm.

Acanthostyles (fig. 25F), relatively thin, entirely spined, 48-75.1-130 × 3-4.4-7 μm.

Toxas (figs 25I-J), thin, variable in length and curvature, the smaller accolada-type more deeply curved and regular, the larger raphidiform-type irregular with shallow narrower curvature or overall sinuous, not separable in distinct categories, 80-166.3-285 μm.

Palmate isochelae, in two distinct categories, the larger (fig. 25G) typical-shaped, 10-12.3-14 μm, the smaller contorted (fig. 25H), 4-6 μm.

Etymology.— The name refers to the mythological Gorgades, an island group mentioned a.o. in the Historia naturalis by Pliny the Elder (died A.D. 79), presumed to be the eldest name for the Cape Verde Archipelago (http://en.wikipedia.org/wiki/History_of_Cape_Verde).

Ecology.— Intertidal to shallow sublittoral, down to 15 m, encrusting stones.

Distribution.— Cape Verde Islands; possibly São Tomé.

Remarks.— C. (M.) capverdensis spec. nov. described above has the spiculation rather similar to the present new species: two size categories of chelae, fully spined thin acanthostyles, and long thin toxiform spicules. There are nevertheless compelling differences: the present species is an optically smooth thin crust with hymedesmioid skeleton, whereas C. (M.) capverdensis spec. nov. is thicker and hispid-hairy with clathriid skeleton. The structural styles differ clearly in having warty heads (capverdensis spec. nov.) versus smooth (present species). The smallest category of chelae is ‘normal’ (capverdensis spec. nov.) vs. contorted (present species). Finally, the toxiform spicules are uniformly accolada toxas (capverdensis spec. nov.) vs. variable including long thin sinuous raphidiform toxas (present species).

This species might possibly belong to the subgenus Thalysias, as the structure of the ectosomal skeleton consists of larger subtylostyles carrying smaller subtylostyles fanning out and becoming partially tangential. However, a large size range of subtylostyles is not unusual in proper Clathria (Microciona) species (see above), and since there is no continuous arrangement of bouquets of smaller subtylostyles at the surface (see Fig. 25B), we prefer to assign the species to C. (Microciona).

The specimens were at first assigned to Clathria (Thalysias) jolicoeuri (Topsent, 1892 as Rhaphidophlus) because it seemed to match with the type, with a ZMA specimen (ZMA Por. 07684) from Greece, and with the descriptions of Lévi (1960a) and Boury-Esnault (1971). When the smaller twisted chelae were detected under SEM, which were overlooked in light microscopy, a close comparison was made with slides of specimens of Rhaphidophlus jolicoeuri, MNHN D.T.323 and 324 (figs 26A-C), from Naples (reported by Topsent, 1925) to check this preliminary identification. The subtylostyles of this species differ from our new species by being clearly in two size categories as is proper for the subgenus Thalysias. They are arranged in bundles formed by longer subtylostyles with predominantly smooth heads, 305-356.2-424 × 4.5-5.7-7.5 μm carrying bouquets of smaller subtylostyles with microspined heads, 108-145.5-188 × 1.5-2.4-3 μm. The structural styles are arranged in a plumoreticulation of spongin-encased bundles with regu-
lar cross connections, in contrast to our new species; the styles are smooth, with elongated heads, 244-335.9-394 × 13-16.9-21 µm. Acanthostyles are distinctly smaller, 55-63.9-71 × 5-6.1-8 µm. Toxas differ in having a regular wing-shaped smaller category with upturned apices, varying in length from very tiny, as small as 4 µm in length to approximately 90 µm, next to raphidiform longer ones, 102-205 µm in length. Typical shaped palmate isochelae occur in two size categories, longer 13-18 µm and smaller 6-8 µm, which are in contrast to our new species, not twisted. These smaller isochelae were not previously recorded by either Topsent or subsequent authors, probably because they are difficult to observe in light microscopy. It is possible that Lévi’s (1959) record of Tenacia jolicoeuri belongs to our new species, but this needs to be verified as he provided for the palmate isochelae only 12 µm as average size.

The toxas shapes in the present new species also remind of those of the Naples species Clathria (Microciona) toxistyla (Sarà, 1959), but that species lacks chelae and has a special category of thick toxas in addition to the thin variable ones. Clathria (Microciona) toxivaria (Sarà, 1959) likewise has variable toxas like our new species, but chelae are of uniform size, and do not include small twisted ones.

On the other side of the Atlantic, Clathria (Thalysias) curacaoensis (Arndt, 1927) (senior synonym of Clathria (Thalysias) schoenus (De Laubenfels, 1936), has similar spiculation as our new species, smooth styles, small echinating acanthostyles, thin shallow-curved toxas and larger normal and smaller contorted isochelae. Differences are the shape of the echinating acanthostyles with a characteristic smooth area between the head and the heavily spined lower shaft and the more distinct differentiation in small subtylostyles of the surface bouquets and large subtylostyles carrying these in C. (T.) curacaoensis. Nevertheless, the two seem closely related.

Clathria (Microciona) spinarcus (Carter & Hope, 1889)
(figs 27A-G)

Microciona spinarcus Carter & Hope, 1889: Topsent, 1892: 113; Lévi, 1960a: 76, fig. 18; Maldonado, 1992: 1152.

Material.— (ZMA Por. 07409), W of Sal, off Palmeira, 16.7667°N 23.0333°W, 85-97 m, hard bottom with calcareous nodules, 1.2 m Agassiz trawl, R.W.M. van Soest, CANCAP 7 Expedition stat. 111/06, 31. vili.1986.

Examined for comparison.— (ZMA Por. 05948), Ireland, Sherkin Island, Truhane Point, 51.477°N 9.434°W, 9 m, M. Reichert #48-83, 2.vili.1982.

Description.— Thickly encrusting on barnacles (fig. 27A), colour orange-red. Surface with faint venal pattern (preserved condition), compact and smooth, microhispid. Size 1.5 × 1.5 cm, thickness 2 mm.

Skeleton.— Microcionid (fig. 27B), with small groups or single styles surrounded and echinated by acanthostyles, and sheathed in bundles of subtylostyles. At the surface, subtylostyles form a loose tangential crust.

Spicules.— (figs 27C-G) Ectosomal subtylostyles, structural (acantho-)styles, echinating acanthostyles, toxas, palmate isochelae.
Fig. 27. *Clathria (Microciona) spinarcus* (Carter & Hope, 1889), Cape Verde Islands specimen (ZMA Por. 07409), A, habit (scale bar = 1 cm), B, cross section of skeleton (scale bar = 200 µm), C-G, SEM images of spicules, C-C1, structural style and detail of head and pointed end, D-D1, ectosomal subtylostyle and detail of head and pointed end, E, various sizes and shapes of echinating acanthostyles, F, palmate isochela, G-G1, wing-shaped tox and detail of spined ending.
Subtylostyles (fig. 27D), straight, faintly fusiform (thickest in the middle), with elongate, barely swollen, microspined, occasionally smooth, heads, 153-237.6-300 × 2.5-3.6-4.5 µm.

Styles (fig. 27C), robust, straight, lightly spined all over, heads not conspicuous, 237-319.8-367 × 12-13.7-16 µm.

Acanthostyles (fig. 27E), straight, heavily spined all over, in a wide size range, the larger with a smaller subterminal smooth area, 77-120.9-237 × 6-8.5-13 µm.

Toxas (fig. 27G), wing-shaped, deeply sharply curved, with finely spined upturned ends, 69-111.2-132 µm.

Palmate isochelae (fig. 27F), not very frequent (only a dozen were found in the slides), small, typical shaped, 9-11.5-16 µm.

Ecology.— Deeper water down to 90 m; elsewhere in more shallow locations.

Distribution.— Cape Verde Islands, Azores, Canary Islands; elsewhere English Channel, Northern Island, Brittany, NW Spain, Western Mediterranean, Namibia.

Remarks.— Our record extends the distribution of this predominantly Northeast Atlantic species southwards to the Cape Verde Islands, but Uriz (1987, 1988) records it from Namibia. The characters of the present material generally match those of Lévi (1960), and also the description of the type. Comparison with a specimen from the Celtic Seas, ZMA Por. 05948, shows strong similarity (see also e.g. Van Soest et al. 2000). However, there are some discrepancies: our specimen has the toxas rather smaller and thinner than the type and the palmate chelae larger. Acanthostyles appear larger than in the type. A difference with Cruz’ (2002) record from the Canary Islands is the condition of the structural styles, which are drawn and described as entirely smooth. Lévi (1960) quoted various spicule sizes indicating that this species is apparently variable, but we do not subscribe to the suggestion of Boury-Esnault (1971: 324) and Boury-Esnault & Lopes (1985: 193, fig. 41) that Clathria (Microciona) assimilis Topsent, 1925, would fall within the variation of this species. We agree with Maldonado (1992) it is likely that specimens with extremely small isochelae (less than 9 µm) belong to a separate C. (M.) assimilis. Combined records demonstrate a very large morphological and geographic range for a single panmictic species, so it is likely a complex of sibling species that should be subjected to phylogeographic analysis.

Subgenus Axosuberites Topsent, 1893

Clathria (Axosuberites) papillata spec. nov.
(figs 28A-G)

Material.— Holotype (ZMA Por. 06738), Mauritania, off Banc d’Arguin, 20.0°N 17.15°W, 20 m, hard bottom with some muddy sand, gorgonians, Van Veen grab, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 63/02, 13.vi.1988.

Description.— Orange-red papillae (fig. 28A) arising from an encrusting base. Surface glistening, may have a shallow lengthwise groove, compact, not hispid, no apparent oscules (preserved condition). Height of papillae 0.5-1 cm, diameter 2-3 mm. Consistency firm.
Skeleton.— (fig. 28B) Axially condensed, spicules in dense spicate bundles, ending in extra-axial plumose bouquets, fanning out to the surface. Larger stylote forms concentrated in the axial regions and at the base of the extra-axial bouquets, smaller concentrated at the surface.
Spicules.— (figs 28C-G) Subtylostyles, styles, and palmate isochelae; no toxas.

Styles and subtylostyles intergrading (figs 28C-F), not absolutely divisible in differentiated categories; there are distinct subtylostyle forms (figs 28E-F) always with swollen microspined heads, in a large size range, divisible in small (ectosomal) subtylostyles (fig. 28F, 123-241 × 2.5-4.5 µm) and large subectosomal subtylostyles (fig. 28E, 246-346 × 5.5-7 µm), and there are distinct stylostyle forms (Figs 28C-D) with a fusiform or cylindrical shaft and evenly rounded heads that may be smooth (fig. 28C) or microspined (fig. 28D, 201-451 × 7-15 µm. Next to these, there are many non-classifiable stylostyle forms and overlapping sizes and shapes. Overall megasclere sizes 123-292.6-451 × 2.5-7.4-15 µm.

Palmate isochelae (fig. 28G), typical shaped, rather elongated, 16-17.9-20 µm.

Etymology.— The name refers to the shape of the sponge.

Ecology.— On hard bottoms covered in sediments.

Distribution.— So far known only from the Mauritanian type locality.

Remarks.— No other Clathria (Axosuberites) have been reported from Northwest Africa and neighbouring regions, although Axociella pachyaxia Lévi, 1960b, described from Senegal and assigned to Clathria (Thalysias) by Hooper (1996) is likely a representative of the subgenus. It is rather similar in habit (massively encrusting with lamellate folds) and skeletal structure, but differs from our new species in possessing thin wing-shaped toxas (50-80 µm) and thinner megascleres (only up to 8 µm). Southwards, C. (A.) benguelaensis Samaai & Gibbon, 2005 occurs in South African waters; it differs clearly in shape (elaborate erect form) and spiculation (possession of toxas). The subgenus predominantly occurs in the southern hemisphere (cf. Van Soest et al. 2013).

Subgenus Thalysias Duchassaing & Michelotti, 1864

Clathria (Thalysias) minutooides spec. nov.
(figs 29A-H)

Clathria minuta; Van Soest, 1993b: 212 (Table 3).

Not: Rhaphidophlus minutus Van Soest, 1984: 115, fig. 45.

Material.— Holotype (ZMA Por. 06988), Cape Verde Islands, Maio, SW coast off Ponta Preta, 15.1167°N 23.3°W, 5-8 m, exposed sandy bottom with large rocks, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D05A/05, 26.viii.1986; paratype (ZMA Por. 06940), Cape Verde Islands, São Tiago, SW coast near Ponta da Cidade, near Ciudad Velha, 14.9°N 23.6333°W, 5-15 m, loose boulders on coarse sand, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D05A/08, 26.vii.1986; paratype (ZMA Por. 07001), Cape Verde Islands, Maio, SW coast off Ponta Preta, 15.1167°N 23.3°W, 5-8 m, exposed sandy bottom with large rocks, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D05A/08, 26.vii.1986; paratype (ZMA Por. 07020), Cape Verde Islands, Boa Vista, W coast, NW coast of Ilheu Sal Rei, 16.1667°N 22.95°W, 5-15 m, exposed sandy bottom with large rocks, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D05A/18, 26.viii.1986; paratype (ZMA Por. 07076), Cape Verde Islands, São Nicolau, S coast near Preguiça, 16.5667°N 24.2833°W, 5-15 m, SCUBA, R.W.M. van Soest, CANCAP 7 Expedition stat. D11/09, 21.x.1986; paratype (ZMA Por. 07181), Cape Verde Islands, Boa Vista, NW coast of Ilheu Sal Rei, 16.1667°N 22.9667°W, 0-6 m, sandy bottom with stones and sabellariid reefs, snorkeling, R.W.M. van Soest, CANCAP 7 Exped. stat. K16/05, 28.viii.1986; paratype
Fig. 29. *Clathria (Thalysias) minutoides* spec. nov., A, holotype (ZMA Por. 06988) from the Cape Verde Islands (scale bar = 1 cm), B, cross section of skeleton (scale bar = 100 µm), C-I, SEM images of spicules, C-D, longer (C-C1) and shorter (D-D1) structural styles and details of apices, E-E1, larger subtylostyle, F-F1, smaller subtylostyle, G, echinating acanthostyle, H, palmate isochela, I-I1, toxas and detail of spined ending.
Examined for comparison.— Holotype (ZMA Por. 04796), *Rhaphidophlus minutus* Van Soest, 1984, Curacao, 300 m SE of Hilton Hotel, 33 m, 12.124°N 68.975°W, SCUBA diving, R.W.M. van Soest, 17. xii.1980.

Description.— (fig. 29A) Red, red-brown, orange or yellow microhispid crusts on (volcanic) rocks, shells and barnacles. Size varies from small patches of several mm to large crusts of up to 3 × 4 cm, thickness less than 1 mm.

Skeleton.— (fig. 29B) Hymedesmioid, with single structural styles erect on the substratum with heads embedded in the basal spongin plate and surrounded by a group of echinating acanthostyles. The ectosomal skeleton consists of two-layered bouquets of subtylostyles, the smaller at the periphery, spreading out in the dermis.

Spicules.— (figs 29C-H) Ectosomal subtylostyles, structural styles, echinating acanthostyles, toxas and palmate isochelae.

Subtylostyles (figs 29E-F), with microspined heads, in two size categories, larger (Fig. 29E) 171-259.4-370 × 1.5-2.7-4 µm, smaller (Fig. 29F) 123-137.7-153 × 1-1.4-2.5 µm.

Styles (figs 29C-D), thin, straight or slightly curved, with slightly swollen spined or
rugose heads, occasional spines along the shaft, in a large size range, 201-321.6-483 × 4-6.9-9 µm.

Acanthostyles (fig. 29G), thin, straight, entirely spined 42-88.8-135 × 3-5.4-8 µm.

Toxas (fig. 29I), wing-shaped, thin, shallow-curved, with upturned, finely spined or rugose apices (fig. 29I1), 54-79.3-96 µm.

Palmate isochelae (fig. 29H), typical-shaped, 13-15.8-19 µm.

Etymology.— The name means ‘similar to minuta’, to acknowledge similarity to Clathria (Thalysias) minuta (Van Soest, 1984 as Rhaphidophlus).

Ecology.— Shallow depth down to 30 m, in sandy bays.

Distribution.— Cape Verde Islands, Ascension.

Remarks.— The specimens from the Cape Verde Islands and Ascension are closely similar in spiculation to the Caribbean type of Rhaphidophlus minutus (for comparison SEM images of the spiculation of the holotype of that species are presented in figs 30A-F): the spicule size data are almost exactly the same for styles, large category of ectosomal subtylostyles, styles, echinating acanthostyles, toxas, palmate isochelae. Also the shapes of these spicules are basically the same. In a table in a previous publication (Van Soest, 1993b), the present material was indeed assigned to C. (T.) minuta. However, the smaller category of ectosomal subtylostyles is substantially larger in Caribbean C. (T.) minuta (up to 258 µm vs. 153 in C. (T.) minutoïdes spec. nov.) and the apices of the toxas are smooth in C. (T.) minuta vs. finely spined in the present species (compare fig. 30F1 with fig. 29I1). These are minor differences, and if not for the distance and great ocean depths separating these localities, the West African specimens could easily have been assigned to C. (T.) minuta without hesitation. In the present situation, we erect a new species but its name reflects the close similarity of populations on both sides of the Atlantic. Occurrence of the species in Ascension roughly half-way between the two sides of the ocean is a further indication of intimate relationship of these populations.

From the similar C. (M) gorgadensis spec. nov. (see above) this species differs in having the heads of the structural styles spined and the toxas smaller and provided with a deep curvature; there is only a single size of chelae; the subtylostyles are clearly divisible in two size categories.

Clathria (Thalysias) vacata spec. nov.
(figs 31A-F)

Material.— Holotype (ZMA Por. 07106), Cape Verde Islands, São Nicolau, Branco, SE coast near Ponta de Parede, 16.65°N 24.6833°W, 14-16 m, sandy bottom with small rock hills, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D14/06, 4.ix.1986.

Description.— Thinly encrusting on a limestone conglomerate (fig. 31A), brown-red in colour, with a distinct venal pattern. Size 3 × 3 cm, thickness less than 1 mm. Surface mucous, smooth. Choanosome with low spicular density, little spongin, and high content of granular cells (probably responsible for mucus development).

Skeleton.— (fig. 31B) Hymedesmioid architecture with single styles surrounded by small groups of acanthostyles, lodged with heads in thin spongin plate at the substrate. Styles are sheathed in bundles of long subtylostyles fanning out near the surface and then crowned with bouquets of smaller subtylostyles. No microscleres.
Spicules.— (figs 31C-F) Ectosomal subtylostyles, choanosomal styles, echinating acanthostyles.

Subtylostyles (figs 31D-E), in two distinct but slightly overlapping size categories, (1) long straight with elongate, barely swollen heads (fig. 31D), smooth or rarely provided with one or a few spines, 162-200.4-240 × 1-1.3-1.5 µm, and (2) short, thin (fig. 31E), often curved, with slightly developed smooth heads, 96-125.2-168 × 0.5-1 µm.

Styles (fig. 31C), relatively thin, straight, with slightly developed, lightly spined heads, with spines also scattered some distance over the shaft, 198-257.3-315 × 3-3.4-4 µm.

Acanthostyles (fig. 31F), similar to structural styles, but shorter, entirely lightly spined, 91-103.2-129 × 3-3.7-5 µm.

Etymology.— Vacatus (L.) means ‘be empty from’ or ‘free from’, referring to the entire absence of microscleres in this species.

Ecology.— On rocks in sandy environment, down to 16 m.

Distribution.— Only known from the type locality, off the SE coast of the island of Branco, Cape Verde Islands.
Remarks.— No Clathria species are known in the region lacking microscleres entirely. The Adriatic species Clathria marissuperi Pulitzer-Finali (1983) is the only species in the nearby Mediterranean without microscleres, but this is lamellate in shape and has smooth thick styles and only a single category of subtylostyles. C. (T.) vacata spec. nov. may be rather similar to Madeiran Clathria (Microciona) haplotoxa (Topsent, 1928 as Leptoclathria) in the shape and size of the styles and acanthostyles, but that species has both toxas and palmate isochelae.

Subgenus Cornulotrocha Topsent, 1927

Clathria (Cornulotrocha) cheliglomerata spec. nov.
(figs 32A-H)

Material.— Holotype (ZMA Por. 09966), Mauritania, off Cap Blanc, 11-35 m, F.P. Vermeulen, 1906; paratype (ZMA Por. 06698), Mauritania, 19.083°N 16.4167°W, 20 m, hard bottom with shells, gorgonians and hermitcrabs, 2.4 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 050/02, 11.vi.1988; paratype (ZMA 06831), Mauritania, off Banc d’Arguin, 20.4°N 17.3167°W, 35-40 m, sandy bottom with diverse bottom fauna, 3.5 m Agassiz trawl, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 117/01, 18.vi.1988.

Examined for comparison.— Holotype slide (MNHN LBIM D.T. 1208), Cornulotrocha cheliiradians, Banc de Gorringe, 36.625°N 11.5667°W, 116 m, on a stone, Campagne de Princesse-Alice 1904, stat. 1664, 25.vii.1904.

Description.— Thickly encrusting (fig. 32A) on stones, dead gorgonians, nodules, and gastropods. Size depends of substratum, largest 4 × 2 cm, thickness 1-3 mm. Colour: orange to red. No evidence of a fistular growth form as in Topsent’s type material.

Skeleton.— (fig. 32B) Generally microcionid, i.e. the basal spongin plate extends upwards to form thick short fibers cored and echinated by megascleres, but without lateral connections other than the basal spongin. Ectosomal spicules single, arranged at all angles. Chelae arranged in clusters of rosettes (fig. 32H) at the surface crowning the choanosomal spiculo-fibres. Size of rosettes 26-42 µm, number of chelae in a rosette variable between 6 and 18.

Spicules.— (figs 32C-G) Subtylostyles, styles, echinating acanthostyles, toxas, palmate isochelae.

Subtylostyles (fig. 32D), thin, straight, with microspined heads, 141-243.9-378 × 1-2.5-4.5 µm.

Styles (fig. 32C), coring and echinating the spongin fibers, curved, fusiform, with smooth shaft, usually subterminally constricted, heads most often warty/spined or rugose, but occasionally smooth, in a large size variation: 168-996 × 12-26 µm.

Echinating acanthostyles (fig. 32E), relatively thick, curved, and usually with warty head, shaft entirely lightly spined, rather uniform in size and shape, 66-84.2-114 × 4-7.1-9 µm.

Toxas (fig. 32F), thin, wing-shaped but with shallow curvature with barely upturned apices, in a single size category, 30-63.2-99 µm.

Palmate isochelae (fig. 32G-H), typical-shaped, 16-17.2-19 µm.

Etymology.— The name combines ‘chela’ and ‘glomeratus’ (L. = gathered into a ball) referring to the rosettes of palmate isochelae.
Ecology. — On shells and rocks, on sandy gravel bottom on the continental shelf, 11-40 m.

Distribution. — Mauritania, off Cap Blanc.

Remarks. — The unique feature of the subgenus is the occurrence of numerous rosettes (fig. 32H) of palmate isochelae, shared with the Mycalina genera *Mycale* Gray, 1867 and *Esperiopsis* Carter, 1882 (as *Mycalopsis* Topsent, 1927), which likely indicates a
parallel evolution. The type species of *Cornulotrocha, C. cheliradians* Topsent, 1927 was recorded only once from a locality (Gorringe Bank, off the coast of Portugal, see also Xavier & Van Soest, 2007) not too far away from our present localities (Mauritania), and at first it was assumed that our material was conspecific. Topsent describes a hollow fistular shape for *C. cheliradians*, but none of our specimens show evidence that they had a fistular habit in life. The spicules described by Topsent, and confirmed by our reexamination of a slide from the holotype (see figs 33A-D), deviate strongly from those of our specimens: the subtylostyles are apparently modified to smooth curved strongyles (fig. 33B), 246-392 × 3-9 µm in *C. cheliradians*; if these are not derived from subtylostyles they comprise a separate spicule category not present in our specimens; the styles (fig. 33B), 390-444 × 8-11 µm, are all entirely smooth, curved and are abruptly pointed; the acanthostyles (fig. 33D), 126-243 × 4.5-7 µm, are relatively long and thin; toxas, 66-99 µm, are straight with a deep curvature, clearly different from the toxas in our material; palmate isochelae, 23-27 µm, are typical shaped but distinctly longer than in our material. The rosettes of chelae (fig. 33C) are 48-68 µm in diameter and the number of chelae in each varies substantially from approximately 11 to 35 or more, whereas those of our material are smaller and have fewer chelae, 26-42 µm, 6-18 chelae. Taken together, these differences are too great to accommodate our spec-

Fig. 33. Light microscopic images made from a slide of the holotype (MNHN LBIM D.T. 1208) of *Clathria (Cornulotrocha) cheliradians* (Topsent, 1927) from Gorringe Bank, A, overview of skeleton (scale bar = 500 µm), B, strongyle and style (scale bar = 100 µm), C, rosette of chelae (scale bar = 50 µm), D, acanthostyles (scale bar = 50 µm).
imens in *C. cheliradians*, and accordingly we distinguish a separate species for them.

Clathria (Microciona) armata growing on dead shells and live gastropods in the Mauritanian region (see description above) appears closest in spiculation to *C. (C.) cheliglomerata* spec. nov., with all stylote spicules essentially similar in shape, size and ornamentation. The toxas of that species are distinctly more deeply curved and they are frequently roughened or wobbly at the apices. The chelae of *armata* are never arranged in whorls or any kind of groupings.

The only other known *Cornulotrocha* species, *Clathria (Cornulotrocha) rosetafiorida* Hajdu et al. 2006 is likewise simply an encrusting sponge, like ours, so the fistular habit is not a subgeneric feature. For that reason, these authors assigned *Cornulotrocha* to the status of a subgenus of *Clathria* (see Hajdu et al. 2006: 959). The fact that the present new species and *C. (Cornulotrocha) rosetafiorida* are similar to *Clathria (Microciona)* species, whereas *C. (Cornulotrocha) cheliradians* is quite dissimilar in shape and spicule characters, may indicate that the rosettes could be a homoplasy, developed independently like those occurring in the Mycalidae. This would mean that *Cornulotrocha* is not a monophyletic subgenus.

Subgenus Paresperia Burton, 1930

Definition: *Clathria* possessing a loosely reticulate, undifferentiated, unispicular choanosomal skeleton with single tangential ectosomal stylostyles.

Type species.— *Paresperia intermedia* Burton, 1930 (by monotypy). This is generally considered a junior synonym of *Clathria anchorata* (Carter, 1874 as *Dictyocylindrus*).

Remarks.— Hooper (2002) assigned this species to the subgenus *Clathria (Clathria)*, but the type species lacks a differentiated skeleton, a prerequisite for membership of *Clathria (Clathria)*. The larger styles form a vague, loosely reticulated skeleton, not anisotropic or plumoreticulate, with occasional smaller styles in echinating position, but there is no binding spongin and no clear differentiation in structural and auxiliary choanosomal styles. It is proposed here to revive Burton’s (1930) genus *Paresperia* at the level of a subgenus of *Clathria*.

Clathria (Paresperia) anchorata (Carter, 1874)

(figs 34A-F)

Dictyocylindrus anchorata Carter, 1874: 251, pl. XV figs 43a-c.

Microciona plana Carter, 1876: 238.

Clathria longichela Topsent, 1928: 300, pl. X fig. 9

Paresperia intermedia Burton, 1930: 501.

Microciona anchorata; Alander, 1942: 62.

Clathria (Clathria) anchorata; Van Soest et al. 2007: Table 2.

Material.— (ZMA Por. 21217b), Morocco, Gulf of Cadiz, 35.21°N 6.52°W, 600 m, Guy de Smet, don. J. Reveillaud, CADI-POR Exped. III-10, 13.vi.2007.
Fig. 34. Clathria (Paresperia) anchorata (Carter, 1874), specimen (ZMA Por. 21217b) from Morocco, A, overview of skeleton (scale bar = 500 µm), B-F, SEM images of spicules, B-B1, structural style and detail of head and pointed end, C-C1, ectosomal subtylostyle and detail of head and pointed end, D-E, echinating acanthostyles, larger (D) resembling the structural styles, smaller (E) with sharper spination, F, palmate isochela.
Description.— Small encrustation of $3 \times 2 \times 2$ mm on a piece of dead *Lophelia*. Colour greyish beige, consistency soft.

Skeleton.— (fig. 34A) A confused mass of spicules with no or very little binding spongion. No clear skeletal structure.

Spicules.— (figs 34B-F) Ectosomal subtylostyles, choanosomal styles, echinating acanthostyles, palmate isochelae.

Subtylostyles (fig. 34C), smooth straight or slightly curved, with mucronate head, $271-323.5-344 \times 3-3.7-5.5 \mu m$.

Styles (fig. 34B), curved, with swollen microspined heads, shaft with a few spines or bumps, outline may be bumpy, $686-855.3-1098 \times 13.5-15.6-17.5 \mu m$.

Acanthostyles (figs 34D-E), curved, with swollen head, resembling the choanosomal styles, but with spines on both head and shaft, in a large size range, $332-440.3-571 \times 6.5-7.8-10 \mu m$.

Palmate isochelae (fig. 34F), typical shaped, but somewhat elongated, 19-27.0-31 \mu m.

Ecology.— Bathyal, on dead *Lophelia* corals.

Distribution.— Gulf of Cadiz; elsewhere common along the continental margin of Europe (France, British Isles), Rockall Bank, northwards to Norway.

Remarks.— The holotype of Carter was destroyed during WW II, but there is little doubt about the properties of this common Northeast Atlantic bathyal species. There are several synonyms, which may have been caused by the fact that Carter did not distinguish subtylostyles from the styles. Burton (1930: 501) when he erected *Paresperia intermedia* failed to distinguish the subtylostyles and the echinating acanthostyles. Alander’s (1942: 62) record of this species from as shallow as 85 m needs confirmation as he did not provide a description.

Additional Northwest African Microcioninae species

We briefly characterize further Microcioninae species from the region that we were unable to reexamine. The West African material of Lévi apparently could not be found in the collections of the Paris Museum and present whereabouts are unknown. The identities of the species recorded below all need verification. (data are summarized along with above described species in Table 2).

Clathria (Clathria) compressa sensu Lévi, 1960b

Clathria compressa Schmidt, 1862: 58, pl. VI fig. 1; Lévi, 1960b: 761, fig. 14.

Description.— Arborescent. Total height 4.5 cm, width 2.5 cm, diameter of branches 0.4 cm. Skeleton a plumoreticulation with spongion fibers cored by structural styles and echinated by acanthostyles. Spicules comprise ectosomal subtylostyles with microspined heads, $110-185 \times 4-6 \mu m$; structural styles are smooth and curved, occasionally microspined on the heads, $300-350 \times 13-16 \mu m$; echinating acanthostyles, heavily spined, but less so near the pointed end, $75-130 \times 7-8 \mu m$; wing-shaped toxas in a large size range, deeply curved and with clearly visible spined endings; rare typical shaped palmate isochelae, 7-8 \mu m.
Table 2. Data on morphology and spicule sizes of studied specimens and additional reported material of the subfamily Microcioninae in somal, echinat. = echinating, strong. = strongyle, isoch. = isochelae, region. = regional, distrib. = distribution, cont. = continental, msp. = micro-
encrusting, occ. = occasionally, mucr. = mucronate, li. = lightly, s. = sensu, monact. = monactine, plumoret. = plumoreticulate, hym. = hymedes-
structure size (µm) morph. tylotes size(µm) morph. size(µm) morph. size(µm) morph.

| genus | subgenus | species | skeletal structure | subtylo. size (µm) | subtylo. morph. | quasi-
tyloletes | style size(µm) | style morph. | echinat.st. size(µm) | echinat.st. morph. |
|-------|----------|---------|-------------------|-------------------|----------------|----------------|-------------------|----------------|-------------------|-------------------|
| Clathria | Clathria | compressa* | plumo-
retic. | 110–185 | head | absent | 300–350 | head | 75–130 | heavy |
| | | | | × 4–6 | msp. | | × 13–16 | sm. | × 7–8 | sp. |
| | Clathria | hjorti | plumo-
retic. | 122–324 | head | absent | 136–726 | head | 72–204 | sm. / |
				× 2–7	msp.		× 16–36	sm.constr.	× 6–22	wrt.
	Microciona	affinis*	hymed.	730–750	head	absent	1600	head	110–300	entire
				× 5	msp.		× 18–20	sp.		sp.
	Microciona	africana*	hymed.	210	not	given	250	head	250	entire
				× 3	msp.		× 13–14	sp.		sp.
	Microciona	anancora*	hymed.	730–750	head	absent	1600	head	110–300	entire
				× 5	msp.		× 18–20	sp.		sp.
	Microciona	armata*	microcion.	102–359	head	absent	172–438	head	72–153	heavy
				× 1.5–4.5	msp.		× 8–15	wrt.	× 6–10	sp.
	Microciona	ascensionis	hymed.	186–309	head	absent	254–388	head	63–93	dense
				× 1.5–3	msp.		× 7–9	wrt.-sp.	× 3–5	sp.
	Microciona	atoxa	hymed.	149–255	head	absent	192–660	head	66–209	dense
				× 1.5–2	msp.		× 7–26	wrt.-sp.	× 5–10	sp.
	Microciona	aurea	hymed.	162–520	head	absent	418–660	head	65–198	strong
				× 2–5	msp.		× 18–25	strong.wrt.	× 8–13	wrt.
	Microciona	bicleistochelifer	hymed.	204–363	head	absent	183–492	head		
				× 1.2–5	msp.		× 6–11	sm.		
	Microciona	bitoxa	hymed.	275–360	head	absent	868–1234	head	54–162	rugose/
				× 2.5–4.5	msp.		× 14–25	sm.	× 4–7	sp.
	Microciona	boavistae	microcion.	132–204	head	absent	192–341	head	64–183	entirely
				× 1.5–3	msp.		× 8–18	sm./sp.	× 5–10	sp.
	Microciona	calloides	hymed.	219–264	head	absent	108–201	head	66–84	head
				× 1.5–2.5	msp.		× 5–10	sm.	× 5–7	sm.
	Microciona	cancelypeptina	hymed.	243–516	head	absent	186–564	head	75–168	heavy
				× 2–8	msp.		× 7–19	wrt.-sp.	× 4–11	sp.
	Microciona	capvendensis	hymed.	177–285	head	absent	255–624	head	78–147	heavy
				× 1.5–3	msp.		× 8–18	sm./sp.	× 6–12	sp.
				× 1.7–3.6	msp.		× 5–10.9	sm.	× 4–9.10	sp.
	Microciona	cleistochela	hymed.	224–416	not	given	112–560	head	76–96	entirely
				× 16	msp.		× 16	sm.		li.sp.
	Microciona	conchicola	hymed.	141–402	head	absent	119–495	head	57–111	wrt./
				× 1–6	msp.		× 5–21	wrt.	× 3–5–13	sp.
	Microciona	coralloides*	microcion.	201–381	heads	absent	224–415	head	64–182	entirely
				× 1.5–4.3	lobate		× 6.8–15.3	sm.constr.	× 2.6–14.4	sm.
	Microciona	gordagensis	hymed.	182–345	head	absent	165–384	head	48–130	entirely
				× 2–5	msp.		× 7–15	sm.	× 3–7	sp.
	Microciona	gradalis*	hymed.	160–344	head	absent	192–656	head	60–188	entirely
				× 1.5–2.5	msp.		× 6	sm.		sp.
	Microciona	haplotoxas*	hymed.	180–210	head	absent	110–190	head	60–78	entirely
				× 2–3	msp.		× 4	li.sp.	× 3	sp.
	Microciona	haplotoxas*	hymed.	150–240	head	absent	200–330	head	66–120	entirely
				× 2–9	msp.			li.sp.		sp.
	Microciona	jolicoeuri*	microcio.	125–425	not	given	175–450	head	45–55	entirely
				× 2–9	msp.		× 10–22	head.sm		sp.
Table 2. Data on morphology and spicule sizes of studied specimens and additional reported material of the subfamily Microcioninae in

<table>
<thead>
<tr>
<th>Taxon</th>
<th>to×as 1 size(µm)</th>
<th>to×as 1 morph.</th>
<th>to×as 2 size(µm)</th>
<th>to×as 2 morph.</th>
<th>isoch. 1 size(µm)</th>
<th>isoch. 1 morph.</th>
<th>isoch. 2 size(µm)</th>
<th>isoch. 2 morph.</th>
<th>habit</th>
<th>region. distrib.</th>
<th>depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clathria sp. nov. rec.</td>
<td>× 1.5–3 msp.</td>
<td>× 8–18 sm./sp. × 6–12 sp.</td>
<td>× 2–7 msp.</td>
<td>× 16–36 sm.</td>
<td>× 6–22 wrt.</td>
<td>× 5 msp.</td>
<td>× 18–20 sp.</td>
<td>sp.</td>
<td>sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clathria sp. nov.</td>
<td>× 2–5 msp.</td>
<td>× 7–15 sm. × 3–7 sp.</td>
<td>× 5 msp.</td>
<td>× 18–20 sp.</td>
<td>sp.</td>
<td>× 2–3 × 4 li.sp.</td>
<td>× 3 sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microciona spiculata</td>
<td>× 1–2.5 sm.</td>
<td>× 5–10 sm. × 5–7 sm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Continued.

<table>
<thead>
<tr>
<th>genus</th>
<th>subgenus</th>
<th>species</th>
<th>skeletal structure</th>
<th>subtylo. size (µm)</th>
<th>subtylo. morph.</th>
<th>quasitylotes</th>
<th>style size (µm)</th>
<th>style morph.</th>
<th>echinat.st. size (µm)</th>
<th>echinat.st. morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clathria</td>
<td>Microciona</td>
<td>spinarcus</td>
<td>microcion.</td>
<td>153–300</td>
<td>head</td>
<td>absent</td>
<td>237–367</td>
<td>head</td>
<td>77–237</td>
<td>heavy</td>
</tr>
<tr>
<td>Clathria</td>
<td>Microciona</td>
<td>strepsitoxa*</td>
<td>microcion.</td>
<td>184–340</td>
<td>head</td>
<td>absent</td>
<td>181–574</td>
<td>head</td>
<td>66.5–170</td>
<td>entirely</td>
</tr>
<tr>
<td>Clathria</td>
<td>Microciona</td>
<td>strepsitoxa* s. B.E. & Lopes 85</td>
<td>heads</td>
<td>168–304</td>
<td>not</td>
<td>given</td>
<td>144–384</td>
<td>head</td>
<td>72–136</td>
<td>entirely</td>
</tr>
<tr>
<td>Clathria</td>
<td>Microciona</td>
<td>toxiformis* s. Cruz 2002</td>
<td>plumose</td>
<td>192–412</td>
<td>not</td>
<td>given</td>
<td>184–720</td>
<td>head</td>
<td>64–200</td>
<td>entirely</td>
</tr>
<tr>
<td>Clathria</td>
<td>Axosuberites</td>
<td>pachyaxia*</td>
<td>axially cond.</td>
<td>175–350</td>
<td>head</td>
<td>absent</td>
<td>175–350</td>
<td>heads</td>
<td>42–133</td>
<td>entirely</td>
</tr>
<tr>
<td>Clathria</td>
<td>Axosuberites</td>
<td>papillata sp. nov.</td>
<td>axially cond.</td>
<td>123–346</td>
<td>head</td>
<td>absent</td>
<td>201–451</td>
<td>head</td>
<td>42–133</td>
<td>entirely</td>
</tr>
<tr>
<td>Clathria</td>
<td>Thalysias</td>
<td>minutoides sp. nov.</td>
<td>hymed. (a)</td>
<td>171–370</td>
<td>head</td>
<td>absent</td>
<td>201–483</td>
<td>head</td>
<td>42–133</td>
<td>entirely</td>
</tr>
<tr>
<td>Clathria</td>
<td>Thalysias</td>
<td>vacata sp. nov.</td>
<td>hymed. (a)</td>
<td>162–240</td>
<td>head</td>
<td>absent</td>
<td>198–315</td>
<td>head</td>
<td>91–129</td>
<td>entirely</td>
</tr>
<tr>
<td>Clathria</td>
<td>Cornulotrocha</td>
<td>cheliglomerata sp. nov.</td>
<td>microcion.</td>
<td>141–378</td>
<td>heads</td>
<td>absent</td>
<td>166–996</td>
<td>head</td>
<td>66–114</td>
<td>entirely</td>
</tr>
<tr>
<td>Clathria</td>
<td>Paresperia</td>
<td>anchorata</td>
<td>confused</td>
<td>271–344</td>
<td>head</td>
<td>absent</td>
<td>686–1098</td>
<td>entirely</td>
<td>332–571</td>
<td>entirely</td>
</tr>
</tbody>
</table>

Distribution. — Senegal; 60-100 m.

Comment. — We compared Lévi’s description with two dry specimens from the Adriatic present in the collections of Naturalis, RMNH Por. 269 (Vosmaer’s number 317), locality ‘Adriatic’, and RMNH Por. 270 (Vosmaer’s number 176) from Triest, Italian Adriatic. Although the growth form of the Adriatic material was much coarser and the branches were anastomosed into flat lamellated structures, there was nevertheless a remarkable similarity in spicule shapes and sizes. We tentatively confirm Lévi’s decision to extend the distribution of Clathria (Clathria) compressa Schmidt, 1862 from the Adriatic to Senegalese waters. However, there are few if any records from areas in between these distant localities.

Clathria (Clathria) coralloides sensu Boury-Esnault & Lopes, 1985

Clathria coralloides; Boury-Esnault & Lopes, 1985: 194, fig. 43.

Not: *Spongia coralloides* Scopoli, 1772: 412, pl. 64.

Description. — Small, thin, orange crust of several cm². Finely hispid surface. Skeleton plumoreticulate consisting of spongin fibres cored by structural styles and echinated by smaller styles. Spicules include subtylostyles with ovate or trilobate heads, 201-381 × 1.5-4.5 µm; structural styles, smooth, fusiform, lightly curved, slightly constricted underneath the head, 224-415 × 7-15.5 µm; small echinating styles, smooth and
similar in shape to the structural styles, 64-182 × 3-14.5 μm; wing-shaped toxas, with shallow curvature, with ending straight or only slightly upturned, 27-156.5 × 0.4-6 μm; rare palmate isochelae, not drawn or described, 16 μm.

Distribution.—Azores; 12 m.

Comment.—The growth form and the rare and undescribed isochelae preclude its assignment to *Clathria (C.) coralloides* (see above). The presence of short fairly robust toxas could point to *Clathria (Clathria) arcifera* (Schmidt, 1868, see above). Less likely is conspecificity with *Clathria (Microciona) calloides* spec. nov. (see above), which has generally similar skeletal structure and spicule shapes, but the spicule size data appear to differ substantially. A further possibility is conspecificity with Cruz’ (2002) material described as *Ophlitaspongia papilla* (see below).

Clathria (Microciona) affinis sensu (Topsent, 1904a)

Hymeraphia affinis; Topsent, 1904a: 162

Not: _Hymeraphia affinis_ Topsent, 1889: 43, fig. 8A; nec: _Clathria (Microciona) campecheae_ Hooper, 1996: 220 (replacement name for the preoccupied combination _Clathria (Microciona) affinis_ Topsent, 1889)

Description.—Thin greyish crusts on dead corals. Spicules comprise subtylostyles with microspined heads, 730-750 × 5 μm; structural styles with spined heads, 1600 × 18-20 μm; echinating acanthostyles, entirely spined, variable in length, 110-300 μm;
smooth wing-shaped toxas, up to 215 µm; typical shaped palmate isochelae, 18-19 µm.

Distribution.— Azores; bathyal, 1360 m.

Comment.— The spicules sizes clearly exceed these of the Caribbean shallow-water species named *Hymeraphia affinis* by Topsent, 1889 (and which was subsequently assigned to *C. (M.) campecheae* by Hooper, 1996). The present species thus needs to be renamed as well, as it does not conform to *Clathria (Microciona) campecheae*, nor to *Clathria (Microciona) affinis* (Carter, 1880).

Clathria (Microciona) africana (Lévi, 1956)

Description.— Red, solid crust on mollusk shell. Hispid surface, no visible oscules. Skeleton microcionid. Subtylostyles with microspined heads, 210 × 3 µm; styles with constricted, spined heads, grading into echinating acanthostyles, together up to 250 × 13-14 µm; toxas in two distinct categories, long thin wing-shaped, 25-240 µm and short, fat, shallow oxhorn-shaped, 50-60 µm; typical shaped palmate isochelae 11-12 µm.

Distribution.— Senegal (Dakar region).

Clathria (Microciona) anancora Topsent, 1904a

Hymeraphia affinis var. *anancora* Topsent, 1904a: 163.

Description.— Encrusting a lithistid. Spiculation similar to that of *C. (M.) affinis* sensu (Topsent, 1904a), see above. Differences are the absence of isochelae, and the smaller length of the toxas (only up to 120 µm).

Distribution.— Azores; bathyal, 394 m.

Comment.— This species needs to be redescribed, because insufficient data have been supplied by its author.

Clathria (Microciona) cleistochela sensu Boury-Esnault & Lopes, 1985 and Cruz, 2002

? *Clathria cleistochela* Topsent, 1925: 650, fig. 9.

Microciona cleistochela; Boury-Esnault & Lopes, 1985: 193, fig. 42

Clathria cheistochela (sic); Cruz, 2002: 180.

Description.— Extensive, very thin encrustations on barnacles, bright red colour. No visible oscules. Slightly hispid. Skeleton microcionid. Spicules consist of subtylostyles of 202-371 × 1.7-3.6 µm; structural styles smooth, slightly constricted below the head, 85-560 × 5-16 µm; echinating acanthostyles lightly spined, drawn as fusiform, 76-283.5 × 5-10.5 µm; two size categories of wing-shaped toxas (not distinguished by Cruz), 60.2-100 × 0.7-2.5 µm and 27.2-38.5 × 0.5-1.0 µm; cleistochelae 13.7-16.6 µm.

Distribution.— Azores, Canary Islands; 10 m.

Comment.— We compared the descriptions of Boury-Esnault & Lopez, 1985 and Cruz, 2002, (which both appear similar in spiculation) with a slide of the type from Naples, MNHN LBIM D.T.329 (see also above in the Remarks on *Clathria (Microciona)*
cancaiseptima spec. nov.). We found the type to show some differences with the Azorean and Canarian specimens, the most obvious one being that structural styles were warty or spined, and up to 22 µm in thickness, in the type material. Minor differences were apparent in the toxas, which were not clearly divisible in two size categories, and were generally longer. Echinating acanthostyles appeared more heavily spined than in the drawing of Boury-Esnault & Lopes and Cruz. The value of these differences remains to be determined after more specimens have been examined.

Clathria (Microciona) gradalis sensu Cruz, 2002

Clathria gradalis Topsent, 1925: 651, fig.10.
Clathria (Microciona) gradalis; Cruz, 2002: 181.

Description.— Hispid red encrustation under stones. Skeleton hymedesmioid. Straight subtylostyles, 160-344 µm; structural styles with warty or lightly spined heads, slightly curved, constricted underneath the heads, 192-656 µm; echinating acanthostyles similar to the structural styles but entirely spined, 60-188 µm; wing-shaped toxas with deep curvature, 40-160 µm; typical shaped palmate isochelae, 12-14 µm.

Distribution.— Canary Islands (Tenerife, La Palma); shallow water.

Comment.— We compared Cruz’ description with a spicule slide of the holotype from Naples, MNHN LBIM D.T.328. Small differences are apparent: the Naples styles may be as long as 820 µm, echinating acanthostyles are mostly somewhat longer, as are the toxas. Still, overall similarity is convincingly great and we support Cruz’ decision to assign his material to *Clathria (Microciona) gradalis*.

Clathria (Microciona) haplotoxa (Topsent, 1928)

Leptoclathria haplotoxa Topsent, 1928: 298, pl. × fig. 16

Description.— Small thin crust, soft. Skeleton hymedesmioid. Spicules consist of ectosomal strongyles (presumably modified subtylostyles), 180-210 × 2 µm; structural styles short and thin, with spined or warty heads, 110-190 × 4 µm; echinating acanthostyles likewise small, 60-78 × 3 µm; small wing-shaped toxas, 20-30 µm; typical shaped palmate isochelae, 12.5-14 µm.

Distribution. — Porto Santo, Madeira archipelago.

Clathria (Microciona) haplotoxa sensu (Levi, 1956)

?Leptoclathria haplotoxa Topsent, 1928: 298, pl. × fig. 16
Microciona haplotoxa; Lévi, 1956: 400, Fig. 7.

Description.— Thin red crust. Skeleton hymedesmioid. Spicules consist of subtylostyles 150-240 µm; structural spined styles 220-330 µm; echinating acanthostyles, 66-120 µm; wing-shaped toxas, 20-35 µm; typical-shaped palmate isochelae, 11-12 µm.

Distribution. — Senegal.

Comment.— This differs from the type of *C. haplotoxa* by having subtylostyles instead of strongyles, and larger styles and acanthostyles. Conspecificity is uncertain.
Clathria (Microciona) strepsitoxa sensu (Boury-Esnault & Lopez, 1985 and Cruz, 2002)

Microciona strepsitoxa Hope, 1889: 334, pl. XVI figs 1-10; Boury-Esnault & Lopes, 1985: 192, fig. 40. Clathria (Microciona) strepsitoxa; Cruz, 2002: 179.

Description.— (combined from Boury-Esnault & Lopes and Cruz). Red or orange encrustations, rather smooth, with visible oscules. Thickness 1-2 mm. Skeleton microcionid. Spicules comprise subtylostyles with microspined heads, 168-340 × 2-3.5 µm; structural styles largely smooth, but with a few spines on the heads or with heads irregular in shape, 144-574 × 4-10 µm; echinating acanthostyles, entirely spined, 66-170 × 3.5-8 µm; toxas in two distinct categories, strepsitoxas, 72-384 µm, and wing-shaped toxas 14-57 µm; typical shaped palmate isochelae, 11-18 µm.

Distribution.— Azores, Canary Islands (Tenerife); 7-15 m, and also deeper in the Dendrophyllia ramea community.

Comment.— We compared the above description with the type specimen of Microciona strepsitoxa, BMNH 1889.11.16.1 (see also above in the Remarks of Clathria (Microciona) aurea spec. nov.), and with a slide of a specimen from Banyuls in the Naturalis collection (Vosmaer slide collection). We discovered under SEM fine spines on the small toxas of the type, which were not recorded by Boury-Esnault & Lopes and Cruz, but these are virtually invisible under light microscopy. The styles of the type are up to 650 µm, and the small wing-shaped toxas my reach 110 µm. Spicules of the specimen from Banyuls are closely similar to the type, with wing-shaped toxas even reaching 156 µm. Nevertheless, overall similarity in spiculation with Boury-Esnault & Lopes’ and Cruz’ specimens is sufficiently great to confirm that the material from the Azores and the Canary Islands (and that of Banyuls) is likely to be conspecific with the type.

Clathria (Thalysias) jolicoeuri sensu (Levi, 1959)

Description.— Thin crust on a hydrocoral. Skeleton microcionid-plumoreticulate, consisting of interconnected spongin-encased columns of structural styles, echinated by acanthostyles. Spicules subtylostyles, 125-425 × 2-9 µm; smooth, curved structural styles, 175-450 × 10-22 µm; echinating acanthostyles very short, 45-55 × 5 µm; one variable category of ?wing-shaped toxas 60-200 µm; palmate isochelae rare, 12 µm.

Distribution.— São Tomé, Central Gulf of Guinea.

Comment.— We compared slides (MNHN LBIM D.T.323 and 324) of Topsent’s (1925) specimen from Naples with the above description. There are discrepancies with both Mediterranean C. (T.) jolicoeuri (toxa sizes and shapes, chelae sizes and shapes) and the above described Clathria (Microciona) gorgadensis spec. nov. (skeletal structure, contorted shape of small isochelae). Lévi’s material needs further study.

Clathria (Axosuberites) pachyaxia (Lévi, 1960b)

Axociella pachyaxia Lévi, 1960b: 763, fig. 16.
Material.— The specimen is registered as MNHN LBIM DCL. 787, but apparently could not be found when requested on loan (2013).

Description.— Massively encrusting, rosy red sponge, size 6.5 × 2.5 × 0.6 cm, consisting of a series of parallel ridges with short digitations. The skeleton is an axially condensed, plumoreticulation, ending at the surface in tufts of diverging spicules. Spicules consist of styles and subtylostyles with microspined heads, 175-350 × 3-8 µm, small, thin, wing-shaped toxas, 50-80 µm, and typical shaped palmate isochelae, 15-16 µm.

Distribution.— Senegal.

Subfamily Ophlitaspongiinae De Laubenfels, 1936

Genus Antho Gray, 1867

Subgenus Antho (Antho) Gray, 1967

Remarks.— This genus was extensively revised by Hooper (1996 and 2002). His admirable effort has effectively grouped previous disparate genera of dubious status into a well-defined genus with synapomorphies clearly delimited from closely related genera like Clathria s.l., Echinoclathria, Ophlitaspongia and Echinochalina Thiele, 1903. Nevertheless, a few basic problems are still apparent, centering on the precise delimitation and content of two of the three subgenera distinguished by Hooper, viz. Antho (Antho) and Antho (Acarnia). According to the definition provided in Hooper (2002) the two subgenera are distinguished by possessing [Antho (Acarnia)] or lacking [Antho (Antho)] a separate category of echinating styles next to the basal reticulation of (acantho-)styles or (acantho-)strongyles. A crucial issue is the precise nature of the type species of Antho, viz. Myxilla involvens Schmidt, 1864, because the original description by Schmidt (p. 37) and figures (pl. IV fig. 6) are incomplete and ambiguous, and there does not remain a certainly established type specimen (but see below). Currently, the type species, Antho (Antho) involvens, has seven nominal junior synonyms (in numerous combinations by assignment of these sponges to more than 10 different genera), which collectively differ substantially in shape, spicule types and sizes, and in geographic distribution, making this species one of the most variable and widespread in the family Microcionidae.

Hooper (1996: 26, 422) states that the holotype is in the Landesmuseum Joanneum Graz (LMJG), but fails to give further details, relying for the characters of the species on a slide in the Natural History Museum, BMNH 1867.3.11.92, stated to be made from the holotype by Burton (1930: 533). The O. Schmidt Catalogue (Desqueyroux-Faúndez & Stone, 1992), which contains information on all Schmidt specimens present in the Graz Museum, Strasbourg Museum, the Paris Museum and the Natural History Museum, makes no mention of any type material of Myxilla involvens. Already in 1894, no specimen with label Myxilla involvens was detected among the 233 specimens at that time assigned to the ‘Schmidt collection’ at LMJG (see list of Heider, 1894). This leads to the conclusion that there is no longer any type material left in the Johanneum at Graz. Schmidt was known to have been very casual with the type concept and liberal in distributing specimens, fragments or slides of many of his collections to other institutions (Wiedenmayer, 1977: 259). These facts indicate the possibility that the BMNH slide
might or might not belong to the original Schmidt type specimen, but could very well belong to a subsequently collected very similar sponge. We borrowed the BMNH slide of which the label carries the text ‘Myxilla involvens Sdt 64 Adriatic 67.3.11.92’. Hooper’s description of the BMNH type fragment mentions ‘acanthostyles/acanthostrongyles’ as forming the basal reticulation in accordance with Schmidt’s (1864: plate IV) figure of the spicules, but curiously in his illustration of the spicules Hooper only shows several acanthostrongyles, no acanthostyles. Our reexamination of the slide content (figs 35A-C) resulted in the conclusion that only relatively few acanthostrongyles are present and these are obvious derivations of the predominant acanthostyles. The identity of the BMNH type fragment as belonging to the original type material is strengthened by the existence of an alleged – so far not clearly documented – fragment of the type specimen in the Naturalis Biodiversity Center, RMNH Por. 264. This fragment was obtained by G.C.J. Vosmaer, contemporary of Schmidt, and like his older colleague interested in the Mediterranean sponge fauna. The label of this fragment reads ‘Microciona prolifera (Ell. & Sol.) (type van M. involvens O.S.) Mus. Graz, Coll. G.C.J. Vosmaer R 113 Lacroma’. Vosmaer (1880: 108), after providing the characters of ‘Desmacodes involvens’ (= Myxilla involvens) in his unique code system, mentions having studied the ‘original specimen’, which is here taken as to mean the fragment obtained from Schmidt or from the Graz Museum. The fragment (fig. 36A) is a dried crust on a substratum of unknown nature, approximately 1 x 0.5 x 0.3 cm. Lévi (1960a: 78, table) apparently provides spicule measurements of this fragment, in a table comparing the various records of specimens he considered to belong to Antho involvens, (‘M. involvens type GM 113 Vosm.’), but does not discuss it or its status. Lévi (l.c.) arranged the Vosmaer fragment among the ‘formes dressées’, but the RMNH fragment is best described as thickly encrusting.

Both the BMNH slide and RMNH fragment are essentially similar, and possibly are both part of the original type material, although certainty appears lacking. To take away the uncertainty of the exact properties of Myxilla involvens, created by the non-representative description and illustrations of the type provided by Hooper (2002), we will here provide a description of the remaining type material and SEM images of the spicules of RMNH 264 and a wet, relatively recent specimen (ZMA Por. 00214) collected near Roscoff.

Antho (Antho) involvens (Schmidt, 1864)
(figs 35A-C, 36A-I, 37A-G)

Myxilla involvens Schmidt, 1864: 37, pl. IV fig. 6.
Hymedesmia involvens; Schmidt, 1866: 16.
Isodictya beanii Bowerbank, 1866: 334; Bowerbank, 1874: 157, pl. LVIII figs 1-6.
Antho involvens; Gray, 1867: 524; Topsent & Olivier, 1943: 2; Lévi, 1960a (in part): 76; Ackers et al. 1992: 83.
Desmacodes involvens; Vosmaer, 1880: 108.
Dictyoclathria beanii; Burton, 1933: 504.

Material.— Slide (BMNH 1867.3.11.92), ‘Myxilla involvens’ Adriatic, Schmidt nr. 64, dissociated spicules; (RMNH 264) ‘Myxilla involvens, Lacroma’, collection Museum Graz, Vosmaer R 113; (ZMA Por. 00214) of Antho involvens, France, Roscoff, La Tortue, 20-25 m, coll. G. Kleeton, 7.viii.1964.
Fig. 35. *Antho (Antho) involvens* (Schmidt, 1864), light microscopic images of spicules from slide (BMNH 1867.3.11.92) made of the presumed holotype of *Myxilla involvens* (not presently located), A, acantho-style of the basic reticulation (scale bar = 50 µm), B, smooth ended toxas, short smooth styles and acanthostyles (scale bar = 100 µm), C, overview of spicules with a.o. long ectosomal styles, subtylostyles and chelae (scale bar = 100 µm).
Fig. 36. *Antho (Antho) involvens* (Schmidt, 1864), possible original Schmidt material from the Landesmuseum Johanneum at Graz, presently preserved in Leiden (RMNH Por. 264), A, fragment from the Vosmaer collection (scale bar = 1 cm), B, cross section of skeleton (scale bar = 200 μm), C-I, SEM images of spicules, C-C1, ectosomal style and detail of head and pointed end, D-D1, choanosomal style and detail of head showing incipient spination, E-E1, ectosomal subtylostyle and detail of head, F, acanthostyles of the basal reticulation, G, acanthostrongyle from the basal reticulation considered a mere modification of the acanthostyles, H, palmate isochela, I-I1, wing-shaped toxas and detail of smooth ending.
Fig. 37. *Antho (Antho) involvens*, specimen (ZMA Por. 00214) from Roscoff, A, habit (scale bar = 1 cm), B-G, SEM images of spicules, B-B1, ectosomal style and detail of head and pointed end, C-C1, choanosomal style and detail of head, D-D1, ectosomal subtylostyle and detail of head, E, acanthostyle of the basal reticulation, F, palmate isochela, G-G1, wing-shaped toxas and detail of smooth ending.
Description.— Material available from the Mediterranean, which comprised of dry fragments (fig. 36A) and slides, does not allow a detailed description of the habit. The Roscoff specimen (now in two fragments) is an uneven, rather thick crust, approximately $3 \times 4 \times 0.5$ cm (fig. 37A). Consistency firm. Colour orange. A colour photo in Ackers et al. (1992: 83) shows evenly distributed slightly elevated oscules.

Skeleton.— Renieroid (fig. 36B), with long styles erect on the network and protruding slightly beyond the surface. Ectosomal subtylostyles are partially erect, partially in tangential position. Basal reticulation consisting of smaller smooth styles (usually in ascending tracts of one to three spicules) and acanthostyles connecting the ascending tracts. Acanthostrongyles occur in a low proportion and are obvious derivates of the acanthostyles.

Spicules.— (figs 35A-C, 36C-I, 37B-G) Ectosomal subtylostyles, subectosomal long styles, basal styles, basal acanthostyles/acanthostrongyles, toxas, palmate isochelae.

Subtylostyles (figs 36E, 37D)), with slightly swollen, microspined heads, 147-304 × 2-5 µm.

Long styles (figs 35C, 36C, 37B), slightly curved, with barely developed smooth heads, slightly subterminally constricted, 243-510 × 10-14 µm.

Short styles (figs 35B, 36D, 37C), shaft smooth, with occasional spines on or near the slightly constricted head, 164-300 × 8-11 µm.

Acanthostyles/strongyles (figs 35A, 36F-G, 37E), entirely heavily spined, robust or thick, with characteristic ‘cut-off’ heads, 123-165 × 5-13 µm.

Toxas (figs 35B, 36L, 37F), wing-shaped, smooth apices, not upturned, 21-228 µm.

Palmate isochelae (figs 36H, 37G), typical shaped, 13-19 µm.

Distribution: Adriatic, Western Mediterranean, Atlantic coasts of Spain and France, British Isles. Occurrence on the Atlantic islands (Canary Islands, Azores) needs confirmation.

Remarks.— Hooper (1996) assigned Plocamia inconstans Topsent, 1925 to the synonymy of A. involvens, but this is contested by Ackers et al. 1992 (more in particular by co-author B. Picton), who distinguish the two as separate species, occurring apparently side by side over a large geographic area from the Mediterranean to the Atlantic coasts of Spain and France, to Britain and Ireland. Lévi (1960a) followed by Descatoire (1969) and Solórzano & Babio (1979) maintained it as a variety of A. involvens. In view of the rarity or virtual lack of acanthostrongyles in most descriptions of A. involvens, it would seem to be prudent to keep A. inconstans as a separate species. No specimens of this species have been found in the present collection.

Isodictya beanii Bowerbank, 1866 is described (p. 334-335) and figured (Bowerbank, 1874: pl. LVIII figs 1-6) as an encrusting sponge of $2.5 \times 2 \times 0.3$ cm, with an uneven surface and a reticulate skeleton of smooth styles (210×10 µm) in the primary ‘lines’ and robust acanthostyles (140×16 µm) in the secondary lines. At the surface there are ‘bristling’ spicules, presumably the long smooth styles, not shown in pl. LVIII, and subtylostyles of 160×2 µm. Microscleres are typical shaped palmate isochelae of 18 µm and wing-shaped toxas of 230 µm, not shown to have spines. This description conforms to Antho (Antho) involvens.

A further problem in delimiting the type species of Antho is the fact that Clathria (=Antho) morisca Schmidt, 1868 has been considered a junior synonym of Myxilla invol-
vens by authoritative authors such as Topsent, Burton and Lévi, followed by almost all subsequent authors describing or listing *Antho involvens*. However, *Antho morisca* is an arborescent species distinguished also by having the apices of the toxas spined/rugose (faintly, but visible both under SEM and in light microscopy), whereas *Antho involvens* is encrusting and has smooth toxa apices. Below we record an arborescent specimen from near the Canary Islands and we will compare it with type and other original material to demonstrate the differences with *Antho involvens*. It is proposed here to revive *Clathria (= Antho) morisca* as a species distinct from *Myxilla (=Antho) involvens* until additional independent evidence (e.g. gene sequences) has been provided to decide one way or the other.

A frequently mentioned junior synonym of *Antho (Antho) involvens* is the encrusting *Artemisina mediterranea* Babic, 1922, but the description of that species specifically mentions the spined toxas, which have not been found to occur in specimens of *A. (A.) involvens* described above. Babic’s material is no longer extant, but below we report a similar specimen from Madeira, and as a result we propose to revive *Antho (Antho) mediterranea* as a distinct species.

Antho (Antho) atlantidae spec. nov.

(figs 38A-I)

Antho involvens; Burton, 1956: 133 (not: *Myxilla involvens* Schmidt, 1864: 37, pl. IV fig. 6)

Material.— Holotype (ZMUC unnumbered, Burton’s nr. 19w), Guinea, off Conakry, 9.3333°N 14.25°W, 32 m, bottom shell, foraminifera, Atlantide Expedition stat. 145, 13.iv.1946.

Description.— A mass of eight to ten small bushes (fig. 38A) consisting of knobby rounded dichotomously dividing branches. Individual bushes 2 to 5 cm high and wide, individual branches approximately 0.3-0.5 cm in diameter, up to 2 cm in length. Ends of branches rounded. Colour (preserved condition) warm brown. Consistency soft, but resilient. Surface finely hispid, without apparent apertures.

Skeleton.— (fig. 38B) Irregular basal reticulation of relatively thin and short styles, little visible binding spongin, arrangement largely unispicular, but with visible ascending tracts. At the surface single longer styles are protruding. Ectosomal skeleton of individual subtylostyles arranged partially tangential.

Spicules.— (figs 38C-I) Ectosomal subtylostyles, (sub-)ectosomal long styles, choanosomal styles, echinating acanthostyles, toxas, palmate isochelae.

Subtylostyles (fig. 38F), straight, with barely developed microspined heads, 165-219.7-279 × 1.5-1.9-2.5 μm.

Styles of the ectosome (fig. 38C), long, thin, smooth with faint constriction below the slightly swollen smooth head, 186-278.3-396 × 3.5-5.2-6 μm.

Styles of the basal skeleton (figs 38D-E), shorter than those of the ectosome, either smooth (fig. 38D) or more often with a few spines spread along the shaft (fig. 38E), mostly in the region close below the head, 111-135.4-156 × 3.5-4.6-6 μm.

Acanthostyles of the basal skeleton (fig. 38G), similar to or perhaps intergrading with the smooth basal styles, but shorter and entirely spined, 63-72.4-81 × 3-4.1-6 μm.

Toxas (fig. 38I), wing-shaped, thin, with prominently spined apices, 9-48.2-105 μm.
Palmate isochelae (fig. 38H), typical shaped, relatively small, 10-12.3-13 µm.

Etymology.— Named after the expedition vessel Atlantide.

Ecology.— Shelf water with hard bottom.

Distribution.— So far known only from Guinea in tropical West African waters.

Remarks.— Burton’s identification of this species as *Antho involvens* is obviously
wrong as almost all morphological features of the present material differ clearly from the presumed type and other reliably identified material of that species (see also above). *A. (A.) involvens* is encrusting, its acaanthostyles are different in size and ornamentation, the ectosomal styles are longer and thicker, and the toxas do not have spined apices. Comparison with *Antho (A.) morisca* is more relevant: this is larger-shaped, and less tightly branched, it has longer and thicker styles and acanthostyles, and a larger range of toxas. The other branching *Antho* species are more distantly related: *A. (Acarnia) elegans* (Ridley & Dendy, 1886) has acaanthostrongyles, whereas *A. (Antho) paradoxa* (Babić, 1922) differs in possessing giant toxas and its small normal-shaped toxas have smooth apices. *A. (Plocamia) erecta* (Ferrer Hernandez, 1923) and *A. (Plocamia) hallezi* (Topsent, 1904b) have dumbbell-shaped basal spicules.

Antho (Antho) mediterranea (Babić, 1922) (figs 39A-I)

Material.— (RMNH 7401), Madeira, SE coast, E of Caniçal, 32.7333°N 16.7167°W, SCUBA diving 0-20 m, CANCAP I ‘Onversaagd’ Exped. stat. 47, 11.iii.1976.

Description.— Thickly encrusting on dead gorgonian (fig. 39A), size $4 \times 1.5 \times 0.3$ cm, beige to pale yellow in alcohol. Surface irregular, with pits and grooves, some of which may be oscules. Consistency soft, easily damaged.

Skeleton.— (figs 39B-C) An anisotropic, neatly renieroid reticulation of sponginesheathed spicule tracts with a core of 2-4 spicules in cross section and interconnecting fibers cored by 1-2 spicules. Coring spicules of the ascending fibers are usually smooth styles, while the interconnecting fibers have spicules with spined heads, but the latter may occur frequently also in the ascending fibers. At the surface smooth styles protrude individually or in twos or threes, and these are surrounded by ectosomal subtylostyles.

Spicules.— (figs 39D-I) Ectosomal subtylostyles, longer and shorter smooth styles, acanthostyles with irregular heads and smooth shafts, toxas, palmate isochelae.

Subtylostyles (fig. 39G), straight, microspined heads, 135-270.9-375 $\times 2.5-2.7-3.5$ µm.

Styles (figs 39D-E), smooth, fusiform, but there are often a few spines on the barely swollen heads which are slightly narrower than shaft; they are divisible in longer ectosomal (fig. 39D, 302-588 µm) and shorter choanosomal styles (fig. 39E, 174-219 µm), overall style size 174-373.7-588 $\times 4-7.1-10$ µm.

Acanthostyles from the basal skeleton (fig. 39F), with irregular heads, but lacking proper spines and thus difficult to separate from smaller smooth styles, shaft smooth, fusiform, 135-155.2-186 $\times 4-6.3-8$ µm.

Toxas (fig. 39I), wing-shaped, thin, with a medium curvature and faintly spined apices, 36-83.1-114 µm.

Palmate isochelae (fig. 39H), typical-shaped, 17-19.3-22 µm.

Ecology.— Shallow depth, on hard substrata.

Distribution.— Madeira.

Remarks.— All material of Babić (1922) was lost in the 1956 Budapest troubles (Boros, 1957), although Burton (1930: 533) has apparently studied a preparation from...

Fig. 39. *Antho (Antho) mediterranea* (Babić, 1922), specimen (RMNH Por. 7401) from Madeira, A, habit (scale bar = 1 cm), B, cross section of peripheral skeleton (scale bar = 500 µm), C, cross section of basal reticulation (scale bar = 100 µm), D-I, SEM images of spicules, D-D1, long ectosomal smooth style and detail of head and pointed end, E-E1, small choanosomal smooth style with detail of head, F-F1, irregular headed smooth style from the basal reticulation, presumably homologous to acanthostyle, with detail of head, G-G1, ectosomal subtylostyle with detail of head and pointed ending, H, palmate isochela, I-I1, wing-shaped tox and detail of spined ending.

the holotype. Babić’ description leaves little doubt that his encrusting specimen, synonymized with *A. (A.) involvens* by several authors (see e.g. Hooper, 1996), is distinct by having spined toxax endings. Babić’ material apparently had spined acanthostyles, whereas our specimen has them largely smooth, but overall there is considerable similarity. Our material conforms closely to Cruz’s (2002) description from the Canary Islands as *Antho involvens*, although he did not discriminate between the various style types. Possibly, Pulitzer-Finali’s (1983) *A. involvens* from Southern Italy also belongs here, as it is described as having almost smooth ‘acanthostyles’ and faintly spined apices on the toxas. *A. (A.) involvens* is widely recorded from the Mediterranean, NW Europe, Azores, Canary Islands; elsewhere from the Gulf of Guinea (Burton, 1956) and South Africa (Lévi, 1963), but many of these records are not conspecific. We compared our material with the slide from Schmidt’s type in the Natural History Museum, BMNH 1867.3.11.92 (see above, fig. 35), a possible type fragment of *Myxilla (=Antho) involvens*, RMNH 264, labeled ‘Mus. Graz, Coll. G.C.J. Vosmaer R 113 Lacroma’ (Adriatic) (see above, fig. 36), and with a specimen from Roscoff, W coast of France, ZMA Por. 00214 (see above, fig. 37). These specimens are generally similar in structure and agree with Schmidt’s slide in spicule morphology and sizes, but they differ in having much less spongin, and the styles of the basal reticulation are proper acanthostyles, thicker and much more heavily spined, than in our specimen, and having characteristic ‘cut-off’ heads. Additionally, the smooth subectosomal styles that project from the basal skeleton are somewhat thicker (8-14 µm) and the chelae are smaller (15-18 µm) than in our present specimen. The toxas have smooth apices in contrast to the spined condition in our present specimen. These differences are here treated as indication of specific distinctness.

Specimens reported as *Antho involvens* from Guinea (Burton, 1956) and Agulhas region, South Africa (Lévi, 1963) are certainly different, both from our present material and from the type material of *A. (A.) involvens*. Burton’s specimen is arborescent with thin branches of 2 mm diameter and it has very small acanthostyles (66-81 µm), small toxas (up to 48 µm) and small palmate isochelae (10-13 µm). Above (see fig. 38), it is described as a new species, *A.(A.) atlantidae* spec. nov. Lévi’s (1963) South African specimen is thickly encrusting and has acanthostrongyles, small (12 µm) isochelae, and spined apices on the toxas (Lévi, 1963: 62, fig. 72). It is clearly different from the restricted concept of *A. (A.) involvens* employed here.

Antho (Antho) burtoni (Lévi, 1952 as *Plocamilla*) from Senegal is also encrusting and appears closely related. It differs in having the spicules of the basal reticulation fully spined and many are acanthostrongyles; toxas are also more diverse (two or three separate sizes) and longer (see also below). Maldonado (1992) suggested that *A. (A.) mediterranea* could belong to *Antho novizelanica* (Ridley & Duncan, 1881), a New Zealand species possessing dumbbell spicules. It is unlikely that a New Zealand species would occur in
the Mediterranean-Atlantic region. It is more likely that Maldonado’s record of *A. novizelanica* from the Alboran Sea could be conspecific with *Antho (Antho) burtoni* (see below).

Antho (Antho) morisca (Schmidt, 1868)

(figs 40A-H)

Clathria morisca Schmidt, 1868: 9, pl. II fig. 7; Topsent, 1938: 11 (incorrectly considered as a synonym of *A. (A.) involvens*).

Myxilla banyulensis Topsent, 1892: xxiii.

Dictyocladthria morisca; Topsent, 1920: 18; Topsent, 1928: 301, pl. III fig. 3 (not: Lévi, 1959: 134, pl. 5 fig. 1, text-fig. 27 = *Clathria (C.) hjorti*).

Clathria vicina Topsent, 1920: 18.

Material.— (RMNH 7423), Canary Islands, S of La Palma, 28.5333°N 17.8833°W, 1000 m, bottom sand, Van Veen grab, CANCAP 4 stat. 128, 30.v.1980.

Examined for comparison.— Holotype (MNHN D.T. 2170) *Clathria morisca* Schmidt, Expédition scientifique d’Algérie 1868 No. 24; holotype slide (BMNH 1868.3.2.21), *Clathria morisca* Schmidt, 1868, Algier No. 10, dissociated spicule slide; (Musée de Zoologie, Strasbourg unnumbered), *Clathria morisca*, Marseille; (MNHN LBIM D.T. 321 and 322), 3 slides, Naples, 1920, Topsent collection; (RMNH 956), Adriatic, Triest, Vosmaer collection; (RMNH unregistered), *Clathria morisca*, ‘Paris, Type G.V. nr. 186’, Vosmaer collection, 2 slides nrs. 1579-1580; holotype slide (MNHN LBIM D.T. 2169), *Clathria vicina* Topsent, 1920, Naples, Schmidt collection Musée de Zoologie Strasbourg.

Description.— Arborescent sponge (fig. 40A), densely dichotomously branched in all directions, with little or no anastomoses. Size 15 cm wide, 13 cm high, branches on average 5 mm in diameter, ends rounded. Colour in alcohol greyish light brown. Surface hispid. No apparent oscules. Consistency limp, easily damaged.

Skeleton.— (fig. 40B) Irregular renieroid reticulation of spongin-enforced ascending tracts, cored by smooth styles and lightly spined acanthostyles, connected by short tracts cored by acanthostyles. Surface skeleton consists of single long styles surrounded by ectosomal subtylostyles.

Spicules.— (figs 40C-H) Ectosomal subtylostyles, styles, acanthostyles, toxas, paltmate isochelae.

Subtylostyles (fig. 40E), straight, slightly fusiform in the longer ones, with elongated microspined heads, in a large size range, 126-278.4-391 × 1-7.3-9 µm.

Styles (figs 40C-D), often slightly constructed below the head, smooth, but with occasional spines especially in the shorter coring styles; the ectosomal longer styles (fig. 40C) measure 312-417.1-516 × 5-6.7-9 µm, the shorter styles (fig. 40D) from the basal reticulation 171-203.2-249 × 5-7.2-9 µm.

Acanthostyles (fig. 40F), occasionally resembling the shorter styles but entirely spined, 105-117.3-138 × 4-5-3-7 µm.

Toxas (fig. 40H), wing-shaped, thin, deeply curved, with faint spination on the endings, 33-71.2-138 µm.

Palmate isochelae (fig. 40G), typical-shaped, 14-15.6-17 µm.

Ecology.— Deeper water (43-1425 m), sandy bottom.

Distribution.— Canary Islands, Madeira Archipelago, Mediterranean.

Remarks.— Although the present specimen, like one of Topsent’s (1928) specimens,
was collected at considerable depth (1000 m), the shape, skeletal structure and spicule characters are closely similar to those of specimens identified by Schmidt, following Topsent’s (1920) redescription of these.
Fig. 41. Type material of Clathria morisca Schmidt, 1868 (= Antho (Antho) morisca), A, dry holotype (MNHN D.T. 2170), from Algeria (scale bar = 1 cm), B, light microscopic image of spicule slide (BMNH 1868.3.2.21), showing a.o. tox with spined ending (arrow) (scale bar = 50 µm), C-H, SEM images of spicules of the holotype (MNHN D.T. 2170), C-C1, long ectosomal smooth style and detail of head and pointed end, D-D1, small choanosomal smooth style with detail of head and pointed end, E-E1, ectosomal subtylostyle with detail of head and pointed end, F, acanthostyle from the choanosomal reticulation, G, palmate isochela, H-H1, wing-shaped tox and detail of spined ending.
Fig. 42. *Dictyoclathria morisca* (= *Antho (Antho) morisca*), MZUS material from Marseille, described by Topsent (1920). A, dry fragments (scale bar = 1 cm), B, light microscopic image of cross section of peripheral region showing skeletal reticulation (scale bar = 200 µm), C-H, SEM images of spicules, C-C1, long ectosomal smooth style and detail of head and pointed end, D-D1, small choanosomal smooth style with detail of head and pointed end, E-E1, ectosomal subtylostyle with detail of head and pointed end, F, acanthostyle from the choanosomal reticulation, G, palmate isochela, H-H1, wing-shaped toxas and detail of spined ending.
We reexamined a type slide from BMNH (fig. 41B) and the holotype from MNHN (fig. 41A), presumed to be both from the same specimen, and several other original slides from MNHN and specimens from MZUS (see fig. 42 and below) conforming to the type of *Clathria morisca*, all from the Western Mediterranean. We present images of the spicules of the type (see figs 41C-H, 42C-H). We summarize here collective spicule data of these specimens: subtylostyles with microspined heads 153-447 × 2-4.5 µm; long (ectosomal) smooth styles, 216-648 × 6-14 µm; short styles, often with a few spines on the head and less often with a few spines on the shaft (then grading into acanthostyles), 148-298 × 6-11 µm; acanthostyles, entirely but rather lightly spined, with tapering ends, 81-189 × 4-12 µm; wing-shaped, with a deep curvature, and apices invariably spined or rugose, 29-225 µm; typical shaped palmate isochelae, 16-23 µm.

Clathria vicina, a manuscript name of Schmidt based on a specimen from Naples, was mentioned by Topsent (1920), assigning it to *Dictyoclathria morisca* without description. This means that the name *Clathria vicina* is technically a nomen nudum. However, we were able to study a slide from MNHN (LBIM D.T. 2169) labeled with this name and can confirm that it belongs to *Antho (Antho) morisca*: subtylostyles with microspined heads, 204-447 × 2.5-4.5 µm, long styles 339-489 × 8-11 µm, short styles, 162-231 × 7-9 µm, acanthostyles 138-149 × 7-9 µm, toxas with spined apices 33-225 µm and palmate isochelae 19-23 µm.

The material from Marseille described by Topsent (1920) as *Dictyoclathria morisca* is still preserved (dry) in the Zoological Museum of Strasbourg (with a spicule slide in the Paris Museum), and through the courtesy of Dr Marie Meister of the museum we were able to examine it. We present here images of the habit, skeleton and spicules (figs 42A-H) to show their correspondence with our Canary Island material. A spicule difference is the slightly larger size of the ectosomal subtylostyles, which in the Marseille material may reach 430 × 5 µm. The short styles of the choanosomal reticulation are entirely smooth in the Marseille material (as in our Canary Island specimen), whereas the holotype (MNHN D.T.2170) and the slide of *Clathria vicina* have often a few spines. Apparently these spicule characters are variable. No such variability is apparent in the spination of the toxas: all above discussed specimens possess them.

Myxilla banyulensis Topsent, 1892 was synonymized by Topsent himself (1920: 18) with *Clathria (=Antho) morisca*. Topsent’s description (1892: xxiii) clearly mentions that his arborescent specimen had spined toxa apices.

Dictyoclathria morisca sensu Lévi, 1959 conforms to *Clathria (Clathria) hjorti* comb. nov. as pointed out above.

Hooper (2002: 456) incorrectly quoted 1864 as the year of description of *Clathria morisca*. It is definitely 1868.

Antho (Antho) nuda n. spec.

(figs 43A-G)

Material.— Holotype (ZMA Por. 06911), Cape Verde Islands, São Tiago, SW coast near Ponta da Cidade, Ciudad Velha, 14.9°N 23.6333°W, 5-15 m, sandy bottom with stones and sabellariid reefs, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D01/09, 20.viii.1986; paratype (ZMA Por. 06931), Cape Verde Islands, São Tiago, SW coast near Ponta da Cidade, Ciudad Velha, 14.9°N 23.6333°W, 4-8 m, steep cliff ending in exposed sandy bottom with stones and sabellariid reefs, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D01A/07, 21.viii.1986; paratype (ZMA Por. 06992a), Cape Verde Islands,
Fig. 43. *Antho (Antho) nuda* spec. nov., A, holotype (ZMA Por. 06911) from the Cape Verde Islands (scale bar = 1 cm), B, cross section of skeleton (scale bar = 500 µm), C, detail of skeleton (scale bar = 100 µm), D-G, SEM images of spicules, D-D1, long ectosomal smooth style and detail of head and pointed end, E-E1, small choanosomal smooth style with detail of head and pointed end, F-F1, ectosomal subtylostyle with detail of head and pointed end, G-G1, acanthostyle from the choanosomal reticulation and detail of head and pointed end.

Maio, SW coast off Punta Preta, 15.1167°N 23.3°W, 5-8 m, exposed sandy bottom with rocks, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D05A/09, 26.viii.1986.
Description.— Small globular sponge (fig. 43A), 1.5 × 1.5 × 1 cm, with somewhat bumpy-pitted surface, no apparent oscules. Paratype specimens are thinly encrusting. Colour dark red-brown in life, turning pale beige in ethanol. Consistency firm, compressible.

Skeleton.— (figs 43B-C) A neatly rectangular anisotropic renieroid reticulation of spongin fibers cored by smooth styles and acanthostyles, with a tangential surface cover of subtylostyles. Ascending fibers 25-35 µm in diameter, cored by 2-4 spicules, connecting fibers 12-36 µm cored by 2-3 spicules. Ascending fibers predominantly cored by smooth styles, but acanthostyles are frequently mixed in, whereas connecting fibers are usually but not exclusively cored by acanthostyles. At the surface smooth styles are fanning out from the endings of the ascending fibers, and mix with the ectosomal subtylostyles.

Spicules.— (figs 43D-G) Ectosomal subtylostyles, ectosomal and choanosomal styles, acanthostyles. No microscleres, although one small toxa (24 µm) was observed. Presumably, this is a contamination.

Subtylostyles (fig. 43F), extremely thin, thread-like, in majority not thicker than 0.5 µm, with swollen irregular heads without clear spines, 136-175.1-276 × >0.5-1.5 µm.

Styles (figs 43D-E) consist of ectosomal longer styles (fig. 43D), smooth, straight or slightly curved, head barely developed, and somewhat shorter choanosomal styles (fig. 43E) which show occasional spines, but these styles grade into each other, without clear distinction in size, overall measurements 126-153.9-192 × 3-4.5-5.5 µm.

Acanthostyles (fig. 43G), straight or slightly curved, entirely but lightly spined, (resembling the shorter or larger smooth styles), 78-96.1-102 × 2.5-3.2-4 µm.

Etymology.— Nudus (L.) = naked, to indicate the lack of microscleres.

Ecology.— In exposed sandy environment at the bottom of a steep cliff, depth 4-15 m.

Distribution.— So far known only from the islands of São Tiago and Maio, Cape Verde Islands.

Remarks.— It is unusual for species of Antho to lack microscleres entirely, so this is a distinctive feature of the new species. The neat renieroid structure of the skeleton resembles that of the arborescent and microsclere-bearing Antho (Antho) paradoxa described below, but coring is sparser in the new species.

Antho (Antho) paradoxa (Babiç, 1922)
(figs 44A-C, 45A-G

Artemisina (?) paradoxa Babiç, 1922: 260, pl. 8 fig. 6, text-fig. C.

Description.— A tangled mass of dividing and anastomosing thin branches (fig. 44A), up to approximately 30 cm long, individual branches 0.5 cm in diameter. Optically smooth, but microhispid. Occasional oscules of less than 1 mm diameter are scattered over the branches. Consistency firm. Colour (alcohol) pale rose-brown, reddish inside.
Fig. 44. *Antho (Antho) paradoxa* (Babiç, 1922), specimen (RMNH Por. 3853) from Madeira, assigned neotype status herein, A, habit (scale bar = 1 cm), B, cross section of branch to show reticulation of tracts and protruding long styles (scale bar = 500 µm), C, detail of skeleton (scale bar = 100 µm).
Skeleton.— (figs 44B-C) A rectangular anisotropic reticulation of spongin-encased styles. The ascending tracts are cored by predominantly smooth styles, 6-7 in cross section, the interconnecting tracts by 1-3 acanthostyles in cross section (Fig. 44C). Ascending tracts are 40-50 µm in diameter, interconnecting tracts 20 µm. Meshes of the skeleton are 150-200 µm in diameter. Where the ascending tracts reach the surface, long smooth styles protrude individually beyond the dermis (Fig. 44B), surrounded tangentially or obliquely by subtylostyles.
Spicules.— (figs 45A-G) Subtylostyles, ectosomal and choanosomal styles, acanthostyles, two categories of toxas, palmate isochelae.

Subtylostyles (fig. 45C), thin, straight, with only faint spination on the heads (visible only with SEM), 192-276.5-438 × 1.5-2.3-3 µm.

Styles (figs 45A-B), curved, subterminally constricted, virtually smooth, but some have a few spines on the head, ectosomal longer styles (fig. 45A) measure 321-391.6-572 × 4.9-8.1-13 µm, the smaller (fig. 45B) from the basal skeleton 195-238.6-276 × 6-8.1-12 µm.

Acanthostyles (fig. 45D), curved, relatively lightly spined, occasionally acanthoxealike modifications occur, 114-138.8-174 × 6-7.4-9 µm.

Wing-shaped toxas (fig. 45F), curved gradually and deeply, with faintly spined apices, 66-84.8-129 µm.

Oxeote toxas (fig. 45G), with thick legs and small shallow curvature, with straight smooth apices, 276-324.8-438 × 6-7.2-9 µm (only seven such toxas were detected in the spicule slides).

Palmate isochelae (fig. 45E), typical-shaped, relatively small, 12-14.6-16 µm.

Ecology.— Circalittoral to deep water distribution, 65-135 m.

Distribution.— Porto Santo (present material), Adriatic Sea (Babić, 1922).

Remarks.— Arborescent Antho species are all quite similar in shape, differing in minor aspects like branch length and diameter. A. (A.) paradoxa differs from other arborescent species of the region by the possession of the large oxeote toxas. From A. (A.) morisca, which is otherwise quite similar (and has been considered a senior synonym by past authors), it also differs in the more robust structural longer and shorter styles and the heavier spination of the acanthostyles. A. (A.) atlantidae spec. nov. has shorter and thinner megascleres and the branches are short, thin and more crowded. Antho (Acarния) elegans has both acanthostyles and acanthostrongyles (see below). Antho (Plocamia) erecta and A. (P.) hallezi possess dumbbell spicules (see below).

Although Babić’ (1923) specimen was collected at a considerable distance from Porto Santo, the correspondence with our material is convincingly large: anastomosing branches, paucity of oscules, sizes of the spicules, and the occurrence of two toxa categories of which the larger are distinctive and peculiar. Babić gives 378 µm as upper length of the acanthostyles, but it is here assumed that he mixed small acanthostyles with larger structural styles, which may have spines as well. Babić’ type material was destroyed during the 1956 Hungarian uprising (Boros, 1957), so a neotype is necessary to establish the identity of the species. We propose RMNH Por. 3853 as the nearest specimen of the species available to us. The geographic distance between Babić’ type locality and the present Madeiran locality may be small enough to be acceptable as regional Atlanto-Mediterranean toptotypical localities. A second smaller specimen, RMNH Por. 7697, was obtained two years later from a nearby locality.

A species which appears closely related, is the encrusting Antho (Antho) granditoxa Picton & Goodwin, 2007, described from Northern Ireland, with comparable spiculation including the characteristic large thick toxas. Lévi (1960a) previously described an encrusting sponge with similar characteristics from the NW coast of France under the name Artemisina ? paradoxa. Picton & Goodwin (l.c.) suspected that this specimen could very well be conspecific with their A. granditoxa, but rejected the possibility that Babić’ species was also conspecific. In view of the similarities, it is debatable whether A. paradoxa and A. granditoxa are arborescent and encrusting growth forms of the same species,
like in *Antho (Antho) involvens* and *Antho (Antho) morisca*, where this phenomenon was widely accepted previously. Perhaps, the general larger size of most spicules could indicate close relationship but specific distinctness. See above for a more general discussion.

Subgenus Antho (Acarnia) Gray, 1867

Antho (Acarnia) elegans (Ridley & Dendy, 1886)
(figs 46A-I, 47A-I)

Plocamia coriacea var. Ridley & Dendy, 1886: 475.

Plocamia coriacea var. *elegans* Ridley & Dendy, 1887: 158, pl. 29 fig. 9, pl. 31 fig. 1; Topsent, 1892: 117, pl. 6 fig. 11; Topsent, 1904a: 155.

Plocamia elegans; Topsent, 1928: 64.

Examined for comparison. — Holotype of *Plocamia coriacea* var. *elegans*, (BMNH 1887.5.2.109), Azores, 38.6333°N 28.475°W, 810 m, bottom mud, Challenger Expedition stat. 75, 2.vii.1873.

Description. — The CANCAP material is a dichotomously branched erect bush (fig. 46A) of 10 cm high. Individual branches 3-6 cm long, 0.3-0.5 cm in diameter. Branches hispid from protruding spicules, slightly undulating in outline. Small oscules, less than 1 mm diameter, regularly distributed over the branches. Consistency firm. Colour (alcohol) pale beige. The holotype (fig. 47A) is identical in shape, though distinctly smaller (4 cm high).

Skeleton. — (figs 46B, 47B) Reticulate, with ascending tracts of 4-5 smooth styles in cross section, cemented by little spongin, interconnected by single acanthostrongyles at right angles, echinated at the nodes by single ‘smooth’ acanthostrongyles. Meshes approximately 100-120 µm in diameter. At the periphery, smooth styles, protruding beyond the dermis, are supported by partially tangentially arranged subtylostyles.

Spicules. — (figs 46C-I, 47C-I) Subtylostyles, styles, acanthostrongyles, acanthostyles, toxas, palmate isochelae.

Subtylostyles (fig. 46E) thin, straight, with distinctly spined head, 195-246.3-336 × 1.5-2.6-3.5 µm (holotype (fig. 47E), 219-388 × 3-5 µm).

Structural styles (figs 46C-D), curved, fusiform, subterminally constricted, predominantly smooth, but a good proportion have microspined heads, with a large size variation, depending on the position at the surface (longer (fig. 46C), 381-460.7-612 × 10-13.4-16 µm) (holotype (fig. 47C), 426-666 × 8-12 µm), or in the tracts (shorter (fig. 46D), 216-236.5-258 × 7-10.8-15 µm) (holotype (fig. 47D), 207-306 × 7-11 µm); overall size 216-396.6-612 × 7-12.6-16 µm (holotype, 207-666 × 7-12 µm).

Acanthostrongyles (fig. 46F), curved, usually clearly ‘monactinal’, i.e. with one end narrower than the other, spines concentrated at the apices, with relatively few on the shaft, 102-117.2-138 × 7-8.4-10 µm (holotype (fig. 47F), 99-116 × 8-11 µm).
Fig. 46. *Antho (Acarnia) elegans* (Ridley & Dendy, 1886), specimen (RMNH Por. 3848) from the Azores, A, habit (scale bar = 1 cm), B, light microscopic image of cross section of peripheral skeleton (scale bar = 100 µm), C-I, SEM images of spicules, C-C1, long ectosomal smooth style and detail of head and pointed end, D-D1, small choanosomal smooth style with detail of head and pointed end, E-E1, ectosomal subtylostyle with detail of head and pointed end, F, acanthostrongyles from the choanosomal reticulation, G, echinating acanthostyle, H, palmate isochela, I-I1, wing-shaped toxas and detail of spined ending.
Fig. 47. Holotype (BMNH 1887.5.2.109) of *Plocamia coriacea* var. *elegans* Ridley & Dendy, 1886 (= *Antho (Acarnia) elegans*) from the Azores, A, habit (scale bar = 1 cm), B, light microscopic image of cross section of peripheral skeleton (scale bar = 200 µm), C-I, SEM images of spicules, C-C1, long ectosomal smooth style and detail of head and pointed end, D-D1,2, small choanosomal smooth style with details of heads and pointed end, E-E1, ectosomal stylostyle with detail of head and pointed end, F, acanthostrongyle from the choanosomal reticulation, G, echinating acanthostyle, H, palmate isochela, I-I1, wing-shaped toxas and detail of spined ending.
Acanthostyles (fig. 46G), similar to the acanthostrongyles but longer, and with the pointed end with relatively few spines or entirely smooth, 117-148.5-171 × 9-10.6-13 µm (holotype (fig. 47G), 111-169 × 7-9 µm).

Toxas (fig. 46I), wing-shaped, with gradual deep curve, with rugose apices, variable in size, possibly in two size categories, 123-234 µm and 31-75 µm; overall 31-88.4-234 µm (holotype (fig. 47I) respectively 138-210 µm and 29-98 µm; overall average 83.6 µm). Palmate isochelae (fig. 46H), typical-shaped, relatively long and narrow, 16-18.4-21 µm (holotype (fig. 47H), 17-20 µm).

Ecology.— Growing in a bed of the bivalve mollusc Chama, dredged from deep water (98-810 m).

Distribution.— Azores.

Remarks.— The species has been described originally from the Azores, close to the locality of our material (NW of Pico), at a depth of 810 m. The spicule measurements provided by Ridley & Dendy (1887) are closely similar to ours (only the toxas were considered by them to occur in a single category, but reexamination of the type showed both smaller and larger toxas similar to ours). Topsent (1892, 1904a) also recorded the species, again from locations very near to that of the type and our material, in the narrow strait between Pico and Faial, at depths of 130 and 98 m. Although, Topsent (l.c.) did not provide precise spicule measurements, his habit figure and his remarks as well as the closeness of the localities make it likely that his specimens were conspecific. Pulitzer-Finali (1973) found a fresh specimen of this species on the quay of the fishing harbor at Ponta dos Mosteiros, São Miguel, Azores. This conforms in all its details to the present material. The fishermen assured Dr Pulitzer-Finali that it was of common occurrence in waters surrounding São Miguel.

Plocamilla coriacea var. elegans recorded by Lévi, 1960b from an unknown Northwest African locality, depth 100 m, differs from our and Ridley & Dendy’s specimens in the encrusting habit and absence of toxas. It belongs probably to an undescribed species.

Dendy (1922) reported this species from the Western Indian Ocean (as Plocamia). The geographic distance aside, his description shows considerable differences in habit and spicule sizes, so specific distinctness is certain.

Antho (Acarnia) signata (Topsent, 1904a)
(figs 48A-I)

Plocamiosis signata Topsent, 1904a: 155, pl. XIV fig. 1; Longo et al. 2005: 1348, fig. 3.
Plocamiosis signata var. mitis Topsent, 1904a: 156; Topsent, 1928: 306, pl. 10 fig. 20.
Antho (Plocamia) signata; Hooper, 1996: 433, fig. 21 G-H.

Examined for comparison.— Type slide (MNHN D.T.947), Azores, 1360 m, 39.3556°N 31.0981°W, fishing net, Prince Albert I of Monaco, stat. 702, nr. 176, 19-20.vii.1896.

Description.— Thin transparent white-grey encrustation (fig. 48A, arrow) on a small rock, approximately 1 cm in diameter, 2 mm in thickness.
Fig. 48. *Antho (Acarnia) signata* (Topsent, 1904a), specimen (ZMA Por. 18064) from Morocco, A, habit (arrow) (scale bar = 1 cm), B, light microscopic image of cross section of skeleton (scale bar = 200 µm), C, detail of skeleton showing crowded microscleres (scale bar = 50 µm), D-I, SEM images of spicules, D-D1, smooth style and detail of head and pointed end, E-E1, ectosomal subtylostyle with detail of head, F, echinating acanthostyle, G, acanthostrongyle from the choanosomal reticulation, H, anisocleistochelae, I, wing-shaped tox with spined ending.
Skeleton.— (figs 48B-C) Plocamiform, with basal renieroid reticulation of acanthostrongyles, echinated at the nodes by acanthostyles; long structural styles are erected singly on the basal reticulation and protrude beyond the surface. Bouquets of subtylostyles and masses of microscleres make up the ectosomal skeleton.

Spicules.— (figs 48D-I) Subtylostyles, styles, acanthostyles, acanthostrongyles, toxas, aniso-cleistochelae

Subtylostyles (fig. 48E), straight, with microspined heads, 247-293.6-324 × 5-6.5-8 µm.

Styles (fig. 48C), long, lightly curved, mostly smooth all over or a few spines, including the rounded end, head not clearly demarcated, variable in size, occasionally with more elaborate spines, and then appearing to intergrade in shape with the echinating acanthostyles, 393-533.4-738 × 19-22.4-27 µm.

Acanthostrongyles (fig. 48G) of the basal reticulation, curved, with spines often swollen to rounded protrusions, especially on the apices, which are more or less equal, but one end may be subtly swollen, 105-109.5-118 × 11-12.75-13 µm.

Echinating acanthostyles (fig. 48F), strongly curved, spined heavily on the rounded end, but rather sparingly over the shaft, spines on the head often swollen to protrusions, but on the shaft they are small and sharply pointed, 183-200.4-239 × 10-13.2-17 µm.

Toxas (fig. 48I), wing-shaped, strongly curved, sharply angled in the middle, with swollen or spined apices, size variable, so average has little meaning, 54-222 µm.

Aniso-cleistochelae (fig. 48H), probably derived from palmate chelae, shaft strongly and asymmetrically curved and provided with proliferated ridge, with cleistochelate condition (lower and upper central alae fused), 14-16.2-18 µm.

Ecology.— Bathyal, on volcanic stones and coldwater coral reefs, 668-1360 m (Longo's material originated from 780-807 m).

Distribution.— Azores, Gorringe Bank, Gulf of Cadiz, Italian Mediterranean.

Remarks.— The specimens of which spicule sizes were recorded so far show some smaller discrepancies in the size and spination of the spicules: structural styles may be lightly spined all over, only spined on the head or entirely smooth, and they range in length from 390 to 800 µm. Subtylostyles may be polytylote or not, microspined or smooth, and vary in length between 240 and 400 µm. Acanthostrongyles have been reported to be occasionally entirely smooth (‘var. mitis’) and vary in length between 105 and 145 µm. Echinating acanthostyles may also be variably spined (smooth in ‘var. mitis’). Toxas may have smooth or spined apices. Only the peculiar ‘anisocleistochelae’ appear to be uniform in shape and size, but according to Topsent (1928) these may be missing in some specimens (var. paupera). The variation observed so far is limited and considered of infraspecific nature. The localities from which the species is reported - although far apart - are situated in adjacent marine regions (Azores, Eastern Atlantic and Mediterranean).

Longo et al. (2005) reject Hooper's (1996, 2002) assignment of this species to the large genus Antho Gray, 1867, and retain the original genus Plocamiopsis Topsent (1904a) for microcionid species with palmate anisochelae. The genus Plocamiopsis remains monospecfic so far, and the present (type) species shares most of the characters of the genus Antho, subgenus Acarnia, (renieroid basal reticulation of acanthostrongyles, echinating acanthostyles, single erect structural styles and ectosomal subtylostyles), which makes it likely that it is congeneric. The peculiar condition of the palmate chelae (anisochelate, cleistochelate) is easiest interpreted as a species character, not a genus character. If more
species would be found with similar anisochelae, Plocamiopsis could be revived, for instance as a separate subgenus.

Subgenus Plocamia Schmidt, 1870

Definition.— *Antho* species possessing dumbbell spicules making up the framework of the renieroid basal or axial choanosomal skeleton.

Remarks.— It is proposed here to revive *Plocamia* Schmidt, 1870 as a fourth subgenus of *Antho* to acknowledge the peculiar and likely homologous nature of the dumbbell spicules (figs 50C, 51F) making up the basal reticulation of a complement of *Antho* species currently divided over the subgenera *Antho* (*Antho*) and *Antho* (*Acarnia*). Dumbbell spicules are not exclusive to *Antho*, as they occur in some form also in raspailiid (*Plocamione*) and myxilline (e.g. *Plocamiancora, Rotuloplocamia*) genera. However, in *Antho* they replace the acanthostyles and/or acanthostrongyles in the basal reticulation and show similar ornamentation among the various species making it likely they are a monophyletic group.

The following species are here reassigned to the subgenus *Antho* (*Plocamia*):
- *Antho* (*Plocamia*) arbuscula (Burton, 1959b as *Echinoplocamia*): Somalia, Gulf of Aden
- *Antho* (*Plocamia*) erecta (Ferrer Hernandez, 1923): East Atlantic (see below).
- *Antho* (*Plocamia*) gymnazusa (Schmidt, 1870 as *Plocamia*): Florida.
- *Antho* (*Plocamia*) hallezi (Topsent, 1904b): Northwest Africa (see below).
- *Antho* (*Plocamia*) karykina (De Laubenfels, 1927 as *Plocamia karykina*): California.
- *Antho* (*Plocamia*) karyoka (Dickinson, 1945 as *Plocamia*): Mexican Pacific
- *Antho* (*Plocamia*) lambei (Burton, 1935 as *Heteroclathria*): NE Pacific.
- *Antho* (*Plocamia*) manaarensis (Carter, 1880 as *Dictyocylindrus*): India.
- *Antho* (*Plocamia*) novizelanica (Ridley & Duncan, 1881 as *Dirrhopalum novizelanicum*): New Zealand.
- *Antho* (*Plocamia*) prima (Brøndsted, 1924 as *Lissoplocamia*): New Zealand.
- *Antho* (*Plocamia*) spinulosa (Tanita, 1968 as *Lissodendoryx*): Japan
- Possible additional species:
 - *Antho* (*Plocamia?*) circonflexa (Lévi, 1960a as *Plocamilla*): W coast of France.
 - *Antho* (*Plocamia?*) inconspicua (Desqueyroux, 1972 as *Plocamia*): Chile.

Antho (*Plocamia*) erecta (Ferrer Hernandez, 1923)

(figs 49A-D, 50A-E)

Plocamia erecta Ferrer Hernandez, 1923: 2, unnumbered photo, text-figs 1-4.

Material.— (ZMA Por. 06654), Mauritania, off Banc d’Arguin, 18.85°N 16.8833°W, 500 m, 3.5 m Agassiz trawl, bottom fossil coral debris, R.W.M. van Soest & J.J. Vermeulen, Mauritania II Expedition stat. 40/06, 10.vi. 1988; (RMNH Por. 7484), Mauritania, 19.3667°N 16.85°W, 85 m, 2.4 m Agassiz trawl, hard bottom with sponges and brown algae, CANCAP 3 Expedition stat. 158, 31.x.1978; (RMNH Por. 7617), Mauritana-
Description.— Foliate (fig. 49B) or branching bush (fig. 49A) on short peduncle, branches with pointed endings with tendency to curl inward and form lamellate shape or more definitely forming lamellae at right angles to each other. Size up to 10 cm high,
10 cm wide, individual branches 0.5 cm diameter, lamellae less than 0.5 cm thick. Consistency firm. Surface irregular, strongly hispid, no visible oscules, punctate in preserved condition. Colour light-reddish brown, pale beige in preservation.
Skeleton.— (figs 49C-D) Reticulate, tight-meshed, rather irregular arrangement of acanthotylotes, with little visible spongin. Meshes usually made up of two or three acanthotylotes at a side, occasionally singly, mesh size approximately 500 µm wide and high. Towards the surface thick styles penetrate the skeleton, singly or with two or three only in the ascending tracts, which end at the surface in brushes; individual erect thick styles protrude beyond the surface. No size differences were observed between styles embedded subectosomally and those protruding beyond the surface. Apart from these, the ectosomal skeleton is poorly developed, consisting of scattered individual subtylostyles, here and there forming subectosomal bundles of up to 80 µm at right angles to the surface.

Spicules.— (figs 50A-E) Ectosomal subtylostyles, large ectosomal/choanosomal styles, dumbbell-shaped choanosomal basal spicules, toxas, palmate isochelae.
Ectosomal subtylostyles (fig. 50B) with a few apical spines on the faintly swollen heads, many are faintly polytylote, 276-486.1 × 2.5-4.9-7 µm.

Structural styles (fig. 50A), thickest in the middle, rounded microspined heads or heads with a few spines, but otherwise smooth, sharply pointed, 509-712.4 × 19-41.3-61 µm.

Dumbbell-shaped, fat, diactinal spicules (fig. 50C) of the basal reticulation, slightly anisotylote, smooth with the exception of small spines on either or both tyles, 272-399.5-516 × 25-33.3-40 µm.

Toxas (fig. 50D), oxhorn-shaped, relatively fat, in a large size range (possibly in a smaller and a larger category), 51-112.1-211 × 1.5-5.4-10 µm.

Palmate isochelae (fig. 50E), typical-shaped, but with tendency to have a slight torsion and lateral alae slightly detached from the shaft, 13-14.4-16 µm.

Ecology.— On fossil Lophelia branches at greater depth, 85-500 m.

Distribution.— Mauritania; elsewhere from Santander on the north coast of Spain (Ferrer Hernandez, 1923).

Remarks.— Differences with Ferrer Hernandez’ description are the shape of the basal spicules, which are drawn by him as asymmetrical and with irregular outline. They are also distinctly smaller and thinner: 280-340 × 18-20 µm. However, thickness and length of both styles and dumbbell spicules vary considerably among the specimens reported here. Styles in FH’s specimen apparently had entirely smooth heads, which also appears variable. The chelae are only 10 µm compared to our 14 µm. Sizes of toxas and ectosomal subtylostyles are not provided by Ferrer Hernandez. We assume here that his description is deficient and his material is conspecific with our material, but there is some room for doubt. We tried to obtain certainty from the type material, but despite the fact that material labeled ‘Antho erecta’ still resides in the collections of the Museo Nacional de Ciencias Naturales at Madrid, MNCN 1.01/24, we must conclude that for the time being the original material of A. erecta has not been discovered. The Madrid material is likely a specimen of Antho (Antho) dichotoma (Linnaeus, 1767). We were able to study a slide made from this specimen, which shows a skeleton with spicules different from Ferrer Hernandez’ description. The skeleton is an axially condensed reticulation of spongin fibres cored by predominantly smooth styles, longer styles averaging 650 × 12-15 µm in the longitudinal fibres and protruding from the surface, shorter styles, 170-190 × 10-12 µm in the connecting fibres. These shorter styles are predominantly smooth but spines along the shaft are not uncommon in a minority.
Toxas with a deep curve, averaging 170 µm, chelae relatively large, 25 µm. The properties observed in this slide differ substantially from Ferrer Hernandez’ description, e.g. in lacking dumbbell spicules, and approach the description of Antho (Antho) dichotoma.

Antho (Plocamia) hallezi (Topsent, 1904c) is also a species from the region with dumbbell-shaped basal megascleres and it shares a number of further characteristics, such as erect, ramose shape (see below). Differences are the much stronger developed spongin skeleton, the presence of an extra category of styles echinating the fibres, and overall distinctly smaller spicules.

Antho (Plocamia) hallezi (Topsent, 1904b)
(figs 51A-H)

Antho (Antho) hallezi; Hooper, 1996: 421, fig. 16 A-B,

Material.— (ZMA Por. 09963), Mauritania, off Cap Blanc, 11-35 m, 20.7°N 16.6667°W, F.P. Vermeulen, 1906.
Examined for comparison.— Holotype slide (MNHN LBIM D.T.1884), Heteroclathria hallezi Topsent, ex Musée de Lille, unknown locality.

Description.— Tree-shaped (fig. 51A), with a long thick stalk, which branches off dichotomously into six secondary branches. Total length 25 cm, stalk 9.5 cm long, 2 cm in diameter, with 4 cm diameter holdfast, secondary branches 3-11 cm long 0.5-1.2 cm in diameter, with annular growth patterns and blunt endings. Surface finely hispid, with vague venal inprints, clearly punctate. Consistency firmly compressible. Colour pale reddish brown (alcohol).

Skeleton.— (fig. 51B) The choanosome shows a neatly reticulated system of spongin fibres cored by styles and dumbbell-shaped diactines and echinated by short styles, with thicker main fibres cored predominantly by 2-4 styles and interconnecting fibres cored by dumbbell spicules, one spicule in length but usually two spicules thick. Meshes 150-250 µm in diameter. There is no clearly developed ectosomal skeleton, spicules from the choanosomal fibers are merely fanning out at the surface where they are joined with loose subtylostyles, which are few in number.

Spicules.— (figs 51C-H) Subtylostyles, coring styles, echinating styles, dumbbells, toxas, isochelae.

Subtylostyles (fig. 51E), slightly curved, with swollen pointed ends, and prominent, relatively strongly spined, heads, 165-213.1-252 × 2-3.3-4 µm.

Coring styles (fig. 51C), curved, fusiform, with subterminal narrowing, and finely spined head, 228-281.9-330 × 16-18.1-20 µm.

Echinating styles (fig. 51D), similar in shape to the coring styles, smooth, fusiform and with constricted neck, heads more sparingly spined, but smaller in size, 99-140.3-183 × 9-11.4-13 µm.

Dumbbell spicules (fig. 51F), anisotylote, with smooth shafts and spined heads one of which is slightly thicker than the other, 168-183.5-204 × 14-17.1-20 µm.

Toxas (fig. 51G), technically probably wing-shaped, but with very shallow curve, sharply pointed smooth apices, variable in length, 33-58.6-75 µm.

Palmate isochelae (fig. 51H), slightly contorted, with upper and lower alae facing a 30-90° different angle, 12-15.2-18 µm.
Ecology.— Sandy shelf waters, down to 35 m.

Distribution.— Mauritania; Senegal (Lévi, 1952). Topsent’s (1904c) material was without distribution data.

Remarks.— The shape, skeletal structure and spicule complement are largely similar to the type specimen. There are a few discrepancies with Topsent’s (1904c) description:
although he made no mention of echinating styles, his drawing of the skeleton (his fig. 2d) clearly shows at least two styles in an echinating position, next to the coring styles in the ascending fibers. He gives only a single size of the styles (140-178), which is similar to our echinating styles, but clearly inferior to the size of our coring styles. We examined a slide of the holotype containing several fragments of the ladder-like skeleton. Spicules encountered were subtylostyles with prominent heads, 91-149 × 1.5-3 µm, styles with finley rugose heads, 181-284 × 11-13 µm, echinating styles, similar in shape but distinctly shorter and the heads provided with warts and spines, 101-159 × 8-13 µm, dumbbell spicules with smooth shafts and rugose heads, 138-177 × 11-15 µm, toxas with shallow, relatively thick curvature, 24-99 µm, palmate isochelae, contorted, 12-15 µm. Sizes of most of the spicules were smaller than in our specimen, nevertheless, overall similarity is great and conspecificity highly likely.

Lévi (1952) reported *Heteroclathria hallezi* from a wreck on the beach of Yoff, Senegal, establishing the area of occurrence of the species because Topsent’s type was of unknown occurrence. His description is convincingly similar to that of Topsent, with only the dumbbell spicules slightly smaller in length.

Lévi’s (1960b) description of *Dictyoclathria morisca* var. *anisotyla* differs only in minor detail from the type of *Heteroclathria hallezi* and his own Senegal (1952) record. The subtylostyles of that specimen are apparently deviating by showing excessive polytylote swellings, and he reports ‘raphides’ of 60 µm, which are not described or figured. It is likely these constitute thin toxas. Coring styles are not mentioned, but since these are similar in shape to the echinating styles (see above) they might have been included in the range given for the latter. Curiously, Lévi did not discuss the similarity with *Heteroclathria hallezi*.

Hooper (1996) assigned *Heteroclathria hallezi* to *Antho (Plocamia) (= Antho (Acarnia) sensu Hooper, 2002) on his p. 47, and to *Antho (Antho)* on p. 421, thereby demonstrating his uncertainty over the echinating nature of the smaller styles. Later on (Hooper, 2002), he definitely chose *Antho (Acarnia)* as the affiliation of *H. hallezi*, thus acknowledging the presence of a separate echinating style type in this species.

Genus Artemisina Vosmaer, 1885

Artemisina incrustans spec. nov.

(figs 52A-F)

Description. — Thin reddish or yellowish patches on barnacles (fig. 52A), largest patch several mm². No oscules or other surface characteristics discernible. Consistency soft.

Skeleton. — (fig. 52B) Plumose-spicate tracts of spicules, reaching from the substrate to the surface, but not interconnecting. At the substrate there is some visible spongin, but generally the spicules are not bound and protrude from the tracts at all angles. The two size classes of subtylostyles are intermingled in the tracts, and do not seem to be localized.

Spicules. — (figs 52C-F) Subtylostyles, palmate isochelae. No further spicule types present.
Subtylostyles (figs 52C-E), with slightly swollen elongate heads, smooth, generally straight, in two size categories, (1) smaller (fig. 52D-E), with more pronounced swollen heads, 117-158.1-197 × 2.5-2.8-3.5 µm, (2) larger (fig. 52C), with heads less pronounced, style-like, 237-307.3-366 × 4-6.5-8 µm.

Palmate isochelae (fig. 52F), typical-shaped, 16-17.4-20 µm.

Etymology.— The name refers to the encrusting habit, which is unusual in the genus.

Ecology.— Inshore sandy bottom flats, depth 4-15 m; so far only known to encrust barnacles.

Distribution.— Mauritania.
Remarks.— Assignment of this material and that of the next species to the genus *Artemisina* is tentative, because the type species and most other species are elaborate massive or globular sponges. Topsent (1892) characterized the genus as ‘massive sponges with the structure of *Suberites*’, which hardly describes the condition of the present specimen. Until now there is only one thinly encrusting species, Caribbean *Artemisina melana* Van Soest, 1984 (see also below), and this is indeed close in skeletal structure and megascleres to *A. incrustans* spec. nov. but it has toxas as additional microscleres and is coloured black.

Artemisina melanoides spec. nov.

(figs 53A-E)

Not: Van Soest, 1984: 122, pl. VIII figs 7-8, text-fig. 49.

Fig. 53. *Artemisina melanoides* spec. nov., A, holotype (ZMA Por. 06910) from the Cape Verde Islands, encrusting limestone substratum (scale bar = 1 cm), B-E, SEM images of spicules, B-B1, smooth long subtylostyle and detail of head, C-C1, ectosomal subtylostyle with detail of head, D, wing-shaped tox, E, palmate isochela.
Material.— ZMA Por. 06910, Cape Verde Islands, São Tiago, SW coast near Ponta da Cidade, Ciudad Velha, 14.9°N 23.6333°W, 10-17 m, steep cliff ending in exposed sandy bottom with stones and sabellariid reefs, SCUBA diving, R.W.M. van Soest, CANCAP 7 Exped. stat. D01/08, 20.viii.1986.
Examined for comparison.— Holotype (ZMA Por. 04881), *Artemisia melana* Van Soest, 1984, Curaçao, Playa Kalki, 10-20 m, on dead corals, SCUBA diving, coll. R.W.M. van Soest, 30.xii.1980.

Description.— Black, thin, smooth encrustation (fig. 53A) on limestone substratum, size slightly less than 1 × 1 cm, thickness less than 1 mm.

Skeleton.— Confused bundles of spicules are ending in irregular surface bouquets. Choanosomal and ectosomal spicules not clearly distinguishable, other than those of the surface being slightly thinner and shorter.

Spicules.— (figs 53B-E) Ectosomal subtylostyles, choanosomal (subtylo-)styles, toxas, palmate isochelae.

Subtylostyles (fig. 53C), straight, thin, smooth, with mucronate heads, 194-213.3-230 × 1.5-1.7-2 µm.

Styles (fig. 53B), subtylostyle-like, straight, with elongate barely swollen heads, smooth, 292-318.5-360 × 2.5-3.1-4 µm.

Fig. 54. SEM images of spicules of the holotype (ZMA Por. 04881) of *Artemisia melana* Van Soest, 1984 from Curaçao, A-A1, smooth choanosomal (subtylo-)style and detail of head with mucron, B-B1, ectosomal subtyllostyle with detail of microspined head, C, wing-shaped tox, D, palmate isochela.
Toxas (fig. 53D), wing-shaped, thin, deeply curved, but with smooth endings, barely upturned, 36-84.3-117 µm.

Palmate isochelae (fig. 53E), typical-shaped, 14-15.8-17 µm.

Etymology. — The name means ‘similar to melana’, referring to the similarity with *Artemisina melana* Van Soest, 1984.

Ecology. — In sandy environment at diving depth.

Distribution. — Cape Verde Islands.

Remarks. — The Cape Verde Islands specimen is closely similar to Curaçao specimens of *Artemisina melana*, sharing the colour that persists in alcohol, and skeletal and spicular characters. We present here SEM images of the holotype of *A. melana* Van Soest, 1984 (figs 54A-D). The Curaçao specimen has somewhat thicker megascleres (subtylostyles up to 3.5 µm, styles up to 5.5 µm), and the toxas are somewhat smaller (up to 78 µm), the chelae somewhat larger (up to 20 µm), but all these measurements overlap with the Cape Verde Islands specimen. However, under SEM, the subtylostyles of *A. melana* are microspined (see figs 54B-B1) whereas these of *Artemisina melanoides* spec. nov. have only a single mucron. Likewise under SEM the styles of our new species have smooth heads whereas those of *A. melana* bear a mucron (see figs 54A-A1). Such small differences support the geographic separation of the two on both sides of the Atlantic. Nevertheless, the similarity in shape, colour and spiculation indicate a close relationship between the two.

As discussed above, membership of the genus *Artemisina* of the two species reported here may be contested, as most *Artemisina* species have elaborate, massive or globular habitus. Examples occurring in the area and adjacent areas are the stalked *Artemisina transiens* Topsent, 1890 from the Iberian coasts and the small-branched *Artemisina erecta* Topsent, 1904a from the Azores.

Additional Ophlitaspongiinae species reported from Northwest Africa

We briefly characterize further Ophlitaspongiinae species from the region that we were unable to reexamine. The West African material of Lévi apparently could not be found in the collections of the Paris Museum and present whereabouts is unknown. The identities of the species recorded below all need verification (data are summarized along with above described species in Table 3).

Antho (Antho) burtoni (Lévi, 1952)

Plocamilla burtoni Lévi, 1952: 53, fig. 17

Description. — Brick-red, hispid crust on mollusks, barnacles and ascidians. Basal skeleton a renieroid reticulation of acanthostrongyles/acanthostyles, upon which long styles are erected. Spicules comprise ectsosomal subtylostyles, straight, 190-260 × 2-3 µm; long styles, entirely smooth, with constricted heads, 350 × 5-7 µm; short ‘auxiliary’ styles, with spined heads, 100-150 × 5-7 µm; acanthostrongyles and acanthostyles, obviously the same spicule category with blunt or pointed endings, 75-100 × 7 µm; abundant toxas in three size categories, 85-130 µm with spined endings, 75 µm, and 15-40 µm; palmate isochelae 13-14 µm.

Distribution. — Senegal; 15 m.
Comment.— Maldonado’s record (1992: 1154, fig. 11) of the New Zealand species *Antho novizelanica* (Ridly & Duncan, 1881) might belong to this species, as most of the spicules appear closely similar to Lévi’s description. The same could apply for Uriz’ (1988) Namibian record of *Plocamilla novicelanica* (sic). *Antho novizelanica* is a member of the subgenus *Antho* (*Plocamia*), as it possesses dumbbells, and as the name already reveals occurs in New Zealand.

Antho (Acarnia) elegans sensu (Lévi, 1960b)

Plocamilla coriacea var. *elegans*; Lévi, 1960b: 760, fig. 13 (not: Ridley & Dendy, 1886).

Description.— Encrusting on a hydroid, thickness 2 mm, with digitations of 1-2 mm. Surface hispid. Skeleton a unispicular reticulation of acanthostrongyles. Spicules comprise principal microspined styles of 190-380 × 15 µm, smaller styles with some spines on the shaft of 160-175 × 8-9 µm, ectosomal subtylostyles with microspined heads, 150-290 × 3 µm, acanthostrongyles 115 × 11 µm, typical shaped palmate isochelae of 14 µm. No toxas.

Distribution.— No data.

Comment.— The growth form and the lack of toxas precludes membership of *Antho (Acarnia) elegans*, which so far is known only from deeper water off the Azores. It is probably an undescribed species.

Antho (Plocamia) anisotyla (Lévi, 1960b)

Dictyoclathria morisca var. *anisotyla* Lévi, 1960b: 761, fig. 15.

Description.— Arborescent, dichotomously branching yellow sponge. Branches 26 mm in diameter. Irregular, hispid surface, without visible oscules. Skeleton a reticulation of spongin fibers, 25 µm in diameter, sparingly cored by styles and dumbbell spicules. Spicules comprise ectosomal subtylostyles, often polytylote or with swollen parts, 145-275 × 2 µm; longer and shorter structural styles, smooth, also often polytylote, overall 130-275 × 5-11 µm; dumbbell spicules (‘tylotes’), somewhat anisodiametrical, with smooth shafts and spined heads, 125-185 × 7-8 µm; short, wing-shaped toxas, with shallow curvature, 30-70 µm (including ‘raphides’ of 60 µm); rare palmate isochelae, drawn as if they are could be contorted, 13 µm.

Distribution.— Senegal; 27-29 m.

Comment.— As discussed above, this description reminds rather strongly of *Antho (Plocamia) hallezi*, but without having reexamined the type material this cannot be decided here.

Artemisina erecta Topsent, 1904a

Artemisina erecta Topsent, 1904a: 214, pl V fig. 18, pl. XV fig. 10.

Description.— Small erect specimen, 1.1 cm high, 0.5 cm wide and 0.3 cm thick. Colour (alcohol) white. Surface hispid, no visible oscules. Skeleton confused. Spicules include ectosomal subtylostyles with microspined heads, averaging 390 × 7-8 µm; structural styles, entirely smooth, 825-880 × 20 µm; robust, deeply curved toxas with
spined endings, up to 250 µm; typical shaped palmate isochelae, 13 µm. Also a few sigmas were mentioned by Topsent, but these are obviously foreign.

Distribution. — Azores; bathyal depth (845 m).

Ophlitaspongia papilla sensu Cruz, 2002

Ophlitaspongia papilla; Cruz, 2002: 183 (not: Bowerbank, 1866: 14).

Description. — Smooth red encrustation, no visible oscules. Skeleton microcionid-plumose. Spicules comprise straight or sinuous subtylostyles, 172-260 µm; structural
in Northwest African and Macaronesian waters. Abbreviations.— subtylo = subtylostyle, morph. = morphology, ecto. = ectosomal, choano. = smooth, constr. = subterminally constricted, sp. = spined(spines), typic. = typical, arboresc. = arborescent, mass. = massive, encr. = encrusting, *literature data

Table 3. Data on morphology and spicule sizes of studied specimens and additional reported material of the subfamily Ophlitaspongiinae

<table>
<thead>
<tr>
<th>acantho. strong. (µm)</th>
<th>acantho. str.morph.</th>
<th>toxas 1 size(µm)</th>
<th>toxas 1 morph.</th>
<th>toxas 2 size(µm)</th>
<th>toxas 2 morph.</th>
<th>isoch. size(µm)</th>
<th>isoch. morph.</th>
<th>habit</th>
<th>region.</th>
<th>distrib.</th>
<th>depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absent</td>
<td>9–105</td>
<td>wing sp.ends</td>
<td>absent</td>
<td>10–13</td>
<td>typic.</td>
<td>arboresc.</td>
<td>Guinea</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absent</td>
<td>36–114</td>
<td>wing sp.ends</td>
<td>absent</td>
<td>17–22</td>
<td>typic.</td>
<td>mass. encr.</td>
<td>Madeira</td>
<td>0–20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absent</td>
<td>115</td>
<td>entire sp.</td>
<td>15–40</td>
<td>wing sp.ends</td>
<td>13–14</td>
<td>typic.</td>
<td>Senegal</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absent</td>
<td>75–130</td>
<td>entirely sp.</td>
<td>123–234</td>
<td>wing sp.ends</td>
<td>16–21</td>
<td>typic.</td>
<td>Azores</td>
<td>108–810</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absent</td>
<td>115</td>
<td>entirely sp.</td>
<td>54–222</td>
<td>wing sp.ends</td>
<td>14</td>
<td>typic.</td>
<td>unknown</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125–185</td>
<td>7–8</td>
<td>not given</td>
<td>60?</td>
<td>straight</td>
<td>13</td>
<td>typic.</td>
<td>Senegal</td>
<td>27–29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168–204</td>
<td>14–20</td>
<td>dumbbell sp.</td>
<td>33–75</td>
<td>wing sm. shallow</td>
<td>12–18</td>
<td>contort.</td>
<td>Mauritania</td>
<td>11–35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absent</td>
<td>20–122</td>
<td>wing sm.ends</td>
<td>absent</td>
<td>13</td>
<td>arboresc.</td>
<td>Canary Islands</td>
<td>shallow water</td>
<td>650–914</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absent</td>
<td>250</td>
<td>wing sp.ends</td>
<td>absent</td>
<td>16–20</td>
<td>typic.</td>
<td>encr. Mauritania</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absent</td>
<td>36–117</td>
<td>wing sm.ends</td>
<td>14–17</td>
<td>typic.</td>
<td>encr. Cape Verde Islands</td>
<td>10–17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

styles, smooth, fusiform, constricted below the heads, 52-324 × 6 µm; wing-shaped toxas, shallow-curved, 20-112 µm.

Distribution.— Canary Islands.

Comment.— The present description differs substantially from that of the type (see Hooper, 2002: 465, fig. 21). The skeleton of O. papilla is reticulate, whereas Cruz does not describe and picture connecting fibers. Styles in the type do not exceed 167 µm, whereas those of Cruz are up to 324 µm. The conclusion is that Cruz’ material is not likely to be conspecific with O. papilla, and probably does not belong to Ophlitaspongia. It should be compared with Clathria coralloides sensu Boury-Esnault & Lopes, 1985 (see above).
Ophlitaspongia translata sensu Cruz, 2002

Description.— Orange encrustation with hispid surface, without visible oscules. Skeleton microcionid. Spicules limited to subtylostyles with microspined heads, 184-312 × 2.4-3.2 µm, and straight smooth styles in a large size range, 120-400 × 8-19 µm.

Distribution.—Canary Islands; deeper water.

Comment.— Measurements of the spicules provided by Cruz are closely similar to the type from the Bay of Naples, but that is thickly lobate and the skeleton is described as reticulate, not microcionid. If Cruz’ material is conspecific, it is likely an incipient specimen.

Key to the species of Microcionidae occurring in Northwest Africa and the Macaronesian Islands

The key covers the Northwest African parts of the Atlantic Ocean from the Gulf of Cadiz down to the Gulf of Guinea, including the offshore Atlantic archipelagoes and Ascension Island. It is necessary to start at the beginning of the Key and work yourself down, because discriminating characters (e.g. growth form, presence or absence of spicules and structure of the skeleton) are recurrent features in various parts of the Key.

1. Erect, arborescent or foliate ... 2
 - Encrusting or massive growth form .. 10

2. Skeleton plumoreticulate, with spongin fibers cored by styles and echinated by shorter (acantho)-styles; ectosomal skeleton consists of partially erect and partially tangential subtylostyles .. (Clathria) 3
 - Axial skeleton renieroid (equal-sized quadrangular meshes), built by acanthostyles/strongyles and short styles; subectosomal skeleton hispid from protruding long styles standing erect on the axial skeleton .. (Antho) 4
 - Sponge without organized skeleton; at the surface bouquets of styles carry a tangential ectosome of subtylostyles .. *Artemisina erecta*

3. Echinating acanthostyles entirely spined, chelae typical shaped
 - Echinating styles smooth or with spines or warts only on the head, cleisto- or ctenichelae ... *Clathria (Clathria) compressa*
 - Clathria (Clathria) hjorti

4. Spicules include ‘dumbbells’, i.e. tylole-shaped spicules with spined or rugose globular endings ... 5
 - No dumbbell spicules, although there may be acanthostrongyles with slightly swollen endings ... 7

5. Growth form foliate (branches are merged). Dumbbell size exceeds 250 × 25 µm; toxas oxhorn-shaped and up to 200 µm or more. *Antho (Plocamia) erecta*
 - Growth form arborescent. Dumbbell length less than 200 × 20 µm; toxas wing-shaped .. 6

6. Among the subtylostyles and/or styles there are polytylote modifications
 - *Antho (Plocamia) anisotylota*
 - *Antho (Plocamia) hallezi*
| 7. | The axial reticulation is built primarily by acanthostrongyles; acanthostyles are exclusively in an echinating position | Antho (Acarnia) elegans |
| - | The axial reticulation is built primarily by (acantho)styles; there are no acanthostrongyles, although some of the acanthostyles may be blunt-ending | |
| 8. | Small bushes, with thin, frequently dividing branches; spiculation overall delicate, with acanthostyles not exceeding 80 µm in length. | |
| - | Larger sponges; acanthostyles longer than 80 µm | 9 |
| 9. | Next to normal small wing-shaped toxas there are long oxeote toxas present (these may be quite rare and a careful search is necessary) | Antho (Antho) paradoxa |
| - | No oxeote toxas | Antho (Antho) morisca |
| 10. | Microscleres (toxas and chelae) absent | |
| - | Microscleres (either toxas or chelae or both) present | |
| 11. | Thin crusts; choanosomal skeleton hymedesmioid, with low specular density; two distinct size classes of ectosomal subtylostyles, the smaller forming bouquets at the surface | Clathria (Thalysias) vacata spec. nov. |
| - | Small semiglobular sponge; choanosomal skeleton renieroid; no distinct size classes of subtylostyles | Antho (Antho) nudai spec. nov. |
| - | Crusts with rugose surface; choanosomal skeleton microcionid; no distinct sizes of subtylostyles | Ophiolaspongia translata sensu Cruz, 2002 |
| 12. | Chelae are anisochelate | Antho (Acarnia) signata |
| - | Only isochelae present or chelae are absent | |
| 13. | Chelae absent | |
| - | Chelae present | |
| 14. | Largest styles > 1000 µm | |
| - | Largest styles < 700 µm | |
| 15. | Two distinct classes of toxas (long thin accolada toxas and short thick wing-shaped or oxhorn-like toxas) | Clathria (Microciona) bitoxa |
| - | Single class of wing-shaped toxas | Clathria (Microciona) anancora |
| 16. | Long thin strepsitoxas | Clathria (Microciona) aurea spec. nov. |
| - | Short thin wing-shaped toxas | Clathria (Microciona) boavistae spec. nov. |
| 17. | Chelae include cleistocheelae or ctenichelae (typical chelae may be present) | |
| - | No cleisto- or ctenichelae | |
| 18. | Next to cleistocheelae there are also typical palmate isochelae | |
| - | All chelae are cleisto- or ctenichelae | |
| 19. | Acanthostyles and toxas absent; cleistocheelae in two size categories; skeleton plummoreticulate or microcionid | Clathria (Microciona) bicleistocheelera spec. nov. |
| - | Acanthostyles and toxas present; only a single category of cleistocheelae; skeleton hymedesmioid; quasitylotes present. | Clathria (Microciona) cancapseptima spec. nov. |
| 20. | Two size classes of wing-shaped toxas; acanthostyles up to 280 µm | |
| - | A single size class of toxas; acanthostyles < 100 µm | Clathria (Microciona) cleistocheela sensu Cruz, 2002 |
| 21. | Choanosomal skeleton renieroid | |
| - | Choanosomal skeleton hymedesmioid, microcionid, plumose or unstructured, not renieroid | 22 |
22. Three size classes of styles which are smooth or have only a few spines; no acanthostrongyles .. Clathria (Microciona) gorgadensis spec. nov.
- Acanthostrongyles, acanthostyles and toxas present Clathria (Microciona) africana
- Only acanthostrongyles, no acanthostyles, no toxas . Antho elegans sensu Lévi, 1960
23. No echinating styles; styles or subtylostyles smooth (but may have a microspined or mucronate head) .. 33
- Echinating (acantho-)styles present (these are smaller styles arranged in a perpendicular position sticking out from spongin fibers or from the basal spongin plate; when they resemble structural styles they are usually recognizable as smaller versions with spines on the shaft) .. 27
24. Toxas absent ... 25
- Toxas present ... 26
25. Papillate sponge with axially condensed skeletons in the papillae; ectosomal subtylostyles with microspined heads Clathria (Axosuberites) papillata spec. nov.
- Thin crust with unstructured skeleton; no microspined heads on any of the megascles .. Artemisina incrustans spec. nov.
26. Massive sponge with lamellate grooves; skeleton axially condensed .. Clathria (Axosuberites) pachyaxia
- Thin black crust (black colour persists in alcohol) . Artemisina melanoides spec. nov.
- Smooth red crust ... Ophlitaspengia papilla sensu Cruz, 2002
27. Chelae arranged in whorls or rosettes; sponge thickly encrusting to massive
- No such arrangement of chelae .. 28
- Toxas absent (search carefully as they may be rare or localized) .. 29
- Toxas present ... 30
28. Largest structural styles > 1000 µm; largest chelae > 30 µm ..
- Styles < 700 µm; largest chelae < 20 µm .. Clathria (Microciona) atoxa
29. Two types of toxas .. 31
- Only a single type, although sizes may be quite variable ... 33
30. Long toxas accolada type; shorter toxas oxhorn-like, thickness 3 µm
- Long toxas strepsitoxas; shorter toxas wing-shaped, thin (< 1.5 µm) 32
31. Skeleton hymedesmioid; largest styles > 500 µm ... Clathria (Microciona) strepsitoxa sensu Cruz, 2002
- Skeleton microcionid; largest styles < 400 µm ...
- Skeleton hymedesmioid ... Clathria (Microciona) capverdensis spec. nov.
32. Two size classes of chelae .. 34
- Only a single size class of chelae .. 35
33. Smaller chela category contorted; sponge thinly encrusting; skeleton hymedesmioid .. Clathria (Microciona) gorgadensis spec. nov.
- Smaller chela category typical shaped; sponge cushion-shaped; skeleton plumoreticulate .. Clathria (Microciona) capverdensis spec. nov.
34. Structural styles entirely smooth .. 36
- Structural styles have spines or warts on the head, or are rugose, and/or are spined on the shaft .. 38
36. Echinating styles are entirely smooth, a short version of the structural styles; skeleton plumoreticulate with enhanced spongin .. 37
- Echinating styles have spines on the head and the shaft .. Clathria (Thalysias) jolicoeuri sensu Lévi, 1959
37. Echinating styles up to 180 µm; thickest toxas > 5 µm .. Clathria (Microciona) coralloides sensu Boury-Esnault & Lopes, 1985
- Echinating styles up to 85 µm; thickest toxas < 3 µm .. Clathria (Microciona) calloides spec. nov.
38. Long thin accolada- or rhaphidiform toxas .. 39
- Wing-shaped toxas ... 41
39. Chelae 5-6 µm ... 40
- Chelae >10 µm ... 40
40. Structural styles with warty heads; short quasitylote modifications of the subtylostyles present .. Clathria (Microciona) conchicola spec. nov.
- Structural styles with lightly spined heads; no quasitylotes modifications .. Clathria (Microciona) toxitenuis sensu Cruz, 2002
41. Largest structural styles > 1000 µm Clathria (Microciona) affinis sensu Topsent, 1904
- Largest structural styles < 700 µm ... 42
42. Largest toxas < 50 µm .. 43
- Largest toxas > 50 µm .. 44
43. Ectosomal subtylostyles strongylote; echinating acanthostyles only up to 80 µm long .. Clathria (Microciona) haplotoxa
- Ectosomal subtylostyles normal stylole; echinating acanthostyles up to 120 µm 44
44. Largest structural styles < 500 µm; tips of toxas spined or roughened (often difficult to see in light microscopy) .. 45
- Largest structural styles > 500 µm; tips of toxas smooth ... 45
45. Deeply curved toxas with clearly visible spines; largest echinating acanthostyles > 200 µm ... Clathria (Microciona) spinarcus
- Toxas more shallow-curved with faint spination; echinating styles < 200 µm 46
46. Skeleton microcionid (columns of styles echinated by acanthostyles); a single size category of subtylostyles .. Clathria (Microciona) armata
- Skeleton hymedesmioid (single styles and acanthostyles erect on the substrate; two clearly separated sizes of subtylostyles, the smaller forming bouquets at the surface .. Clathria (Thalysias) minutoides spec. nov.

Discussion

Taxonomic significance of morphological characters

Our monographic report of Microcionidae of Northwest Africa and the Macaronesian islands followed in the footsteps of Hooper’s (1996) Australian monograph, employing similar characters to distinguish between the species and (sub-)genera. We are generally in accordance with Hooper’s classification of the (sub-)genera, but proposed to extend these with Clathria (Paresperia) and Antho (Plocamia) for reasons given above.
We are satisfied with the subgeneric status of these and the remaining subgenera and do not consider it wise in view of forthcoming molecular revisions to change their status to full genera.

We discuss here the characters we found useful to distinguish species (in addition to Hooper's overview of characters and character states (1996: 6-18):

Habit.— In our experience growth form is usually fairly consistent among individuals of the same species, thinly encrusting, massively encrusting, lobate and arborescent forms being similar in species where we could study more than a single individual. Obviously, arborescent forms have to start out as small patches, and theoretically might be mistaken for an encrusting species, but in practice this was not observed by us. We reject the suggestion of arborescent species occurring also as thin encrustation (e.g. *Antho* (*Antho*) *morisca* and *A. (A.) involvens*) other than as an incipient individual, which would invariably show shorter branches.

Skeletal structure.— In our experience with Mediterranean-Atlantic representatives, skeletal structures appear less diverse than demonstrated for Australian species, and accordingly we mostly followed Lévi's (1960a) earlier scheme rather than Hooper's, to describe the skeletal structure. We employed the terms plumoreticulate, axially condensed, microcionid, hymedesmioid skeleton (*Clathria* s.l.), renieroid (*Antho* s.l.) and unstructured (*Artemisia*). These terms are not describing an exact state of the skeleton and different terms may be employed for differently developed specimens of the same species or subgenus. However, we have not observed previously suggested intraspecific transitions from a hymedesmioid through a microcionid to a plumoreticulate state.

Subtylostyles.— These are rather uniform in shape, but among and within species they may be quite variable in length and thickness. This size variation is usually continuous in a given specimen, but in specimens of *Clathria* (*Thalysias*) there is a differentiation in size classes, with the smaller arranged in bouquets or a palisade at the surface. The heads of the subtylostyles, which are usually slightly swollen, bear faint or less often distinct spination in the majority of species, but in several (*Clathria* (*Microciona*) *bicistochelifera* spec. nov., *Clathria* (*Microciona*) *boavistae* spec. nov., *Clathria* (*Microciona*) *calloides* spec. nov., *Clathria* (*Thalysias*) *vacata* spec. nov., *Antho* (*Antho*) *nuda* spec. nov., and *Artemisia melanoides* spec. nov.,) the heads were found to be entirely smooth. Several species of *Clathria* (*Microciona*), possess a distinct modification of the subtylostyles, dubbed quasitylotes, where the pointed end is swollen and often provided with spines, mirroring the heads, but these spicules remain asymmetric and never become genuine tylostyles. Species with quasitylotes in the present study area always also possess normal subtylostyles. Cases in point are *Clathria* (*Microciona*) *cancapseptima* spec. nov. and *Clathria* (*Microciona*) *conchicola* spec. nov. In *Clathria* (*Axosuberites*) and *Artemisia*, distinction between structural styles and ectosomal subtylostyles may become obscured.

Structural styles.— These come in a three recurrent types, (1) entirely smooth, often then fusiform and with a faint constriction just below the head, (2) with a smooth shaft and swollen, rugose or warty heads, (3) with swollen, heavily spined heads and lightly spined shaft, usually leaving the pointed end free of spines. The second type is most often encountered in the study area. Larger styles tend to become curved. In *Antho*, structural styles may come in two distinct sizes, larger ones from the subectosomal skeleton causing the hispid surface, and smaller built into the basal reticulation coring the ascending fibers. The latter occasionally may have some spines and grade then into
the acanthostyles / acanthostrongyles of the basal reticulation.

Echinating styles.— These come into two rather distinct types, (1) similar in shape, and often also in thickness, to the structural styles, but smaller and spined (lightly) on the shaft; in fact these spicules are only recognizable by their position in the skeleton, echinating the spongin fibers or surrounding the structural styles embedded with their heads in the spongin plate, (2) distinctly different in shape, shorter and thinner than the structural styles, and usually entirely heavily spined; in a few species an area between the heavily spined head and point may be relatively smooth. Echinating styles are lacking in Clathria (Axosuberites), Antho (Antho), Artemisina, and Ophlitaspongia. Occasionally, they are also lacking in Clathria (Microciona), e.g. C. (M.) bicleistochelifera spec. nov.

Toxas.— In addition to Hooper’s extensive treatment of the toxas, the types and combinations of which are often species-specific, we distinguish strepsitoxas, accoladatype toxas (long and thin, with a small median curvature) in which the central curvature is twisted a half or whole turn. This is not always readily observed in spicule mounts or on SEM stubs, but it appears to be a distinct feature, of Clathria (Microciona) strepsitoxa and Clathria (Microciona) aurea spec. nov.

Palmate isochelae.— Size and size categories are important characters. Contorted chelae are relatively rare in the study area, found only in Clathria (Microciona) gorgadensis spec. nov. and Antho (Plocamia) hallezi, and it was also observed in some chelae of Antho (Plocamia) erecta. Absence of chelae is considered significant at the species level, but this is a tricky issue as some specimens may have rare chelae, or very small chelae, easily overlooked. A special case are the cleistochelae. They were encountered surprisingly often (more so than apparently in Australian Microcionidae), and several states may be recognized, possibly comprising growth developments of the chelae, but this remains to be confirmed. In some cases, typical chelae and cleistochelae are found in the same specimens. A ctenichelate condition may be distinguished, where the shaft is provided with a ridge, but the alae are still some distance away from each other and from the ridge. Genuine cleistochelae, with the two alae touching and the space between the shaft and the alae entirely filled by an extended ridge, have been observed relatively seldom. Possibly, the cleistochelate condition could be employed further as a synapomorphy to distinguish groups of species. So far, we conclude that occurrence of cleistochelae at least transcends subgenus boundaries, e.g. Clathria (Clathria) and Clathria (Microciona). They are not known from Ophlitaspongiinae. The contorted-cleistochelate-aniscochelate condition of the chelae in Antho (Acarnia) signata are unique, and were the reason for the erection of Plocamiopsis Topsent, 1927. In the absence of species with similar chelae we concur with Hooper (2002) that these peculiar chelae are a species character, not a genus character.

Endemism in the region

Although parts of the area considered here have been studied only occasionally, and distributions are obviously only cursorily known, it may be useful to summarize our results as a first ever overview of the microcionids of this area. As a biologically meaningful subdivision of the area we take the Marine Ecoregions (MEOW) scheme of Spalding et al. (2006). In the seven MEOWs from which we have microcionid information we counted the number of microcionid species present and the number of species
The species we record are unevenly divided over the ecoregions, due to difference in collection effort. Ascension Island, Gulf of Guinea Islands, and Gulf of Guinea West have been insufficiently studied to yield meaningful data. Among the remaining MEOWs, the number of species present is not very different, varying from 9 to 16. However, in the percentage endemism, there is a clear North-South trend, from 37% in the Azores-Madeira-Canaries region, 40 and 55 % along the continental coasts of West Africa, to 71% in Cape Verde Islands. The high endemity in the Cape Verde Islands is striking compared to that of the much lower endemism in the Atlantic archipelagoes of the Azores-Madeira-Canaries region. Although the geological age of the Cape Verde Islands and that of Madeira and the Canary Islands is comparable (20-5 MYA, for the various individual islands, cf. Gillespie & Clague, 2009), the enhanced endemism is likely related to the tropical environment of the Cape Verde Islands, as compared to cooler waters of Madeira and the Canaries. These areas share a good proportion of their fauna with Mediterranean and Northeast Atlantic regions.

Acknowledgements

The late Dr Jaap van der Land organized the CANCAP- and Mauritania expeditions. Captains and crews of H.M.S. Tydemann and R.V. Tyro are thanked for their expert assistance. Jan J. Vermeulen, formerly of the Zoological Museum of Amsterdam, assisted during the Mauritania II Expedition. John N.A. Hooper (Queensland Museum, Brisbane, Australia) and Prof. Sven Zea (Universidad Nacional de Colombia, Bogota) gave valuable advice and shared their experience with microcionid sponges. The following persons are thanked for making the loan of specimens from their collections possible: Dr. Marie Meister (Zoological Museum, Strasbourg), Dr Ole Tendal (Zoological Museum, University of Copenhagen), Dr Jon Kongsrud (Natural History Collections, University of Bergen, Norway), Ms Emma Sherlock (Natural History Museum, London), and Dr Isabelle Domart-Coulon (National Natural History Museum, Paris). Dr Flegra Bentivegna, Ms Andrea Travaglini (Aquarium and Zoological Collections, Stazione Zoologica Anton Dohrn, Naples), and Dr Laszlo Forro (Hungarian Natural History Museum at Budapest) provided information on whereabouts of Mediterranean type specimens.

Table 4. Numbers of species and endemism of microcionid sponges in Marine Ecoregions of Northwest Africa and Macaronesia.

<table>
<thead>
<tr>
<th>Marine Ecoregion</th>
<th>N species</th>
<th>N endemics</th>
<th>% endemisity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azores-Madeira-Canaries</td>
<td>16</td>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>Saharan</td>
<td>10</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Sahelian</td>
<td>9</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>Cape Verde</td>
<td>14</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Gulf of Guinea West</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Gulf of Guinea Islands</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Ascension Island</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
</tbody>
</table>
References

Burton, M., 1933. Precocious reproduction in the sponge Dictyoclathria beanii (Bowerbank).— Annals and Magazine of Natural History (10)12: 504-508.

Carter, H.J., 1882. Some Sponges from the West Indies and Acapulco in the Liverpool Free Museum described, with general and classificatory Remarks.— Annals and Magazine of Natural History (5) 9(52): 266-301; 346-368.

Carter, H.J. & Hope, R., 1889. On a new British Species of Microciona, Bk. in which the ends of the Tricurate are Spiniferous &c.— Annals and Magazine of Natural History (6) 3: 99-106.

Ferrer Hernández, F., 1923 [1922]. Más datos para el conocimiento de las esponjas de las costas españolas.— Boletim de Pescas 7: 247-272.

Koltun, V.M., 1962. Four rayed and siliceous horny sponges from the Pacific shallow waters of Paramushir and Shumshu Islands. — Issledovaniya dal’nevostochnyh morei SSSR 8: 181-199. [In Russian].

Laubenfels, M.W. De, 1927. The red sponges of Monterey Peninsula, California. — Annals and Magazine of Natural History (9) 19: 258-266.

Wilson, H.V., 1902 [1900]. The sponges collected in Porto Rico in 1899 by the U.S. Fish Commission Steamer Fish Hawk.— Bulletin of the United States Fish Commission 2: 375-411.

Received: 12.vii.2013
Accepted: 18.ix.2013
Edited: L.P. van Ofwegen