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il

“the more clearly we can focus our attention on the wonders and realities of the

universe about us, the less taste we shall have for destruction”

- Rachel Carson






Summary

Wild bee diversity across space and time: the role of land use/land cover
and climate

by Leon MARSHALL

Rapid anthropogenic environmental changes have a widespread detrimental ef-
fect on global patterns of biodiversity. Climate change and land use/land cover
(LULC) change have long been recognized as two of the drivers of biodiversity loss
and shifts in species’ distributions. Climate and LULC changes can alter species’
habitats through changes in temperature, rainfall and extreme weather patterns,
and land conversions from areas rich in resources to areas with insufficient re-
sources. Species are then forced to move into areas with tolerable conditions
and adequate resources or face local extinction. To be able to interpret historical
dynamics, recognize present day patterns, and project changes under potential
futures, it is essential to understand in detail climate and LULC requirements of

different species at a variety of different extents and locations.

Wild bees represent an ideal study organism to explore these themes. Wild
bee species are needed to pollinate the majority of wild flowers and can greatly
influence crop pollination, supporting food provisioning for humans. Wild bees
have also experienced significant changes in many areas over the last 100 years,
showing large shifts in their distribution patterns, declines in diversity and abun-
dance, and many local extinctions. In order to protect wild bees and mitigate
the influence of rapid global changes, it is necessary to quantify the influence of
LULC and climate effects on wild bees. Consequently, the general objective of
this thesis is to examine how LULC and climate conditions impact the diversity
and distribution patterns of wild bee species at different spatial and temporal

scales.

To achieve the general objective we focused on three aims: to (1) test the
efficacy of using statistical modelling tools to understand wild bee distributions
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in the present and future, and suggest how to improve these methods; (2) pro-
vide novel understanding of how wild bee community assemblages are structured
at large geographical scales and what drives this structure; and (3) quantify and
compare how past, present, and future changes to wild bee and specifically, bum-

blebee distributions are expected to be influenced by LULC and climate changes.

In order to accomplish these aims a variety of statistical techniques were
utilized throughout the thesis. In particular, a common theme of the thesis is
the use of species distribution models (SDM) to model the relationship between
wild bee occurrence records and the environment, and to use this relationship
to project distribution patterns. Furthermore, species interactions, phylogenetic
relationships and functional species traits were included in the analyses to pro-
vide more ecological detail in explaining the observed patterns of diversity and
distribution. Firstly, we introduce the background and knowledge gaps in chap-
ter 1, general introduction and then present the material and methods used in
the thesis in chapter 2. The three aims are explored across four chapters (3-6)
with narrower objectives each representing a separate scientific study. Finally,
we explore the relevance and implications of the thesis in chapter 7, general dis-

cussion.

The objective of Chapter 3 was to quantify the performance of species dis-
tribution models when modelling wild bee distributions. Specifically, we exam-
ined how habitat suitability predictions for Dutch wild bees are contingent on
the LULC context where a species is predicted to occur and the functional trait
groupings of all species. Independent collections made after the construction of
SDMs were used to test the models. In total 52 wild bees species, of the total 193
modelled species, were collected in independent collections from agricultural
habitats, specifically, arable fields and orchards. The 52 wild bee species were
grouped into 4 separate functional trait groups representing small intermediate
specialist, small generalist, highly specialised, and large generalist species. Habi-
tat suitability projections were significantly better for highly specialised species
and species collected in orchard habitats. The results suggest that SDMs for wild
bees can be more or less useful depending on the species modelled. Specifically,
projections made for specialist species and within stable habitats are likely to be
the most accurate.
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The objective of chapter 4 was to build on the results and implications of
chapter 3 and to quantify and visualize the influence of habitat filtering and co-
occurrence when modelling the assembly patterns of wild bee species. Again,
this study was focused on the Netherlands. Firstly, the spatial co-occurrence of
all 297 wild bee species was analysed. Wild bee species generally showed a strong
positive correlation in co-occurrence. Suggesting, that many wild bee species are
found together significantly more than expected by chance alone. Following this,
ajoint SDM (JSDM) approach was used to classify the significance of habitat fil-
tering, biotic interactions, functional traits and phylogenetic relatedness on the
geographic patterns of wild bee assemblages. The results showed that habitat
filtering explained the majority of the geographic distribution of wild bee assem-
blages. The relationship between wild bee species and the environmental condi-
tions was only weakly explained by traits but showed a strong phylogenetic signal,
suggesting closely related species have similar habitat filtering requirements. In-
cluding species co-occurrence matrices into the JSDM approach improved model
performance signifying that there are unexplained factors that certain species
pairs require not captured in the modelling process. Overall, the study provides
aclear representation of the geographic distribution of wild bee assemblages, the
factors influencing this distribution and provides clear implications for wild bee
conservation. The results indicate potential conservation units in the form of
spatially explicit community and habitat profiles as well as outlining potential
indicator species, which are representative of diverse and distinct assemblages.

The objective of chapter 5 was to look at aspects of habitat filtering at
broader temporal and spatial scales and precisely to quantify the influence of
dynamic land use/land cover projections on the projected distributional change
of bumblebees under climate change. Using three model types, (1) only climate
change covariates, (2) climate change and static LULC covariates and (3) climate
change and dynamic LULC covariates the distribution of 48 bumblebees were
modelled at the European and BENELUX scale. There were clear differences in
the projections of range changes produced by the different model types. The im-

plication of these results for modelling wild bee species under changing climate
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are that when available LULC change projections should be utilized in prospec-
tive biodiversity scenarios. Furthermore, the results indicate the need for im-
proved and detailed LULC change projections that take into account smallerscale
natural habitat types and land management.

Chapter 6 presents a historical look at the impacts of environmental chan-
ges in the Pyrenees with the objective to measure a specific case of how the com-
position and distribution of a wild pollinator group has changed over time due
to the influence of LULC and climate changes. Using two collections datasets,
one from 1889 and a follow-up conducted in 2005-06, the composition and dis-
tribution of the bumblebee, day-flying Lepidoptera and their visited plants were
compared. Overall, all groups show an upward shift in mean elevation, but this
shift is not evenly spread across all species. For the bumblebees, specialist species
are found higherup the mountain and also experience greater shifts in their eleva-
tion. Furthermore, community composition does not change drastically. There is
also an indication that pollinators and their visited plants are shifting in unison.
The results lend support to predicted climate change effects on biodiversity, and
indicate certain specialized species that could be in danger of significant declines

if conservation efforts are not implemented.

In conclusion, this thesis highlights the significance of historical wild bee
occurrence data and the utility of SDMs for investigating key environmental re-
quirements of wild bee species and assessing long-term trends in distribution.
We show that wild bees distribution patterns are highly dependent on LULC
conditions in the present and future. The work also emphasizes the strong in-
teraction between climate and LULC and how necessary it is to incorporate both
in future biodiversity scenarios. It also shows for the first time influence of co-
occurrence patterns on the formation of national wild bee assemblages. Which in
turn increased our knowledge the processes behind patterns of distribution and
multiple measures of diversity, including community, functional and phyloge-
netic. Finally, this thesis provides significant advice to conserve wild bee species

individually and collectively.

Theresults clearly indicate areas of interest for future studies, which should

focus on the complexities and the interactions of the relationships shown here.
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The drivers of wild bee decline strongly interact and therefore should be exam-
ined simultaneously. In particular, greater focus is needed on the ecological
drivers of wild bee distribution patterns, including dispersal capabilities, biotic
interactions with flowering plants, other beesand pathogens, as well as how phys-
iological tolerance will influence the impacts of global change. Additionally, fu-
ture LULC maps and projections which incorporate high-resolution depictions
of natural areas and differences in land management will improve our ability to
analyse and understand the environmental requirements of wild bees. As wild
bee species are expected to continue to decline globally this thesis increases the
knowledge and tools available to ensure that high diversity wild bee communities
continue to persist.
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2 Chapter 1. General Introduction

1.1 Overview

Biodiversity is declining globally and some scientists suggest that we are in the
midst of a sixth mass extinction event (Barnosky et al. 2011; Ceballos et al. 2015).
The central drivers of this extinction are anthropogenic in nature, including cli-
mate change, due to increases in atmospheric CO2 and other gases, and land
use/land cover (LULC) change, due to urbanization and agricultural intensifica-
tion among other pressures, (Millennium Ecosystem Assessment 2005; Bellard
et al. 2012; Pimm et al. 2014; Ostberg et al. 2015). Bees represent an important
group of global pollinators, the majority of which are free living and not man-
aged by humans, i.e. wild. In well studied regions with long-term species records
wild bees show a declining trend, particularly the more conspicuous bumblebees
(Williams 1982; Biesmeijer et al. 2006; Goulson et al. 2008; Potts et al. 2010;
Cameron et al. 2011; Bommarco et al. 2012; Bartomeus et al. 2013; Carvalheiro et
al. 2013). Land use/land cover and climate change have been outlined as two of
the main drivers of these observed declines, by limiting access to and removing
important habitat and feeding resources required by wild bees (Potts et al. 2010;
Vanbergen & The Insect Pollinators Initiative 2013). Therefore, to protect wild
bees and the pollination services they provide it is of vital importance to under-
stand how LULC and climate interact to drive diversity and distribution of wild
bee species. Furthermore, the effects of LULC and climate on wild bee diversity
and distribution will vary dependent on the spatial and temporal scale at which
it is analysed (Carsten 2005).

Therefore, the general objective of this thesis is to examine how LULC
and climate conditions impact the diversity and distribution patterns of
wild bee species at different spatial and temporal scales. For the majority of
wild bee species there is an absence of information regarding the processes which
influence their relationship with the environment. Therefore, due to the com-
plexity of these patterns we rely on statistical techniques to explore relationships
and hypothesize processes. Using long-term occurrence records and high resolu-
tion environmental information we create species distribution models (SDMs),
which allow us to predict how environmental factors influence the diversity and

distribution of wild bees and how these may change in the future. Consequently,
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the general objective of the thesis can be split into two separate focus areas; (1)
methodological, how SDMs can be used and improved to model the relationship
between land use, climate, wild bee species occurrence and community assem-
blage patterns and (2) applied, how does the relationship between land use and
climate influence the distribution patterns of wild bee species and assemblages
and what are the implications regarding their decline and conservation.

1.2 Biodiversity and Biodiversity Loss

1.2.1 Measuring Biodiversity

Biological diversity (biodiversity) is a broad concept which includes the entire
variability of life on earth and its interactions (Wilson 1988). The concept of
biodiversity is often strongly related to ecosystems and ecosystem functioning,
specifically that higher biodiversity maintains more complex, higher-quality eco-
systems, which consequently provides more services and can better withstand
disturbances (MacArthur 1955; Peterson et al. 1998). Biodiversity measurements
act as a vital criterion in ecology and conservation and can be measured in a va-
riety of ways (Williams et al. 1993). Biodiversity is often portrayed simply as
species richness, the total number of separate species found in a chosen loca-
tion, however this does not represent all diversity and therefore importance or
value of a particular location. Other measurements of biodiversity can be clas-
sified at different levels of organization: (i) ecological diversity e.g. landscapes,
ecosystems; (ii) genetic diversity e.g. populations, genes; and (iii) organismal
diversity e.g. number of species or families (Heywood & Watson 1995; Purvis
& Hector 2000). In this thesis we do not limit our definition of biodiversity to
species richness. Specifically, in the different chapter’s we measure biodiversity
using a variety metrics, including beta-diversity !, functional and phylogenetic
diversity, and diversity of interactions. These metrics are used at different scales,
examining diversity at local fine-grained scales but also at for whole assemblages

and communities and at national scales.

IBeta-diversity is the ratio between regional and local species diversity (Whittaker 1960).
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Not only is it important what measure of biodiversity we use but the scale
at which it is measured is also essential. For a long time the distribution patterns
of biodiversity were thought to be consistent across spatial scale gradients, how-
ever changes in both spatial extent (how large a geographic area is) and grain size
(unit at which biodiversity is measured) can result in varying conclusions of bio-
diversity trends (Carsten 2005). Conclusions as to whether biodiversity trends
are positive or negative can change depending on the spatial scale at which the
analysis occurs (Purvis & Hector 2000). The ability to detect biodiversity patterns
depends on the scale at which measurements are made and to define this scale
it is necessary to recognize or hypothesize the processes driving these patterns
and the scale at which these processes operate (Levin 1992). When examining
biodiversity patterns two characteristics of scale are of significant importance,
focus and extent. Focus refers to the spatial resolution at which measurements
are made, for example measuring species occurrence could be within 10 x 10 m
areas; extent refers to the total geographical space in which measurements are
made, for example Europe or the Netherlands (Willig et al. 2003). At different
scales different processes are driving the observed patterns, for example at the
local scale observed species richness in a community may be driven by resource
availability, habitat requirements and biotic interactions. At the regional scale
the total diversity, from which the local community is derived, may be driven by
geology, the size of the area or climatic conditions. Finally at the broad-scale the
regional species diversity is likely affected by evolutionary processes including
speciation and extinction (Huston 1999; Gaston 2000). It is therefore funda-
mental that multiple scales are compared and contrasted when measuring bio-
diversity patterns using statistical techniques (Gaston 2000).

The same holds true for the importance of the temporal scale at which
biodiversity is measured. Changes in global biodiversity can be measured on
many time-scales from geological time periods where evolutionary patterns of
biodiversity and extinctions can be measured (Purvis & Hector 2000), to more
recent term time periods that show the influence of human society on biodi-
versity through climate (Parmesan & Yohe 2003; Root et al. 2003) and LULC
change (Foley et al. 2005), or short-term temporal scales where biodiversity is

measured before and after specific disturbances (Hooper et al. 2005). Given the
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significance of scale, we specifically target a variety of spatial and tempo-
ral scales, and resolutions to measure diversity and distribution patterns
throughout this thesis.

1.2.2 Biodiversity Loss

Globally, biodiversity is being lost at an alarming rate and has been described as
a sixth mass extinction event, with the main cause being anthropogenic, due ina
large part to the pressure humans impart on the landscape and climate (Barnosky
etal. 2011; Ceballos et al. 2015). Pimm and Raven (2000) conclude that even a
best case scenario of protecting global biodiversity hotspots from these anthro-
pogenic pressures would still result in the loss of 18% of species. The potential
impacts of these biodiversity losses could be far reaching and necessitate actions
and initiatives to protect, restore and manage biodiversity. The importance of
biodiversity can be considered distinct and separate from humans, often referred
toas intrinsic value; from a conservation perspective this implies that biodiversity
should be protected because it has a right to exist (Pearson 2016). A more prac-
tical view of nature and biodiversity expresses its instrumental value and what
use biodiversity has to humans. Consequently, a common inquiry is how much
species loss can we afford before the ecosystem functioning is negatively affected
and in turn human well-being (Cardinale et al. 2012; Hooper et al. 2012). Specif-
ically, biodiversity loss may impact the stability of food provisioning, regulation
and ability to recover from disturbances and natural disasters, and directly im-
pact human health (Diaz et al. 2006; Worm et al. 2006; Cardinale et al. 2012).
For example, the loss of crop pollination by wild bees directly impacts food pro-

visioning services (Klein et al. 2007).

1.2.3 Drivers of Biodiversity Loss

Climate Change

Biodiversity loss is occurring due to a number of factors, many of a directly an-
thropogenic nature. Two of the main drivers, and focus of this thesis, are climate
and LULC changes (Millennium Ecosystem Assessment 2005; Bellard etal. 2012;
Pimm et al. 2014; Ostberg et al. 2015). Observed changes to the climate over the
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last century are unmistakable, and have manifested as warmer atmosphere and
ocean temperatures, a loss of snow and ice, and an increase in sea level (IPCC
2014). These changes have been driven by anthropogenic greenhouse gas(GHG)
emissions which have led to levels of these gases in the atmosphere far higher
than ever experienced in modern history and far beyond fluctuations expected
by natural variability (IPCC 2014). The implications of warming temperatures on
biodiversity include changes in species geographic ranges, alterations to migra-
tion patterns and timing, and shifts in community structure and interactions. In-
crease in temperatures, particular at higher latitudes and elevations are expected
to push species polewards and to higher elevations as well as causing shifts to
their phenology? (Parmesan & Yohe 2003; Menzel et al. 2006). Extreme weather
events such as heat waves and heavy rainfall may lead to higher rates of mortal-
ity and eventually, population extinctions, alterations to morphological and be-
havioural characteristics, and mismatches between interacting species (Parme-
san et al. 2000).

The likelihood of continued GHG emissions means that existing climate
change effects are predicted to worsen in the future. Simulated global surface
temperatures suggest increases between 0.3-1.7°C under low emission scenar-
ios (Representative Concentration Pathways (RCP) 2.6) 1.1-3.1°C under medium
scenarios (RCP 4.5, RCP 6.0), and 2.6-4.8°C under extreme remission scenarios
(RCP 8.5) by 2100 (Fig 1.1; IPCC, 2014). These scenarios of climate change have
been used to predict future changes to global biodiversity (Bellard et al. 2012).
Pereira et al. (2010) estimate overall losses between 11% and 58% for vertebrates
by 2100 under different scenarios of climate change. Thomas et al. (2004) es-
timate that between 18-35% of species could be committed to extinction under
future climate change ranging from low to high emission scenarios. Examining
biodiversity loss due to climate change depends on a number of factors includ-
ing scale effects, scenarios used, species interactions and interactions with other
drivers (see Fig 1.2; Bellard et al. 2012). It is therefore vital to try and under-
stand the biology of the species and their interactions with other species and the
environment when trying to predict diversity and distribution patterns under a

changing climate.

2Phenology is the study of how the environment influences the life-cycle timing of species and
populations.
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F1G. 1.1: Modelled changes in global average surface temperature (a) and global
mean sea level rise (b) from 2006 to 2100. The lowest and highest emission sce-
narios are shown. Coloured bars at the right hand size show the mean and uncertainty
for all scenarios. The number above the lines refers to the number of models used to
calculate the multi-model mean. Source: figure taken from IPCC (2014).

Land Use/Land Cover Change

Land use/land cover (LULC) change due to intensification of the landscape re-
sults in the loss of habitat resources needed by many species and has been pro-
posed as the leading cause of biodiversity loss in the last century (Millennium
Ecosystem Assessment 2005; Pimm et al. 2014). One of the leading causes of
habitat loss is the conversion of natural areas such as semi-natural grasslands,
forest and wetlands into agricultural systems and urban areas (Foley et al. 2005).
The loss of natural habitats and the degradation of remaining habitat has al-
ready led to biodiversity losses. Terrestrial vertebrate species have declined by
58% between 1970 and 2012, with habitat loss cited as the main cause (WWF
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there is a number of challenges to better estimate the influence of the different issues. Green factors are likely

overestimated, while red factors are likely underestimated; black factors and question marks are used when the

direction or extent of error in estimation is unknown; double arrow means a very large expected effect. Source:
figure taken from Bellard et al. (2012).

2016). Newbold et al. (2015) estimate that terrestrial biodiversity losses due to
land-use and associated changes has already decreased average per sample rich-
ness by 13.6% and in the worst affected areas this sample may have decreased by
76%. Newbold et al. (2016) suggest from measurements of remaining biodiver-
sity in local ecosystems that up to 58% of total global surface has been pushed
past the safe limit of biodiversity loss, particularly grassland habitats. As with cli-
mate change, LULC changes are expected to continue occurring into the future,
especially as human populations increase. Global scenarios and expert opinions

suggest that significant LULC changes in the future will have the most influence



1.2. Biodiversity and Biodiversity Loss 9

on biodiversity loss for all biomes (Sala et al. 2000).

Compared to modelled climate change projections there are fewer projec-
tions of how LULC will likely change in the future (Rounsevell et al. 2006; Titeux
etal. 2016). This does not reflect accurately the extent to which LULC is expected
to impact biodiversity. The few studies that do utilize LULC change models reach
varying conclusion about the importance of LULC change for modelling future
biodiversity patterns. Sohl (2014) shows that model performance is lower and
range size is greater when LULC projections are excluded from future scenarios
of bird distributions in the US. However, Martin et al. (2013) conclude that LULC
change projections in their current form do not improve future distribution pre-
dictions of a European butterfly species. Using only LULC covariates Ficetola et
al. (2010) modelled the distribution of bullfrogs, suggesting that habitat suitabil-
ity would remain relatively stable. However, overall, LULC and climate change
are often examined in isolation and the interactions between the two, par-
ticularly when used to project biodiversity changes, represents a significant gap
in our knowledge of how biodiversity losses are likely to progress in the future
(de Chazal & Rounsevell 2009; Titeux et al. 2016). Throughout this thesis we
aim to examine the effects of LULC and climate on biodiversity simultane-
ously, in the past, present and in the future.

1.2.4 Measuring Biodiversity Loss

As stated earlier, the importance of LULC and climate as drivers of biodiversity
loss is indisputable but measuring and predicting their effects at the global scale
remains an immense task. Accordingly there are a number of tools available to
measure these different types of biodiversity at different scales. The proliferation
of online databases for occurrence records, phylogenetic data, conservation sta-
tus, geographic maps, among others, allows for the collation and dissemination
of biodiversity data on a global scale (Purvis & Hector 2000). However, these
data generally only come from a few areas in the world and have multiplied in
recent years leading to both a spatial and temporal bias in our view of global bio-
diversity (Boakes et al. 2010). To remedy this situation researchers need detailed
occurrence records at the species level that come from long-term monitoring.

To ensure accurate estimates of total diversity different collection techniques are
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required, for example distance sampling® or mark recapture* allow for the calcu-
lation of accurate species abundance values. However, generally these methods
are time consuming and expensive and therefore, count statistics (occurrences)
are often used (Yoccoz et al. 2001). Furthermore, to understand long-term bio-
diversity trends it is often necessary to use older collection records, often collated
and stored in natural history museums (Ponder et al. 2001). To estimate and pre-
dict biodiversity patterns and trends researchers rely on statistical tools to draw
conclusions on the distribution of species in areas and time periods that would
be infeasible or impossible to sample in their totality. In particular species distri-
bution models (SDMs), which are used throughout this thesis, combine known
occurrence records and environmental variables to predict for unsampled areas
where species are likely to be distributed (Elith & Leathwick, 2009). Improving
our ability to predict and understand biodiversity patterns in the past, present,
and future is essential if we are to manage and avoid the problems associated with
global changes.

1.3 Wild Bees

Wild bees comprise approximately 20 000 species found worldwide on all conti-
nents except for Antarctica (Michener 2000). There are 7 extant families of bees
(Fig 1.3). A broad functional distinction between wild bees can be made based
on their sociality. The majority of bees are solitary bees which means that the fe-
males build their own nests with food resources to deposit their offspring (Lins-
ley 1958). The offspring emerge after the female has died. The non-solitary bees
are organized into colonies, with division of labour, and are referred to as social
species. These range from highly eusocial bees, where the queen is dependent on
the colony and develops differently to other females which are incapable of form-
ing their own colonies; primitively eusocial colonies have queens and workers

3Distance sampling is a method to estimate the total species richness of a chosen area. The
methodology is based on line or point transects, the species are surveyed along these lines or from
these points and are measured as a perpendicular or radial distance (Buckland et al. 2015).

4Mark recapture involves sampling species richness by capturing a subset of a population of
species, marking these species and then resurveying the population, the resulting proportion of
marked individuals should represent their proportion in relation to the total population size (South-
wood & Henderson 2009).
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that share morphological and behavioural similarities (Libbrecht & Keller 2015).
In Europe the only highly eusocial bees are the western honeybees (Apis mellif-
era). Primitively social species in Europe include species in the genera Bombus
(bumblebees) and Lasioglossum. The bumblebees comprise over 250 species
globally in the genus Bombus which is the only extant genus in the tribe Bombini
which is found in family Apidae (Fig 1.3; Michener 2000). Some bees display
a vastly different life history whereby they parasitise the nests of other bees. In
the bumblebees there is a sub genus, Psithyrus spp.; species of this subgenera
subdue or kill the queen of existing colonies and lay eggs reared by the workers
of the original colony (Goulson 2010). In the solitary bees this cleptoparasitic
behaviour also exists, where females lay eggs in the nest of another bee species
and either the larva or the female kills the existing host egg and the new larva
utilize the available food provisions (Rozen 2001). The two most diverse genera
of cleptoparasitic bees in Europe are Nomada spp. and Sphecodes spp. The high
diversity of wild bees in species number and behaviours means that for many
species there is minimal data on distribution patterns and many studies on wild
bees focus on the larger, more conspicuous and longer flying bumblebees (Potts et
al. 2016b). Studies looking at the entire community of wild bees in a large
geographic area are uncommon, therefore we aim to analyse the patterns
of distribution and community structure of all wild bees at a national scale
in chapters 3 and 4. In chapters 5 and 6 the larger spatial and temporal scales
involved limit the analysis of long-term changes to the bumblebees for which far

more species occurrence data is available.

The important ecological role that the majority of bees provide is the polli-
nation of different plant species. Animals are estimated to be responsible for the
pollination of approximately 87% of all flowering plants (Ollerton et al. 2011).
Bees are considered as the most important of all animal pollinators because of
their diversity, hairiness and reliance on floral resources (Potts et al. 2016a; Oller-
ton 2017). Bees and angiosperms can form highly specialized mutualisms and
the diversity in both groups is strongly linked (Johnson & Steiner 2000; Oller-
ton 2017). These specialized relationships can be vulnerable to changes in the
environment (Schleuning et al. 2016), as both the plant and bee species are de-

pendent on the abundance and survival of the other. However, often the variety of
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interactions and generalization of certain species maintains wild plant-pollinator
networks (Memmott et al. 2004). Furthermore, as crop pollinators, bees are
vitally important for humans. Approximately 75% of crops require some form
of animal pollination to improve productivity, of which bees are the most com-
mon pollinators (Klein et al. 2007). The importance of pollination services by
wild bees can also be measured economically. Total global pollination value has
been estimated at over 300 billion us dollars (Lautenbach et al. 2012). Hon-
eybees constitute the most widespread single pollinator species across all crops,
but wild pollinator communities contribute as much to world crop pollination
(Garibaldi et al. 2013). In addition, pollinator diversity leads to higher and more
stable yields (Garibaldi et al. 2011) as different species play important roles at
different scales (Winfree et al. 2018). Honey bees, which only comprise seven of
the total bee species globally are intensively managed by humans and therefore
face their own unique threats which do not necessarily overlap with those faced
by wild bees. The landscape ecology and distribution patterns of honey bees are
not dealt with in this thesis.

In different crop systems honey bees are usually the most abundant polli-
nator but are far from being the most efficient® and effective® crop pollinators,
generally visiting fewer flowers per individual and producing lower quality yields
when the only pollinator (Garibaldi et al. 2013). A number of wild bee species
have an influential role in crop production, this is only a subset of the total wild
bee diversity, but is crucial nonetheless (Kleijn et al. 2015). Even in the absence
of honey bees wild bees are effective crop pollinators and can improve a num-
ber of aspects of crop production, most importantly increasing yield and quality
(Garibaldi et al. 2013). Wild pollinators may contribute to crop pollination by
replacing managed pollinators (Winfree et al. 2007; Garibaldi et al. 2011), by al-
tering managed pollinator’s foraging behaviour (Greenleaf & Kremen 2006; Car-
valheiro et al. 2011; Brittain et al. 2013) and improving seed and fruit set through
combined pollination (Chagnon et al. 1993). The diversity of wild bees required

for pollination of a single crop is limited to a small subset of total diversity (Kleijn

>Pollinator efficiency is the total contribution of a pollinator species to the fruit or seed set of a
crop including visitation frequency (Willcox et al. 2017).

6Pollinator effectiveness refers to the total seed set of fruit per single pollinator visit (Willcox et al.
2017).
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etal. 2015). However, pollinator species turnover across a landscape implies that
a far higher total diversity is required to pollinate crops in large-scale agricultural
areas (Winfree et al. 2018). Therefore, it is necessary to study wild bee diversity
and distributions patterns together at the community scale as the services they
provide are likely tied closely to interactions between and within species assem-
blages. Therefore, in chapter 4 we take a comprehensive view of wild bee
species assemblage patterns to understand how the entire wild bee com-
munity interacts and how this is linked to the surrounding landscape, in
particular how the climate and LULC conditions influence the geographic distri-
bution of wild bee assemblages. The pollination service provided by wild bees
is under pressure. The global decline of wild bees will significantly impact the
pollination services they provide and consequently have a pronounced impact
on human society. This indicates a need to understand where wild bees are
distributed and how different factors affect their distribution and diver-

sity patterns in order to ensure continued provision of their pollination services.

1.3.1 Wild Bee Decline

The important role wild bees play in different ecosystems is under threat. Thereis
considerable evidence of decreases in species richness and diversity of wild bees.
However, detailed evidence of decline is only available for a few well studied ar-
eas. In the Netherlands and Britain a comparison between species records before
and after 1980 showed a considerable decline in species richness of wild bees in
many areas, which correlated with a decline in pollinated plants (Biesmeijer et
al. 2006). This is supported by a more recent study in Belgium, the Nether-
lands and the UK that shows significant declines in richness and a shift towards
a more homogeneous community before 1990, but suggests that these declines
have decreased since 1990 (Carvalheiro et al. 2013). In the United States (US) a
study looking at 438 bee species over 140 years found that whilst only bumblebee
species showed a significant decline, communities became more homogenized
and in particular the diversity of alien species increased (Bartomeus et al. 2013).
In Belgium, a comparison of the relative number of species before and after 1950
showed that 25.2% were decreasing nationally, with bumblebees shown to be par-
ticularly vulnerable (Rasmont et al. 2005; Vray 2018). Select bumblebees in the
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UK and Ireland, generally those emerging late, have also shown significant de-
creases in range since the 1960s (Williams 1982; Goulson et al. 2006; Fitzpatrick
etal. 2007).

At the local scale there are studies that have re-sampled areas where sur-
veys had been conducted in the past. These studies also, generally, show a de-
creasing trend in wild bee species richness. Bumblebees in Illinois showed dra-
matic losses over 60 years with half of the species previously found absent from
the latest surveys (Grixti et al. 2009). Grasslands in Brazil surveyed 20 years
apart over a 60 year period showed a 22% decrease in wild bee species richness
(Martins et al. 2013). A study in Colorado grasslands showed more positive re-
sults, they observed a generally stable wild bee community when comparing oc-
currences from 1907 against 2001-05 (Kearns & Oliveras 2009). This suggests
that declines are unlikely to be occurring everywhere and that certain spatial lo-
cations and habitats are more vulnerable. For example when comparing 14 sites
over an 80 year period in the UK, Senapathi et al. (2015) found that species rich-
ness declines of bees and wasps were correlated to changes in land cover and
particularly in habitats at the borders between land covers. Long-term studies of
changing populations are a vital resource to help improve our understanding of
how and why wild bees are declining (Bartomeus et al. 2018). Therefore, efforts
should be made to repeat surveys when historical data is available, in chapter 6
we have the unique opportunity to compare a mountain pollinator population in
1889 against 2005-06.

The majority of studies have looked at declines in species richness but
long-term trends of decline in population size/abundance of wild bee species
are almost unknown (Potts et al. 2016b). This is reflected clearly in the IUCN red
list of European bees, whereby 57% of species are classified as data deficient, indi-
cating that there is not enough data on species occurrences along a temporal gra-
dient to draw conclusions on population trends (Fig 1.4a; Nieto et al. 2014). The
exception to this are the bumblebees, which at the European level have almost
all been assessed for the ITUCN red list (91.2%). Twenty eight percent of the 68
European bumblebees are included as either near threatened (4.4%), vulnerable
(11.8%), endangered (10.3%) or critically endangered (1.5%); and overall 45.6% of
all European bumblebees show a decreasing population trend (Fig 1.4b; Nieto et
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All Bees Bombus spp.

FI1G. 1.4: Summary of the number of bee species within each Red List threat category in Europe. a) All

European bee species. (b) Only European bumblebees. DD: data deficient; LC: least concern; NT: near threatened;

VU: vulnerable; EN; endangered; CR: critically endangered. Source: data taken from the European Red List of Bees
(Nieto et al. 2014).

al. 2014). Certain species of US bumblebees were found to be declining in rel-
ative abundance at the national scale, with up to 96% decline recorded, higher
pathogen levels were found in those species with greater declines (Cameron et al.
2011). In Scandinavia the relative abundance of bumblebee species has changed
significantly in clover fields. In Sweden two species became far more abundant
and the others declined over 70 years (Bommarco et al. 2012). In Denmark over
a 60 year period in red clover fields the abundance of long-tongued bumblebees
severely declined and 5 species were lost completely (Dupont et al. 2011).

A further measure of decline involves measuring the decline in the services
wild bees provide, namely pollination services. Any decline in wild bee diver-
sity or population sizes will result in a decrease in pollination services be that
crop pollination or wild flower pollination. In a long-term comparison across
120 years Burkle et al. (2013) found that in a complex plant-pollinator network
in [llinois the overall network structure deteriorated and 50% of bee species were
lost. Furthermore, a review of studies on the effects of habitat fragmentation on
plant reproduction implied that pollination limitation is the most likely cause of
decreased reproductive success of plants (Aguilar et al. 2006). Therefore, any

decline in pollinators should directly result in a decline in wildflower pollination
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services. Declines in crop pollination services have also been observed, the de-
cline in clover fields of bumblebees in Sweden also resulted in declines to the
clover yield (Bommarco et al. 2012). The outcomes of these declines in services
could lead to the over-reliance on generalist pollinators for wild flowers and the

overreliance on managed bees in agricultural systems (Potts et al. 2010).

The available evidence suggests widespread wild bee declines, however the
causes of these declines may be various and interactive. The trends observed in
many countries also imply that wild bee declines will be an ongoing concern in
the future and suggest that habitat loss due to LULC and climate changes may be
a significant driver. We therefore examine different temporal scales during the

thesis to provide an overall picture of the influence of these drivers.

1.3.2 Drivers of Wild Bee Diversity and Declines

The factors which drive wild bee distribution patterns and inevitably influence
their decline are numerous and are unlikely to act in isolation. In the review
by Potts et al. (2010) the main drivers of decline are listed as LULC changes,
increasing pollution and pesticide use, lower diversity in feeding resources, in-
vasive species, pests and pathogens and climate change. Brown et al. (2016) use
a horizon scan method to split these drivers into key issues that pollinators are
likely to face in the future. The common theme of the different drivers of wild bee
decline is that they either directly result in the mortality or decreased reproduc-
tive success of individuals or indirectly reach the same outcome by preventing
access to or remove feeding and habitat resources. At the broad scale two drivers
have significant effects on the availability of necessary resources, namely LULC
change and climate change. It is therefore important to understand how these
two drivers interact to drive the wild bee distribution patterns, diversity and de-
cline. Hence, we intend to study these drivers at a variety of spatial and temporal
scales, to observe in part how they influence observed distribution patterns of
wild bees in the past, present and future. A current knowledge gap in studies of
wild bee decline concerns how these different drivers interact and influence each
other as well as wild bees (Potts et al. 2016b). We explain in detail the existing
research into these drivers below. We also outline the influence of other drivers

as well as LULC and climate change because these drivers do not act in isolation
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and LULC and climate changes can directly affect the other drivers and vice versa
(see Fig 1.5).
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FiG. 1.5: Overview of the interactive and combined impacts of different pressures on pollinators and pol-
lination. Source: figure taken from Potts et al. (2016b).

Land Use/Land Cover Impacts on Wild Bees

Landscape ecology explores how the biodiversity within a landscape is affected
by the structure and arrangement of surrounding land uses and land covers. The
wide diversity in physiology and behaviour of wild bees means that the land-
scapes they occupy can vary greatly in size. Two key values regulate the landscape
size of a wild bee; the distance from their nesting area to suitable food resources
and their maximum flight distance (Roulston & Goodell 2011). Land use/land
cover effects on wild bees can be summarized from the perspective of bees nest
and forage choices in a landscape, i.e. does a particular LULC allow for the pres-
ence of sufficient nesting and foraging resources for a diverse community of wild
bees? Therefore, a suitable landscape for a wild bee has the required flowering
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plants and the necessary nesting substrates within its maximum flying distance
all in an area with suitable climate conditions. Wild bees do not respond uni-
formly to environmental conditions and species-specific response exist (Cariveau
& Winfree 2015). However, overall, it is widely accepted that the degradation and
loss of habitat negatively influences pollinator communities by decreasing popu-
lation size, altering composition and causing local extinctions (see review Potts et
al. 2016b). The impact of anthropogenic transformation of LULC types is one of
the main issues faced by wild bee species, specifically the conversion of unman-
aged natural areas such as certain forests and wetlands into intensively managed
agricultural and urban areas. In the last century these conversions have removed
swathes of suitable nesting and feeding habitat of wild bees.

A large body of research exists regarding the interaction between agricul-
tural land use and different measurements of wild bee biodiversity (Potts et al.
2016b). Generally the consensus is that modern day intensive agriculture has a
negative impact on wild bee diversity (Potts et al. 2010). However, just as agri-
culture practices exist in a gradient of low intensity to high intensity, so too do
their effects on biodiversity. The problems caused by agricultural landscapes for
wild bees are enhanced as the intensity of agricultural practices increases. In
general, agricultural intensification results in complex natural ecosystems be-
ing converted into simple heavily managed systems. For example Ollerton et
al. (2014) found that the extinctions observed of pollinating bees and wasps in
the UK were strongly tied to the increase in agricultural intensification begin-
ning in the 1920s. Such loss of heterogeneity and complexity of the landscape
produces declines in the richness, diversity and abundance of wild bees (Win-
free et al. 2011). On the other hand less intensive farming methods, with lower
levels of pesticide use, fertilizer, more heterogeneous crop cover in smaller ar-
eas can provide suitable habitats for many species of wild bees (Holzschuh et al.
2008; Kennedy et al. 2013). These methods combined with more sensible and re-
strained use of pesticides, herbicides and fertilizer alongside biological methods
of pest control can create an agricultural landscape in which a far higher diversity
of wild bees can survive (Potts et al. 2016b). Specifically, agricultural areas with
a modified landscape that allows for a greater heterogeneity in LULC, increases
diversity and the ability of wild bees to colonize agricultural landscapes (Winfree
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et al. 2011; Senapathi et al. 2015).

The absence of flower rich habitat in managed systems negatively influ-
ences wild bee biodiversity (Potts et al. 2016b). In a review of floral resource
restoration Vaudo et al. (2015) conclude that high diversity floral resources shou-
ld be added to areas with high agricultural intensification. Due to the high di-
versity of bees species, managers should take into account the nutritional needs
of the species they wish to benefit. Kennedy et al. (2013) also conclude that
the most important LULC factor for bees in agricultural areas is the presence of
nearby high-quality habitat with feeding and nesting resources. The presence of
suitable nesting habitat is also an important determinant of wild bee diversity.
Carrié et al. (2018) found that the presence of slopes (important for nesting)
was positively correlated to wild bee diversity in French agricultural landscapes.
Another negative impact associated with intensive agriculture is the loss of con-
nectivity between areas with suitable resources. Increased fragmentation means
smaller patch sizes of suitable habitats and this supports lower wild bee diver-
sity (Steffan-Dewenter et al. 2002; Bommarco et al. 2010). Whereas a more
connected habitat should allow for more species in a smaller habitat patch area
(Steffan-Dewenter 2003; Kennedy et al. 2013).

Intensive landscape modification resulting in both lower connectivity and
higher fragmentation does not only impact diversity measurements of wild bees
but also affects the pollination services they provide. Fragmentation has been
linked to a decrease in reproductive success of plants which require pollination
(Aguilar et al. 2006). In crop pollination, as the distance from suitable habi-
tat increases the richness of pollinators in crop systems decreases (Ricketts et al.
2008). These suitable habitats need to occur within a specific distance to the agri-
cultural system and this estimate varies, and is likely dependent on the specific
species of crop pollinator (Garibaldi et al. 2014; Potts et al. 2016a). For example,
bumblebees, which travel further than the majority of wild bees are positively
affected by the presence of mass flowering crops at the landscape level, such as
oil seed rape (Westphal et al. 2003).

Alongside agricultural land use changes, urbanization of the landscape

over the last centuries has had significant impacts on biodiversity (Seto et al.
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2012). The impacts of urbanization on wild bees vary and not all urbanization
is detrimental to all wild bees; the degree of homogeneity, fragmentation and
connectivity are also important when discussing wild bee diversity in an urban
context (Potts et al. 2016b). Large-generalist bees appear to do well in an urban
context. Carré et al. (2009) found that bumblebee density increased with ur-
ban habitat cover and in the UK the urban bee community was found to be more
generalist (Baldock et al. 2015). The benefits that urban areas may provide stem
from the increased heterogeneity of LULC patches (McKinney 2008). For exam-
ple urban gardens provide necessary nesting and floral resources for many species
(Goddard et al. 2010). Urban areas may also provide resources for above ground
cavity nesting bees but have decreased availability of exposed soils for ground-
nesting bees (Cane et al. 2006). Additionally, urban parks in San Francisco have
been shown to support larger bumblebee populations compared to parks in a
less urbanized setting (McFrederick & LeBuhn 2006). Alternatively, Martins et
al. (2013) propose that the abundance and species richness losses of wild bees
in Brazil are due to increased habitat loss and feeding resource homogenization
caused by urbanization. Fortel et al. (2014) found, along an urbanization gradi-
ent near Lyon, France, that wild bee abundance was lower with increased urban-
ization and that diversity was highest in intermediate Urban areas. Finally, the
structure of urban areas may interact with another driver of wild bee distribution,
climate change, by creating warmer micro-climates which allow for the presence
of species that would not have suitable conditions nearby outside the urban area
(Seto & Shepherd 2009).

In both urban and agricultural areas diversity of wild bees increases with
the quantity of patches of suitable high-quality habitat. This habitat is often
classified as natural or semi-natural and often supports large source communi-
ties of wild bees (Ockinger & Smith 2006). Less abundant, more natural habi-
tats which can maintain a broad diversity of nesting substrates and wild flower
resources allow for a variety of niches and therefore specialization and greater
diversity. Flower-rich grasslands are an example of habitats which contain these
necessary resources in abundance. For example low grazing pressure and less
mowing often results in higher pollinator diversity (Potts et al. 2016b). More

specifically these grasslands often contain many leguminous species which are
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important food source for bees. In the UK the loss of flower-rich grasslands and
in particular leguminous species was correlated with fewer long-tongued bum-
blebee colonies (Goulson et al. 2005). In Europe heathland is strongly associ-
ated with a particular wild bee community. In the UK the loss of heathland is tied
to the loss of flower-rich habitat as a driver of bumblebee declines, specifically
those species specializing on Ericaceae species found in heathlands (Goulson et
al. 2005). The same importance of heathland was found for specialist bumble-
bees in Belgium (Moquet et al. 2016). Furthermore, Forup et al. (2008) discov-
ered that restored heathlands in the UK supported less complex plant-pollinator
networks compared to historic undisturbed heathland sites. Due to the variety of
LULC and their effects on wild bee species we intend to build upon the knowledge
of how diverse groups of bee species in different areas are affected by these dif-
ferent LULC, and at the same time increase the scientific knowledge on the
role LULC plays in defining wild bee distribution and diversity patterns.
Particularly by looking at habitat filtering” to explain distribution patterns and
examining how changes to LULC in the future may affect these patterns. Specif-
ically, in this thesis we aim to utilize high resolution LULC data available in the
past, present and future to examine its influence at different spatial and tempo-
ral scales. We intend to show for the first time how a national community
of wild bees is spatially structured in relation to its habitat among other
factors (chapter 4). Furthermore, we illustrate, for bumblebees, the influence
that LULC data could have in conjunction with climate change at a broad
national and continental scale in the future (chapter 5) and has had in a

mountain habitat in the past (chapter 6).

Climate Impacts on Wild Bees

Climate change is expected to influence biodiversity patterns in three main ways,
affecting the phenology of species as well as causing them to shift polewards and
higher in elevation (Parmesan & Yohe 2003). The influence of climate change on
wild bees has been well studied and its significance as a driver of wild bee decline

7Habitat filtering is defined as the establishment and survival of species in response to the envi-
ronmental characteristics of a habitat, species unsuited to a particular habitat are ‘filtered’ out (Keddy
1992).
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is expected to become more apparent in the near future (Potts et al. 2016a). Phe-
nological shifts in the breeding, flying time, emergence, and flowering of bees
and their host plants to earlier in the year could lead to a mismatch in pollina-
tion systems, affecting pollination services and henceforth the survival of wild
bees and wild plants (Fig 1.6; Hegland et al. 2009; Potts et al. 2016b). Men-
zel et al. (2006) estimates this phenological shift in Europe as approximately
30% of plants showing a trend of flowering significantly earlier in the year. In
a review of climate change impacts on plant pollinator networks Hegland et al.
(2009) observe that in many cases the phenological shifts in plants and pollina-
tors may occur simultaneously and at the same rate, but that mismatches have
been observed. Forexample, in Japan, early flowering plants were observed flow-
ering even earlier when spring temperatures were higher, this did not coincide
with bumblebee emergence and resulted in a lower seed production (Kudo & Ida
Takashi 2013). Long-term studies into changing phenology of wild bees support
these patterns of earlier emergence. Bartomeus et al. (2011) calculated that 10
generalist bees species in the US have shifted 10 days earlier on average across
the last 130 years but with the majority of change in the last 40 years. Moreover,
phenological shifts were highlighted as one of the potential causes of loss of con-
nectivity and general degradation of a plant pollinator network over 120 years
(Burkle et al. 2013). These results suggest that phenological shifts have been on-
going and are likely to increase with greater climate change effects predicted in
the near future.

Shifts in the ranges of suitable wild bee habitat are also anticipated asa con-
sequence of climate change. The long-term historical patterns of climate change
on wild bee species require a large time-series of wild bee diversity in the same
areas. This information is difficult to obtain and therefore, studies of climate ef-
fects on wild bees are generally restricted to countries with a culture of taking
and maintaining entomological records which extends far into the past; namely
western European countries and the US. The most comprehensive examination of
the effects of long-term climate change on wild bee ranges was conducted by Kerr
et al. (2015) who looked at bumblebee species range shifts in the past 110 years
in Europe and the US. They found comparable broad scale responses by species

across the two continents with species showing an overall decrease in range due
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F1G. 1.6: Overview of how climate warming may affect the phenology and, distribution of plants and polli-
nators. Source: figure from Hegland et al. (2009).

to losses at their Southern limits and the absence of equivalent changes at their
Northern limits, suggesting that bumblebee species cannot track climate change.
In addition certain southern species increased in elevation in both study areas
(Kerr et al. 2015). However, there is a larger body of research showing historical
change in range and increase in elevation for butterflies due to climate change
than for wild bees (Wilson et al. 2005; Wilson et al. 2007; Chen et al. 2009;
Chen et al. 2011; Bedford et al. 2012; Devictor et al. 2012); more research is re-
quired to see if these patterns persist for wild bees. In chapter 6 we intend
to see how bumblebee elevation patterns have increased during 115 years
of LULC and climate change in a mountain habitat.

The effects of LULC and climate do not occur in isolation but most defi-
nitely interact (Dale 1997) and “there remain relatively few published assessments
of the combined effect of LULC and climate change on pollinators and pollination”
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(Potts et al. 2016b). Additionally, the studies that do exist generally concern but-
terflies (Warren et al. 2001; Forister et al. 2010) or pollination services (Giannini
et al. 2015). Therefore the interactive effects of climate and LULC change
on wild bee distribution remain a hole in our knowledge of drivers of de-
cline. Kerr et al. (2015) examine this interaction and concluded that climate is
the main driver behind observed pattern changes in bumblebee distribution over
the last century. This may be the case statistically at very large continental scales
with only increases in agricultural LULC, as used in the study. However in reality
this appears unlikely, as LULC changes have been shown to impact wild bees at
finerscales. Forexample, increases in temperature, which are likely to cause local
wild bee extinctions can be mitigated by increasing the amount of semi-natural
habitat and green areas (Papanikolaou et al. 2016). In this thesis we intend
to directly examine the effects of climate and LULC in conjunction, using
modelled future conditions with changes of both drivers (chapter 5) and
looking at how fine scale historic changes in both LULC and climate have

affected a single community over a large time period (chapter 6).

Other Causes of Wild Bee Decline

Alarge body of research exists around the effects of pesticides on wild bees, which
differ depending on the species, the type of pesticide, the toxicity of the pesticide
and the means of exposure, among many others (Potts et al. 2016b). The dan-
ger posed to wild bees by pesticides also differs when measured in the laboratory
as opposed to in the field and so far the majority of pesticides effects have only
been tested on a few of the most common bees, therefore the overall patterns on
wild bees in general require further research (Arena & Sgolastra 2014). Pesticides
such as Neonicotinoids have been shown to have lethal and sub-lethal effects on
honey bees, bumblebees and mason bees (Tsvetkov et al. 2017; Woodcock et al.
2017). Land use and pesticide pressure strongly interact, specifically high inten-
sity managed landscapes have higher rates of pesticide use (Foley et al. 2005).

Invasive species pressures on wild bees include those from invasive bees,
invasive plants and other invasive animals. For example the widespread intro-

duction of B. terrestris as a managed pollinator around the world has led to novel
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pathogens being introduced and to competitive displacement of native bumble-
bees and a loss in productivity of native plants (Morales et al. 2017; Aizen et
al. 2018). Introduced honey bees are also linked to an increase in pathogens to
which social wild bees are particularly vulnerable, for example deformed wing
virus which is spread through Varroa destructor, is also present in bumblebees
(Genersch et al. 2006). Honey bees can also displace local species through com-
petition (Goulson 2003b; Howlett & Donovan 2010). In areas with few floral re-
sources the negative effects of competition with introduced bees are likely to be
more extreme and result in changes to the previously present bee fauna (Roubik
& Wolda 2001; Hudewenz & Klein 2013). Invasive plants can lead to bee declines
by dominating within a system and changing the structure of plant-pollinator
networks (Hudewenz & Klein 2013; Albrecht et al. 2014), and potentially the
availability of forage resources or by offering lower quality resources and directly
impacting bee health (Potts et al. 2016b). Invasive species pressure as a driver of
decline for wild bees is also expected to strongly interact with LULC and climate
(Vanbergen et al. 2018). Managed systems, such as urban and agricultural areas,
can facilitate invasive species establishment and climate is expected to increase
the spread of invasive species globally (Foley et al. 2005; Hellmann et al. 2008).

Pathogens and pests can result in mortality and decreased reproductive
success causing declines in bee populations (Vanbergen & The Insect Pollina-
tors Initiative 2013). A number of parasites and pathogens affect solitary wild
bees ranging from viruses to bacteria and animal pests, including a number of
pathogens found in honey bees (Ravoet et al. 2014; Potts et al. 2016b). Pest and
pathogen pressure can be increased with LULC and climate changes. The chance
of disease spread from managed bees to wild bees is expected to increase in agri-
cultural areas and the distribution and spread of diseases is expected to increase
with climate changes; furthermore species weakened by pesticide use are likely
to be more vulnerable to pests and pathogens (Schweiger et al. 2010; Vanbergen
& The Insect Pollinators Initiative 2013).

It is clear that the impact of potential drivers of declines do not act in iso-
lation. While it is still difficult to look at all factors together, due to issues of
data availability and scale, efforts should be made to explore these interactions
in greater detail. We do not explicitly examine the roles of these other drivers
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as this is out of the scope of the thesis. However, the work presented is part of
a larger project which looks to examine the many drivers of wild bee decline in
isolation and in conjunction (BELBEES; see Materials and Methodology 2.1). The
results from this thesis, concerning LULC and climate impacts, will be combined
with studies of the other drivers into a meta-analysis to determine the overall
influence of all hypothesized drivers of decline.

We focus in this thesis on climate and LULC as drivers for a number of rea-
sons. Both drivers are expected to significantly impact wild pollinators; on the
European red list the major threats to wild bees are almost exclusively related to
LULC and climate (Fig 1.7; Nieto et al. 2014; Potts et al. 2016b). Climate change
has been shown repeatedly to have a strong influence on the distribution pat-
terns on a number of other pollinator groups, specifically the butterflies and has
been shown to be influential to bee distribution at continental scales (Kerr et al.
2015; Rasmont et al. 2015a; Settele et al. 2008). Climate change is also expected
to strongly correlate with other potential drivers of wild bee decline (Potts et al.
2010). Climate change also represents an issue which has global significance at
the scientific level but is also a key issue politically and for society in general
(IPCC 2014). In a meta-analysis across 54 separate studies the most influential
factor on negative trends in bee communities was found to be from habitat loss
and fragmentation (Winfree et al. 2009). Additionally, two of the key conserva-
tion initiatives regarding wild bees is the restoration of natural habitat and the
introduction of diverse agricultural landscapes (Winfree 2010). Understanding
the relationship between species diversity distribution and LULC will provide di-
rect benefits for achieving this conservation goal. Additionally, in terms of data
availability, climate and LULC information is far more abundantly available than
other drivers. This allows us to explore their impacts across large spatial and
temporal scales. They are also the only drivers for which we have future change
projections available (Bellard et al. 2012; De Rosa et al. 2016). The focus on cli-
mate and LULC is not to suggest that these are the only two factors which will
have a meaningful impact on wild bees. The true extent of the effect of pests,
pathogens, pesticides and invasive species is still being determined (Potts et al.
2016b), and the ideal situation would be to have data available for all drivers at

multiple spatial and temporal scales.
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F1G. 1.7: Major threats to wild bees in Europe. Based on data from the European Red List for Bees. Source: figure
from Nieto et al. (2014).

1.3.3 Modelling Wild Bee Distribution Patterns

As mentioned before, climate and LULC impacts on wild bee species are complex
and vary due to many processes. Therefore, to understand patterns and interac-
tions between wild bee diversity and distribution, and LULC and climate effects
researchers use modelling techniques. Modelling techniques include mechanis-
tic/process based modelling and phenomenological/statistical modelling. Pro-
cess based modelling is specified by the biological processes (mechanisms) be-
hind the observed data, based on a theoretical understanding of the ecological
mechanisms driving a species response to, for example, changing environmen-
tal conditions (Cuddington et al. 2013). Statistical modelling on the other hand
seeks to find a relationship between different variables which best describes the
observed data. In other words, a mechanistic model explains why and how the
parameters interact as observed whereas the statistical modelling approach only
describes the relationship, with the assumption that the observed relationship
continues beyond the observed data (Hilborn & Mangel 1997). Long-term goals
for modelling wild bees would be to move toward more process based models
for wild bees but currently only managed bees such as honey bees, B. terrestris
and some managed mason bees (Osmia spp.) can adequately be modelled this
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way (Becher et al. 2018). During this thesis we use statistical models, with a fo-
cus on species distribution modelling, because when examining the total diver-
sity or wild bees, including bumblebees, it becomes apparent that the biological
and ecological processes which drive the distribution patterns for the majority of
species are not well understood and still require analysis. We therefore aim to
find patterns and relationships which can be used to infer the processes that may
be behind the observed data.

Species Distribution Modelling

Species distribution models (SDM) are popular tools to understand and predict
biodiversity patterns. They are statistical tools used to combine species occur-
rence records as presence/absence or abundance with measurements of spatial
environmental conditions (Elith & Leathwick 2009). The desire to understand
the influence of environmental factors such as climate and LULC has on species
and communities is a persistent aspect of ecology, and with the increase in com-
puter performance and statistical techniques the methods and applications of
SDMs have increased greatly (Guisan & Zimmermann 2000). Species distribu-
tion models may also be known as bioclimatic models, climate envelopes, eco-
logical niche models (ENMs) and habitat models among others; these terms are
often interchangeable but can also be used to indicate differences in modelling
approach (Elith & Leathwick 2009). There are a number of uses of SDMs in the
fields of ecology, biogeography and evolution. These include but are not lim-
ited to locating un-sampled areas of high species diversity, quantifying a species
environmental niche, calculating a species invasive potential, measuring the im-
pact of future changes in climate and LULC on species distributions, providing
support for management and conservation planning and modelling species as-
semblages and communities (Guisan & Thuiller 2005). Throughout this thesis
we specifically use SDMs to quantify niche space (Chapters 3, 4 and 5), find un-
sampled high-diversity areas (Chapter 3), measure the impact of future LULC and
climate change (Chapter 5), provide support for conservation planning (Chapter
4) and estimate species assemblages (Chapter 4). Constructing a SDM requires,
in its simplest form, three elements: (1) species occurrences collected in the field,
(2) arepresentation of the environment in the form of predictor variables and (3)
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a technique by which to interpret the relationship between (1) and (2) (Guisan &
Zimmermann 2000). These three inputs are combined to create projections of

species distributions in time and space (Fig 1.8).

Species occurrence data can be obtained in a number of ways. Franklin
(2010) describes these sources in two distinct groups based on the scale of col-
lection data, ecological scale and biogeographical scale. Ecological scale refers
to targeted species collections, at consistent fine resolutions, which do not need
to be aggregated for SDMs; biogeographical data refers to pre-existing data sets
at different resolutions and with different sampling intensities and purposes and
therefore require aggregation (Franklin 2010). At the ecological scale SDMs use
data obtained from a sampling approach designed specifically for the purpose of
the SDM. This method is likely to result in higher resolution occurrence data,
improved model accuracy, and often includes co-occurrence and absence data
(Franklin 2010). Another source of similar, high-quality data are biological sur-
veys and species inventories. These surveys often provide long-term high-resol-
ution data repeated yearly for the same geographic area; an example from the
Netherlands is the national monitoring of butterfly species conducted yearly al-
ong the same routes across the whole flying season (van Swaay et al. 2011). How-
ever, these methods involve significant time and energy costs and sampling the

full range of even a single species can require extremely intensive work.

At the biogeographical scale the occurrence data consists of collated data
from many existing surveys (Austin 2007), and large datasets of historical mu-
seum collections (Newbold 2010). The occurrence records used in this thesis
are most representative of this type of biogeographical data. These data are of-
ten from a variety of sources and need to be aggregated to the same spatial and
temporal scales and resolutions. This allows the construction and interpretation
of broad-scale SDMs using many occurrence records. However, this introduces
a number of caveats to the modelling process, the coarser resolution introduces
greater environmental heterogeneity and may blur the true relationship between
the recorded environmental conditions and the conditions in which the species
occurs, furthermore the temporal variation within and between years for occur-
rence records cannot adequately be captured with a single snapshot of the en-
vironmental conditions in a particular moment (Franklin 2010; Newbold 2010).
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Additionally, aggregating species occurrence records in this manner can intro-
duce species absences where they do not exist, because they were not the target
species in the sampling (Franklin 2010). Given these caveats, these detailed big
datasets still represent a great resource for constructing large-scale predictions of
species distributions. A number of methods exist to limit biases associated with
sampling bias and data aggregation, see materials and methods 2.3.1 for more
details.

Occurrence data is also needed to test the performance of SDMs which
is usually done using cross-validation methods with a partitioned subset of the
training data are used to validate model performance (Elith & Leathwick 2009).
However, the ideal situation is to use data independently collected from the train-
ing data, the reality is that due to the difficulty in obtaining high quality oc-
currence data the majority of studies do not have a second independent testing
dataset. In chapter 3 we collect an independent dataset and use it to test
the performance of SDMs in agricultural habitats.

Forecasting and hindcasting in time are common uses of SDMs, to fill
gaps in historical distribution records and to estimate the potential shifts and
changes in distribution of species under future global conditions (Elith & Leath-
wick 2009). Studies too often focus on bioclimatic envelope models alone, which
become increasingly less useful at finer scales (Pearson & Dawson 2003). Whilst
climate may be the most important predictor at broad scales, at finer scales more
specific environmental predictors related to disturbance and resource use are
necessary (Aratjo & Rozenfeld 2014). The introduction of LULC data has been
shown to improve model predictive performance for certain species (Pearson et
al. 2004; Thuiller et al. 2004). Soil conditions have also been shown to improve
SDM performance for insect species (Titeux et al. 2009). Land use/land cover
change variables are likely to strongly improve model performance and ecologi-
cal significance of forecasting models but are almost never used and represent a
large gap in the knowledge of modelling future biodiversity scenarios (Titeux et
al. 2016). As a tool, forecasting SDMs can be vitally important in informing fu-
ture management and conservation efforts to prevent biodiversity loss. However
their efficacy can be improved upon through more informed covariate selection
(Austin & Van Niel 2011). Therefore, throughout this thesis we examine climate
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Fic. 1.8: Simplified workflow of the data sources necessary and process to construct a species distribu-
tion model (SDM). Species distribution models require spatial observation of species occurrence, true absence
or pseudo-absences and spatial data of environmental conditions. Different algorithms can then be used to create
mathematical representation of a species known distribution in environmental space. These models should evalu-
ated with independent collected data to determine the predictive performance, these data are rarely available and
often a subset of the training is retained from training to be used as a validation dataset. These models are then
projected onto geographic areas that can be inside or outside the geographic space of the training area and at differ-
ent time periods. These projections can be visualized as habitat suitability maps of high and low suitability or these
maps can be simplified into maps of presence or absence which can be combined with other species’ distribution
maps to form estimates of species richness and community assembly.

and LULC as predictors of species distributions, comparing and contrast-

ing their importance at different spatial and temporal scales.

One of the other ways to improve SDMs is related to one the most com-
mon criticisms of SDMs: that by focusing on the environmental conditions only,
a number of important aspects of the ecology of a species is ignored. One of
these aspects is the biotic interactions between species which can play an im-
portant role in the realized niche that a species occupies and may also result

in niche limitation in areas otherwise environmentally suitable (Gotzenberger
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et al. 2012). The solution to this problem is to include these interspecific bi-
otic interactions in the SDM process. The most straightforward method to ac-
count for species interactions is to include, as covariates, the distribution pat-
terns of known, a priori, interacting species (Wisz et al. 2012). For example,
Gutiérrez et al. (2005) demonstrated that the geographical distribution of an
ant species was the most important predictor of the distribution of its mutualist
butterfly. The same results were observed for woodpeckers and owls; facilitative
and competitive species interactions improved model performance (Heikkinen
etal. 2007). This has been touched upon in wild bees as well, with model perfor-
mance increasing when bee host and parasites are modelled together (Giannini
et al. 2013). The key aspect of this methodology is that the interactions must be
known or at least have some evidence a priori. This is rarely the case and other
methods of including biotic interactions need to infer these relationship from
the data available (Wisz et al. 2012). One such method, which is used in chap-
ter 4 of this thesis, is multiple independent equations, which is a form of joint
species distribution modelling (JSDM); each species is modelled with its habitat
requirements and the resulting residuals are compared to a correlation matrix of
all species co-occurrence, to determine if patterns in the residuals are shared by
species which co-occur more or less than expected by chance (Ovaskainen et al.
2010; Pollock et al. 2014; Ovaskainen et al. 2015; Ovaskainen etal. 2017). These
methods however are rarely used in the majority of SDM studies and rep-
resent a significant absence in the literature and should be continued to
be explored with various species groups (Wisz et al. 2012), which is what

we intend to do with wild bee communities in chapter 4.

Species distribution models have been applied to wild bees in different
contexts, measuring historical drivers of change (Aguirre-Gutiérrez et al. 2016;
Aguirre-Gutiérrez et al. 2017a), determining potential crop pollination service
losses (Polce et al. 2013; Polce et al. 2014; Giannini et al. 2017), finding under-
sampled areas (Penado et al. 2016), calculating invasive risk (Lecocq et al. 2016)
and quantifying potential climate change effects (Rasmont et al. 2015a). With
this thesis we aim to add three additional topics to this list. Specifically, testing
model performance and the role of traits for wild bee SDMs with independent

datasets, inferring wild bee interactions and community assembly, and testing
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potential impacts of LULC and climate change on bumblebees in conjunction.
Wild bees represent a difficult group to model as they are small, diverse and highly
mobile and include species with a large variety of traits. However, due to their
importance as pollinators and the cost and difficulty associated with widespread
sampling it is important to utilize statistical techniques to understand their pat-
terns of diversity and distribution. This is especially important as many wild bee
species are threatened by global changes to LULC and climate and in turn so
are the benefits they provide through pollination (Potts et al. 2016a; Potts et al.
2016b).

Modelling Land Use/Land Cover Effects on Wild Bees

Land use/land cover is a key driver in the diversity and distribution of wild bees.
For certain species of bees or by generalizing bee behaviour it is possible to look
at more process based models. For example, investigators can directly model the
relationship between land use and pollination services. Kremen et al. (2007)
show how an agent-based model of pollination services can be used to predict
influence of LULC change on pollination services in the form of yield and mon-
etary value by taking into account markets, pollinator biology and government
policies. Over time similar models have been built and take into account more
factors that may influence crop pollination services, such as preferential foraging
by pollinators, dispersal capacity and population growth (Haussler et al. 2017).
The impact of LULC changes on plant-pollinator networks have also been mod-
elled and can be used to predict how plants will benefit or be disadvantaged by
landscape disturbance and the loss of biotic interactions (Weiner et al. 2014).
These models often suggest that negative LULC changes will lead to a more gen-
eralist and homogeneous community of wild bees.

However, due to the scarcity of and difficulty in obtaining long-term oc-
currence records and the huge variation in ecology and behaviour of wild bees,
researchers often use statistical techniques to interpolate and extrapolate the re-
lationships between wild bee diversity and distribution, and LULC to different
spatial and temporal scales. For example the historical distribution patterns of
wild bees in the Netherlands were modelled for three time periods to determine
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which environmental variables explained the majority of the variation in the dis-
tribution of species across time (Aguirre-Gutiérrez et al. 2017a). The authors
concluded that overall, landscape composition was a key factor in explaining dis-
tribution patterns and that habitat fragmentation was more important in the ear-
lier time period than the latter. Additionally, in the Netherlands, SDMs of LULC
and climate were used to model spatial shifts in the distribution of wild bees
grouped by their functional traits; Aguirre-Gutiérrez et al. (2016) clearly show
that generalist species have shown a greater range expansion than specialists and
that small bees have shifted further North than larger bees. Crop pollination ser-
vice models have been combined with SDMs of climate and LULC conditions to
predict pollination services and the role of managed wild pollinators in different
locations across the UK (Polce et al. 2013). Overall, SDMs with LULC covariates
can be used in different situations to derive importance, predict distributions, in-
fluence conservation and predict service provision of wild bees. These studies are
often limited by the quality and detail of the available LULC variables. As greater
more detailed and up-to-date LULC maps become available then habitat filter-
ing patterns should be continued to be explored. In chapter 4 we use the latest
LULC maps available to determine the classes which are most important
for diverse and distinct wild bee assemblages at the national scale.

While LULC changes in the past and present have been clearly shown to
influence wild bee diversity and distribution, projected future LULC changes are
rarely used in studies of biodiversity despite their importance asadriver of decline
for many species (Titeux etal. 2016). Forwild bees in particular the knowledge of
the influence of future LULC changes is almost non-existent. Using global data
onwild bee occurrences De Palma et al. (2016) examined the difficulties inherent
in extrapolating models of future LULC changes on wild bee communities due to
the geographical and taxonomic restrictions of many data. Geographical regions
showed considerable differences in the relationship between different diversity
indices and LULC (De Palma et al. 2016). Land use/land cover change effects
remain a significant absence in the prediction and estimation of future conserva-
tion priorities and measures for wild bees. We aim to build upon studies that
have looked at future climate change effects and examine the combined
role with LULC change, using available LULC change projections (chapter
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5).

Modelling of Climate Change Impacts on Wild Bees

Climate change is often claimed to be greatest threat to biodiversity in main-
stream media, a statement which is often challenged by historical evidence that
overexploitation of species and the loss of habitat have most impacted threat-
ened and extinct species (Millennium Ecosystem Assessment 2005; Maxwell
et al. 2016). However, there are still many examples of studies which exam-
ine the impact of climate change on wild bee diversity and distribution in isola-
tion. Overall, the modelling of wild bee diversity and distribution under climate
change paints a bleak picture with many areas likely to suffer significant losses
of species richness and abundance, and many species likely to experience sub-
stantial range declines. However, modelling of climate effects is not limited to
looking at future changes and SDMs have also been used to find under sampled
areas with suitable climate for bumblebees (Penado et al. 2016) and to predict
the invasive potential of different populations of B. terrestris in Europe based on
each population’s climate preferences (Lecocq et al. 2016). In regards to mod-
elling climate change effects on wild bees the biggest gap in the knowledge
persists around how climate change has - and is likely to - interact with

other drivers to influence distribution patterns.

The studies which examine how communities of wild bees have altered in
the past usually focus on shifts in phenology, range or elevation. These same
measurements are used to see how potential changes may occur in the future.
Memmott et al. (2007) used different scenarios of climate change to predict phe-
nological shifts in interaction networks. Depending on the model conditions the
pollinators were predicted to lose up to 50% of their floral resources. A simpli-
fied summary of modelled climate change on range changes suggests that species
would need to move up to 100km within the next century to maintain within the
bounds of their current climate suitability (Leadley et al. 2010). Rasmont et al.
(2015) modelled the future distributions of 56 bumblebee at the European scale
under three climate change scenarios until 2050 and 2100; the majority of species

are expected to decrease in total suitable range size across the whole continent
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particularly under the more extreme climate change scenarios (see Fig 1.9). Fur-
thermore, the modelled distributions suggest a latitudinal and elevation increase
for the majority of species (Rasmont et al. 2015a). We intend to build upon the
results of climate only modelling for bumblebees at the European level by
incorporating LULC change variables into the model and quantifying the
interaction and influence of LULC and climate change in combination.

2050 2100
Change categories Percentage change
) =
(4] [=-] » O] [=-]
2 = | 2 =
3 é o a é
Non-modelled 13 13 13 13 13 13
ong expansio 80% 0 0 0
Moderate expansion +20 to +80% 3 3 3 1 1 2
Status quo -20 to +20% 5 0 0 0
Moderate regression -20 to -50% 42 40 40 23 6 0
O 0 O O
© 80 to 100% 0
O
Total 69 69 69 69 69 69

F1G.1.9: Projected changes in climatically suitable areas for European bumblebee species in 2050 and 2100.

The values represent the number of species in each change category. SEDG: ‘Sustainable European Development

Goal, a moderate change scenario driven by economic, social and environmental policies, related to stabilizing

atmospheric greenhouse gases emissions and stopping the loss of biodiversity BAMBU: ‘Business as Might Be Usual,

based on extrapolated current socio-economic and policy decisions. GRAS: ‘Growth Applied Strategy), a maximum

change scenario driven by policies of deregulation and economic growth. Source: figure taken from Rasmont et al.
(2015).

Statistical models are an important tool and can be used to discover and
represent relationships between the environment and diversity/distribution. -
However, it is important to recognize model complexity and ensure that ecolog-
ically relevant information is available from the chosen models. One such way
to provide additional ecological relevance is to try and estimate the influence of
more processes and species-specific information, for example looking at shared

similarities in traits and phylogenetic relatedness between species.
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1.3.4 Wild Bee Traits and Phylogenetic Relatedness

Wild bees represent a globally diverse group, with species which respond differ-
ently to changing environmental conditions. To simplify these patterns bees are
often grouped together based on their functional traits (Biesmeijer et al. 2006;
Williams et al. 2010; Bartomeus et al. 2013; De Palma et al. 2015). Traits are
defined as phenotypic characteristics that are measured on individual organ-
isms and are referred to as functional when they interact with the environment
and other species to affect performance and subsequently an individual’s fitness®
(McGill et al. 2006; Wong et al. 2018). These traits can be morphological (e.g.
tongue length), behavioural (e.g. sociality), physiological (e.g. heat tolerance)
or ecological (e.g. diet breadth). The degree of sociality or parasitism can have a
strong influence on how abiotic and biotic conditions affect bee survival and how
bee species useresources in the landscape. Forexample, in central Europe cuckoo
bee richness has been shown to be positively affected by habitat complexity, and
social bumblebee richness by the percentage of semi-natural habitats (Hopfen-
muller et al. 2014). The richness of cuckoos bees is also strongly determined
by the distribution and abundance of the hosts species; bumblebee hosts with a
large range and that are classified as non-threatened are likely to support more
cuckoo bees (Suhonen et al. 2015, 2016). Parasites also have the potential to act
as indicator species representing higher quality wild bee habitat and responding
earlier to disturbances (Sheffield et al. 2013).

Wild bee species can also display differences in their nesting habits, feed-
ing specialization, phenology among many others (for greater detail see Materi-
als and Methods section 2.2.4). In particular the response of species to drivers
of decline such as LULC change can be attributed to their traits. In a global
review above-ground nesting bees were shown to be more sensitive to the loss
of suitable habitat and agricultural intensification than below-ground nesters
(Williams et al. 2010). Bommarco et al. (2010) observed that the response of
species to habitat loss in Northern European countries could be measured by
their traits, with small generalist bees experiencing greater impacts than small
specialist bees. This may be explained by De Palma et al. (2015), they found that

8Fitness refers to the measure of the reproductive success (number of offspring) provided by a
particular genotype of phenotype.
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overall specialist feeding, long-tongued species that nest below-ground did not
occur readily in habitats strongly influenced by humans. They also observed that
the length of flight period significantly affected the abundance and occurrence
of wild bees; species with a longer flight season duration were shown to be more
likely to occur and be abundant with increased land use intensity (De Palma et
al. 2015). Small solitary bees also showed greater vulnerability to habitat loss in

calcareous grasslands (Jauker et al. 2012).

Declines in diversity and changes in distribution for wild bees also show
trends, which can be attributed to trait specifications. In the US Bartomeus et al.
(2013) detected that the greatest loss in relative abundance was experienced by
feeding specialists and species with large body sizes. In the UK and Netherlands,
Biesmeijer et al. (2006) also observed that feeding and habitat specialists had
shown greater decline than other groups. This is supported by Aguirre-Gutiérrez
etal. (2016) where habitat generalists in the Netherlands have shown more range
expansion than specialists in the last 60 years. Crop pollination effectiveness
is strongly linked to the traits of crop pollinating species, in general a higher
functional diversity results in a higher quality pollination and yield (Hoehn et al.
2008; Winfree & Kremen 2009). Overall, traits represent an important tool to
classify and explain the response of highly diverse wild bee communities globally
into patterns which can be linked to conservation and management strategies.
However, the variability of responses to LULC impacts of different traits
groups across varying geographic locations requires more studies look-
ing at how wild bee traits influences observed patterns of distribution and
diversity. Therefore, we use wild bee traits to look at SDM model perfor-
mance, community assembly patterns and long-term changes in distribu-
tion.

Along the same line as functional traits, phylogenetic relationships be-
tween species can be used to group and simplify species and their responses to
different drivers. A phylogenetic relationship indicates the relative period in the
past were two species had the same common ancestor, species which share a more
recent common ancestor are more closely related than species that share a com-

mon ancestor further in the past (Baum & Smith 2013). For example the wild
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bee family Colletidae are more closely related to the Halictidae, common ances-
tor approximately 95mya than the Andrenidae, common ancestor approximately
105mya (see Fig 1.3). Overall, however, very few studies have looked at how phylo-
genetic patterns of wild bees influences the impacts of LULC and climate drivers.
Looking at phylogenetic patterns may influence how we view the threatened sta-
tus of bumblebee species (Vereecken 2017), which is appropriate as the decline in
bumblebees globally is not evenly spread across different subgenera (Arbetman et
al. 2017). De Palma et al. (2017) additionally show that wild bee decline is more
extreme when outlined in terms of phylogenetic diversity than simply species
diversity. These studies show that phylogenetic diversity and relatedness could
be key measurements to help frame and understand the diversity and distribu-
tion patterns of wild bees. Therefore, as the use of traits and trait based metrics
have become more apparent in the literature so too has the need for more studies
that link diversity and distribution of wild bees to phylogenetic measurements.
Along with multiple other factors, in chapter 4 we use a phylogenetic dis-
tance matrix for 204 wild bees to provide preliminary evidence for how
habitat filtering in a diverse community of wild bees is affect by the phylo-
genetic relationship between species. Wild bee diversity is vast and there is
almost certainly not a one size fits all explanation of their relationship with LULC
and climate effects. However, being able to simplify and represent these relation-
ships based on traits or phylogenetics provides important knowledge which can
be used to better conserve wild bees.

1.3.5 Conservation of Wild Bees

The conservation and management of wild bees is a necessity given the observed
declines and the strongly anthropogenic nature of the drivers of this decline.
However, due to the large diversity in wild bee species globally, there is unlikely to
be a onesize fitsall approach to their conservation. Conservation initiatives need
to incorporate knowledge as to how the variety of wild bee species respond to the
different drivers of decline and diversity. Therefore, there is a huge variety in
the potential methods for conserving wild bee diversity (Brown & Paxton 2009;
Winfree 2010). One of the most direct approaches to wild bee conservation is

formally protecting species classified as threatened (Winfree 2010). An example
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of this is seven species of Hylaeus bees and the rusty patched bumblebee (B. affi-
nus) in the US which were added to the list of endangered US species in 2016 and
2017, ensuring their protection (Guertin 2016). However, insect protection is in-
credibly low, globally compared to other animal groups and the expected number
of vulnerable insects does not coincide with global conservation of insect species
(Black et al. 2001). Furthermore, this method suffers from the fact that for over
50% of wild bee species in Europe and for far more globally there is not enough
evidence available to make informed decisions on their threatened status (Nieto
etal. 2014).

A more complete and achievable strategy for wild bee conservation is at
the community level, specifically attempting to restore wild bee habitat to max-
imize diversity and abundance. In general this method has most often been ap-
plied in an agricultural context, where bees provide important services (Winfree
2010; Garibaldi et al. 2017). Habitat restoration specifically involves restoring
floral and nesting resources required by wild bee species. This involves detailed
knowledge on the necessary resources for the wild bee community that needs to
be restored in the landscape. Due to the fact that many floral restoration projects
are focused on agricultural areas (Winfree 2010), this is likely to emphasize the
conservation of generalist species, which can be sustained with a relatively low
species richness of plants (Carvell et al. 2006; Winfree 2010).

In many countries worldwide, agriculture is the dominant form of land
use. Therefore improving agricultural practices and the surrounding landscape
can have a positive influence on wild bees. A shift to less intensive farming prac-
tices should improve wild bee abundance and richness even without improve-
ments made to the surrounding landscape (Carrié et al. 2017). Organic farming
alone showed benefits to overall species richness of solitary wild bees whereas
small scale farming practices were necessary to improve bumblebee richness in
wheat fields in Central Germany (Happe et al. 2018). However, these impacts
will be improved upon with landscape level changes to increase wild bee habi-
tat. The restoration of hedgerows was shown to have higher rates of persistence
and species colonization in intensive agricultural areas and increased native bee
diversity in adjacent fields in California (Morandin & Kremen 2013; Meyer et al.
2017).
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A specific method of wild bee conservation in agricultural landscapes is
the use of agri-environmental schemes (AES) in which land owners are rewarded
for providing biodiversity conservation measures on their land. One of the most
common forms of AES is the restoration of floral resources in the form of floral
strips alongside agricultural habitats. The benefits of floral strips for restoring
wild bee diversity and abundance vary depending on the local landscape con-
text, in particular how much floral richness was increased in the local landscape
with the introduction of the floral strips (Scheper et al. 2015). In general the
effectiveness of AES seems to occur in heterogeneous landscapes with moderate
land use intensity and the presence of some semi-natural habitat elements com-
pared to already diverse habitats with large amount of semi-natural and natural
habitat or highly intensive landscapes with no nearby source populations (Kleijn
et al. 2011). Additionally, AES do not seem to provide the necessary resources or
beapplied in the landscape with the greatest need, to benefit the most threatened
wild bee species (Kleijn & Sutherland 2003; Kleijn et al. 2006).

The importance of forested areas for conserving wild bees is not as well
studied, as the needs of forest bees are not as well-known as the needs of other
wild bee species (Winfree 2010). However, certain wild bee species rely on forest
resources in at least part of their life-cycle, for example Euglossine bees in Brazil
(Roubik 2001). Ensuring the maintenance of diverse floral resources that require
forested areas will in turn protect and manage the wild bee species that require
these resources.

Alongside floral resources, restoration of nesting sites is a an equally im-
portant conservation measure. However, the knowledge of the nesting resources
required by most species is unknown or at least only partially understood. Wild
bee hotels for above ground bees are often used in agricultural and urban areas
to provide nesting resources, but they only benefit a small subset of total wild
bee diversity and may expose wild bees to an increased pathogen and pest risk
(Maclvor & Packer 2015). The restoration and maintenance of soils and unman-

aged land is required for the many belowground nesting bees but overall the soil
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requirements for wild bees vary markedly (Cane 1991). Additionally, forest frag-
mentation can have varying impacts on different wild bee assemblages, for exam-
ple, stingless bees® which require tree cavities to nest are unlikely to be found far
from substantial forest areas (Brosi et al. 2007). Restoration of habitats is possi-
ble, but it is not a simple fix and improvements to the landscape can be followed
by a lag of 4-8 years before bee populations respond (Iles et al. 2018). Therefore,

preserving already diverse wild bee habitat is a must.

Natural habitats with high importance and special wild bee communities
with high conservation value are rarely managed or protected with the explicit
goal of protecting wild bees. Throughout this thesis we specifically set out
to discuss the results obtained in the context of wild bee conservation and
management. In the context of bee decline this thesis will have greater impact
if the results obtained can be distilled into conclusions than can be disseminated
and understood by interested parties in the effort to ensure the protection and

conservation of wild bee species.

1.4 Thesis outline

Pollinator decline is a high profile issue globally, and threats faced by wild bees
are likely to persist in the future and declines are expected to continue (Brown
et al. 2016). As discussed above, in this thesis we aim to fill a number of gaps
related to understanding wild bee diversity, distribution and declines. The gen-
eral objective of this thesis is to examine how land use/land cover (LULC)
and climate conditions impact the diversity and distribution patterns of
wild bee species at different spatial and temporal scales. Specifically we
aim to (1) test the efficacy of using statistical modelling tools to under-
stand wild bee distributions in the present and future and suggest how to
improve these methods; (2) provide novel understanding of how wild bee
community assemblages are structured at large geographical scales and
whatdrives this structure; and (3) quantify and compare how past, present,

and future changes to wild bee and specifically, bumblebee distributions

9Stingless bees refer to species in the tribe Meliponini, they are highly social species usually found
in tropical and subtropical areas globally and produce honey (Michener 2000).
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are expected to be influenced by LULC and climate changes (Fig 1.10). These
aims are tackled throughout the different chapters of the thesis at different spa-
tial and temporal scales (Fig 1.11). Firstly, in chapter 2, material and methods,
we describe in detail the different data sources and methodologies used in the
scientific chapters. The document is then split into four chapters representing
separate scientific studies, each with a clear objective directly related to the gen-

eral objective (Table 1.1), followed by a general discussion.

+ Chapter 3. Quantify the performance of SDMs when modelling wild
bee distributions.

In this chapter we use SDMs to model the distribution of wild bee species
in the Netherlands based on their climate and LULC preferences with the spe-
cific aim to see how model performance depends on landscape context and the
functional traits of the species modelled. We use independent collections from
stable agricultural habitats (orchards) and unstable agricultural habitats (arable
fields) to test the performance of the SDMs, which is rarely done for biodiversity
studies (Elith & Leathwick 2009; Newbold et al. 2010). We examine how habitat
suitability values from the model projections depend on the LULC context where
a species was collected and the functional group to which that species belongs.
This study answers the question of whether LULC and climate species distribu-
tion models accurately model the Dutch wild bee fauna and if that accuracy is
higher for particular trait groups and in stable or less stable agricultural habitats.

Chapter 3 looks at individual species distributions, however, wild bee spe-
cies are not distributed independently of each other and form assemblages where
certain species are more likely to be found together than others. The role of co-
occurrence in structuring assemblage distribution is rarely explored for other taxa
and has never been explored for wild bees (Wisz et al. 2012). Therefore, in chap-
ter 4 we look at the community structure of the entire wild bee population of the
Netherlands.

+ Chapter 4. Quantify and visualize the influence of habitat filtering
and co-occurrence when modelling the assembly patterns of wild
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bee species.

In this chapter we use joint species distribution models to examine how
habitat filtering based on high resolution LULC and climate conditions inter-
acts with the co-occurrence of wild bee species. Biotic interactions are rarely
accounted for in SDMs. For bees only Giannini et al. (2013) has modelled bee
parasites and bee hosts together, which showed improved model performance.
Therefore, chapter 4 represents a novel look at how co-occurrence among wild
bees influences their distribution patterns. Furthermore, we examine whether
these patterns are phylogenetically related and produce spatially explicit wild bee
assemblage maps which can be used in wild bee conservation.

Chapter 3 and 4 show a clear importance of habitat filtering in individual
species distribution and assemblage patterns. Therefore, in chapter 5 we expand
our focus to show how LULC change will influence projected bumblebee declines
under a changing climate.

+ Chapter 5. Quantify the influence of dynamic land use/land cover
projections on the projected distributional change of bumblebees
under climate change

Chapter 5 represents an increase in spatial and temporal scale and exam-
ines the interaction between projected LULC and climate change on the modelled
distribution patterns of bumblebee at the European and Belgium, Netherlands
and Luxembourg (BENELUX) scale. We examine and quantify the range change
and range shifts of 48 European bumblebees when modelled with (1) only climate
change covariates, (2) climate change and static LULC covariates and (3) climate
change and dynamic LULC covariates. Chapter 5 represents a novel approach
to examining the effects of global change on wild bees, as LULC change projec-
tions are rarely used in biodiversity studies and never with bees. Additionally,
chapter 5 examines the interaction between two of the main drivers of wild bee
decline, climate and LULC change, which are often examined in isolation (Potts
etal. 2010).

modelled future changes to bumblebees represent an important tool for
conservation and management. However, observed changes in the future, at the
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large scale are less effective without a comparison to actual observed changes
in bumblebee distribution and diversity patterns at the finer scale. Therefore,
in chapter 6 we present a case study showing how measured climate and LULC
changes over 115 years have affected a mountain plant and pollinator community
in a high diversity area of the Pyrenees.

+ Chapter 6. Measure a specific case of how the composition and dis-
tribution of a wild pollinator group has changed over time due to the

influence of LULC and climate changes.

We quantify the range and diversity changes in bumblebees, butterflies
and their host plants surveyed in 1889 and 2005-06 (115 year period), with par-
ticularly focus on elevation shifts that have occurred in the alpine habitat. Similar
studies often focus on butterflies alone and do not encompass such a large time
difference between surveys (Wilson et al. 2007; Chen et al. 2009). Chapter
6 provides context into the impacts that climate and LULC change have already
had on biodiversity patterns. Altogether these four chapters represent important
insights into understanding how wild bee distributions patterns are influenced
by LULC and climate at varying scales, and how this interacts with ecological dif-
ferences between species. Moreover, we explore how we can best measure this

influence and how this information can inform wild bee conservation measures.

In chapter7, the general discussion, we presenta synthesis of the results
from the different chapters. We discuss the results in terms of their relevance to
species distribution modelling and the distribution and diversity of wild bees,
with a focus on the knowledge gaps that we have outlined here. Furthermore, we
discuss the implications of the results with a focus on their significance to wild
bee research and conservation. We finally broaden the focus of the discussion
to future research prospects within the context of modelling wild bee distribu-
tion and diversity patterns, before summarizing the conclusions of the thesis as

awhole.
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How do land use/land (LULC) cover and climate condit

affect the diversity and distribution patterns of wild bee species at different spatial and temporal scales?
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2.1 BELBEES

As mentioned earlier, this thesis is part of the federal project BELBEES ("Multid-
siciplinary assessment of BELgian wild bee decline to adapt mitigation manage-
ment policy”, www.belbees.be; Fig 2.1). The BELBEES project is a conservation
research project funded by the Federal Science Policy (BELSPO; BR /132 / Al /
BELBEES) with the objective to estimate the decline of wild bees in Belgium using
a multidisciplinary approach in order to adapt conservation policy. This project
brings together several partners: the University of Mons (Pierre Rasmont, project
coordinator), Royal Institute of Natural Sciences of Belgium (Jean-Luc Boevé),
Ghent University 1 (Dirk de Graaf), University of Namur (Nicolas Dendoncker),
University of Liége Gembloux Agro Bio-Tech (Marc Dufréne), Ghent University
2 (Guy Smagghe), and naturalist associations Natagora (Wallonia) and Natuur-
punt (Flanders). The goals of the BELBEES project are to (1) collect all old data
available in databases and collections to identify the area that have been well sam-
pled in the past. In the same places, new wild bee specimens will be collected in
the wild to be compared to old specimens; (2) identify the role of the five poten-
tial drivers by analysing specimens (diseases, genetics, pesticides), pollen load
(food resource, pesticides) and biophysical environment (food resource, habitat
structure, climate change); and (3) analyse the respective roles and interactions
between the five drivers through meta-analyses, and to model wild bee distribu-
tion dynamics with a part of the drivers (land use and climate change). The work
presented in this thesis focuses on the third goal, in particular “to model wild bee
distribution dynamics with a part of the drivers (land use and climate change)”.

2.2 Data Overview

Throughout this thesis we rely on data in a variety of formats and from a variety
of sources to test our objectives. Broadly these data can be defined as spatially ex-
plicit species occurrence data and representations of environmental conditions.
Specifically, the work presented here requires occurrence data with known local-
ity information. Ideally, these data should have the locality recorded in the form

of GPS coordinates, so that records can be mapped at a high resolution. The land
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FiG. 2.1: BELBEES Logo

use and climate data is also available in the form of spatially explicit maps. De-
pending on the source these maps can either be in raster format or vector format.
Raster data consists of a matrix of grid cells each with a particular value. These
values can either be thematic, i.e. representing a particular LULC, or continuous,
i.e. representing changing temperatures across a landscape. The advantages of
using raster-based maps is that they represent a simple and easily interpretable
structure using spatial and statistical analyses, they are the best format to rep-
resent continuous data such as temperature and rainfall and they can easily be
combined with other data sources when aggregating (ESRI 2013). The disadvan-
tages of using rasters to store data are that restrictions on cell dimensions can
lead to spatial inaccuracies and a loss of precision when aggregating data, they
can also become very large datasets and take a lot of time and computer power
to analyse (ESRI 2013). The other format of LULC and climate data that we use
in this thesis is vector data. Vector data is also a coordinate based mapping for-
matand it represents geographical information as either points, lines or polygons.
The advantages of using vector maps are that the data can be presented at its orig-
inal resolution and with accurate representations of geographic locations (ESRI
2013). The disadvantages of using vector maps are that they cannot accurately
present continuous data, high resolution vectors can be processing intensive and
within polygons data cannot be filtered (ESRI 2013). We use a combination of
both formats to maximize the quality of the environmental data. The other data

we use in the thesis is ecological and genetic and comes from expert opinion and
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literature resources as well as separate analysis (see sections 2.2.4 and 2.2.5).

2.2.1 Wild Bee Occurrence Data

The distribution patterns of wild bees analysed in this thesis are estimated from
wild bee occurrence data collected from a variety of sources. These sources in-
clude museum collection data, validated and verified citizen science data, and
data systematically sampled as part of scientific research projects. Museum col-
lection data represents a high-quality source of specimens often going far back
in time and with high taxonomic reliability (Newbold 2010). Museum collec-
tion data is often the only source of historical wild pollinator occurrences on
which trends of diversity and distribution can be measured over long time pe-
riods (Bartomeus et al. 2018). However, there are a number of biases associated
with museum occurrences, these include spatial and temporal biases, biases to-
wards certain very rare or very common specimens over others, and biases due to
unknown sampling effort (Ponder et al. 2001; Graham et al. 2004; Boakes et al.
2010). Citizen science data can also be a great source of widespread and numer-
ous species occurrence data. The involvement of a large number of individuals
means that far more records can be collected in a shorter period of time, than
it would take a skilled amateur or expert researcher (van der Wal et al. 2015).
The greatest difficulty with citizen science records is ensuring their accuracy tax-
onomically and spatially. This requires expert knowledge to be used to verify
and validate records of citizen scientists. The increase in high-quality portable
photographic equipment makes this job easier and enhances the value of citizen
science records (Suzuki-Ohno et al. 2017). Data collected as part of systematic
scientific studies is the highest quality data available often involving repeated
visits to the same areas to sample the same community using the same methods.
Unfortunately these data are also the most costly requiring considerable time,

energy and greater monetary costs.

The wild bee and bumblebee collection data used throughout the thesis
have been collated from a range of sources and have been made available to use
through intensive long term database management. The wild bee data of the
Netherlands used in chapters 3 and 4 was obtained from a database containing

historical museum occurrences, citizen science data, and scientific collections
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FiG. 2.2: European Invertebrate Survey (EIS) Wild Bee Database for the Nether-
lands. (a) Total number of species collected per year between 1865 and 2016. (b) Total
number of occurrence records collected per year between 1865 and 2016.

(Fig 2.2). This database is managed by The European Invertebrate Survey Ken-
niscentrum Insecten (EIS; https://www.eis-nederland.nl/). The database
contains a total of 245 755 collection records made between 1800 and 2016 for
a total of 362 species. During this time period eleven species have been found
only once, and the species with most recorded occurrences, 10 946, is Bombus
pascuorum. The highest yearly species richness was recorded in the 1950s (Fig
2.2a), but the greatest number of occurrence records have been in recent years,

2016 contained the most records for a single year (Fig 2.2b). A large part of the


https://www.eis-nederland.nl/
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data has been published in ‘de Nederlandse bijen’ by Peeters et al. (2012).

In chapter 3 we build species distributions models using a subset of the
data from 1990 until 2013. To limit the chance of over-fitting the dataand because
we were interested in species likely to be found when doing independent surveys,
we limited the number the species modelled to those with at least 30 records
(Fig 2.3). Therefore, a total 194 species of 25 genera remained. We also collated
collection records of wild bees from 73 agricultural locations which we used as
an independent dataset to test model performance, in total 52 unique wild bee

species were collected from these 73 locations (Fig 2.3a).

(a) (b)

EEl

| O

FI1G. 2.3: Geographic distribution of wild bee occurrence data in the Netherlands. (a) Wild bee occurrence

records used in Chapter 3, collected between 1990 and 2013 for species with a minimum of 30 records (193 species).

Orange points represent the occurrence records. Black squares refer to 73 locations where independent collections

were made by which to test SDM performance. (b) Wild bee occurrence records used in Chapter 4, collected between

2005-2016 (304 species). Orange points represent the occurrence records. Light green squares represent 10 x 10

km areas where high-quality consistent sampling has occurred within this time frame. Orange points represent the
occurrence records.

In chapter 4 we used the same data source to model wild bee distributions
in the Netherlands (Fig 2.3b). However, in this case we were interested in co-
occurrence patterns between species, therefore we decreased the time period of
occurrence records (2005-2016) and limited our analysis to species with at least 5
records. A total of 204 species were modelled. In both chapters there is sufficient
wild bee occurrence data so that the majority of the Netherlands is included. Cer-
tain biases exist in the South and towards coastal areas, but overall the collection
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records are relatively evenly spread (Fig 2.3).

F1G. 2.4: Geographic distribution of bumblebee species in European areas between 1970 and
2000 as defined by future ALARM scenarios of Land Use Change (Green areas). Number of
records per country after removing duplicate species records at the same location. AU: Austria; BE:
Belgium; DA: Denmark; EZ: Czech Republic; FI: Finland; FR: France; GM: Germany; GR: Greece; HU:
Hungary; IT: Italy; LG: Latvia; LH: Lithuania; LO: Slovakia; LU: Luxembourg; NL: Netherlands; NO:
Norway; PL: Poland; PO: Portugal; SP: Spain; SW: Sweden; SZ: Switzerland; UK: United Kingdom.

In chapters 5 and 6 we focused our analysis on a subset of wild bees, the
bumblebees (Bombus spp.). Firstly, in chapter 5 we used bumblebee collection
records collated as part of the EU FP7 project STEP (Potts et al. 2011) which is
aggregated and available to view on the Atlas Hymenoptera webpage (Fig 2.4;
Rasmont & Iserbyt 2013). The STEP project was created with the general aim “to
assess the current status and trends of pollinators in Europe, quantify the relative
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importance of various drivers and impacts of change, identify relevant mitigation
strategies and policy instruments, and disseminate this to a wide range of stake-
holders” (Potts et al. 2011). A result of this project was the collation and organiza-
tion of historical wild bee collections from many European countries into a single
database. We extracted the bumblebee data used in chapter 5 from this database.
Due to the availability of future LULC change projections our total study area in-
cluded 22 European countries. These 22 countries were chosen as they were
included in the geographical range of the Assessing LArge-scale environmental
Risks with tested Methods (ALARM) Scenarios (Spangenberg et al. 2012; Fig
2.4). We tried to ensure that we could get as close to the total climatic range for
all bumblebee species to ensure that the responses to changing conditions were
accurate and within the tolerances of each species. The occurrence records used
were collected between 1970 and 2000 to ensure that there were enough records
per species and to match the time frame for which the climate data was recorded.
Overall, within these spatial and temporal restrictions, 63 wild bee species were
found. For the final analysis we limited the database to the 48 species with a
minimum of 50 unique occurrences (see Table S5.1 in supporting information
chapter 5). For each of the 48 species we aggregated their collection records to 4
different spatial grid resolutions used in the modelling process; 5 x 5 km, 10 x 10
km, 20 x 20 km and 50 x 50 km. As with the Dutch wild bee occurrence data, B.
pascuorum (16 899 observations) was the most abundant across Europe.

The bumblebee data show a clear bias towards certain areas, in particu-
lar the United Kingdom has far more records than any other country, Northern
Europe is over represented and the Alps and Pyrenees mountain ranges are heav-
ily sampled compared to other locations (Fig 2.4). In the case of the bumble-
bee data, because there is unevenness in the sampling, it is more likely that the
species will have a number of records in close proximity and this will introduce
a spatial auto correlation effect that does not represent the true distribution of
the species. Positive spatial autocorrelation occurs when a value is more likely to
occur close in space to other similar values. To deal with the potential for spatial-
auto correlation bias in the occurrence records we used a method of re-sampling
to minimize the effect of aggregations of records in particularareas. This method

was adapted from Broennimann et al. (2012). For each species at the different
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spatial grid resolutions we (1) took a random grid cell occurrence as the starting
location; (2) removed all occurrences of the same species in adjacent grids cells;
(3) reselected a random grid cell occurrence; (4) repeated the process of remov-
ing adjacent grid cells. This process was continued until grid cell occurrences
did not have adjacent occurrence of the same species. The re-sampling process
resulted in a more even range of occurrences and limited the impact of potential

spatial auto-correlation effects.

2.2.2 Land Use Data

Netherlands Scale

The Dutch rural land-use file version six (LGN 6) file is a raster file with a resolu-
tion of 25 x 25 m. The file represents land use in the Netherlands for the years
2007/2008. The theme and geometry of TOPIONL vector forms the basis for
LGNG6 for the majority of classes. Moreover, satellite images, aerial photographs
and spoil and nature maps were also used (Hazeu et al. 2010). In total 39 differ-
ent types of land use are distinguished in the raster file. The LGNG6 raster was used
in chapter 3 where the land use classes were reclassified and aggregated together
to form 9 land use types used to model wild bee distribution patterns (Table 2.1).
These 9 land use classes were then converted into percentage cover per 1 x 1 km
grid cells. Model selection resulted in a final selection of 5 land use classes used
in the final SDM: Percentage Cover Agriculture, Coniferous Forest, Moors/Peats,
Sandy Soils, and Urban.

TasLE 2.1: Reclassification table of the original LGN6 land use map to the 9 most
general land use classes in the Netherlands. Land use type translated from Dutch.

Number Original land use type Reclassified land use type
1 Managed grassland Grassland
2 Maize Agriculture
3 Potatoes Agriculture
4 Beets Agriculture
5 Cereals Agriculture
6 Other crops Agriculture
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Table 2.1 continued from previous page
7 Greenhouses Urban
8 Orchards Agriculture
9 Flower bulbs Agriculture
10 Deciduous forest Deciduous forest
1 Coniferous forest Coniferous forest
12 Fresh water Not available
13 Salt water Not available
14 Construction in primary urban area Urban
15 Construction in secondary urban area Urban
16 Primary forest in built-up areas Mixed forest
17 Secondary forest in built-up areas Mixed forest
18 Grass in primary urban area Grassland
19 Bare soil in primary urban area Urban
20 Roads and railways Urban
21 Buildings in the outlying Urban
22 Grass in secondary urban area Grassland
23 Salt marshes Swamps
24 Open sandy coastal area Sandy soil vegetation
25 Dunes with low vegetation (<Im) Sandy soil vegetation
26 Dunes with high vegetation (>1m) Sandy soil vegetation
27 Dune heath Sandy soil vegetation
28 Open drifting sand and / or river sand Sandy soil vegetation
29 Heather Moors/Peat
30 Moderately grazed heath Moors/Peat
31 Strongly grazed heath Moors/Peat
32 Moors/Peat Moors/Peat
33 Forest bog area Mixed forest
34 Other swamp vegetation Swamps
35 Reed vegetation Swamps
36 Forest in wetland Mixed forest
37 Natural grassland Grassland
38 Nurseries Agriculture
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Table 2.1 continued from previous page
39 Fruit farms Agriculture

The TOPIONL is a nationwide vector of the topography of the Nether-
lands. TOPIONL originated from aerial photographs, panoramic photographs,
field recordings and information from external sources (Kadaster 2012). We used
the TOP1ONL vector in chapter 3 to obtain measurements of different linear fea-

tures in the Dutch landscape (Fig 2.5).
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F1G. 2.5: An example of linear features available from the TOPIONL Vector.
Blue: water features, green: roads and black: train tracks.

In chapter 4 we used land use classes for the Netherlands with far higher
thematic resolution. We utilized three separate sources to obtain a detailed over-
view of LULC in the Netherlands. The three sources can broadly be described as
nature, agriculture and urban. The nature map was a vector of nature types across
the Netherlands called the Index Natuur en Landschap (INL; Inter Provinciaal
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Overleg 2016). The INL was produced with landscape management in mind and
the map is split into types of nature (17) with each nature type having a number of
possible management types, 49 in total. Each of these 49 land use management
types was then aggregated into 7 broader categories of nature land cover types to

model wild bee habitat filtering (Table 2.2). These 7 land use classes were:

1. Water

2. Heathland

3. Semi-natural woodland

4. Production woodland

5. Marsh and swampland

6. Semi-natural grassland

7. Dune areas

TasLE 2.2: Reclassification table of the Index Natuur en Landschap (INL) to 7 natural land
cover classes in the Netherlands. Land cover type translated into English from the original
Dutch (Inter Provinciaal Overleg 2016).

Code Original Management Type English Management Type Aggregation
NO01.01 Zee en wad Sea and mudflats Water
NO1.02 Duin- en kwelderlandschap Dune and salt marsh landscape Peat/Marshland
NOL03 Rivier- en moeraslandschap River and marsh landscape Peat/Marshland
NO1.04 Zand- en kalklandschap Sand and lime landscape NaturalGrassland
N02.01 Rivieren Rivers Water
NO03.01 Beek en bron Brook and water source Water
N04.01 Kranswierwater Algae fields Water
NO04.02 Zoete plas Sweet puddle Water
N04.03 Brak water Brackish water Water
N04.04 Afgesloten zeearm Closed seaarm Water
NO05.01 Moeras Swamp Peat/Marshland
NO05.02 Gemaaid rietland Mowed reed Peat/Marshland
NO06.01 Veenmosrietland en moerasheide ~ Sphagnum meadows and marshland Peat/Marshland
N06.02 Trilveen Floating mat peat Peat/Marshland
N06.03 Hoogveen Moors Peat/Marshland
N06.04 Vochtige heide Moist heather Heathland
N06.05 Zwakgebufferd ven Weak buffered bog Peat/Marshland
N06.06 Zuur ven of hoogveenven Acid bog or high peat Peat/Marshland
NO07.01 Droge heide Dry heather Heathland
N07.02 Zandverstuiving Sand drift Heathland
N08.01 Strand en embryonaal duin Beach and embryonic dune Dune
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N08.02
N08.03
NO08.04
NO09.01
N10.01
N10.02
N11.01
NI2.01
N12.02
NI12.03
NI12.04
N12.05
NI12.06
N13.01
NI3.02
N14.01
N14.02
N14.03
N15.01
N15.02
N16.03
N16.04
N17.01
N17.02
N17.03
N17.04
N17.05
N17.06

Table 2.2 continued from previous page

Open duin
Vochtige duinvallei
Duinheide
Schor of kwelder
Nat schraalland
Vochtig hooiland
Droog schraalland
Bloemdijk
Kruiden- en faunarijk grasland
Glanshaverhooiland
Zilt- en overstromingsgrasland
Kruiden- en faunarijke akker
Ruigteveld
Vochtig weidevogelgrasland
Wintergastenweide
Rivier- en beekbegeleidend bos
Hoog- en laagveenbos
Haagbeuken- en essenbos
Duinbos
Dennen-, eiken-, en beukenbos
Droog bos met productie
Vochtig bos met productie
Vochtig hakhout en middenbos
Drooghakhout
Park- en stinzenbos
Eendenkooi
Wilgengriend
Vochtig en hellinghakhout

Open dune
Moist dune valley
Heathland dune
Salt marsh
Wet nutrient poor grassland
Moist meadowland
Dry nutrient poor grassland
Flower embankment
Herbs and fauna rich grassland
Ryegrass meadow
Silt and flood grassland
Herbs and fauna rich fields
Rough field
Wet meadow bird grassland
Winter migrant bird grassland
River and stream accompanying forest
High and low peat forest
Hornbeam and ash forest
Dune forest
Pine, oak, and beech forest
Dry forest with production
Moist forest with production
Moist chopping wood and middle forest
Dry chestnut
Park and estate forests
Duck decoy
Willow forest
Moist and slope chopping wood

Dune
Dune
Heathland
Peat/Marshland
NaturalGrassland
NaturalGrassland
NaturalGrassland
NaturalGrassland
NaturalGrassland
NaturalGrassland
NaturalGrassland
NaturalGrassland
NaturalGrassland
NaturalGrassland
NaturalGrassland
NaturalForest
NaturalForest
NaturalForest
NaturalForest
NaturalForest
ProductionForest
ProductionForest
ProductionForest
NaturalForest
NaturalForest
Water
NaturalForest
NaturalForest

The agricultural land use information in chapter 4 comes from the Basis-

registratie Gewaspercelen (BRP, EZK 2015). All users of agricultural parcels in

the Netherlands must record, annually, the type of crop which has been grown

on a particular parcel of land. The BRP is the spatially-explicit vector represen-

tation of this information and contains the locations of all agricultural parcels in

the Netherlands including the crops grown each year. We used the BRP to create

three classes used to model wild bee habitat filtering. We reclassified them using

expert opinion and literature reviews. A decision was made as to whether they

flower and if they do flower, do they reward visiting pollinators. Of the 56 crop

types 26 were classified as potential food sources for bees which corresponds to

14% of the total number of crop parcels in the Netherlands. Furthermore, we

classified all areas which are defined as agricultural grasslands.
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Finally, urban and other land use information not obtained from the previ-
ous two files was extracted from the Bestand Bodemgebruik Productbeschrijving
(BBG; CBS 2012). The BBG is a vector file which represents functional land use in
the Netherlands with 37 land use types and is recorded from aerial photographs,
map material and other digital sources. In particular the BBG separates land use
types found in urban areas. The BBG covers the entirety of the Netherlands. We
aggregated the Urban land use classes of the BBG into two classes, urban gray
and urban green. Urban green refers to recreational areas and gardens within an
urban setting. However, we observed that, when aggregated to 10 x 10 km grid
cells, both urban grey and green were strongly positively correlated and therefore
could not be adequately separated in their ecological significance. We therefore

made the decision to aggregate them together in a single urban class.

To calculate the covariates needed to model wild bee habitat filtering we
first needed to join all three sources (nature, agriculture and urban) together and
deal with any spatial mismatches and/or overlaps. To do this we ranked each of
the three sources to produce a hierarchy whereby the highest ranked map would
take precedence in case of overlap and disagreement in classes. The ranking
included the nature map first, as we believed that the nature map would most
accurately represent the distinctions between important LULC classes for bees
and it was the most recent of the three files. Secondly, we chose the agricultural
parcel map because it has a higher accuracy and greater focus than the urban
map. The urban map is also the oldest of the three sources. Using ArcGIS soft-
ware we merged the three maps together removing overlapping areas based on
the aforementioned hierarchy (ESRI 2013). The merged map was then converted
into a 10 x 10 m raster. Each of the LULC classes in the raster were then aggre-
gated as percentage cover measurements ata 10 x 10 km grid resolution. Twelve
classes remained of which 10 (freshwater and saltwater were removed) were used
to model wild bee habitat filtering and community assembly patterns in chapter
4 (Fig 2.6).

European Scale

Corine land cover (CLC) is an inventory of LULC at the European scale produced
first in 1990 and then again 2000, 2006 and 2012 (EEA 2000). The CLC is a
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[:] Crops Food Source - Freshwater - Production Woodland

- Crops Non Food Source [: Saltwater - Marsh and Swampland
|:| Agricultural Grassland - Urban - Semi-natural Grassland
|:| Heathland - Semi-natural Woodland \:’ Dune

F1G. 2.6: Final map used in chapter 4 to measure habitat filtering in wild bee

species. Aggregation of three sources, (1) Index Natuur en Landschap (INL; Inter

Provinciaal Overleg 2016); (2) Basisregistratie Gewaspercelen (BRP, EZK 2015); and
(3) Bestand Bodemgebruik Productbeschrijving (BBG; CBS 2012).

raster with a resolution of 100 x 100 m. The CLC is bases on satellite images and
integration with existing geographic information systems (GIS). In chapter 5 the
baseline LULC used for training the species distribution models is aggregated
and reclassified from the CLC 2000. The baseline map (2000) was reclassified
to 6 classes and a 250 x 250 m resolution to match the future projections of LULC

change:

1. Settlement
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2. Arable

3. Permanent crops
4. Grassland

5. Forest

6. Other

(a) Baseline 2000 (b) BAMBU 2080
B Settlement

O Arable

B Permanent Crops|

O Other

SEDG 2080

F1G. 2.7: ALARM scenarios of Land Use Change for 2080. (a) Baseline map from ag-

gregated 2000 Corine Land Cover map. (b) Business as might be usual (BAMBU) land use

projection for 2080. (b) Business As Might Be Usual (BAMBU) land use projection for 2080.

(c) GRowth Applied Strategy (GRAS) land use projection for 2080. (d) Sustainable European
Development Goal (SEDG) land use projection for 2080.

From this baseline a set of future LULC change scenarios was created (Rou-
nsevell et al. 2006; Spangenberg et al. 2012). Three storyline, socio-economic,
scenarios were produced and included a business as might be usual scenario,
a liberal growth scenario and a more sustainable scenario (for more detail see
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methods in chapter 5 and Spangenberg et al. 2012). Simulated LULC change was
undertaken by combining a variety of different models, specifically econometric,
ecosystem, land use and climate models (Spangenberg et al. 2012). The time-
frames of the different models ranged between 2000 and 2100. The resulting
output consisted of land use maps for 2020, 2050 and 2080 for each of the three
scenarios. Each of these map outputs was downscaled to 250 x 250 m to match
the data from the present (Dendoncker et al. 2006). We utilized the maps for
2050 and 2080 for 5 of the LULC classes, emitting ‘other’ because it is difficult to
ascribe ecological meaning to the variety of classes of which it is comprised (Fig
2.7). To use in the SDMs each LULC class was aggregated to a percentage cover
rasterat 5 x 5 km, 10 x 10 km, 20 x 20 km and 50 x 50 km grid resolutions.

The scenarios used in these analyses represent three different narratives
or storylines of LULC at the European scale. The storylines describe the poli-
cies, philosophies and instruments behind the scenarios. This information is
then used with quantitative data related to the economy, climate and land use
to simulate potential futures. The three scenarios can be broadly described as
exploratory (GRAS and BAMBU) and normative (SEDG). Exploratory scenarios
take trends from the present and extrapolate into the future analysing the re-
sponse of LULC to specific questions. Normative scenarios by contrast involve
backcasting from a desired future condition, and describing the decision making
that would lead to said scenario. Each storyline (scenario) results in projections
of climate and socio-economic trends. These two projections, alongside the sto-
ryline then influence the spatially explicit land use model, which we use in our
analyses in chapter 5. The list below shows a elaborated overview of each of the
three scenarios, a simpler representation is available in the methods section of
chapter 5. All this information is taken from Spangenberg et al. (2012).

* ‘Business as Might Be Usual’ (BAMBU)—IPCC A2 scenario; mean pro-
jected temperature rise in Europe at 2100 is 4.7°C; an intermediate change
scenario based on extrapolated current and proposed socio-economic and
policy decisions. Policy decisions that already exist at the EU level are in-
cluded. For example the energy policy is focused on reducing greenhouse
gas emissions by 20% by 2020 and 80% by 2080, while increasing nuclear
and renewable energy sources. Trade policy promotes free trade and EU
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funds are targeted at infrastructure and growth in developing areas.

‘Growth Applied Strategy’ (GRAS)—IPCC AIFI; mean projected temper-
ature rise in Europe at 2100 is 5.6°C; a maximum change scenario driven
by policies of deregulation and economic growth with a focus on globaliza-
tion. For example the energy policy is focused on increasing efficiency and
only implementing renewable sources where cost effective. Trade policy

promotes free trade at the global scale and EU funds will be eliminated.

‘Sustainable European Development Goal’ (SEDG)—IPCC Bl scenario;
mean projected temperature rise in Europe at 2100 is 3.0°C; a moderate
change scenario driven by economic, social and environmental policies,
related to stabilizing atmospheric greenhouse gases emissions and stop-
ping the loss of biodiversity, leading to an environment in good condition,
a healthy economy and international cooperation. For example the energy
policy is focused on reducing greenhouse gas emissions by 75%, increasing
renewable energy sources and shifting consumption. Trade policy includes
reduce global sourcing and EU funds are targeted at local green develop-

ments, education and employment.

Pyrenees Scale

In chapter 6, historical land use maps of the Pyrenees National Park for the late

19th century were not available. Therefore we used land cover data from Histor-

ical HILDA the project "Historic Land Dynamics Assessment” (HILDA) version
2.0 (Fuchs et al. 2013; Fuchs et al. 2015). This project aimed to reconstruct
land use at the scale of Europe from 1900 to 2010, based on data available for

each decade at a spatial resolution of 1 x 1 km. Land cover is classified into six

categories.

L.

Forests: including transition zones between bushes and forest, tree nurs-

eries, and reforestation areas.
Grasslands: including natural grasslands, wetlands and pastures.
Cultivated land: including orchards and arable land.

Human settlements: buildings, roads, railways etc. and green urban areas.
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5. Water

6. An”other” category grouping the areas of ruderal vegetation, beaches, bare

floors, rocks, etc.

We used these maps and categories to calculate modelled shifts in land use change
for a 10 km buffer around the area were wild pollinators were collected in 1889
and 2005-06.

2.2.3 Climate Data

Netherlands Scale

In chapter 3 we used the 19 Bioclim variables available from worldclim. org (Ta-
ble 2.3). The 19 Bioclim variables are available at the global scale and are de-
scribed as biologically meaningful. These 19 variables are derived from monthly
temperature and rainfall values and are available as 30 second resolution rasters
(Hijmans etal. 2005). These variables are calculated with climate data from 1960
until 1990. For each bioclimatic variable we clipped the extent to the outline of
the Netherlands and re-projected the raster toa 1 x 1 km resolution. During the
SDM process we then selected the final variables based on correlations between
covariates, ecological significance to bees and importance in the SDM. This re-

sulted in 5 of the 19 Bioclim variables being used:
1. Mean diurnal range of monthly temperature (Bio2)
2. Mean temperature of warmest quarter (BiolO)
3. Precipitation of driest month (Biol4)
4. Precipitation of warmest quarter (Biol8)
5. Temperature seasonality (Bio4)

In chapter 4 we wanted to improve the spatial and temporal accuracy and use
climate measurements specific to the Netherlands. Therefore, we calculated the
same 19 Bioclim variables (Table 2.3) but this time using a Netherlands specific
source for the temperature and rainfall values. Specifically, we downloaded daily
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temperature and rainfall statistics from Royal Netherlands Meteorological In-
stitute (KNMI) online API (available at https://data.knmi.nl/wms/cgi-bin/
wms . cgi). We downloaded daily temperature minimum, maximum and means,
and rainfall for everyday between 2005 and 2014 as raster files, each containing
48,297 values. Again, 5 of the Bioclims were used in the final analysis:

1. Minimum temperature of coldest month (Bio6)
2. Mean temperature of driest quarter (Bio9)

3. Mean temperature of warmest quarter (Biol0)
4. Annual precipitation (Biol2)

5. Precipitation of driest month (Biol4)

TasLE 2.3: Overview of bioclimatic variables used in species distribution modelling (Hi-
jmans et al. 2005) The 19 bioclimatic variables, available from worldclim.org and can be pro-
duced using the Dismo R package (Hijmans et al. 2017).

Temperature Moisture

Biol Annual Mean Temperature Biol2 Annual Precipitation
Mean Diurnal Range

Bio2 . Biol3  Precipitation of Wettest Month
(Mean of monthly (max temp - min temp))
Bio3 Isothermality Biol4  Precipitation of Driest Month
(BIO2/BIO7) (* 100)

Biod Temperature Seasonality BiolS Precipitation Seasonality
(standard deviation of annual temperature *100) (Coefficient of Variation)

Bio5 Max Temperature of Warmest Month Biol6  Precipitation of Wettest Quarter

Bio6 Min Temperature of Coldest Month Biol7  Precipitation of Driest Quarter

Bio7 Temperature Annual Range (BIO5-BIO6) Biol8 Precipitation of Warmest Quarter

Bio8 Mean Temperature of Wettest Quarter Biol9 Precipitation of Coldest Quarter

Bio9 Mean Temperature of Driest Quarter

BiolO Mean Temperature of Warmest Quarter

Bioll Mean Temperature of Coldest Quarter

European Scale

The climate data used in chapter 5 represents temperature and rainfall variables
for 1971-2000 as the baseline period and climate change projections for 2021-
2050 and 2071-2100 (New et al. 1999; Mitchell et al. 2004). These variables were
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available globally at 10 minute resolution. We used these values to produce 14 cli-
mate variables with which analyse the climate requirements of European bum-
blebees of which, after accounting for correlation and ecological significance, 5
were selected (see supporting information chapter 5, Table S5.2).

The future climate change projections were created using the same scenar-
ios used for the future land use change models and each scenario is associated
with a scenario of climate change from the Intergovernmental Panel on Climate
Change (IPCC 2001). Specifically, BAMBU is connected to the IPCC A2 scenario,
GRAS is connected to AlF1 and SEDG the Bl scenario (Spangenberg et al. 2012).
The IPCC scenarios use representative concentration pathways (RCPs) which are
modelled trajectories (until 2100) of four greenhouse gases. These models were
integrated into the ALARM scenario projections of climate change for 2050 and
2100. Precisely, the final climate scenarios were derived from a coupled Atmo-
sphere-Ocean General Circulation Model (HadCM3; New et al. 1999). For each
scenario and each of the five climate variables we aggregated them to rasters at
50 x 50 km and 20 x 20 km resolution grids, and downscaled them to 10 x 10
km and 5 x 5 km resolution grids.

Pyrenees Scale

For the Pyrenees study area in chapter 6 it was neccesarry to have long-term
high resolution climate data to observe if climate change is ongoing in the re-
gion. We therefore utilized the ClimateEU software, version 4.63, (available at
http://tinyurl.com/ClimateEU). Using coordinates and elevation values in
the surrounding area we extracted monthly temperature conditions in the Pyre-
nees National Park from 1900 until 2009 (Hamann et al. 2013; Wang etal. 2016).
For a detailed methodology see Hamann et al. (2013).

2.2.4 Trait Data

Trait data represent an important tool that can be used to group species according
toshared characteristics. Species traits are often used as a proxy for the taxonomic
separation between species and can be useful to attribute a measure of diversity
in functions rather than a purely species diversity (Keddy 1992). One of the main
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goals of including traits in ecological studies is to simplify complex ecological
systems (Dray & Legendre 2008). The trait data used within this thesis was ex-
tracted from the “European bee traits database” (established by ALARM, www.
alarm-project.ufz.de,and developed by STEP, www.STEP-project.net). The
extraction for the Netherlands used in chapters 3 and 4 consisted of traits data
for 349 species. The traits used in the thesis were selected based on ecological
relevance to habitat selection and data availability for the majority of wild bee

species. The traits used include:

1. habitat specialization: a number from 1 - 8 representing the number of
habitat types a species has been found in. These 8 habitat types broadly
denote the number of biomes present in Europe.

2. feeding specialization (Lecty): a categorical variable with 5 levels. Polylec-
tic defines a bee species which collects pollen from multiple unrelated flow-
ers. Oligolectic refers to bees which only collect pollen from a single plant
family or genus. Monolectic bees only collect from a single plant family
and represent the most specialized feeding habit. Some species are classi-
fied as oligolectic or polylectic as certain populations of the species may ex-
hibit both behaviours. Finally parasitic species which do not collect pollen
are classified as having no lectic status. For the thesis we have simplified
this characteristic to three classes, with monolectic species grouped with
oligolectic species and those species representing both behaviours grouped
based on the more commonly observed behaviour. We chose to simplify the
classifications to these three classes because we believe these classifications
capture the likely relationship that a bee species will have with its environ-
ment. Specifically, whether a bee species requires a flower rich habitat, or if
the presence of a particular plant genus or family is more important (Mich-
ener 2000).

3. body size: a continuous variable measured as the distance in millimetres
between wing tegulas. The tegula is defined as ‘the anterior most indepen-
dent sclerite associated with the wing base’ (Headrick & Gordh 2009). In
other words the plate on the thorax of the bee where the wing joins the
body.


www.alarm-project.ufz.de
www.alarm-project.ufz.de
www.STEP-project.net

2.2. Data Overview 73

4. sociality: categorical variable of 9 classes ranging solitary bees to highly eu-
social bees with cleptoparasites and social parasites. Sociality is described
in detail in the introduction section (1.3). For the purpose of the thesis
we simplified sociality to three classes. Solitary bees, bees which show any
form of sociality and parasitic bees. In this thesis we do not consider honey
bees, which is the only highly eusocial species in Europe, therefore sociality

refers only to those species classified as primitively eusocial.

5. nesting habit: as with sociality nesting habit refers to a large number of
potential behaviors which are simplified in the context of this thesis. In
chapter 3 we either classified bee as below or above-ground nesters. Which
was changed in chapter 4, with species classified as either excavators who
create their own nest spaces or renters who use existing cavities. In practice
the majority of excavator species are also classified as belowground nesters
therefore there is little difference between the classifications made in chap-
ter 3 or chapter 4. We simplified this trait to only two variables because,
as with lecty we believe that at the landscape scale more detailed classifi-
cations would not be captured by the LULC and climate resolution used.
Parasites were classified based on the nesting habit of their most common
host.

6. length of flight period: continuous variable of the number of months a

species is found flying throughout the year.

7. voltinism: a categorical variable which refers to the number of broods or
generations that a species has within a single year. Categories were sim-
plified to either univoltine, a single generation per year, or multivoltine,
two or more generations per year. Species whose populations show differ-
ent behaviors were again classified based on the most commonly observed
behavior.

2.2.5 Phylogenetic Data

In chapter 4 we use a matrix of phylogenetic relatedness to measure phylogenetic

niche conservatism among Dutch wild bees. The matrix and the database to
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produce it was gathered and processed by Grégoire Noél from the University of
Liége, Gembloux Agro-Bio Tech. The following outlines the process he used.

Molecular data selection

Mitochondrial gene of cytochrome oxidase I (COI), or barcode sequences (Rat-
nasingham & Hebert 2007), is commonly sequenced for identifying bee species
(e.g. Magnacca & Brown 2012; Schmidt et al. 2015). When COI sequences were
available, one barcode, at least, was randomly extracted on 29th April 2016 from
GenBank (Benson et al. 2014) for each Belgian bee species, of which Dutch wild
bees species are a subset (N.]. Vereecken, personal communication). In total, 355
bees barcodes were retrieved. Four random barcodes of Crabronidae wasps fam-
ily (Pison chilense, Philantus triangulum, Bembix troglodytes, Sphecius specio-
sus), recognized as sister group of Anthophila clade (Danforth et al. 2013; Hedtke
et al. 2013) were also added to molecular dataset as an out-group to root phylo-
genetic tree. See Table S4.4 for accession details for all species.

All COI bees sequences were aligned using ClustalX v.2.1. (Larkin et al.
2007) with defaults parameters and pairwise deletion for gap treatments. After
quality control of all barcodes, the obtained alignment included at most 1481 nu-
cleotide characters. jModelTest 2.1.10. (Darriba et al. 2012) was used to explore
best nucleotide substitution model on ouraligned DNA barcode sequences. Gen-
eralized Time-Reversible model with invariables sites and gamma model of rate
heterogeneity (GTR + I + I'; Tavaré 1986) was selected as best nucleotide substi-

tution model for our aligned COI sequences.

For phylogenetic reconstruction, maximum likelihood (ML) method was
conducted in RAXML v.7.7.1. (Stamatakis et al. 2008; Stamatakis 2014) on the
CIPRES Science Gateway (Miller et al. 2010; http://embnet.vital-it.ch/raxml-
bb/). 100 rapid bootstrap inferences were executed and followed by a thorough
ML search. All free model parameters will be estimated by RAXML sofware. ML
estimate of alpha-parameter, [ + I' model parameters were estimated up to an ac-
curacy of 0.001 Log Likelihood units. Bipartition information from best known

ML tree (i.e. best ML tree compiled from ML boostrapping in Newick format)
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Apidae|

Colletidae

Halictidae

group

FiG. 2.8: ML tree constructed using 355 COI sequences (1481 bp) of Belgian bees

species from public repositories (GenBank). This phylogenetic tree is rooted with an

outgroup of 4 Crabronidae wasps COI sequences: Pison chilense, Philantus triangulum, Be-

mbix troglodytes, Sphecius speciosus. All bees families are encompassed by colored rect-

angle. Values at node depict bootstrap support (%) in the ML method. This phylogenetic

tree was drawn using FigTree v.1.4.3. (Rambaut 2017) and modified with Inkscape v.0.92.2.
Phylogenetic tree created by Gregoire Noel.
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was used to draw wild bees phylogenetic tree (Fig 2.8) by FigTree v.1.4.3. (Ram-
baut 2017). Then, branch lengths of bees phylogenetic tree were calculated by
setting the p-parameter to 1 (Hoiss et al. 2012).

Phylogenetic reconstruction

All COI bees sequences were aligned using ClustalX v.2.1. (Larkin et al. 2007)
with defaults parameters and pairwise deletion for gap treatments. After quality
control of all barcodes, the obtained alignment included at most 1481 nucleotide
characters. jModelTest 2.1.10. (Darriba et al. 2012) was used to explore best nu-
cleotide substitution model on ouraligned DNA barcode sequences. Generalized
Time-Reversible model with invariables sites and gamma model of rate hetero-
geneity (GTR + I + T; Tavaré 1986) was selected as best nucleotide substitution
model for our aligned COI sequences.

For phylogenetic reconstruction, maximum likelihood (ML) method was
conducted in RAXML v.7.7.1. (Stamatakis et al. 2008; Stamatakis 2014) on the
CIPRES Science Gateway (Miller et al. 2010; http://embnet.vital-it.ch/
raxml-bb/). One-hundred rapid bootstrap inferences were executed and fol-
lowed by a thorough ML search. All free model parameters will be estimated by
RAxML sofware. ML estimate of alpha-parameter, [ + I' model parameters were
estimated up to an accuracy of 0.001 Log Likelihood units. Bipartition informa-
tion from best known ML tree (i.e. best ML tree compiled from ML boostrap-
ping in Newick format) was used to draw wild bees phylogenetic tree (Fig 2.8) by
FigTree v.1.4.3. (Rambaut 2017). Then, branch lengths of bees phylogenetic tree
were calculated by setting the p-parameter to 1 (Hoiss et al. 2012).

2.3 Methods Overview

In this thesis we use statistical analyses to evaluate complex ecological questions
related to how wild bee species interact with their environment. To do this we use
a variety of different statistical techniques and approaches to deal with different
problems. We utilize regression techniques to estimate the relationship between
different variables, using both maximum likelihood and Bayesian approaches.
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Regression techniques allow us to make causal inferences on which processes may
be driving observed patterns. Furthermore, we use machine learning' methods
within a species distribution modelling framework to classify habitat suitability
at different spatial scales and resolutions. All the statistical methods used are
capable of analysing the large datasets available regarding wild bees and their
environments. In the following section these statistical methods are outlined

and discussed.

2.3.1 Species Distribution modelling

Species distribution models (SDMs) are statistical tools which take known occur-
rences of species and use computer algorithms to create a mathematical repre-
sentation of the environmental space occupied by a species. This representation
can then be used to project the distribution of the species into different environ-

mental spaces. We use SDMs in chapters 3, 4 and 5 in this thesis.

SDM Occurrence Data

In the wild bee data section (2.2.1) we outlined the eclectic nature of the wild bee
occurrence records used in this thesis and the potential biases associated with
them. There are a number of techniques available to improve the quality of these
data for their use in SDM. The first step of analyses with these datasets is detailed
mining of the records to determine the spatial and temporal quality and reliability
of each occurrence record. For example, in chapter 5 species occurrence records
are either recorded with GPS point coordinates or on a grid. When aggregating
the species records to different grid resolutions we removed all records that were
recorded ata lowerresolution than ourgrid, and therefore unreliable. Wealso did
this by limiting our analyses to species with a certain number of species records
to avoid modelling under-sampled species. Furthermore, as mentioned in the
wild bee data section (2.2.1) we employed re-sampling methods to avoid spatial
auto-correlation due to spatially biased sampling (Broennimann et al. 2012). In

chapter 5 we specifically incorporate spatial auto-correlation into the models to

Machine learning refers to automated methods of data analysis which can detect patterns in big
data sources. Machine learning can be used for regression and classification problems and progres-
sively improves model performance building upon each model (Murphy 2012).
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quantify the effect that it has on the relationship between species and their niches
(Ovaskainen et al. 2017). We also use species records across a temporal range to
ensure a more detailed sample. This is a direct trade-off with knowing the exact
conditions of where and when a species was found, but we decided that having

sufficient records with which to model the species was more important.

The available data is described as presence-only data as true absence val-
ues are unavailable (Barbet-Massin et al. 2012a). This stems from the fact that
a small and highly mobile wild bee individual cannot be classified as absent in a
survey, regardless of the collection effort. Therefore, we need to provide the mod-
els with areas where we estimate the species isabsent. This is often done by taking
a background sample of locations used in the SDM and randomly defining areas
where a species has not been found as an absence, these absences are referred
to as pseudo-absences (Phillips et al. 2009). To deal with the bias of areas that
have not been sampled within our study boundary we utilize target background
sampling, whereby the background sample from which pseudo-absence values
are obtained is only taken from areas where wild bees have been surveyed previ-
ously and limiting the introduction of incorrect absences (Phillips et al. 2009;
Mateo et al. 2010).

Furthermore, when projecting into a unknown time period it is important
to train models with as much data as possible to fully capture the entire range of
the species being modelled, limiting the species to part of geographical range is
likely to result in inaccurate predictions (Titeux et al. 2017). We have attempted
to do this in chapter 5 by using species occurrence records from the entire extent

of the LULC covariates, even when projecting onto the smaller BENELUX region.

Variable Selection

Selecting the appropriate environmental covariates with which to model a species
distribution is a fundamental step in the SDM process. When selecting covari-
ates focus should be applied to ecological theory and the known causal relation-
ship between a specific covariate and species occurrence (Guisan & Zimmermann
2000). Understanding causality is additionally important when deciding be-
tween correlated variables (Dormann et al. 2013). For example, when projecting
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into the future under climate change scenarios the selection of climate variables
can result in different projections and may signify the difference between a pro-
jected species extinction and no visible change (Harris et al. 2013). Guisan &
Thuiller (2005) separate environmental factors into three categories, described
here with examples appropriate for wild bee species; (1) limiting factors associ-
ated with the eco-physiology of a species, e.g. the majority of bumblebees oc-
cur in areas where summer temperatures are between 5-25°C (Goulson 2010);
(2) disturbances which modify environmental systems, e.g. intensive agriculture
limiting resources for wild bees (Kremen et al. 2002); and (3) resources which
can be used by the target species e.g. availability of heathland as a feeding re-
source for specialized wild bees (Moquet et al. 2016) or sandy soils as a nesting
resource (Cane 1991). The most available and commonly used predictor variables
are climate variables, as they are the most readily available variables at the global
scale (Elith & Leathwick 2009). Nineteen bioclimatic variables are commonly
used in studies of climate effect on species distributions and represent an attempt
to increase the causal relationship between species distribution and climate by
calculating climate variables more illustrative of species ecology and directly ap-
plicable to SDMs (Table 2.3; Busby 1991; Hijmans et al. 2005; Hijmans & Elith
2014).

Algorithms

Oncea prospective modeller has chosen the species collection data and covariates
then the next step involves selecting the appropriate algorithm to train the model
and statistically represent the relationship between occurrence and the environ-
ment. There are many algorithms available to use in SDM studies. The choice
of algorithm can make a significant difference to model outputs, and can vary in
fit, variable selection and predictive accuracy (Aguirre-Gutierrez et al. 2013). In
chapter 3 we used maximum entropy (MaxEnt) to construct the SDMs, in chap-
ter 4 we used GLMs as part of a hierarchical Bayesian framework and in chapter 5
we used an ensemble modelling approach of three different algorithms, general-
ized linear models (GLMs), generalized boosted regressions model (GBMs) and
MaxEnt.

MaxEnt
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Maximum entropy? (MaxEnt) is an algorithm for modelling the distribution of
species. MaxEnt is used when only presence occurrence records are available and
there are no recorded absences for a species (Phillips & Dudik 2008). Therefore
MaxEnt is an ideal method to use with museum collections (Elith et al. 2011).
MaxEnt is perhaps the most widely used methodology for SDM studies because
of its robust ability to deal with a variety of presence-only data and explanatory
covariates (Phillips et al. 2006; Phillips & Dudik 2008; Elith et al. 2011; Merow
etal. 2013).

MaxEnt estimates a species distribution within a given geographic space,
specifically it compares the variation in probability density within the covariate
space in presence locations against the probability density of a background sam-
ple of the same covariate space (Elith et al. 2011). In other words MaxEnt defines
the suitability of certain habitats for the modelled species. MaxEnt requires co-
variates which explain the habitat available within a defined landscape boundary
(background) and spatially explicit occurrence records of species found within
this landscape (presence-only records). MaxEnt will then use this information
to provide a conditional (conditional to the species being present) probability
of presence at the chosen resolution for each species. MaxEnt does this by first
calculating the conditional density of the covariates in areas where the species is
present f(z) and the unconditional density of covariates across the total study
area f(z). The estimate of fi(z) is made based on the presence values, many
distributions are possible so MaxEnt tries to choose the distribution closest to
that of the background total study area f(z). The probability distribution across
locations is then estimated based on the ratio between f;(z) and f(z) (Elith et
al. 2011). This is fit as a log linear model similar in form to a generalized linear
model (GLM). The resulting estimates can be seen as a measure of habitat suit-
ability per location. The relationship between species presence and the model
covariates is often more complicated than a simple linear relationship and there-
fore MaxEnt provides different feature options which can be used to fit more
complex relationships. MaxEnt has 5 feature types for the covariates; (1) linear

(the covariate itself); (2) quadratic (the square of the covariate); (3) product (the

2Maximum entropy modelling refers to the idea in information theory that when defining an
unknown response with a statistical model, the best solution will always be the one with maximum
entropy (Jaynes1957). Entropy being a measure of the information produced by arandom data source.
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product of two covariates); (4) threshold (a step function where a different re-
sponse to the covariate is possible above and below a threshold) and (5) hinge
(similar to the threshold but the different response above and below the thresh-
old is a linear relationship). For a more detailed explanation of the theory and
statistical basis of MaxEnt’s use in ecology see Elith et al. (2011). In chapter 3
we use MaxEnt species distribution models to model the distribution of 193 wild
bees in the Netherlands, using 13 covariates of land use and climate conditions.
We chose to use only MaxEnt models because MaxEnt had previously been the
best performing method for a similar group of species, hoverflies, in the same ge-
ographic extent (Aguirre-Gutierrez et al. 2013). In chapter 5 we also use MaxEnt
but this time as part of an ensemble mode to increase our ability to account for

uncertainty and variation observed when modelling different species.

Generalised linear models (GLMs)

Generalised linear models (GLMs) are a technique for weighted linear regres-
sion with model observations distributed to different exponential families fit with
maximum likelihood (Nelder & Baker 1972). A simple linear model is described

as:

Y=x+XB+e€

Where Y is the response variable, x refers to the intercept, X is a vector of
the known values of the independent explanatory variables, § is a vector of the
regression parameters for each explanatory variable; and € is the error and any
unexplained model variation (Guisan etal. 2002). Alongside the linear predictor
outlined above the generalized linear model introduces a probability function
distribution for the necessary exponential family and a link function (Nelder &
Baker 1972). Therole of the link is to define the relationship between the mean of
the response variable (distribution function)® and the chosen linear predictors,
(Guisanetal. 2002). The link function transforms the expected value of response

variable and allows it to depend on the explanatory variables. The majority of

3The mean of the distribution function refers to average value of the cumulative distribution func-
tion that describes the distribution of the residuals of a binomial response variable (O or 1).
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SDMs use presence/absence data and therefore are best modelled with a binomial
distribution with a logit or probit link function (Guisan et al. 2002; Hijmans &
Elith 2014). A GLM is described as:

o(E(Y)) = LP = x + XB

Where the expected value of the response variable E(Y) with a link func-
tion ¢() is associated with a linear predictor, X (Guisan et al. 2002). Whilst not
the most consistent or accurate algorithms GLMs provide a simpler interpreta-
tion than many of the other algorithms used in SDM analysis (Elith & Graham
2009; Aguirre-Gutierrez et al. 2013). Generalized linear models also allow step-
wise variable selection using Akaike Information Criterion (Akaike 1998; Guisan
etal. 2002). GLMsare used in chapter 4 with a probit function as part of Bayesian
framework and in chapter 5 with a link function as part of an ensemble SDM.

Generalised boosted regressions model (GBMs)

Generalised boosted regressions model (GBMs) utilize gradient boosting, a me-
thod of regression which uses a large ensemble of multiple models in the form of
decision trees (Friedman et al. 2000). The algorithm used as part of an ensemble
model in chapter 5 is a boosted regression tree. Each of the models that form
the large ensemble of models is a single regression tree (Friedman 2001). Each
regression tree is sequential to the previous and therefore learns from the errors of
each previous tree. For SDMs, GBMs use a Bernoulli distribution (O or 1, present
or absent) as the response variable. GBM permeates through each relationship
between covariate and response in the form of regression trees (Friedman 2001).
Each tree is fitted incrementally with each tree predicting the residuals of the
tree before it (Friedman et al. 2000; Elith et al. 2008). This iterative process
results in a final model that predicts presences based on continuously adding
trees and re-weighting the relationships within the data to reflect previous poor
models (Friedman et al. 2000). Cross-validation, when the data is split into
testing and training subsets to test the accuracy of the trained model, is used to

validate iterative trees in the building process. Furthermore, to avoid over-fitting
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the model, it is important to specify the maximum number of trees which can be
fitted (Elith et al. 2008).

Ensemble modelling

Ensemble modelling as used in chapter 5 involves utilizing a variety of approaches,
fitting multiple model algorithms and then analysing the resulting projections
(Araujo & New 2007). Ensemble models can be utilized in two ways; either by
selecting the best model based on your chosen validation criteria (Elith et al.
2006) or by creating a consensus of all model predictions, as we do in chapter
5 (Barbet-Massin et al. 2012b). Consensus ensemble modelling provides sig-
nificant benefits over modelling with a single algorithm, Instead of providing a
single value of habitat suitability per grid cell it allows for the calculation of aver-
ages and variances measures overall and per choice of input, algorithms, model
features, scale and resolution (Marmion et al. 2009; Thuiller 2014b). Ensemble
modelling techniques are often applied to forecasting species distributions under
shifting global climate and LULC states because they offer the possibility of cal-
culating and presenting the inherent variability associated with projections into
variable future conditions (Araujo & New 2007). In Chapter 5 we utilize median
ensemble predictions of three algorithms. The three models chose were GLMs,
GBMs and MaxEnt. The decision to include these three algorithms was based on
their performance in modelling hoverflies, a species group with similar mobility
and behaviour to bees (Aguirre-Gutierrez et al. 2013). Authors found that GLMs
performed well for widespread common species and also represent a more easily
interpreted model, GBMs had higher consistency in variable selection and also
obtained good models for more widespread species, whereas MaxEnt does well
with more narrow distribution and species with fewer records (Aguirre-Gutierrez
etal. 2013). Therefore, we believed that a combination of these three model types
would adequately deal with the variation in spatial distribution and number of

records in the European bumblebee collection records.

Validation

Following the training of models a vitally important step is to test the model
performance to justify the use of the model for its particular purpose. Model
verification measures how well a model fits the data used to train it, whereas the
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more important step is validation which compares the SDM to independently col-
lected species occurrence data (Aratjo & Guisan 2006). The most common way
models are validated is with a split-sample approach as part of a cross-validation
procedure, where a subset of the data is not used to train the model and is in-
stead used to test the accuracy of the model predictions; this process is repeated
with several split samples to measure model performance across the whole range
data (Elith & Leathwick 2009). In all three chapters where we use SDMs we use
cross-validation technique to validate the models. Cross-validation involves a
priori splitting the occurrence records into training and testing subsets. In all
three chapters with SDMs we apply the same 80% training and 20% testing split.
When using cross validation a number of different statistics can be calculated to
measure model performance. These statistics are calculated using a confusion
matrix* were observed testing records are compared to predicted occurrences
(Fielding & Bell 1997). It provides four values: sensitivity (true positive fraction),
specificity (true negative fraction), the false positive fraction (I-sensitivity) and
false negative fraction (1-specificity; Table 2.4). Sensitivity is measured as a ra-
tio between sites where the model has correctly predicted a true presence and
the total number of presences sites. Specificity is the ratio between absence sites
correctly predicted as such and total number of absences or pseudo-absences. To
obtain these measures habitat suitability values from the SDM must be converted
into binary presence or absence predictions (Fielding & Bell 1997). This is done

using a threshold, see Threshold section.

TasLe 2.4: Confusion matrix showing the discriminatory ability of a Species Distribution

Model (SDM).
Actual Occurrences
Present Absent
. . Present a b
Model Prediction Absent (Pseudo-absences) c d

Sensitivity Specificity
a/(a+c) d/(b+d)

4A confusion matrix is a table that describes the efficacy of a classification model (SDM) to predict
known values.
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A commonly used statistic to validate the model based on the ability of the
model to discriminate between presence and absence is the area under the curve
(AUC) of the receiver operating characteristic (ROC). The ROC is measured as
the relationship between the rate of false positives (1-specificity) and the sensitiv-
ity. The AUC is independent of the threshold as it checks discrimination across a
range of thresholds. A model is deemed to be accurate when it shows a curve that
has high sensitivity (y-axis) with low values for the fraction of false positives (x-
axis, Fig 2.9; Jiménez-Valverde 2012). In other words, the AUC value represents
relationship between the proportion of true positives and the proportion of false
positives when the threshold varies from O to 1. A model which shows no discrim-
ination, a random predictor, is represented by an AUC of 0.5. In the case where
there are no absences available the specificity is plotted against the background
or pseudo-absence points predicted as present. This changes the interpretation
slightly, as in this case the AUC measures whether the model discriminates a true
presence site from a random background site (Phillips et al. 2006). Therefore,
in all the cases where we use cross-validation in the thesis we use the AUC value.
In chapter 3 we additionally outline in detail how we use independently collected

data to test model performance.

Threshold

Threshold values are required for many SDM applications to convert projected
habitat suitability values into presence or absence predictions (Jiménez-Valverde
& Lobo 2007). We utilize threshold values to convert the predictions of bum-
blebee distributions under future conditions into binary presence absence maps.
This allows us to look at specific locations and determine if a species has lost or
gained suitable habitat from the present to the future. A number of methods
are available to select thresholds, for more information see Liu et al. (2005) and
Jiménez-Valverde and Lobo (2007). We used the threshold point at which the
model maximizes the sum of sensitivity and specificity (mas SSS) values (Thuiller
etal. 2015). Max SSS has been criticized as a threshold criterion for presence only
models, specifically because without true absence data specificity is unreliably
calculated (Braunisch & Suchant 2010; Merow et al. 2013). However, Liu et al.

(2013) show that max SSS consists in calculating a threshold value regardless of
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Sensitivity

1-specificity (commission error)

FiG. 2.9: Receiver operating characteristic (ROC) curve. Dotted

line shows a model with perfect discrimination area under the ROC

curve (AUC) of 1. Black thick line, curve of a model showing im-

perfect discrimination. Diagonal black line shows a model with no

discrimination, AUC = 0.5. The dashed line shows points at which

sensitivity (Se) equals specificity (Sp). Source: figure modified from
Jiménez-Valverde (2012).

whether presence/absence or presence only data is used, it is also objectively se-
lected and uses both sensitivity and specificity predictions. Therefore, we believe
it is the most appropriate threshold selection to use to convert habitat suitability

values into presence absence maps.

2.3.2 Linear Mixed Effects Models (LMM)

Linear mixed effects models (LMM) and generalized linear mixed effects models
(GLMM) are an extension of linear regression and generalized linear modelling
(see Species Distribution Models). The key component of a LMM is that it con-
tains both fixed and random effects (Zuur et al. 2009). In general LMMs are
used when the data have a hierarchical nested structure, where measurements
are repeated across the same units or groups of units (Bolker et al. 2009; Zuur et
al. 2009). In other words the model assumes that measurements coming from

the same ‘unit’ are non-independent. For example, multiple measurements of
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species richness from the same agricultural field are non-independent as they are
likely to be affected by the conditions specific to that field. The random structure
is useful when dealing with a random subset of a larger population. The agricul-
tural fields in the example are a subset of a many agricultural fields which could
be sampled. For example, if a researcher is interested in what environmental fac-
tors influence species richness measurements they are most likely not interested
in the inherent variability between different agricultural fields, in this case the
fields should be treated as a random effect. The fixed effects of the LMM work
exactly as described in a GLM. The random effect component of the model allows
for each statistical unit to have a different baseline value of the response variable
in the form of a random intercept which the model estimates (Winter 2013). The

linear mixed effect model takes the form of:

Y=x+XB+Zu+e€

Where Y is the response variable; x refers to the intercept; X is a vector of
the known values of the independent explanatory variables (fixed effects); B isa
vector the regression parameters for each explanatory variable; Z is the random
component of the fixed X (random effects); and u the random components to
the fixed § and € is the residual error and any unexplained model variation. We
use LMMs in chapters 3 and 5 to examine how model performance and distribu-
tion metrics are affected by different explanatory covariates, given that we have
multiple measurements from sites and for species.
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3.1 Abstract

Species distribution models (SDM) are increasingly used to understand the fac-
tors that regulate variation in biodiversity patterns and to help plan conserva-
tion strategies. However, these models are rarely validated with independently
collected data and it is unclear whether SDM performance is maintained across
distinct habitats and for species with different functional traits. Highly mobile
species, such as bees, can be particularly challenging to model. Here, we use in-
dependent sets of occurrence data collected systematically in several agricultural
habitats to test how the predictive performance of SDMs for wild bee species de-
pends on species traits, habitat type, and sampling technique. We used a species
distribution modelling approach parametrized for the Netherlands, with pres-
ence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we
built a Maxent model based on 13 climate and landscape variables. We tested the
predictive performance of the SDMs with independent datasets collected from
orchards and arable fields across the Netherlands from 2010 to 2013, using tran-
sect surveys or pan traps. Model predictive performance depended on species
traits and habitat type. Occurrence of bee species specialized in habitat and diet
was better predicted than generalist bees. Predictions of habitat suitability were
also more precise for habitats that are temporally more stable (orchards) than
for habitats that suffer regular alterations (arable), particularly for small, solitary
bees. As a conservation tool, SDMs are best suited to modelling rarer, specialist
species than more generalist and will work best in long-term stable habitats. The
variability of complex, short-term habitats is difficult to capture in such mod-
els and historical land use generally has low thematic resolution. To improve
SDMs’ usefulness, models require explanatory variables and collection data that
include detailed landscape characteristics, for example, variability of crops and
flower availability. Additionally, testing SDMs with field surveys should involve
multiple collection techniques.



3.2. Introduction 9]

3.2 Introduction

Pollinators are responsible for the pollination of over 80% of flowering plants
(Ollerton et al. 2011), and the vast majority of global food crops benefit from
animal pollination, with approximately half of these crops being highly depen-
dent (Klein et al. 2007). While the honeybee (Apis mellifera L.) is considered
the most economically valuable pollinator species for agriculture, wild pollina-
tors can be more efficient per individual in enhancing the yield and quality of
many crops (Klein et al. 2007; Garibaldi et al. 2013). Yet, their diversity has de-
clined in Europe (Biesmeijer et al. 2006; Dupont et al. 2011; Bommarco et al.
2011; Carvalheiro et al. 2013) and elsewhere (Bartomeus et al. 2013; Martins et
al. 2013). These declines have been attributed to a multitude of factors, such as
land-use intensification, climate change, alien species, and pests and pathogens
(Potts et al. 2010; Vanbergen & The Insect Pollinators Initiative 2013). Several
pollinator-friendly practices have been, and continue to be, applied to provide
semi-natural and natural resources within agricultural landscapes (Kleijn et al.
2011; Garibaldi et al. 2014). However, as wild pollinators often require specific
environmental conditions (Cane et al. 2006), the efficiency of such practices can
depend on the characteristics of the surrounding landscape and other environ-
mental variables (Scheper et al. 2013). Understanding which environmental fac-
tors determine where wild bees occur in the landscape is essential for the success

of such targeted interventions.

Species distribution models (SDMs) can help in understanding how the
distribution of and decline in wild bee species is regulated by land-use and cli-
mate variables (Elith & Leathwick 2009). Due to the increase in computer power
and data availability, species distribution modelling is becoming a widely used
ecological tool in studies of biodiversity, predicting occurrence of species in un-
known areas, and predicting future occurrences (Franklin 2013). These predic-
tions can help prioritize areas in need of conservation interventions and estimate
the impact of environmental change, such as human land-use changes (Guisan
& Thuiller 2005; Polce et al. 2013). However, while SDMs are generally based on
haphazardly collected data of varying spatial and temporal scale (e.g., museum
collection data) and aggregated over a number of years, they are often used to test
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hypotheses at finer scales and at particular moments in time (Guisan & Thuiller

2005). The efficacy of SDMs for these purposes is therefore a reason of concern.

The importance of testing the accuracy of SDMs is widely recognized (Elith
& Leathwick 2009). However, such accuracy tests often use subsets of the same
collection data used to build the model. These tests violate the independence
expected between training and testing data (Bahn & McGill 2013). Additionally,
these tests require a large number of collection points for the data partitioning
to be valid (Allouche et al. 2006; Fawcett 2006). Testing the models by collect-
ing independent presence data is the ideal approach, but is rarely applied due
to logistic constraints, particularly when dealing with highly mobile organisms
(Evangelista et al. 2008; Peltzer etal. 2007). Therefore, for many animal species,
it is uncertain whether SDMs can accurately predict species presence in specific
locations, and hence, how useful and reliable the results can be in guiding pol-
icy for the protection of biodiversity, or estimating the presence of economically

valuable species.

In this study, we test the performance of SDMs in correctly predicting wild
bee occurrences from recent field surveysand how this varies between speciesand
landscape. As the effects of disturbance and fragmentation depend on sociality,
body size, and nesting behavior of bees (Bommarco et al. 2010; Williams et al.
2010; Brittain & Potts 2011), we expect the performance of the SDMs to depend on
these traits. Previous studies show that specialized, plant and amphibian species,
with specific habitat requirements, are more accurately modelled (Evangelista et
al. 2008; Peltzer et al. 2007; Newbold et al. 2010), and we hypothesize that the
bees specialized in habitat and feeding will have higher habitat suitability pre-
dictions for their occurrences than generalist, widespread species. Additionally,
we expect that rarer species will have higher predicted habitat suitability due to
the reduced geographical range they usually occupy (Franklin et al. 2009; Rebelo
& Jones 2010). Finally, as the SDMs will be based on species records with variable
spatial and temporal precision, we hypothesize model predictions in agricultural
habitats which have a greater temporal stability (e.g., orchards) will have higher
suitability values than for agricultural areas subjected to accentuated temporal
changes (such as crop rotation) or subjected to ephemeral establishment of ar-

eas rich in flower resources (e.g., wildflower strips).
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3.3 Methods

3.3.1 Species distribution model development

This study focuses on the Netherlands, a region for which we have access to rela-
tively extensive and detailed data on species distributions, land use, and climate.
The bee collection data were provided by European Invertebrate Survey (Peeters
et al. 2012). We used records collected since 1990, and due to the number of
available explanatory variables, we included species for which we had more than
30 recorded observations. This led to a total of 193 species across 25 genera (from
a total availability of 304 species in 30 genera). A total of 43 989 observations
were used to model the species’ distributions. The number of collection points
perspecies modelled ranged from 31 (Bombus cryptarum Fabricius, Lasioglossum
pallens Brullé, and L. rufitarse Zetterstedt) to 1862 (B. pascuorum Scopoli).

We modelled the distribution of these 193 species across the Netherlands
using R (R Core Team, 2012) with package biomod?2 (Thuilleretal. 2009) and the
species distribution modelling algorithm Maxent (Phillips & Dudik 2008). We
chose Maxent because it has previously performed well on similar data for a vari-
ety of evaluation measures and is robust against overfitting (Phillips et al. 2006;
Aguirre-Gutiérrez et al. 2013). The models were constructed with the BIOCLIM
climate variables obtained from WORLDCLIM database (Hijmans et al. 2005),
and land-use variables obtained from the Dutch rural land-use file version six
(Hazeu et al. 2012) and the TOPIONL (Kadaster, 2012). The original resolution
of the land-use variables was 25 x 25 m; to match the coarser resolution of the
bee collections and climate data, we rescaled the land-use data to 1 km? by calcu-
lating the percentage cover (i.e., percentage of 25 x 25 m cells) of each land-use

class within each 1 km2.

Some precipitation and temperature variables for different parts of the year
(i.e., warmest, coldest, and wettest quarters of the year) were strongly correlated
(Pearson’s pair-wise correlation coefficient >0.7). In these situations, we selected
the variable thought to have a greater impact on the distribution of bees, such as
the variables related to the periods when bees are most active, for example, the

warmest quarter. To minimize the overall number of explanatory variables in
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the model and avoid problems of overfitting, we ran initial MAXENT models for
each species with all environmental variables available (27 variables) and then
looked at the variable importance value of each variable across all species. We
then selected the variables that were consistently among the three most impor-
tant variables for each species and removed those that were not. The final SDM
incorporated thirteen variables: seven land-use variables, five climate variables,
and elevation (see Table S3.1).

Maxent requires a background sample to be selected from the covariates
included in the model (Elith et al., 2011; Phillips et al. 2009). We used tar-
get-group sampling to select our background points (Phillips et al. 2009; Mateo
et al. 2010). We specified that this background sample could only be selected
from areas where wild bee species have been found since 1990. This approach is
more objective and realistic than taking the background sample from sites that
have not been sampled, accounting for potential sampling bias (Phillips et al.
2009; Elith et al. 2011), and provides more accurate results (Mateo et al. 2010).
We ran the model 11 times for each species: 10 times with random subsets of 80%
of the data and once with 100% of the data. Using a common procedure of val-
idation of SDMs, we then used the remaining 20% of the data to produce area
under the curve (AUC) values, which is a measure of the proportion of instances
correctly predicted against the proportion of absences incorrectly predicted as
presences (Jiménez-Valverde 2012). All species models had an AUC of at least
0.6.

We validated the full models (run with 100% of the data) with indepen-
dent datasets collected during field surveys (see methods below). Model output
consisted of a habitat suitability score between O and 1 for each species per 1 km2,
with O indicating not suitable and 1 most suitable.

3.3.2 Field surveys

The data used to test the predictive performance of the SDMs were collected from
four independent studies, details of which are described below (for site locations
see Fig S3.1). Bee species collected and identified to species level were used to
test the models. The different studies were independent of each other, data being
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gathered in different time periods, by different collectors, and using a systematic
survey across several sites and over short time periods. They were experimentally
set-up to test particular research questions associated with specific farm types
and habitats: arable oilseed rape fields and associated field margins; arable fields
with wildflower strips, and apple and pear orchards. While these agricultural
landscapes do not represent Dutch farmland as a whole, they cover important
types of agricultural landscape with different levels of temporal stability. Or-
chards are perennial crops maintained for several years; arable fields have annual
crops, with crop species rotating every 1 or 2 years. Measures to enhance bio-
diversity in arable fields (permanent field margins vs. annual wildflower strips)
will also interfere with the temporal stability of the landscape. The studies also
differed with respect to the sampling methods used.

Furthermore, the SDMs presented here are independently validated based
on data from agricultural sites only. In order to fully understand the efficacy
of SDMs for modelling wild bee species distributions, natural habitats can also
be included, in which bee diversity is much larger than in agricultural habitats
(Ricketts et al. 2008).

Arable oilseed rape fields and field margins (sampling method: Transect)

Data were collected in 2011 and 2012 in 16 arable oil seed rape fields and sur-
rounding boundaries located in the eastern part of the Netherlands. Bee surveys
were conducted along 150 m? transects (15 min pure collecting time per tran-
sect). When sampling within fields, two transects of 1 x 150 m were used, one
located at the edge of the field and one located in the center of the field. Field
boundary transects varied in size depending on the length and width of the field
boundaries (but were in most cases 2 x 75 m). Oil seed rape fields were surveyed
twice a year during oil seed rape flowering, and the field boundaries were sur-
veyed four times a year: twice during and twice after the flowering period of the
oil seed rape. Bees were collected using net and hand trapping and identified to
species level in the laboratory.
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Arable fields with wildflower strips (sampling method: Pan Trap)

In 2011 (first season of wildflower strips) and 2012 (second season), data were
collected on 68 arable fields throughout the Netherlands using pan traps. Wild-
flower strips had been established along the edge of each arable field. Each wild-
flower strip was 3-9 m in length. The arable fields consisted of potato, sugar beet,
or cereal crops. Pan trapping was conducted once at each site. All pan traps were
yellow and four were placed at each site, in a square formation two traps in the
wildflower strip and two traps in the field each 20 m apart. Each set of pan traps
was left for a 24-h period. All species of insects collected in the pan traps were

identified, the majority to species level.

Apple and pear orchards (sampling method: Transect)

Six apple and six pear orchard locations were sampled in 2010 and 2011, and 15
apple orchards were sampled in 2013. All sites were located more than 3 km
apart within the province of Gelderland in the Netherlands. Flower visiting bees
were surveyed using transect walks. Each orchard was surveyed twice per year
during blooming, once in the morning and once in the afternoon with at least
three and at most 7 days separating surveys. In each orchard, bees were surveyed
using a single transect between two rows of trees along the length of each orchard
with the transect subdivided into 25-m-long plots (mean number of plots per
orchard +SE: 8.5 £1.0 for apple in 2011 and 2012; 9.7 £0.5 for pear in 2011 and
2012; exactly 12 for apple in 2013). Each transect plot was surveyed during a
10-minute period. All flower visitors were collected by net and hand trapping.
Easily recognizable species were generally identified in the field; all other species

were collected and identified in the laboratory.

Apple Orchards (sampling method: Pan Trap)

In 2013, field surveys were performed at nine apple orchards throughout the
Netherlands. Field surveys of bee diversity were conducted using pan traps (West-
phal et al. 2008). Each farm was located within a 1 km? square landscape sector
that corresponded to the scale and positioning of our SDM. Pan trapping was con-

ducted on three separate occasions: before, during, and afterapple flowering. For
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each 1 km? site, eight pan traps were positioned, four within the Elstar cultivar
(one at each corner) and four located outside the orchard but within the 1km?
zone. Each pan trap set consisted of three pan traps (yellow, blue, and white)
and was left for a period of 24-h. Bees present in the pan traps were separated

from other insect groups and identified to species level.

3.3.3 Testing the model with independent datasets

In this project, the performance of the SDM is assessed as the habitat suitability
(0-1) provided by the SDM for the areas where individual wild bees were collected
during independent surveys. Suitability values can be considered as a percentage
of chance that a species will be present in the area (see the interpretation of Elith
et al. (2011) of the MAXENT logistic output). Therefore, we consider the SDMs
with higher habitat suitability values for collected occurrences to have superior
predictive performance. Furthermore, the habitat suitability value contains more
information than the usual binary (presence or absence) classifications based on
specificity and sensitivity calculated statistics (Bahn & McGill 2013). We analysed
the predictive performance of the SDMs only for species that were collected dur-
ing the independent field surveys. We did not analyse predictive performance for
species not found during the field surveys as we cannot assume that that absence

during the survey is indicative of true absence from the site.

To test whether the predictive performance of SDMs depended on species
traits, we divided the 56 noncleptoparasite species collected in our field studies
into trait groups (52 species were included in the final analysis; we removed four
species, which were found only in forest edges near oil seed rape fields and not
in either orchards or arable fields [See Table S3.2]). We considered six ecologi-
cal traits from the “Buropean bee traits database” (established by ALARM, www.
alarm-project.ufz.de, and developed by STEP, www.STEP-project.net): ha-
bitat specialization, (continuous scale from 1 to 8 related to the number of habitat
typesa species occurs in, specialist to generalist), feeding specialization (oligolec-
tic, feeding on one plant species or polylectic, feeding on multiple plant species),
body size (intertegular distance of females, where the wings join the thorax), so-
ciality (solitary or social; social species included eusocial as well as primitively

eusocial species, all others were classified as solitary), nesting habit (above or
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FiG. 3.1: Results of Hill & Smith multivariate ap-
proach based on six biological traits across 2 axes,
(RSI and RS2). Four groups selected. Groups A-D (See
Table3.1). RSlis positively directed by oligolectic, solitary,
below ground bees. RSl is negatively directed by social,
habitat generalist aboveground bees with long flight peri-
ods. RS2 is positively directed by large, oligolectic, social
bees which nest aboveground. RS2 is negatively directed
by polylectic below ground nesting bees (see Table S3.4).
Each number refers to a bee species listed in alphabetical
order (see Table S3.2).

belowground, belowground species included any renters or excavators which
used nests in the ground all others were considered aboveground), and length
of flight period (period active during the year; from 8 to 36 weeks). We iden-
tified trait groups using the Redundant Hill & Smith dimensional scaling tech-
nique. This method was chosen as it allows for concurrent analysis of both cat-
egorical and continuous ecological trait data by defining the categorical vari-
ables by the means of the continuous variables (Hill & Smith 1976; Barnagaud
et al. 2014). The analysis was conducted using R package ade-4, which first uses
principal component analysis to process the continuous variables and correspon-
dence analysis for the categorical variables and then the Hill and Smith analysis to
compare the relationship between the two (Dray & Dufour 2007). Four distinct
species groups were selected (groups A-D; see Table 3.1; Fig 3.1). The three most
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important variables involved in the analysis were nesting habit, feeding special-
ization, and sociality. Each group contained at least 5 species (See Table S3.2).
We can typify group A as polylectic, habitat specialists; group B as small, polylec-
tic, habitat generalists; group C as oligolectic, habitat specialists; and group D
as large, polylectic, habitat generalists (consisting of Bombus species only). Two
species were not clearly allocated to one of the above four groups Megachile lig-
niseca (Kirby) and M. versicolor (Smith, F.). However, they were classified as part

of group C, with whom they share the most traits (Fig 3.1).

TasLe 3.1: Trait summary of the four bee species groups selected using the Hill and
Smith method of multiple correspondence analysis (MCA), based on six biological
traits across 2 axis.

Habitat Diet Body Nesting Flight Dominant

Group specialization specialization size Sociality habit  period genera
A(2§) Asma” intermediate Specialists Polylectic Small Solitary Below  Short Andrena
specialists

B (12) Small generalists ~ Generalists Polylectic Small Mixed Below Long Lasioglossum
lSe(el;) Highly specialized Specialists Oligolectic Intermediate Solitary Mixed  Short N/A

D (7) Large generalists Generalists Polylectic Large Social Mixed Long Bombus

Numbers in brackets refer to the number of species selected in each group. Habitat specialization, continuous

variable, representing the number of habitat types, from 1 (specialist) to 8 (generalist). Diet specialization, factor

oligolectic or polylectic (oligolectic, feeding on one plant species or polylectic, feeding on multiple plant species).

Body size, continuous, intertegular distance of females (mm), sociality, factor, solitary or social. Nesting habit,

factor, below, or aboveground. Flight period continuous, 4-36 weeks. Dominant genera, the genera that makes
>70% of the species diversity in that group.

We tested whether the habitat suitability predicted by our SDMs for these
52 species varied between trait group (A-D) and habitat (orchard or arable field),
using linear mixed effect models (LMM), with R package Ime4 (Bates etal. 2013).
The sampling method (transect vs. pan traps) used in the field surveys was also
included as an explanatory variable in the LMM, to account for any possible
methodological bias. Due to the nested structure of the data, multiple collec-
tion sites within separate studies, we included site within study as a random effect
variable. Additionally, as the species collected were only a subset of all the species

modelled for the Netherlands, we included species as a random effect variable.

Detailed collections of multiple individuals in the same area are required to
predict the distribution of species abundance alongside habitat suitability predic-
tions (Van Couwenberghe et al. 2013). Because of its scope and resolution, this
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was not feasible for our SDM. Nevertheless, we included the number of records
used to build SDMs in the analysis as a proxy for species rarity and probability of
detection.

We compared all possible combinations of the variables described above,
and their two- way interactions, and selected the most parsimonious model based
on the lowest Akaike information criterion, corrected for finite sample size (AICc).
We also compared the mixed effect models with the Bayesian information cri-
terion (BIC), which punishes extra terms more harshly than the AIC and AICc
(Burnham & Anderson 2002).

3.4 Results

3.4.1 Testing the model with independent datasets

A total of 446 individuals of 52 species (excluding cleptoparasites) were collected
at 133 sampling locations and were used to analyze the predictive performance
of our SDMs. The abundance and richness of wild bees varied between habitat

types, species trait groups, and sampling technique (see Figs. S3.2 and S3.3).

The habitat suitability values obtained from the SDMs, for each of the oc-
currences collected, varied between the different types of habitat where the col-
lection took place, and also among the different species trait groups (Table 3.2,
Fig 3.2). Although the number of records differed significantly between groups
(see Fig S3.4), the habitat suitability of the model was not significantly affected
by thisvariable (ANOVA, chi-square test, P = 0.13). The sampling method used to
collect the independent wild bee occurrences significantly affected the measure
of SDM habitat suitability overall. Moreover, significant interactions were found
between sampling and group and sampling and habitat type; the effect of habitat
type decreased for transect collections and the effect of species trait groups was

also lower for transect collections than pan trap collections (see Table 3.2).

Data were available for all groups in each of the habitat types and collection
techniques except group C. Species of this group were not collected in pan traps
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Tasie 3.2: Effect of species trait group (G), sampling technique (S), and landscape
type (L) on species distribution model predictive performance (habitat
suitability of species occurrences). Number of observations was 436 of 52 unique
species. P-values were obtained from likelihood ratio tests where deviance between
models with the term and without the term where compared. n.s = P > 0.05. The symbol
“~” represents a variable not included in the model. All interactions where tested and
those which contributed significantly to any of the models remained. Random terms (all
models): “1 | Study/Site,” “1 | Species”

Response Variable G S L GS GL S:L DF AICc AAICc

Accuracy
Model 1 (Best Model) 0.042 <0.001 0.1 <0.001 - 0.025 422 5636.1 0
Model 2 0.042 <0.001 0.1 <0.001 0.3 0.035 419 56389 2.79
Model 3 0.044 <0.001 0.1 <0.001 - - 423 5639 29
Model 4 0.05 0.001 - <0.001 - - 424 5639.5 339
Null Model - - - - - - 431 5685.8 49.64
BIC ABIC
Model 1 (Best Model) 0.05 0.001 - <0.001 - - 424 56877 O
Model 2 0.044 <0.001 0.1 <0.001 - - 423 5691.2 347
Model 3 0.042 <0.001 0.1 <0.001 - 0.025 422 5692.2 4.1
Model 4 - 0.001 - - - - 430 57014 13.71
Null Model - - - - - - 431 5706 1831

within orchards (Fig 3.2B). Overall, the occurrences of highly specialized bees
(group C) had higher average suitability values than the other three groups (Fig
3.2); significantly more than group A and group B species (P < 0.036 and 0.037,
Fig 3.2, See Table S3.3). Furthermore, the modelled habitat suitability values
for species occurrences from group D were significantly lower when comparing
transects with pan traps (P < 0.001, See Table S3.3).

Overall the bee species collected in orchard habitats had higher predicted
habitat suitability than those collected in arable field habitats (Table S3.3). This
result was particularly accentuated for bees collected with pan traps (Fig. 3.2A
and B). Furthermore, within orchard sites, the pan trap collected bees were more

accurately predicted than the transect-collected bees (Fig. 3.2B and D).
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FI1G. 3.2: Mean and standard error of habitat suitability for collection points of the four species

groups, in both landscape types (Orchard and Arable) and for both sampling techniques (Pan

Trap and Transect). Group A = small, intermediate specialists, group B = small generalists, group C =

highly specialized bees, group D = large generalist bees. See Table S3 for pairwise comparisons between
effects.

3.5 Discussion

Field surveys are rarely used to test species distribution models (SDM), partic-
ular those investigating spatial patterns of highly mobile animals such as bees
(Fielding & Bell 1997; Jiménez-Valverde et al. 2008). We analysed the SDM habi-
tat suitability scores of independent wild bee occurrences, and we show that the

performance of SDMs to predict wild bee occurrences in field surveys depends on
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species traits and on the characteristics of the target habitat and sampling tech-
nique. Below we discuss the implications of these findings and the limitations of

our study.

3.56.1 Variation of model predictive performance among dif-
ferent species trait groups

Wild bee species with different traits can have contrasting responses to environ-
mental conditions. Specialist bees have been shown to be more strongly affected
by agricultural intensification, habitat loss, and fragmentation than generalists
(Bommarco et al. 2010; Williams et al. 2010). Habitat and feeding specialists are
generally more restricted in their range of suitable habitats, while large, gener-
alist bees such as bumblebees have greater mobility and can meet their resource
requirements in a wider range of habitats (Hanley et al. 2011). This probably
explains the better model performance for highly specialized species, indicating
that SDMs are better able to discriminate their more restricted habitats. Similar
patterns have been demonstrated for other taxa (Evangelista et al. 2008; Peltzer
etal. 2007; Newbold et al. 2010; Trumbo et al. 2011). This finding suggests that
while the 1 km? resolution used in this study is appropriate for predicting the
distribution of specialized bee species, a more detailed sampling data or differ-
ent set of predictor variables would likely be needed to obtain better predictions
for more generalist species. Furthermore, the differences between model predic-
tive performance for specialized and generalist bees suggest that the SDM may
be more useful for conservation purposes focused on more specialized species
which are more likely to suffer declines (Biesmeijer et al. 2006), than for predict-
ing crop pollinators which are commonly more generalist species (but see Polce
etal. 2013).

Model performance varied between studies using different sampling tech-
niques which suggests that pan trap and transect collections sample different
parts of a bee community and that the SDMs do not predict these subsets equally.
Indeed, Cane et al. (2000) found that transect walks sampled the bee commu-
nity better than pan trapping, where many abundant and specialized bee species
were absent. In contrast, Westphal et al. (2008) showed that pan trapping and
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transects sampled similar species composition, but that pan traps generally sam-
pled more of the wild bee community than transect surveys. However, these
results are strongly limited by the intensity of each method, the experience of
the transect surveyors, whether the pan traps are painted UV bright and whether
they were placed at vegetation height. Bumblebees (trait group D: large gener-
alists) showed distinct trends related to sampling technique. The occurrences
of bumblebees collected during transects had lower predicted habitat suitabil-
ity in the models than those from pan traps. This difference was particularly
marked in arable fields which were generally predicted in our SDM to be un-
suitable habitats, but where bumblebees were frequently detected. Bumblebees
can travel long distances and respond very rapidly to the presence of unexpected
mass-flowering events of attractive crops, such as when annual crops like oil seed
rape start blooming (Hanley et al. 2011). However, bumblebees and other highly
social species have been shown to have higher flower and site constancy than
smaller, solitary bees (Osborne & Williams 2001; Gegear & Laverty 2004) and
therefore may be less likely to be caught in pan traps. The use of multiple col-
lection techniques for independently testing the performance SDMs is therefore
essential (see also Westphal et al. 2008).

3.5.2 Variation of model predictive performance among dif-
ferent landscapes

Overall, the wild bees collected in orchards were predicted with significantly
higher suitability values than the species collected in arable fields, particularly
when using pan traps and for small, mainly solitary bees (groups A and B). In
this study, the category “arable fields” includes a variety of crops, some having
periods of intense flowering very attractive to bees (e.g., oil seed rape, Delaplane
& Mayer 2000), while others are less attractive to bees (e.g., sugar beet and wheat,
Delaplane & Mayer 2000). Additionally, in annual crop fields, the type of crop
is frequently rotated, and so continuously changes between years (Stoate et al.
2001), and several were subjected to recent changes as a result of agri-environ-
ment schemes (AES) that involved the establishment of field margins or annual
wildflower strips (Kleijn et al. 2006). These characteristics make arable fields

far more temporally unstable than orchards. The species data used to build the
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SDMs spans 20 years and during that time it is likely that the arable fields have
comprised a variety of crops and for the majority of this time AES had not been
implemented. AES that increase flowering species within farmland (e.g., imple-
mentation of wildflower strips, establishing field margins) also increase the time
window in which flower resources are available (e.g., Haaland etal. 2011) and pro-
vide temporary connectivity between less desirable habitat types, for a number
of insects including bees (Carvalheiro et al. 2012; Holzschuh et al. 2013). The
results suggest that the variables used to construct the SDMs do not represent
the AES or the seasonal changes in crop flowering, which is reflected by the wild

bee occurrences in otherwise predicted unsuitable habitats.

The high heterogeneity of this landscape type combined with a lack of spa-
tial and temporal cover in the data used to build the SDMs is hence a likely expla-
nation for the poorer performance of SDMs in arable fields in comparison with
orchards. Again this reinforces the idea that SDMs of this type are less suitable
for predicting pollination service delivery to arable crops than for predicting the

occurrence of threatened species and their habitats.

3.5.3 Implications for future studies using species distribution
models

The analysis implies that the models with higher predictive performance have
correctly represented the ecological niche of a species. SDMs are often used to
make decisions regarding areas of conservation importance or also in the case
of pollinators, where crops and pollinators overlap (Franklin 2013; Polce et al.
2013). Therefore, models with habitat suitability scores strongly correlated to
temporally independent presences will have a higher efficacy in decision mak-
ing. The results of our study suggest that studies using SDMs to predict bee
species occurrences would benefit from more specific information about land-
scape type, crop type, including fine-scale vegetation and AES data and informa-
tion on flower availability within the landscape during different seasons of the
year (sampling season) (Pearce et al. 2001). Unfortunately, such detailed infor-
mation is rarely available, and the efficacy of long-term collection data are lim-
ited by the historically available land-use and climate information with which

to model it. However, increased thematic resolution in the future, specifically
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for agricultural land use should assist in increasing the performance for certain
species trait groups whose distributions are not accurately predicted by the lower
thematic resolution of the current models. Temporally unstable habitats repre-
sent another difficulty for the development of valuable SDMs. Our results imply
that a particular habitat is only suitable under certain conditions, such as when
wildflower strips are blooming or when certain crops are flowering. As climatic
and land-use characteristics are subject to annual variation, and as pollinators
can be susceptible to small scale habitat changes (e.g., presence of flower strips
within farmland, Scheper et al. 2013), the model data are likely to be too coarse
temporally to accurately predict the suitable habitat of a species at a specific mo-
ment in time. Species collection data, particularly those aggregated in museum
collections generally cover long time periods, whereas crop rotation and AES oc-
cur in the short-term. This suggests that temporal variation between habitat and
species will remain difficult to separate in distribution models, and habitat suit-
ability conclusions for fine-scale landscape features will be difficult to produce.
To overcome these caveats, SDMs need to be built with data specific to the year
and season that a species was sampled. For example, in the Netherlands, AES are
organized as regional collectives. Therefore, SDMs built and tested with detailed
information from before and after the introduction of AES landscape features
can be used to model the effectiveness and the changes resulting from AES and

ensure ongoing monitoring and help determine future policy decisions.

Information on biotic interactions (e.g., bumblebee cleptoparasites and
bumblebee hosts) can also increase the predictive performance of the wild bee
SDMs (Giannini et al. 2013). This suggests that where clear ecological relation-
ships are present including biotic information should improve the SDMs, par-
ticularly for the more generalist species which were not adequately modelled by

climate and land use alone.

3.6 Conclusions

Species distribution models are an important tool in ecological studies that can

provide guidance for conservation management action and potentially also for
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management of ecosystem services. By comparing the predictions of SDMs de-
veloped for multiple bee species with independently collected field data, we show
the performance of such models is highly dependent on species traits and on the
spatial and temporal heterogeneity of the targeted habitat. While our analysis
has only considered wild bees the results are not restricted to wild bees and sug-
gest that other mobile and functionally varied species groups related to agricul-
tural crops (e.g., hoverflies) may show similar trends to what we have observed

here.
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3.8 Supporting Information

Tables
TasLe S3.1: List of environmental variables included in
MAXENT species distribution modelling.
Type Variables
Climate  Mean Diurnal Range of Monthly Temperature
Mean Temperature of Warmest Quarter
Precipitation of Driest Month
Precipitation of Warmest Quarter
Temperature Seasonality
Land Use Line Density of Simple Ditches
Line Density of Tree Alleys
Percentage Cover Agriculture
Percentage Cover Coniferous Forest
Percentage Cover Moors/Peats
Percentage Cover Sandy Soils
Percentage Cover Urban
Topography Elevation
TasLe $3.2: List of species per species trait group.
Species Group ID Number Final Analysis
Andrena angustior A 1 YES
Andrena barbilabris A 2 YES
Andrena chrysosceles A 4 YES
Andrena cineraria A 5 YES
Andrena fucata A 8 YES
Andrena fulva A 9 YES
Andrena gravida A 10 YES
Andrena haemorrhoa A 1 YES
Andrena helvola A 12 YES
Andrena humilis A 13 YES
Andrena labiata A 14 YES
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Table S3.2 continued from previous page

Andrena nigroaenea
Andrena praecox
Andrena semilaevis
Andrena subopaca
Andrena tibialis

Andrena vaga

Andrena varians

Colletes daviesanus
Dasypoda hirtipes
Lasioglossum sexstrigatum
Panurgus calcaratus
Andrena carantonica
Andrena dorsata

Andrena flavipes

Andrena minutula
Andrena nitida

Halictus tumulorum
Hylaeus communis
Hylaeus confusus
Hylaeus gibbus
Lasioglossum calceatum
Lasioglossum fratellum
Lasioglossum leucopus
Lasioglossum leucozonium
Lasioglossum malachurum
Lasioglossum minutissimum
Lasioglossum morio
Lasioglossum pauxillum
Lasioglossum sexnotatum
Lasioglossum villosulum
Lasioglossum xanthopus
Lasioglossum zonulum
Anthophora plumipes
Chelostoma florisomne
Heriades truncorum
Macropis europaea
Megachile ligniseca
Megachile versicolor
Bombus hortorum
Bombus hypnorum
Bombus jonellus
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16
18
19
20
21
22
23
33
34
49

56
3
6
7
15

17
35
37
38
39
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41
42
43
44
45
46
47
48
50
51
52
24
32
36
53
54
55
25
26
27

YES
YES
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
NO
YES
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
NO
YES
YES
YES
YES
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Table S3.2 continued from previous page

Bombus lapidarius D 28 YES
Bombus pascuorum D 29 YES
Bombus pratorum D 30 YES
Bombus ruderarius D 31 YES

TasLe $3.3: Post hoc multiple pair wise comparison of difference in
least square means, table for all significant interactions as
selected in best model (AICc).

Species Trait Group Estimate Error p-value Sig.
A-B 0.0173 0.04777 0.98

A-C -0.1539 0.05553 0.035 *
A-D 0.0078 0.05257 0.99

B-C -0.1712 0.06217 0.037 *
B-D -0.0095 0.05937 0.99

C-D 0.1617 0.0646 0.068
Habitat Type

Arable-Orchard -0.0818 0.02432 0.003 **
Sampling Technique

PanTraps-Transect 0.0932 0.02763 0.002 **
Group:Sampling

PanTraps A - Transect A 0.0334 0.03602 0.98
PanTraps A - PanTraps B 0.0412 0.05787 1
PanTraps A - Transect B 0.0267 0.05534 1
PanTraps A - PanTraps C -0.1868 0.08105 0.27
PanTraps A - Transect C -0.0877 0.06143  0.81
PanTraps A - PanTraps D -0103 0.06053 0.64
PanTraps A - Transect D 01519 0.05957 0.6
Transect A - PanTraps B 0.0079 0.05535 1
Transect A - Transect B -0.0066 0.04772 1
Transect A - PanTraps C -0.2201 0.07829 0.09
Transect A - Transect C -0121 0.05462 0.3l
Transect A - PanTraps D -0.363 0.05667 0.22
Transect A - Transect D 0.118 0.05274 03
PanTraps B - Transect B -0.0145 0.03643 0.99
PanTraps B - PanTraps C -0.228 0.08562 0.13
PanTraps B - Transect C -0.1289 0.06748 0.5
PanTraps B - PanTraps D -0.1442 0.06611 033
PanTraps B - Transect D 0.1107 0.06582 0.66

Transect B - PanTraps C -0.2135 0.08352 0.16
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Table S3.3 continued from previous page

Transect B - Transect C

Transect B - PanTraps D

Transect B - Transect D

PanTraps C - Transect C

PanTraps C - PanTraps D

PanTraps C - Transect D

Transect C - PanTraps D

Transect C - Transect D

PanTraps D - Transect D
Sampling:Habitat

Arable PanTraps - Orchard PanTraps
Arable PanTraps - Arable Transect
Arable PanTraps - Orchard Transect
Orchard PanTraps - Arable Transect
Orchard PanTraps - Orchard Transect
Arable Transect - Orchard Transect

-0.1144
-0.1297
0.1251
0.0991
0.0838
0.3387
-0.0153
0.2396
0.2548

-0.1439
0.031
0.0114

0.175
0.1553
-0.0197

0.06125
0.0635
0.05951
0.07632
0.08367
0.08603
0.06862
0.06527
0.02918

0.04137
0.02964
0.03033
0.04231
0.0423
0.02474

0.53
0.42
0.37
0.87
0.96
0.003

0.007
<0.001

0.006
0.71
0.98

<0.001

0.003
0.85

*%

**

*%

*%

TasLE $3.4: Column coordinates for species traits
used in group selection ordination analysis.

Species Trait RS1 RS2

Habitat Specialisation -0.7315954 -0.2495703
Body size -0.3839457 0.7020075

Lecty (Oligolectic) 1354881 0.9099223
Lecty (Polylectic) -0.25945 -0.1742404
Sociality (Social) -1.29095 0.3822533
Sociality (Solitary) 0.430316 -0.1274178
Nesting (Above) -0.49199  1.3259499
Nesting(Below) 0.120265 -0.3241211
Length of flight period -0.86646 -0.2017732
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Figures
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FiG. S3.1: Field-survey locations by landscape type
and collection technique.
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4.1 Abstract

Species assemblages form following interactions between various processes. One
of the key and most difficult processes to quantify is the influence of biotic inter-
actions and species co-occurrence. In this study, we explore how co-occurrence,
habitat filtering, species traits and phylogenetic relatedness influence species dis-
tribution and affect assemblage formation, using wild bees in the Netherlands as
atest case. Our results show that habitat filtering explains the majority of the ge-
ographic distinction between species, but positive co-occurrence patterns of wild
bees improves our understanding of the relationship between habitat and spa-
tial distribution. We also observe a pattern of phylogenetic niche conservatism
among closely-related species not captured by traits. The results show that co-
occurrence is a necessary input to improve predictions of community assembly
patterns and that closely-related species share habitat requirements. These re-
sults imply that knowledge about species assemblages can be used as a basis for

landscape conservation strategies.
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4.2 Introduction

Wild bees perform an important role in managed and natural ecosystems provid-
ing pollination services for many crop species and wild plants (Kleijn et al. 2015,
Potts et al. 2016a). Nevertheless, wild bees in Europe have declined in the last
100 years (Biesmeijer et al. 2006; Carvalheiro etal. 2013; Potts et al. 2016b). One
of the main drivers behind these declines is the loss of nesting and feeding re-
sources through land use/land cover changes such as agricultural intensification
and urbanization (Nieto etal. 2014; Vanbergen etal. 2013). New national and in-
ternational policies should therefore be developed to promote the conservation
of wild bees and strengthen management efforts aiming to ensure the persistence
of their sheer biodiversity (Potts et al. 2010). Despite global concern of wild bee
diversity losses many aspects of wild bee landscape ecology are still not well un-
derstood, particularly how different drivers of decline interact, what ecological
processes drive community assembly, and how different measurements of diver-
sity respond to these environmental changes.

The correlation between species and their traits, phylogeny and habitat fil-
tering have been used to understand, and predict species distribution patterns.
For example, traits and trait diversity are increasingly used in studies of wild bee
distribution because of their correlation to ecosystem functions, including polli-
nation (Friind et al. 2013; Martins et al. 2015), but also to drivers of decline (De
Palma et al. 2017). Phylogenetic diversity, while at least partly correlated to func-
tional trait diversity and species richness, may provide additional power in the
estimation of community structure, functioning and conservation (Flynn et al.
2011, Vereecken 2017). Several recent studies have reported on habitat filtering,
linked to changes in phylogenetic diversity of wild bees (Hoiss et al. 2012; Syden-
ham et al. 2015). Alternative biodiversity metrics, rather than solely species rich-
ness, are important for conservation, particularly in situations where commu-
nities with reported low species richness may actually represent a diverse func-
tional and phylogenetic community assemblage (Aguirre-Gutiérrez et al. 2017b;
Dorchin et al. 2018).

To reach a more precise understanding of wild bee community assembly
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and their trends, one needs to study both the environmental conditions under
which each species thrives or declines and the influence of biotic factors, such as
co-occurring species. The Dutch wild bee fauna distribution patterns have been
modelled previously, but only for single species separately, ignoring the role of co-
occurrence and community assembly (Aguirre-Gutiérrez et al. 2017a; Marshall
et al. 2015). Species community assembly is based on the assumption that co-
occurrence among species is non-random (Phillips 1931). Community assembly
is driven ecologically by dispersal capabilities followed by habitat filtering and
biotic interactions. In essences, species persist at a location only if they arrive
there, find suitable habitat conditions and are not excluded by other species al-
ready present (Boulangeat et al. 2012; Gotzenberger et al. 2012). Predicting the
distribution of species and therefore estimating community structure often con-
siders species individually and focuses on habitat filtering alone (Elith & Leath-
wick 2009). A simple method to estimate community structure is with Species
Distribution Models (SDMs) and involves stacking all the individual species dis-
tribution projections (Calabrese et al. 2014). However this method ignores the
interaction between species. Joint SDMs (JSDMs) represent a method to model
the community as a whole by incorporating habitat filtering at the community
level and utilizing statistical co-occurrence between all species in the commu-
nity (Ovaskainen et al. 2015; Pollock et al. 2014). JSDMs additionally provide
approaches to incorporate traits and phylogenetic relationships as explanatory
factors in community composition (Pollock et al. 2012), allowing inference on
the functional and phylogenetic diversity of the communities, and not only at
the species level.

In this study, we use JSDMs, species traits, and phylogenetic relationships
to investigate the role of environmental and biotic factors in community level
structure of wild bees in the Netherlands. Firstly, explicitly ignoring the influ-
ence of habitat covariates, we describe patterns of co-occurrence, using a proba-
bilistic model of co-occurrence (Veech 2013), and compare these patterns to phy-
logenetic and trait relationships. Secondly, we use a framework for modelling
multiple JSDMs referred to as Hierarchical modelling of Species Communities
(HMSC; Ovaskainen et al. 2017). This framework predicts community composi-
tion and incorporates habitat filtering, together with the "biotic niche”, namely
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the co-occurrence matrix. More specifically, we address the following five ques-
tions. (1) Do certain wild bee species indicate the presence of others? (2) What
is the influence of habitat filtering on the patterns of wild bee occurrence? (3)
Do species traits and phylogenetic relationships influence wild bee spatial co-
occurrence and assembly patterns? (4) How are wild bee assemblages geograph-
ically distributed? (5) What are the conservation implications of the resulting

wild bee assemblage patterns?

4.3 Materials and Methods

4.3.1 Species Data

The collection records for wild bees in the Netherlands were obtained from the
European Invertebrate Survey (EIS; Peeters et al. 2012) . We used species oc-
currence records collected since 2005 in order to analyse communities repre-
sentative of the contemporary fauna while ensuring a large number of collec-
tion records. The occurrence records in the EIS database are collated from many
sources and include museum collection data, verified and validated citizen sci-
ence data, and data systematically sampled as part of scientific research projects.
The objective of the study is to look at co-occurrence and assemblage patterns
among wild bees. Hence, we need to ensure that we use spatially explicit occur-
rence records from areas that have been repeatedly well-sampled. Consequently,

we conducted detailed data mining on the occurrence database.

At 10 x 10 km, we selected occurrence records that represent repeated
sampling within each grid cell. We used select criteria which we applied to each
grid cell: (1) at least two recorded occurrences, (2) records collected before and
after July within the same year, (3) at least two unique years between 2005 and
2017, (4) at least five different species must have been collected. The selected sites
and species were then coerced into a site Xspecies matrix to use directly in the
analyses. Finally, for the HMSC analysis we limited the models to only species
with a least five records. This resulted in 70 species being excluded from the
HMSC part of the analysis (see Table S4.1 and S4.2 in Supporting Information).
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4.3.2 Environmental Data

Climate data was calculated from daily values of minimum, maximum, and mean
temperature and rainfall from the Koninklijk Nederlands Meteorologisch Insti-
tuut (KNMI) using the API available from (https://data.knmi.nl/datasets).
These values were used to produce the 19 bioclimatic variables (Hijmans et al.
2005).

Two-dimensional land use data were collated from three separate sources;
(1) nature, Index Natuur en Landschap (Inter Provinciaal Overleg 2016); (2) agri-
culture, Basisregistratie Gewaspercelen (EZK 2015); (3) urban, the Bestand Bod-
emgebruik Productbeschrijving (CBS 2012) . After removing all agricultural and
landscape feature classes from the nature map, we created a hierarchy whereby
the nature map would take precedence over the agricultural map which would
in turn take precedence over the urban map. Therefore, areas which would be
disputed would automatically default to the class as defined by the map high-
est in the hierarchy. We made this decision because we believed that the nature
map would most accurately represent the distinctions between important land
use classes for bees. Furthermore, this hierarchy also represented decreasing age,
with the urban map being the oldest and consequently least up-to-date. The po-
tential implications of this selection would be that areas of natural habitat may
be overestimated and urban areas underestimated.

To avoid collinearities between covariates, we compared the Pearson cor-
relation coefficients between all pairs of environmental variables and ensured
no pairs had values higher than 0.7 (Dormann et al. 2013). In the cases where
two climate variables were highly correlated, we selected the variable that we
assessed as having the greatest ecological relevance to wild bee species. The
final selection includes ten land use and five climate classes (Fig 4.2 and see
Table S4.3): crops food source, crops non-food source, agri-grassland, urban,
heathland, semi-natural woodland, production woodland, marsh and swamp-
land, semi-natural grassland, dune, minimum temperature of coldest month,
mean temperature of driest quarter, mean temperature of warmest quarter, an-

nual precipitation, and precipitation of the driest month.
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4.3.3 Traits Data

We considered seven ecological traits from the “European bee traits database”
(established by ALARM, www.alarm-project.ufz.de, and developed by STEP,
www.STEP-project.net); (1) habitat specialization, (1 to 8, number of habitat
types where a species occurs); (2) feeding specialization (oligolectic, polylec-
tic, no lectic status); (3) body size (inter-tegular distance of females); (4) so-
ciality (solitary, social or parasite); (5) nesting habit (excavators or renters), and
(6) length of flight period (2 to 10 months); (7) voltinism (univoltine or bivol-
tine/multivoltine). These same traits have been used in previous studies of wild
pollinators in the Netherlands showing relationships with historical habitat cha-
nges and present day prevalence (Aguirre-Gutiérrez et al. 2016; Marshall et al.
2015). Trait data were incomplete for 29 species (see Table S4.2).

4.3.4 Phylogenetic Data

The bees molecular phylogeny was produced on the basis of different sequences
of the mitochondrial gene cytochrome oxidase 1 (COl) available on GenBank
(Benson et al. 2014). This phylogenetic tree was reconstructed based on nu-
cleotide character state (i.e. ATCG) with maximum likelihood (ML) optimality
criterion method. This ML tree was then converted into a distance matrix based
on the length of the branches separating species and a species by species corre-
lation matrix. Please see material and methods, section 2.2.5 for greater detail
on the methods, the underlying data and resulting phylogenetic tree and Table
S4.4. Phylogenetic data was absent for 25 species (see Table 54.2).

4.3.5 Pairwise Spatial co-occurrence

Using a matrix of sites and species (presence/absence), the pairwise probabilistic
model calculates the total probabilities for spatial co-occurrence for two species
across the total number of sites and compares them against the observed spatial
co-occurrence (Veech 2014). A species-pair can be classified as positive (signifi-

cantly more sites), negative (significantly less sites) or random (non-significant
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difference). Unlike other methods the probabilistic model does not require ran-
domization, avoiding issues of type I and II errors found in other spatial co-
occurrence methods (Veech 2013). We used a linear model to compare the re-
lationship between pairwise spatial co-occurrence probabilities against phylo-
genetic distance and traits based dissimilarity (1- Gower similarity coefficient;
Gower, 1971).

4.3.6 Hierarchical modelling of Species Communities

We used a framework with the purpose of Hierarchical modelling of Species
Communities (HMSC), utilizing Bayesian JSDMs to classify species’ relationships
with their environmental conditions, whilst accounting for the possible influ-
ence of co-occurrence, traits and phylogeny on these patterns (Ovaskainen et al.,
2017). This method allows us to test specific hypotheses of community assembly
based on widespread, but erratic, spatially explicit occurrences.

We conducted the analysis ona 10 km grid (363 sites) of species occurrence
(204 species) across the Netherlands. Each species was modelled with a general-
ized probit linear model of presence/absence as a function of environmental con-
ditions and random spatial effects. The pairwise association/co-occurrence ma-
trix was included in the model as a latent factor of random variation per species
per site; covariation between each species pair estimates if they occur together
more often than expected. The effect to which variation in niche was additionally
explained by traits was measured for each species response to each environmen-
tal covariate. Finally, the presence of phylogenetic niche conservatism (PNC)
among closely-related species was tested by measuring whether the residual vari-
ance of the model is independent of phylogeny. Non-independence, and by proxy
PNC, implies that closely-related species have more similar niches than distantly-

related species.

Each model is run as a Markov Chain Monte Carlo (MCMC) with 24000
iterations where the first 4000 iterations are removed giving the Markov Chain
time to reach its equilibrium distribution. All explanatory factors are scaled be-

tween 0 and 1. Random spatial autocorrelation is included as x and y coordinates.
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The models are examined using MCMC trace plots to ensure that adequate mix-
ing has occurred and that the latent variables are satisfactorily predicted. Predic-
tive power of the model is measured in two ways using Tjur R? which is described
as “the mean model prediction for those sampling units where the species occurs,
minus the mean model prediction for those sampling units where the species does
not occur” (Guillaume Blanchet et al. 2017). Furthermore, we use the area under
the curve (AUC) of the receiver operating characteristic (ROC) value which mea-
sures the degree of false positives and false negatives between the true values and
the predicted values (Bahn & McGill 2013).

4.3.7 Assemblages

Using the final model of the HMSC we made predictions using all sites, to pro-
duce a site-by-site similarity index and classify the Netherlands into regions of
similar assemblages. We used K-means clustering, whereby the data are parti-
tioned into the selected number of assemblages with the express goal of minimiz-
ing the sum of squares between the points and the centre of the chosen clusters.
The Hartigan-Wong algorithm was used, set to 1000 iterations and 100 random
samples (Hartigan & Wong 1979). The run which most successfully minimizes
the sum of squares was chosen. We used the ‘elbow method, selecting the num-
ber of clusters (communities) at the point after which the explained variation no
longer increases. We present the geographic distribution of community assem-
blages for all clustering quantities up to and including the cut-off value.

For each assemblage we calculated: a PCA of difference in land use, total
species richness, phylogenetic species variability (PSV), functional diversity and
percentage cover of Natura2000 sites. Furthermore, using ANOVA and Tukey’s
HSD, we defined the most representative species for each community profile
as those whose abundance records in a particular assemblage are significantly
greater than their abundance in the other assemblages. Finally, for each site, we
tested how community similarity changes geographically. We tested this by plot-
ting per site community similarity against geographic distance. We do this for
similarity values obtained from spatial predictions only (all environmental vari-
ables set to their mean values) and with both spatial and environmental factors

included.
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4.4 Results
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F1G. 4.1: Scatterplot showing co-occurrence probability against phylogenetic distance and trait dissimilar-

ity at 10 x 10. (a) Average co-occurrence probability per genus pair vs. Average phylogenetic distance per genus

pair(COl gene. (b) Average co-occurrence probability per genus pairvs. Average Gower’s trait dissimilarity per genus
pair.

4.4.1 Spatial co-occurrence patterns

We examined 297 potential species interactions, or 43956 pairs of species. The
number of analyzable pairs, 24234, indicates that the database hasa many species
with few records and that many wild bee species are not expected to co-occur
at all. The majority of spatial co-occurrence patterns between wild bee species
were positive (64.5%) and very few interactions negative (0.6%). The species pair
with the most observed co-occurrences was Bombus lapidarius and B. pascuo-
rum, these two species are also the two most abundant species in the collections.
The co-occurrence patterns per species pair were compared to the phylogenetic
distance and trait dissimilarity between each species pair. Overall at 10x10km
we see weak to no evidence for a relationship between phylogenetic distance and
trait dissimilarity and the co-occurrence of species pairs. There is a significant
positive relationship whereby genera which are more phylogenetically-distant are

more likely to co-occur, however, the Pearson correlation coefficient (r) of 0.28
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suggests this is weak (Fig 4.1a). When examined for all values this relationship is
much weaker (r: 0.05) suggesting that there is no clear relationship at the species
level (Fig S4.1a). Gower’s trait dissimilarity index between genera shows a non-
significant relationship with co-occurrence probability between genera (r: O; Fig
4.1a). At the species level there is a significant positive relationship, however the
r of 0.12 suggest this relationship is also weak (Fig S4.1b).

4.4.2 Habitat Filtering

Land use variables explain the majority of variation in habitat filtering for 151 of
the 204 species (74%) and climate for the remaining 53 species (26%). Land use
explains on average 57% of the variation, ranging from 26% to 90%, while climate
explains 35% of the variation on average (from 6 to 70%). Spatial autocorrelation
only accounted for a small percentage of the variation in species niche; 8% with
a range of 0.3% to 37% (see Fig S4.2). A number of land use variables were in-
cluded as important factors in the models, which varied by species (Fig 4.2a).
Semi-natural grassland and urban areas were positive factor for a large majority
of species (65% and 55% respectively). Heathland (positive, 15% and negative
6%) and dune (17% and 4%) areas were both beneficial and restrictive for some
species. The balance of associations (negative vs. positive) was mostly negative
foragricultural land use types, including cropland, as food-source (8%) and non-

food-source (17%), and agricultural grassland (14%; Fig 4.2a).

The influence of the different land use variables is measured as the average
effect size across the nine most species-rich genera (Fig 4.2b). The effect of semi-
natural grassland is positive for all genera but higher for the species in the genera
Sphecodes, Nomada and Lasioglossum. Bombus species are the only species for
which crops positively influence their distribution (Fig 4.2b). The effect of heath-

land varies between genera and species within genera.

Only 11% of the variation in niches across all species could be appointed to
differences in traits. Additionally, mean PNC across the 20,000 model iterations
was 0.91 + 0.02 provides strong evidence that closely-related species have more

similar responses to the habitat covariates.
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4.4.3 Biotic Interactions

Species with a higher positive correlation in their response to the models’ latent
variables are likely to increase in occurrence together. Indicating that the pres-
ence of wild bee species increases the likelihood of presence of other wild bee
species. Particularly there is a strong spatial association between species found
in the genera Sphecodes, Andrena, Hylaeus, Nomada, Lasioglossum and Colletes
(see Fig S4.3). To test the overall influence of including the species pairwise as-
sociation matrix in the model we examined the predictive power of the model
with and without the latent factors included. Latent effects refer to variables, in
this case three, which are calculated to account for the residual patterns across
the species association matrix not explained by the explanatory variables. The
models for all species improve with latent effects; overall the mean Tjur R? was
0.21vs. 0.12and the AUC 0.85 vs. 0.8 (Fig 4.3). Some models as measured by the
Tjur R? are inaccurate particularly at the low and high prevalence. The difference

in performance is less pronounced for those species with high or low prevalence.

4.4.4 Assemblages

The majority of explained variance is between two and seven clusters (Fig 4.4).
Each increase in the number of clusters delimits a new assemblage with species
and conditions different to those of other assemblages. Each assemblage is re-
ferred to by its number in Fig 4.4f. Assemblages 1 (Al), 2 (A2) and 6 (A6) are
found in similar habitats with varying gradients of urban and agricultural land
use (Fig 4.5a,b). Except for Anthophora plumipes a common urban species in
Al, none of these three assemblages have any representative species. These sites
have, on average, fewer species per site than other assemblages (Al:34, A2:35,
and A6:37 species; Table 4.1). In terms of habitat, A3 is strongly represented by
woodland and heathland areas and occurs in areas with the least agriculture (Fig
4.5a,b). Average species richness per site in A3 is high, 56 species, but it contains
the lowest total species richness (121) of all assemblages. Even though A3 only
includes seven 10x10km sites, there are a large number of representative species
including four on the Dutch Red List. The majority of the area covered by A3
is designated as Natura2000 (76%, Table 4.1). Assemblage 4 occurs in the most
heterogeneous and varied habitats in the South East (Fig 4.5a,b). It also has the
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F1G. 4.3: Model predictive performance. Models with (black, closed) and
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formance are used: Tjur R? (circles) and Area under the Curve (AUC; triangles).

Latent effects refer to variables (3) which are calculated to account for the unex-
plained residual patterns across the species association matrix.

largest average richness per site (64). Accordingly, it has the most representative

species including 9 species on the Dutch Red List.

Dune habitats (25%) and Natura2000 (41%) along the western coastline
dominate the land use in the A5 range (Fig 4.5f and Fig 4.5a,b; Table 4.1). Sim-
ilar to A3, A5 occupies only a small area of the Netherlands but has a high aver-
age species richness per site (51), a lower overall species richness (143) and many
representative species, including seven red listed species, and a large percentage
of the Colletes and Megachile species present in the Netherlands (Table 4.1). A
greater quantity of heathland and woodland habitat is occupied by A7 than the
other assemblages except for A3 (Fig 4.5a,b). This is reflected by the fewer repre-
sentative species, including the red listed species Nomada rufipes, the specialist

cleptoparasite of Andrena fuscipes, an oligolege on Calluna (Ericaceae), which is
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FI1G. 4.4: Geographic distribution of wild bee assemblages. Showing number of selected clusters from (a)2 -
(f) 7. Calculated using KMeans clustering 1000 iterations and 100 random samples.

also significantly more likely to be found as part of A3. There are no clear differ-
ences between the average phylogenetic and functional diversity per assemblage.
Finally, the similarity between assemblages does not decrease based on spatial
distance, indicating the observed patterns are not explained by latitude alone
but were driven by changes in environmental conditions (Fig 4.5c¢).

4.5 Discussion

This research shows the importance of both environmental and biotic drivers
on the structure of wild bee assemblages. Habitat filtering explains the major-

ity of the distribution patterns. Including co-occurrence of bee species improves
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TasLE 41: Summary of the seven wild bee assemblages as chosen by K-means cluster-
ing.

Phylogenetic Species Functional Natura
Assemblage species Richness 2000 Representative Species

variability  (n=204) Dispersion (%)

34 £20
(164)
35425
(199)

1 0.60 £0.05 0.21+£0.00 4%  Anthophora plumipes

2 0.60 +0.05 0.21+£0.00 7% NA

Andrena fuscipes, Andrena lapponica,
Andrena nigroaenea, Bombus humilis,
Colletes succinctus, Epeolus cruciger,
0.22+£0.01 76% Lasioglossum lucidulum, Nomada
fuscicornis, Nomada rufipes,
Nomada succincta, Panurgus banksianus,
Panurgus calcaratus
Andrena dorsata, Andrena florea,
Andrena hattorfiana, Andrena
minutuloides, Andrena proxima,
Andrena semilaevis, Bombus rupestris,
Ceratina cyanea, Halictus scabiosae,
Hoplitis adunca, Hylaeus cornutus,
Hylaeus signatus, Lasioglossum
64 +41 laticeps, Lasioglossum lativentre,
(200) R R Lasioglossum malachurum,
Lasioglossum nitidulum, Lasioglossum
pauxillum, Melitta leporina,
Melitta tricincta, Nomada armata,
Nomada conjungens, Nomada fucata,
Nomada integra, Nomada zonata,
Sphecodes crassus, Sphecodes ferruginatus,
Sphecodes niger
Andrena argentata, Andrena barbilabris,
Andrena fulvago, Anthidium punctatum,
Coelioxys conoidea, Coelioxys mandibularis,
Colletes cunicularius, Colletes halophilus,
Colletes marginatus, Colletes succinctus,
Dasypoda hirtipes, Hoplitis claviventris,
0.21+0.01  41%  Hylaeus confusus, Lasioglossum albipes,
Lasioglossum leucozonium, Lasioglossum
nitidiusculum, Lasioglossum punctatissimum,
Megachile circumcincta, Megachile leachella,
Megachile maritima, Megachile willughbiella,
Osmia aurulenta, Sphecodes albilabris,
Sphecodes puncticeps

0.22+0.00 9% NA

56 £28

3 0.61 +£0.01 (121)

4 0.62 +£0.03

51 £23

5 0.60 0.01 (143)

37 £29
(188)

54 +32
172)

6 0.61+0.03

Andrena denticulata, Andrena fuscipes,
0.224+0.01 12%  Lasioglossum fratellum, Nomada rufipes,
Nomada sheppardana

7 0.61+0.06

The assemblage numbers refer to the assemblages shown in figures 4.4 and 4.5. Phylogenetic species variability
measures the decrease in variance of hypothetical traits shared by all species in the assemblage, O implies very
closely related species and 1 distantly related species. + refers to the standard deviation of the mean value
presented. Functional dispersion per site measure the differences between the occurrence of species and their
pairwise Gower’s trait dissimilarity. Representative species are species which are significantly more likely to be
present in the assemblage than at least five of the other six assemblages (ANOVA, TukeysHSD). The representative
species in Bold are those listed on the Dutch redlist of bees (Reemer, 2018).
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F1G. 4.5: Community assemblage patterns of wild bees in the Netherlands. (a) Ordination biplot of principal

component analysis of percentage cover land use in each assemblage. (b) barplot showing percentage cover of land

use classes in each assemblage. (c¢) Community similarity against geographical distance, black circles = full HMSC

model, open circles = habitat variables standardized to their mean, therefore only spatial factors included in the
model.

model quality and suggests that these patterns are at least partly non-random.
Our results also illustrate that wild bee community assembly patterns can be ex-
plained in part due to pairwise phylogenetic relationships between species. The
methods and results presented can be used to prioritize conservation planning
for wild bees, and most likely other species groups, by indicating where and how
community assembly patterns differ. In what follows, we explicitly answer our

five research questions.
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4.5.1 Do certain wild bee species indicate the presence of
others?

The presence of wild bee species is positively associated with the occurrence pat-
terns of other wild bee species, both when measured as spatial co-occurrence in a
probabilistic model, and when measured as spatial autocorrelation in the Hierar-
chical modelling of Species Communities (HMSC) The positive associations be-
tween many species suggest the absence of direct competitive exclusion, due for
example to floral resource limitation. At the landscape level, direct competition
isunlikely as many species specialize in their nesting and feeding resources (Roul-
ston & Goodell 2011). However, we do see evidence that phylogenetically similar
genera on average are less likely to co-occur. This is in line with Gause’s principle
of exclusion, stating that complete competitors cannot co-exist (Hardin 1960).
We expect that this effect of competitive exclusion is likely to be much clearer
at the fine scale. It is difficult to ascertain from the results of the HMSC model
whether the relationship between species pairs denotes (1) a true interaction or
(2) if species share a response to missing explanatory covariates, or (3) if this isa
bias in sampling method and intensity across sites (Ovaskainen et al. 2017). In
particular, the addition of floral resources as an extra explanatory variable could
explain part of the correlation between species and is necessary to understand the
complexity of wild bee community assembly (Papanikolaou et al. 2017; Scheper
et al. 2015). However, we can conclude that including the latent factors asso-
ciated with the co-occurrence network, in a JSDM approach (Ovaskainen et al.
2017), increases model explanatory power, and that, alongside habitat filtering,
the patterns of co-occurrence can be a useful input in understanding and predict-
ing the distribution of wild bees species. This has previously only been shown for

the distributions of single species with the interaction known a priori (Giannini
etal. 2013).

4.5.2 What is the influence of habitat filtering on the patterns
of wild bee occurrence?

Land use has a significant role in the distribution of wild bees in the Nether-
lands. Specifically, semi-natural grassland habitats, the most important areas for
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wildflowers, are positively influencing the distribution patterns of many species.
The decline in these habitats is linked to the long-term decline of wild bees in
European countries (Goulson et al. 2015; Potts et al. 2010). Cropland and agri-
cultural habitats form a large portion of the Netherlands and are negatively as-
sociated with wild bee occurrence apart from a few widespread generalist bum-
blebees. Generally, due to the fact that they are intensively managed and provide
few resources (Kremen et al. 2002). Heathlands represent a conflicting habitat
for wild bees: it is a renowned suitable habitat for some specialized species (e.g.
Andrena fuscipes, Colletes succinctus and their cleptoparasites), but also limits
species not adapted to the specialized feeding resources (Moquet et al. 2016).
Plant-pollinator networks in heathland habitats are also less complex than in
more heterogeneous systems, but they tend to be more specialized (Forup et al.
2008). Therefore, as we detected, heathlands represent a unique habitat and
assemblage vital for biodiversity. Dunes are also positively associated with a dis-
proportionately large number of species. Dune areas represent a unique floral
habitat with high bee diversity, despite their small area, and their maintenance
and restoration is vital to wild bee diversity (Grootjans et al. 2002, Howe et al.
2010).

4.5.3 Do species traits and phylogenetic relationships influ-
ence wild bee spatial co-occurrence and assembly pat-
terns?

Phylogenetic and functional trait differences correlate with extinction risk, and
drivers of decline in wild bees (De Palma et al. 2017; Vereecken 2017). Com-
petitive exclusion would suggest that similar species, in traits or phylogeny, are
less likely to co-occur (Webb et al. 2002). We observe a degree of phyloge-
netic niche conservatism (PNC) in the HMSC, suggesting that, at the landscape
scale, closely-related species share similar niches. However, when measured as
co-occurrence no specific patterns emerge. From the data available we cannot
conclude whether the evidence for PNC indicates an emergent property of the
wild bee community in the Netherlands, or whether it is a process by which the
community is structured (Losos 2008). This suggests a shared ecological trait be-

tween closely-related species (Crisp & Cook 2012). However, our results do not
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illustrate a clear relationship between traits and co-occurrence or niche require-
ments. This is unlike the patterns observed for plant species where trait-based
environmental filtering is common (Messier et al. 2010). This indicates that a
fundamental trait, or suite of traits, shared by closely-related species were unac-
counted. The PNC presented is not a complete ‘niche’ and reflects conservatism
to a select set of habitat variables, a more detailed niche definition, including
feeding and nesting resources and the traits associated with them, is likely to
lower the PNC dramatically as considerable specialization occurs in both feed-
ing and nesting habits (Losos 2008). Unfortunately, these traits and niche re-
quirements are poorly defined or missing entirely for many species and repre-
sent a significant gap in wild bee ecology. Increasing the available knowledge on
these aspects of wild bee ecology could help us better understand the processes
structuring wild bee assemblages. However, at least from a habitat perspective,
phylogenetically-informed conservation practices could prove appropriate.

4.5.4 How are wild bee assemblages geographically
distributed?

The observed variation in community assemblages is driven by changes in envi-
ronmental conditions (i.e., land use and climatic context), rather than by purely
geographic distance between sites and regions. Biotic homogenization is consid-
ered to be a response, alongside decline and loss, to anthropogenic disturbance,
including urbanization and agricultural intensification (McKinney 2006). The
wild bee fauna of the Netherlands appears to have experienced biotic homog-
enization during the last century (Carvalheiro et al. 2013), and the wild bee
community assembly patterns reported in this study also reflect a broad simi-
larity in wild bee assemblages across much of the country. However, at present,
the Netherlands does not harbour a single uniform community. The seven as-
semblages identified include gradients from specialized habitats, to semi-natural
habitats to more anthropogenic, managed systems. We observe three distinct as-
semblages that, while limited in range, comprise more specialized species groups
that do not readily occur elsewhere; heather bees near wooded and protected ar-
eas, coastal dune bees and southern bees associated with a heterogeneous land-

scape and calcareous grasslands. These assemblages occur in areas likely to have
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high diversity of floral resources, which is strongly correlated with wild bee pop-
ulations (Roulston & Goodell 2011).

The heathlands assemblage is comprised of known heathlands specialists,
for example B. humilis, Colletes succinctus, Andrena fuscipes, Epeolus cruciger
and Nomada rufipes, which are unlikely to be found in large populations else-
where (Falk 1991, Peeters et al. 2012). Furthermore, the coastal dune assemblage
includes species such as C. halophilus, which is associated with saltmarsh and
coastal habitat where they require bare sandy soils for nesting and the saltmarsh
specialist sea aster (Aster tripolium) as their main pollen host plant (Kuhlmann et
al. 2007). The populations of these representative species are not only important
atanational scale butalso at the European scale, forexample C. halophilus, E. cru-
ciger, C. succintus, Melitta tricincta and N. zonata are considered as "least con-
cern” in the Netherlands, however they are red listed at the European level (Nieto
etal. 2014; Reemer 2018). This suggests that the assemblages in the Netherlands

represent important populations for the continued survival of these species.

4.5.5 What are the conservation implications of the resulting
wild bee assemblage patterns?

In a conservation context, the community profiles/assemblages can represent
management units (Ovaskainen etal. 2017), i.e. not managing the wild bee com-
munity as a single homogenous unit, but still simplifying the complex interac-
tions between species and resources. The results presented could be of primary
interest to managers of nature reserves who are tasked with the conservation
of wild bees. At the national scale the ‘Netherlands National Pollinator Strat-
egy’ aims to increase the number of bees showing a stable or positive population
trends and increase their distribution throughout the country by increasing feed-
ing and nesting resources (Bijenstrategie 2018); this is in line with other coun-
tries that have recognized the decline of wild bees. The methodology used in this
study identifies populations that would benefit from management at the habitat
level. For example dune and heathland habitats exemplify areas that should be

targeted to manage and protect important wild bee assemblages.
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The results presented suggest that improving bee habitat in agricultural
areas could have a significant impact, however, evidence from the Netherlands
suggests that floral resources in agricultural habitats only benefits species already
occurring nearby (Bukovinszky et al. 2017; Kleijn et al. 2006). This implies that
natural heathland, dunes, and calcareous grasslands represent a last vestige for
many bees. A logical next step would be to include representative and specialist
bees as focal species in the descriptions and policy documents associated with
these sites. The representative species for each assemblage could be used as in-
dicator species and to measure if management is creating habitat for whole as-
semblages and not just common ubiquitous species. It is important to consider
though that the a priori selection of species with at least 5 records limits the num-
ber of rare and highly specialized species. With more comprehensive sampling
we could obtain a clearer picture of the processes behind assembly patterns and
therefore best conservation practices.

This paper presents evidence that including pairwise species co-occurrence
data into niche models improves the quality of prediction and therefore allows
better estimation of species assemblages. Furthermore, we found preliminary ev-
idence that closely-related wild bees share similar niche requirements. In some
respects this paper represents statistical support for what many entomologists
and amateur naturalists are already acutely aware of: that areas of high quality
semi-natural habitat are of vital importance to the diversity of pollinators and
that processes of wild bees assemblages and therefore their conservation cannot

be examined in isolation.
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Tables

TasLe S4.1: List of the 204 wild bee species included in the HMSC protocol.

Andrena angustior
Andrena bicolor
Andrena cineraria
Andrena flavipes
Andrena fulvago
Andrena haemorrhoa
Andrena labialis
Andrena minutula
Andrena ovatula
Andrena rosae
Andrena subopaca
Andrena wilkella
Anthophora furcata
Bombus bohemicus
Bombus hypnorum
Bombus pascuorum
Bombus sylvestris

Ch

Andrena apicata
Andrena bimaculata
Andrena clarkella
Andrena florea
Andrena fulvida
Andrena hattorfiana
Andrena labiata
Andrena minutuloides
Andrena pilipes
Andrena ruficrus
Andrena tibialis
Anthidiellum strigatum

A

Andrena argentata
Andrena carantonica
Andrena denticulata

Andrena fucata
Andrena fuscipes
Andrena helvola

Andrena lapponica

Andrena nigroaenea
Andrena praecox
Andrena semilaevis
Andrena vaga
Anthidium manicatum
hophora quadri !

A hora pli
Bombus campestris
Bombus jonellus
Bombus pratorum
Bombus terrestris
I P

Bombus hortorum
Bombus lapidarius
Bombus ruderarius
Bombus vestalis
Chell Sflorisomne

Ceratina cyanea
Coelioxys conoidea
Colletes cunicularius
Colletes hederae
Dasypoda hirtipes
Eucera nigrescens
Halictus scabiosae
Hoplitis claviventris
Hylaeus confusus
Hylaeus pictipes
Lasioglossum brevicorne
Lasioglossum laticeps

camp um
Coelioxys elongata
Colletes daviesanus
Colletes marginatus
Epeoloides coecutiens
Halictus confusus
Halictus tumulorum
Hoplitis leucomelana
Hylaeus cornutus

Hylaeus punctulatissimus

Lasioglossum calceatum
Lasioglossum lativentre
00l

Coelioxys inermis
Colletes fodiens
Colletes similis
Epeolus cruciger

Halictus maculatus
Heriades truncorum
Hylaeus brevicornis
Hylaeus hyalinatus

Hylaeus signatus

ioal |

Andrena barbilabris
Andrena chrysosceles
Andrena dorsata
Andrena fulva
Andrena gravida
Andrena humilis
Andrena lathyri
Andrena nitida
Andrena proxima
Andrena strohmella
Andrena ventralis
Anthidium punctatum
Anthophora retusa
Bombus humilis
Bombus muscorum
Bombus rupestris
Bombus veteranus
Chelostoma rapunculi
Coelioxys mandibularis
Colletes halophilus
Colletes succinctus
Epeolus variegatus
Halictus rubicundus
Hoplitis adunca
Hylaeus communis
Hylaeus pectoralis

Lasioglossum albipes

L

J
Lasioglossum leucopus
)

I fulvicorne
Lasioglossum leucozonium

Lasioglossum lucidulum L lachurum L minutissimum Lasioglossum morio
Lasiogle nitidi I Lasiogl itidul Lasiogl parvulum Lasioglossum pauxillum
Lasiogl punci imum L I quadri lum Lasiogl rufitarse Lasioglossum semilucens

Lasioglossum sexnotatum Lasioglossum sexstrigatum Lasiogle illosul Lasiogle hop

Macropis fulvipes Megachile centuncularis

Lasioglossum zonulum
Meaachile ci ;

Macropis europaea
Aegachile leachella

cir
Megachile versicolor
Melitta leporina
Nomada armata
Nomada femoralis
Nomada fucata
Nomada guttulata
Nomada obscura
Nomada sheppardana
Nomada succincta
Osmia caerulescens
Osmia uncinata
Sphecodes crassus
Sphecodes gibbus
Sphecodes monilicornis
Sphecodes reticulatus
Stelis ornatula

Megachile willughbiella
Melitta nigricans
Nomada bifasciata
Nomada flava
Nomada fulvicornis
Nomada integra
Nomada panzeri
Nomada signata
Nomada zonata
Osmia cornuta
Panurgus banksianus
hecod. hinni

Megachile ligniseca
Melecta albifrons
Melitta tricincta
Nomada conjungens
Nomada flavoguttata
Nomada fuscicornis
Nomada lathburiana
Nomada ruficornis
Nomada stigma
Osmia aurulenta
Osmia leaiana
Panurgus calcaratus

Sphecodes longulus
Sphecodes niger
Sphecodes rubicundus
Stelis punctulatissima

hecodes ferruginatus
. f

Megachile maritima
Melitta haemorrhoidalis
Nomada alboguttata
Nomada fabriciana
Nomada flavopicta
Nomada goodeniana
Nomada marshamella
Nomada rufipes
Nomada striata
Osmia bicornis
Osmia spinulosa
Sphecodes albilabris
Sphecodes geoffrellus

hecodes miniatus

ginatu.

Sphecodes pellucidus

Sphecodes scabricollis
Stelis signata

Sphecodes puncticeps
Stelis breviuscula
Xylocopa violacea
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TasLE $4.2: Species collected in the Netherlands since 2005 with
less than five record and/or missing phylogenetic or trait data.
Highlighted cells indicate species excluded for multiple reasons.

<5 Records Trait Data Missing Phylogenetic Data Missing
Andrena agilissima Andrena fulvata Andrena fulvata

Andrena coitana Andrena mitis Andrena gelriae

Andrena falsifica Andrena pusilla Andrena nigriceps

Andrena ferox Bombus norvegicus Andrena synadelpha
Andrena fulvata Chalicodoma ericetorum  Andrena varians

Andrena gelriae
Andrena intermedia
Andrena nitidiuscula
Andrena niveata
Andrena pandellei
Andrena polita
Andrena pusilla
Andrena tarsata
Andrena trimmerana
Andrena viridescens
Anthophora aestivalis
Bombus barbutellus
Bombus soroeensis
Bombus sylvarum
Chelostoma distinctum
Coelioxys afra
Coelioxys alata
Coelioxys aurolimbata
Coelioxys conica
Coelioxys rufescens
Colletes impunctatus
Eucera longicornis
Halictus langobardicus
Halictus leucaheneus
Halictus quadricinctus
Hoplitis ravouxi
Hoplitis tridentata
Hylaeus annularis
Hylaeus clypearis
Hylaeus difformis
Hylaeus gibbus
Hylaeus leptocephalus
Hylaeus paulus
Hylaeus styriacus
Lasioglossum aeratum

Lasioglossum intermedium

Lasioglossum lineare

Lasioglossum minutulum

Lasioglossum pallens

Lasioglossum pygmaeum

Megachile alpicola
Megachile analis
Megachile ericetorum
Megachile genalis
Megachile lagopoda
Megachile pilidens
Megachile rotundata
Melecta luctuosa
Nomada baccata
Nomada distinguenda
Nomada melathoracica

Chelostoma distinctum
Coelioxys conica
Epeolus tarsalis
Halictus langobardicus
Hoplitis tridentata
Hylaeus incongruus
Hylaeus paulus
Hylaeus rinki
Lasioglossum aeratum
Lasioglossum intermedium
Lasioglossum sabulosum
Lasioglossum tarsatum
Megachile dorsalis
Megachile genalis
Megachile lagopoda
Megachile lapponica
Nomada ferruginata
Nomada leucophthalma
Nomada melathoracica
Nomada opaca
Nomada pleurosticta
Nomada similis
Nomada villosa

Osmia niveata

Bombus cryptarum
Bombus lucorum
Bombus magnus
Chalicodoma ericetorum
Coelioxys conica
Epeolus tarsalis
Halictus langobardicus
Hylaeus annularis
Hylaeus dilatatus
Hylaeus gredleri
Hylaeus incongruus
Hylaeus paulus
Lasioglossum aeratum
Lasioglossum prasinum
Lasioglossum quadrinotatum
Lasioglossum tarsatum
Megachile dorsalis
Nomada baccata

Stelis phaeoptera
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Table S4.2 continued from previous page
Nomada mutica
Nomada opaca
Nomada pleurosticta
Nomada sexfasciata
Nomada villosa
Osmia parietina
Sphecodes hyalinatus
Sphecodes majalis
Sphecodes rufiventris
Stelis minima
Stelis minuta
Trachusa byssin

TasLe $4.3: Environmental covariates used in the Hierarchical modelling of Species
Communities (HMSC) protocol. All covariates have pairwise correlation coefficients

below 0.7.
High
Class Description Source '8 ?r .
Classification
d d a food fori t
crops food source crops deemed a food source for insec BRP Agricultural

pollinators, including fruit trees

crops not deemed a food source for insect

crops non-food source BRP and BBG_CBS Agricultural

pollinators
agri-grassland all grassland used for agricultural purposes BRP and BBG_CBS Agricultural
urban all areas in urban conglomeration BBG_CBS Urban
heathland all nature areas with a significant heather IMNAB Nature
(Ericaceae) population
semi-natural woodland woodland area without a production function IMNAB Nature
production woodland  woodland area with a production function IMNAB Nature
marsh and swampland  Marsh, peat, reed, salt-marsh and swamp area IMNAB Nature
semi-natural grassland non-intensive agricultural grasslands and IMNAB Nature
grasslands managed for nature
dune open dune areas IMNAB Nature
salt water* ocean related water bodies BRP and BBG_CBS Other
freshwater* rivers, stream, lake, canals etc. BRP and BBG_CBS Other
Bio6 min temperature of coldest month KNMI Temperature
Bio9 mean temperature of driest quarter KNMI Temperature
BiolO mean temperature of warmest quarter KNMI Temperature
Biol2 annual precipitation KNMI Rainfall
Biol4 precipitation of the driest month KNMI Rainfall

*Saltwater and freshwater were not included in the final analyses because they have little to no influence on the
distribution patterns of wild bees.
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TasLe $4.4: Wild bees barcodes sequences retrieved from GenBank with their

accession number, number of base pair (bp) and reference.

Bee Species GenBank bp  Reference Bee Species GenBank bp  Reference

Ammobates punctatus KJ838996.1 630  Schmidtetal. 2015 Hylaeus signatus KJ836815.1 658  Schmidt et al. 2015
Andrena agilissima KJ838061.1 402  Schmidt etal. 2015 Hylaeus sinuatus KJ839168.1 658  Schmidt etal. 2015
Andrena alfkenella KJ839781.1 658  Schmidt etal. 2015 Hylaeus styriacus KJ837075.1 658  Schmidt et al. 2015
Andrena angustior JQ909640.1 654 Magnacca & Brown 2012 Hylaeus variegatus KJ839619.1 658  Schmidt et al. 2015
Andrena apicata JQ909642.1 654 Magnacca & Brown 2012 Lasioglossum albipes GU706031.1 658  Schmidt etal. 2015
Andrena argentata KJ838179.1 287  Schmidt et al. 2015 Lasioglossum bluethgeni HM401099.1 658  Schmidt etal. 2015
Andrena barbilabris KT604563.1 552  Schmidtetal. 2015 Lasioglossum brevicorne HQ948053.1 625 Schmidt etal. 2015
Andrena bicolor KJ839635.1 658  Schmidt etal. 2015 Lasioglossum breviventre KJ836700.1 658 Schmidtetal. 2015
Andrena bimaculata KJ839689.1 402  Schmidt et al. 2015 Lasioglossum calceatum GU706037.1 658  Schmidt etal. 2015
Andrena carantonica KJ839813.1 31 Schmidt et al. 2015 Lasioglossum costulatum KJ839709.1 658  Schmidt et al. 2015
Andrena chrysopus KJ837564.1 624 Schmidt et al. 2015 Lasioglossum fratellum HQ954751.1 620  Schmidt et al. 2015
Andrena chrysopyga HM376233.1 611  Schmidtetal. 2015 Lasioglossum fulvicorne KJ839738.1 658  Schmidt etal. 2015
Andrena chrysosceles JN262171.1 599  Schmidt etal. 2015 Lasioglossum glabriusculum KJ839752.1 658  Schmidt et al. 2015
Andrena cineraria KJ839533.1 407  Schmidt et al. 2015 Lasioglossum intermedium KJ838212.1 658  Schmidt et al. 2015
Andrena clarkella HQ954750.1 615  Schmidtetal. 2015 Lasioglossum interruptum KJ839609.1 658 Schmidtetal. 2015
Andrena coitana KJ836599.1 633 Schmidt etal. 2015 Lasioglossum laevigatum HQ9547521 602  Schmidt etal. 2015
Andrena combinata KJ838976.1 658  Schmidt etal. 2015 Lasioglossum laticeps KJ839464.1 658  Schmidt et al. 2015
Andrena curvungula KJ839287.1 287  Schmidt et al. 2015 Lasioglossum lativentre HM401249.1 658  Schmidt etal. 2015
Andrena decipiens KJ839034.1 286  Schmidt et al. 2015 Lasioglossum leucopus KJ839703.1 658  Schmidt et al. 2015
Andrena denticulata KJ839112.1 658  Schmidt et al. 2015 Lasioglossum leucozonium KJ839730.1 658  Schmidt et al. 2015
Andrena distinguenda KJ839472.1 658  Schmidt et al. 2015 Lasioglossum lineare KJ837544.1 421 Schmidt etal. 2015
Andrena dorsata KJ839807.1 658 Schmidtetal. 2015 Lasioglossum lucidulum KJ838100.1 658  Schmidt etal. 2015
Andrena falsifica KJ839739.1 658  Schmidt etal. 2015 Lasioglossum majus KJ839801.1 658  Schmidt et al. 2015
Andrena ferox KJ839323.1 287  Schmidt et al. 2015 Lasioglossum malachurum GU706055.1 658  Schmidt etal. 2015
Andrena flavipes KJ839275.1 298  Schmidtetal. 2015 Lasioglossum marginellum KJ838806.1 658 Schmidtetal. 2015
Andrena florea KJ839804.1 658  Schmidt etal. 2015 Lasioglossum minutissimum KJ837045.1 658  Schmidt et al. 2015
Andrena fucata KJ839172.1 407  Schmidt et al. 2015 Lasioglossum minutulum KJ838016.1 607  Schmidt et al. 2015
Andrena fulva KJ839625.1 407  Schmidt et al. 2015 Lasioglossum morio GU706057.1 658  Schmidt etal. 2015
Andrena fulvago KJ839726.1 286  Schmidt etal. 2015 Lasioglossum nitidiusculum KJ838160.1 630  Schmidt et al. 2015
Andrena fulvida KJ839509.1 516  Schmidtetal. 2015 Lasioglossum nitidulum KJ839608.1 658  Schmidt et al. 2015
Andrena fuscipes KJ839791.1 658  Schmidt et al. 2015 Lasioglossum pallens KJ839719.1 421 Schmidt etal. 2015
Andrena gravida KJ839831.1 658  Schmidt etal. 2015 Lasioglossum parvulum HM376230.1 658 Schmidtetal. 2015
Andrena haemorrhoa KJ839829.1 658  Schmidt etal. 2015 Lasioglossum pauperatum HM4012521 615  Schmidtetal. 2015
Andrena hattorfiana KJ839806.1 658  Schmidt etal. 2015 Lasioglossum pauxillum KJ839504.1 658  Schmidt etal. 2015
Andrena helvola KJ837363.1 658  Schmidtetal. 2015 Lasioglossum politum KJ839729.1 658  Schmidt etal. 2015
Andrena humilis KJ838908.1 657  Schmidt etal. 2015 Lasioglossum punctatissimum ~ HM376229.1 658  Schmidt etal. 2015
Andrena intermedia KJ839529.1 293 Schmidt et al. 2015 Lasioglossum puncticolle KJ838477.1 658  Schmidt et al. 2015
Andrena labialis KJ839700.1 285 Schmidt etal. 2015 Lasioglossum pygmaeum KJ839643.1 658  Schmidt et al. 2015
Andrena labiata KJ839363.1 658  Schmidt et al. 2015 Lasioglossum quadrinotatulum  KJ839622.1 658  Schmidt et al. 2015
Andrena lapponica KJ838738.1 658  Schmidt etal. 2015 Lasioglossum rufitarse JN272460.1 612 Schmidt et al. 2015
Andrena lathyri KJ839310.1 658  Schmidt et al. 2015 Lasioglossum sabulosum KJ838136.1 408  Schmidt et al. 2015
Andrena limata KJ839525.1 658  Schmidt etal. 2015 Lasioglossum semilucens KJ837947.1 658  Schmidt etal. 2015
Andrena marginata KJ837896.1 658  Schmidt etal. 2015 Lasioglossum sexmaculatum KJ839463.1 286  Schmidt et al. 2015
Andrena minutula KJ839124.1 277  Schmidt et al. 2015 Lasioglossum sexnotatum KJ839283.1 658  Schmidt etal. 2015
Andrena minutuloides KJ839473.1 658  Schmidt et al. 2015 Lasioglossum sexstrigatum KJ836807.1 643  Schmidtetal. 2015
Andrena mitis KJ839301.1 658  Schmidt etal. 2015 Lasioglossum subfasciatum KJ839824.1 658  Schmidt et al. 2015
Andrena nana KJ839631.1 658  Schmidt etal. 2015 Lasioglossum subfulvicorne HQ948016.1 623  Schmidt etal. 2015
Andrena nigroaenea KJ839613.1 658  Schmidt et al. 2015 Lasioglossum villosulum KJ839019.1 658  Schmidt et al. 2015
Andrena nitida K]839744.1 658  Schmidt et al. 2015 Lasioglossum xanthopus KJ837984.1 658  Schmidt etal. 2015
Andrena nitidiuscula KJ839658.1 658  Schmidt et al. 2015 Lasioglossum zonulum KJ838645.1 658  Schmidt et al. 2015
Andrena niveata KJ836650.1 336  Schmidtetal. 2015 Macropis europaea KJ839299.1 658  Schmidt et al. 2015
Andrena nycthemera KJ839071.1 407  Schmidt etal. 2015 Macropis fulvipes KJ838021.1 658  Schmidt etal. 2015
Andrena ovatula KJ839684.1 407  Schmidt et al. 2015 Megachile alpicola KJ838895.1 574  Schmidt etal. 2015
Andrena pandellei KJ839827.1 402  Schmidt et al. 2015 Megachile analis KJ837255.1 658  Schmidt et al. 2015
Andrena pilipes KJ839665.1 407  Schmidt et al. 2015 Megachile apicalis KJ839086.1 658  Schmidt et al. 2015
Andrena polita KJ839692.1 658  Schmidt etal. 2015 Megachile centuncularis KJ839746.1 658  Schmidt et al. 2015
Andrena potentillae KJ839740.1 658  Schmidt etal. 2015 Megachile circumcincta KJ839014.1 658  Schmidt et al. 2015
Andrena praecox KJ839332.1 407  Schmidt et al. 2015 Megachile ericetorum KJ839569.1 658  Schmidt et al. 2015
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Andrena proxima
Andrena pusilla
Andrena rosae
Andrena ruficrus
Andrena semilaevis
Andrena similis
Andrena strohmella
Andrena subopaca
Andrena tarsata
Andrena thoracica
Andrena tibialis
Andrena trimmerana
Andrena vaga
Andrena ventralis
Andrena viridescens
Andrena wilkella
Anthidiellum strigatum
Anthidium manicatum
Anthidium oblongatum
Anthidium punctatum
Anthophora aestivalis
Anthophora bimaculata
Anthophora furcata
Anthophora plagiata
Anthophora plumipes
Anthophora quadrimaculata
Anthophora retusa
Apis mellifera

Biastes truncatus
Bombus barbutellus
Bombus bohemicus
Bombus campestris
Bombus distinguendus
Bombus hortorum
Bombus humilis
Bombus hypnorum
Bombus jonellus
Bombus lapidarius
Bombus muscorum
Bombus norvegicus
Bombus pascuorum
Bombus pratorum
Bombus ruderarius
Bombus ruderatus
Bombus rupestris
Bombus soroeensis
Bombus subterraneus
Bombus sylvarum
Bombus sylvestris
Bombus terrestris
Bombus vestalis
Bombus veteranus
Bombus wurflenii
Ceratina cyanea
Chelostoma campanularum
Chelostoma distinctum
Chelostoma florisomne
Chelostoma rapunculi
Coelioxys afra
Coelioxys alata
Coelioxys aurolimbata

Coelioxys conoidea

HM401053.1
KJ839537.1
Kj839679.1
KJ837768.1
KJ839666.1
Kj839751.1
Kj839400.1
Kj839374.1
JQ909697.1
Kj839789.1
Kj839449.1
KJ837431.1
HM401049.1
Kj839682.1
Kj838743.1
Kj838400.1
KJ839140.1
KJ839261.1
Kj839708.1
Kj839528.1
Kj839335.1
Kj839592.1
Kj836670.1
KJ839757.1
Kj8392511
Kj839773.1
Kj839223.1
Kj084478.1
KJ837962.1
Kj839426.1
Kj839694.1
GU705899.1
Kj838613.1
HM401455.1
Kj839334.1
Kj839370.1
Kj839707.1
GU705908.1
Kj838500.1
Kj838809.1
GU705929.1
GU705924.1
Kj838712.1
KJ746616.1
Kj839543.1
Kj839741.1
KJ839421.1
Kj839388.1
Kj839213.1
JQ843670.1
KJ839596.1
HQ563800.1
Kj839491.1
KJ839487.1
Kj837936.1
Kj839761.1
Kj838755.1
Kj839583.1
Kj839415.1
Kj839560.1
Kj839452.1
Kj839642.1

658
283
658
365
658
658
270
658
654
658
658
658
658
407
657
636
407
658
658
658
658
658
658
658
658
610
402
658
434
571

658
658
426
623
658
658
658
658
426
631

658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
425
658
658
658
658
658
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Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.

Magnacca & Brown 2012

Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Unpublished
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.

Williams et al.

Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.

2015
2015
2015
2015
2015
2015
2015
2015

2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015

2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2012
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015

Megachile genalis
Megachile lagopoda
Megachile lapponica
Megachile leachella
Megachile ligniseca
Megachile maritima
Megachile pilidens
Megachile pyrenaea
Megachile rotundata
Megachile versicolor
Megachile willughbiella
Melecta albifrons
Melecta luctuosa
Melitta dimidiata
Melitta haemorrhoidalis
Melitta leporina
Melitta nigricans
Melitta tricincta
Nomada alboguttata
Nomada argentata
Nomada armata
Nomada bifasciata
Nomada castellana
Nomada conjungens
Nomada distinguenda
Nomada emarginata
Nomada fabriciana
Nomada femoralis
Nomada ferruginata
Nomada flava
Nomada flavoguttata
Nomada flavopicta
Nomada fucata
Nomada fulvicornis
Nomada furva
Nomada fuscicornis
Nomada goodeniana
Nomada guttulata
Nomada hirtipes
Nomada integra
Nomada lathburiana
Nomada leucophthalma
Nomada marshamella
Nomada melathoracica
Nomada mutabilis
Nomada mutica
Nomada obscura
Nomada obtusifrons
Nomada opaca
Nomada panzeri
Nomada pleurosticta
Nomada rhenana
Nomada roberjeotiana
Nomada ruficornis
Nomada rufipes
Nomada sexfasciata
Nomada sheppardana
Nomada signata
Nomada similis
Nomada stigma
Nomada striata

Nomada succincta

Kj839253.1
HM401110.1
HMA401111.1
HM401115.1
Kj838291.1
Kj839766.1
KJ839629.1
KJ83908L1
GU706002.1
Kj839653.1
Kj838579.1
KJ839671.1
Kj839507.1
Kj837102.1
Kj839641.1
Kj839815.1
Kj839607.1
KJ838749.1
Kj839408.1
Kj837071.1
Kj836882.1
Kj839249.1
Kj837163.1
KJ837916.1
KJ839387.1
Kj836575.1
Kj838946.1
Kj837198.1
KJ839795.1
GU706040.1
KJ839657.1
Kj839305.1
Kj838364.1
Kj839458.1
Kj837852.1
Kj838239.1
Kj839226.1
KJ838987.1
GU706039.1
Kj839818.1
Kj839024.1
GU706028.1
Kj838076.1
KJ839006.1
KJ837610.1
Kj838713.1
Kj839517.1
KJ838689.1
KJ837130.1
Kj838935.1
Kj836589.1
Kj838920.1
Kj839281.1
HMA40108L.1
Kj839802.1
Kj838028.1
Kj839733.1
HM401085.1
Kj838899.1
Kj839803.1
KJ837440.1
Kj838940.1

658
658
658
658
658
658
658
658
658
658
658
618
634
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
603
658
658
658
658
658
658
658
658
413
523
658
658
658
658
658
658
426
658
658
658
658
658
658
658
658
658
658

Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
. 2015
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
. 2015
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.

Schmidt et al.

Schmidt et al.

2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015

2015
2015
2015
2015
2015
2015
2015
2015
2015

2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
2015
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Coelioxys echinata
Coelioxys elongata
Coelioxys inermis
Coelioxys mandibularis
Coelioxys rufescens
Colletes cunicularius
Colletes daviesanus
Colletes fodiens
Colletes halophilus
Colletes hederae
Colletes impunctatus
Colletes marginatus
Colletes similis
Colletes succinctus
Dasypoda hirtipes
Dufourea dentiventris
Dufourea halictula
Dufourea inermis
Dufourea minuta
Epeoloides coecutiens
Epeolus cruciger
Epeolus variegatus
Eucera longicornis
Eucera nigrescens
Halictus confusus
Halictus eurygnathus
Halictus leucaheneus
Halictus maculatus
Halictus quadricinctus
Halictus rubicundus
Halictus scabiosae
Halictus sexcinctus
Halictus simplex
Halictus tumulorum
Heriades truncorum
Hoplitis adunca
Hoplitis anthocopoides
Hoplitis claviventris
Hoplitis leucomelana
Hoplitis papaveris
Hoplitis ravouxi
Hoplitis tridentata
Hoplitis villosa
Hylaeus angustatus
Hylaeus brevicornis
Hylaeus clypearis
Hylaeus communis
Hylaeus confusus
Hylaeus cornutus
Hylaeus difformis
Hylaeus gibbus
Hylaeus hyalinatus
Hylaeus leptocephalus
Hylaeus nigritus
Hylaeus pectoralis
Hylaeus pictipes
Hylaeus pilosulus
Hylaeus punctatus
Hylaeus punctulatissimus

Hylaeus rinki

HMA401148.1
KJ837365.1
Kj839147.1
KJ839664.1
KJ837496.1
KJ838571.1
KJ839724.1
KJ839765.1
DQO85543.1
Kj839205.1
KJ838765.1
KJ839430.1
Kj839777.1
Kj838166.1
HMA401144.1
KJ839506.1
HMA401152.1
KJ837444.1
KJ837955.1
Kj838491.1
KJ839532.1
KJ839152.1
Kj838283.1
KJ839524.1
KJ839330.1
Kj838838.1
KJ839776.1
KJ839394.1
KJ839343.1
JQ909730.1
KJ839219.1
HM401094.1
KJ838633.1
JQ909735.1
KJ839762.1
HMA401196.1
Kj839674.1
Kj838228.1
KJ839627.1
KJ839424.1
KJ839378.1
GU705987.1
KJ837562.1
KJ839785.1
KJ839278.1
K)839428.1
Kj839696.1
HMA401063.1
KJ839471.1
Kj839041.1
Kj838734.1
K)839386.1
KJ838113.1
Kj838326.1
Kj839242.1
KJ838603.1
HQ948063.1
KJ839293.1
KJ839035.1
Kj837486.1

658
658
658
453
658
658
658
658
650
630
573
590
658
562
572
658
658
597
658
606
658
658
658
658
658
658
658
632
658
654
658
658
658
654
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
631

658
629
658
580
658
658
658
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Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Kuhlmann et al. 2007
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Magnacca & Brown 2012
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Magnacca & Brown 2012
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015
Unpublished
Schmidt et al. 2015
Schmidt et al. 2015
Schmidt et al. 2015

Nomada villosa
Nomada zonata
Osmia andrenoides
Osmia aurulenta
Osmia bicolor

Osmia bicornis
Osmia brevicornis
Osmia caerulescens
Osmia cerinthidis
Osmia cornuta
Osmia inermis

Osmia leaiana

Osmia melanogaster
Osmia niveata

Osmia parietina
Osmia pilicornis
Osmia rufohirta
Osmia spinulosa
Osmia uncinata
Osmia xanthomelana
Panurgus banksianus
Panurgus calcaratus
Panurgus dentipes
Rophites quinquespinosus
Sphecodes albilabris
Sphecodes crassus
Sphecodes ephippius
Sphecodes ferruginatus
Sphecodes geoffrellus
Sphecodes gibbus
Sphecodes hyalinatus
Sphecodes longulus
Sphecodes majalis
Sphecodes marginatus
Sphecodes miniatus
Sphecodes monilicornis
Sphecodes niger
Sphecodes pellucidus
Sphecodes puncticeps
Sphecodes reticulatus
Sphecodes rubicundus
Sphecodes rufiventris
Sphecodes scabricollis
Sphecodes spinulosus
Stelis breviuscula
Stelis minima

Stelis minuta

Stelis odontopyga
Stelis ornatula

Stelis punctulatissima
Stelis signata
Tetralonia malvae
Thyreus orbatus
Trachusa byssina
Xylocopa violacea
OUTGROUP species
Philantus triangulum
Sphecius speciosus
Bembix troglodytes
Pison chilense

KJ836696.1
KJ838959.1
KJ839211.1
KJ839495.1
KJ839576.1
GU705983.1
Kj838945.1
KJ836678.1
KC709832.1
Kj839784.1
HMA401203.1
KJ838962.1
HMA4012111
Kj839221.1
HMA401222.1
KJ839236.1
KJ839465.1
KJ839239.1
HMA401230.1
Kj837282.1
KJ838905.1
KJ839230.1
Kj839720.1
KJ837651.1
KJ839755.1
KJ839769.1
Kj839466.1
Kj839819.1
KJ839602.1
Kj839094.1
KJ839760.1
KJ839122.1
KJ837051.1
KJ839540.1
KJ839656.1
KJ839567.1
Kj839630.1
Kj839328.1
KJ839170.1
Kj838156.1
HQ563096.1
KJ839699.1
Kj838552.1
KJ839610.1
Kj839384.1
KJ837069.1
Kj836896.1
HMA401240.1
KJ839723.1
Kj839732.1
Kj839263.1
KJ839598.1
HQ948098.1
Kj839233.1
KJ836969.1

JQ040288.1
EF203750.1
EF203767.1
GQ374629.1

658
658
658
658
658
658
658
658
1231
658
658
658
658
657
658
658
658
658
658
658
658
658
658
408
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
658
604
658
421
283
658
421
647
658
658
603
507
658
620
611
658

839
648
648
786

Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.

2015
2015
2015
2015
2015
2015
2015
2015

Haider et al. 2014

Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
Schmidt et al.
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5.1 Abstract

Bumblebees in Europe have been in steady decline since the 1900s. This de-
cline is expected to continue with climate change as the main driver. However,
at the local scale, land use and land cover (LULC) change strongly affects the oc-
currence of bumblebees. At present, LULC change is rarely included in models
of future distributions of species. This study’s objective is to compare the roles
of dynamic LULC change and climate change on the projected distribution pat-
terns of 48 European bumblebee species for three change scenarios until 2100 at
the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX).
We compared three types of models: (1) only climate covariates, (2) climate and
static LULC covariates and (3) climate and dynamic LULC covariates. The cli-
mate and LULC change scenarios used in the models include, extreme growth
applied strategy (GRAS), business as might be usual and sustainable European
development goals. We analysed model performance, range gain/loss and the
shift in range limits for all bumblebees. Overall, model performance improved
with the introduction of LULC covariates. Dynamic models projected less range
loss and gain than climate-only projections, and greater range loss and gain than
static models. Overall, there is considerable variation in species responses and
effects were most pronounced at the BENELUX scale. The majority of species
were predicted to lose considerable range, particularly under the extreme growth
scenario (GRAS; overall mean: 64% =+ 34). Model simulations project a number
of local extinctions and considerable range loss at the BENELUX scale (overall
mean: 56% =+ 39). Therefore, we recommend species-specific modelling to un-
derstand how LULC and climate interact in future modelling. The efficacy of
dynamic LULC change should improve with higher thematic and spatial resolu-
tion. Nevertheless, current broad scale representations of change in major land

use classes impact modelled future distribution patterns.
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5.2 Introduction

Recent scientific consensus suggests that we are facing a sixth mass extinction
event, correlated strongly to anthropogenic factors (Ceballos et al. 2015). To
avoid the dramatic loss of biodiversity and associated ecosystem services, im-
mediate and thorough conservation efforts are required (Barnosky et al. 2011).
An important role of biodiversity conservation research is to understand and es-
timate potential changes in biodiversity alongside changing abiotic and biotic
conditions (Elith et al. 2010; Porfirio et al. 2014).

In an effort to understand these effects experts have produced scenarios of
climate, and land use and land cover (LULC) change. Land use and land cover
change scenarios use potential climate change, policy decisions and strategies
to represent socio-economic developments which will inevitably shift land use
and management (Rounsevell et al. 2005; van Vuuren et al. 2011; Verburg et
al. 2006). Scientists have developed scenarios with the goal to evaluate the im-
pact of environmental changes on biodiversity (Spangenberg et al. 2012). Their
role in biodiversity analyses is to allow the production of dynamic land use vari-
ables which better reflect future habitat suitability for a species and may be useful
to explain additional drivers of distributional changes alongside climate change.
There is strong consensus that both climate and LULC change are important in
driving the observed patterns of biodiversity declines (Luoto et al. 2007; Ostberg
etal. 2015). Historically, LULC change has been the dominant cause of observed
biodiversity changes and researchers expect that it will remain an ongoing threat
to worldwide biodiversity (Millennium Ecosystem Assessment, 2005; Ostberg et
al. 2015). Climate and land use change underlie a multitude of environmental
pressures that may have a greater joint impact on biodiversity than when oper-
ating in isolation (Clavero et al. 2011; Mantyka-pringle et al. 2012). Therefore,
models which exclude LULC change from modelling biodiversity in the future ne-
glect a significant factor in potential drivers of species distribution change, even

if these projections are coarse and at broad spatial scales.
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Species distribution models (SDMs) represent a powerful tool for understand-
ing patterns in biodiversity. They combine species occurrence data with environ-
mental conditions to estimate the distribution of species in space and time (Elith
& Leathwick 2009). Often used to project species distributions into unsampled
areas, orareas of possible invasion, they also project species distributions into the
future (Franklin 2010). The majority of future distribution models include only
climate change variables and do not include LULC variables or use only LULC
variables based on current conditions (static; Bellard et al. 2012; Titeux et al.
2016). At broad spatial scales, climate is expected to be the main constraint to
species distributions, but at finer resolutions, the effect of LULC covariates in-
crease; landscape-specific features that provide nesting and feeding resources
occur at this finer scale (Luoto et al. 2007; Rahbek et al. 2007; Thuiller et al.
2004; Aragjo & Lavorel 2004). Therefore, improved estimations of biodiversity
change require detailed land use change scenarios (Titeux et al. 2016).

Even though studies recommend the inclusion of LULC variables to avoid pro-
ducing unrealistic projections, few studies have used dynamic LULC covariates
to model biodiversity patterns in the future. Reasons for this is that projections
of LULC change are rarely available or only at coarse resolution and with few land
use classes (Titeux et al. 2016). However, climate predictions offer similar limi-
tations with resolution and parameters often not directly relevant to the habitat
suitability of species. Interestingly, the studies that explicitly include dynamic
LULC variables in the SDM process show considerable variation in the effect this
has on species distribution patterns, specifically range change (Barbet-Massin et
al. 2012b; Chytry et al. 2012; Ficetola et al. 2010; Martin et al. 2013; Riordan &
Rundel 2014; Sohl 2014; Wisz et al. 2008). The variation is most likely due to
differences in species, spatial scale and explanatory variables included in these
studies. Likewise, the performance of SDMs usually depends strongly on the
modelling framework used, the species modelled, the distribution, quality and
quantity of collection data, and the resolution of the species occurrence data and
covariates (Aguirre-Gutierrez et al. 2013; Bellard et al. 2012; Harris et al. 2013;
Warren & Seifert 2011). Testing the effect of dynamic LULC covariates with mul-
tiple species, different resolutions and covariates is essential to understand their
role in SDMs (Martin et al. 2013).
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In this study, we evaluate the effects of LULC change scenarios available for Eu-
rope, on the distributional changes projected by SDMs for 48 European bumble-
bee species projected onto Belgium, the Netherlands, and Luxembourg (BENE-
LUX), and at the European scale. We use three land use change scenarios (busi-
ness as might be usual [BAMBU], growth applied strategy [GRAS], sustainable
European development goals [SEDG]) representing alternative socio-economic
futures, which have been specifically developed to evaluate the impacts of envi-
ronmental changes on biodiversity (Assessing LArge-scale environmental Risks
with tested Methods (ALARM) Scenarios; Spangenberg et al. 2012). We expect
to observe differences in the projected distributions produced by climate-only
models vs. models which include LULC. We expect that the differences between
static and dynamic LULC models will be less pronounced and species-specific,
and will likely depend on the spatial scale and resolution at which the LULC co-
variates are projected (Luoto et al. 2007; Martin et al. 2013). Overall, we aim
to illustrate the bias associated with using climate change-only scenarios when
modelling bumblebees that land use change will undoubtedly affect. We also aim
to show how presently available dynamic LULC projections affect the modelled
distributions for multiple species. Following this important step, we discuss the
extent to which our results provide improvements to land use change scenarios
in development and the conservation implications of using such SDMs.

5.3 Materials and Methods

5.3.1 Target species

Our study group is the genus Bombus, for which we have detailed, long-term,
biogeographical records for most of Europe, and which has shown significant
decline in the last one hundred years (Biesmeijer et al. 2006; Carvalheiro et al.
2013; Kerr et al. 2015; Rasmont et al. 2005). Forty-eight European bumble-
bee species were included in the analysis (see Table S5.1). The species modelled
share similar life histories, but exhibit vastly different ranges and distributions in
Europe (Rasmont et al. 2015a). According to the [UCN Red List of threatened
species, Bombus in Europe includes species of all threat levels (Nieto et al. 2014).
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Climate change impacts have been modelled for the genus Bombus at the Euro-
pean scale, projecting severe declines and northerly shifts for the majority of the
species (Rasmont et al. 2015a). However, loss of habitat for feeding and nesting
resources has been cited as a major driver of past Bombus decline (Biesmeijer
et al. 2006; Carvalheiro et al. 2013; Goulson et al. 2010; Williams & Osborne
2009). Therefore, climate might not necessarily be the only significant driver of
change for this group over the next one hundred years. Furthermore, the distri-
bution patterns of wild bee species are reported to be affected by change in major
land use classes, particularly the presence of arable land (Aguirre-Gutiérrez et al.
2015; Senapathi et al. 2015).

5.3.2 Species presence data

This study includes bumblebee collection records from 22 European countries
and multiple sources including professional and amateur scientists (see Fig S5.1).
The data were collated as part of the EU FP7 project STEP (Potts et al. 2011), and
is aggregated and available to view on the Atlas Hymenoptera webpage (Rasmont
& Iserbyt 2013). We used records from 1970 until 2000, as these represent the
‘current’ period of climate data, which we used to train the species distribution
models. We had 462,636 records available to use.

5.3.3 Spatial extent and resolution

The spatial extent was limited to the extent of the ALARM projections of Eu-
ropean land use, which in turn limited the species collection records available
to use (see Fig S5.1). Europe in the context of this study is defined as the Eu-
ropean Union without Ireland, Romania, Bulgaria, Canary Islands and Cyprus,
and including Norway and Switzerland. We created 5 x 5 km, 10 x 10 km and
20 x 20 km European grids for training the SDMs to project onto the BENELUX
(Belgium, Netherlands and Luxembourg) region. We also created a 50 x 50 km
European grid for training the SDMs to project onto the original spatial extent of
Europe. All map projections use the European terrestrial references system 1989
(ETRS89).
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5.3.4 Climate and Land Use/Land Cover Data

Variables of current climatic conditions were produced from monthly interpo-
lated rainfall and temperature data from 1971 to 2000, at a 10 resolution (Fronzek
et al. 2012, Mitchell et al. 2004). We considered 14 climate variables for the
modelling process (see Table S5.2). However, because climate variables are of-
ten strongly correlated. Including all climate variables in the models would have
added redundant information. Therefore, to avoid collinearities, we conducted
a selection according to Pearson correlation coefficients (<0.7; Dormann et al.
2013). When two variables were highly correlated, we selected the variable that
we estimated to have the greatest ecological relevance to Bombus species. We se-
lected total annual growing degree-days (>5°C), which was correlated with other
temperature variables, because it is linked to the presence of wildflowers and
flowering crops, both important food sources for bumblebees. Furthermore, we
chose water balance, which was correlated with the majority of other precipita-
tion variables because it is representative not only of total precipitation, but has
a direct link with temperature, making it an important influence for terrestrial
vegetation (Gerten et al. 2004). Five climate variables were used as explana-
tory covariates in the model: average precipitation of the wettest month; total
annual number of growing degree-days above 5°C; mean diurnal range (mean of
monthly difference between daily maximum and minimum temperatures); an-
nual temperature range (maximum temperature of warmest month-minimum
temperature of coldest month); and annual water balance (mean monthly pre-
cipitation minus the monthly potential evapotranspiration; Gerten et al. 2004).

Each of the five climate variables was aggregated to the 50 x 50 kmand 20 x 20
km grids, and downscaled to the 10 x 10 km and 5 x 5 km grids using bilinear
interpolation (Randin et al. 2009). All spatial analyses were conducted using
Rstatistics 3.3.2 (R Core Team 2017), the Raster package (version 2.5-2; Hijmans
2015) and ARCGIS 10.2 (ESRI 2016).

The future land use projections were built in congruence with a set of global
change scenarios and associated climate change as part of the European ALARM
project (Spangenberg et al. 2012). These climate scenarios were derived from
a coupled Atmosphere-Ocean General Circulation Model (HadCM3; New et al.
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1999) and include the scenarios as outlined in the IPCC Special Report on Emis-
sion Scenarios (IPCC 2001). We produced the same five climate variables in the
current period for each of three scenarios of climate change (BAMBU, GRAS,
SEDG) in 2050 and 2100 for the four grid resolutions.

+ ‘Business as Might Be Usual’ (BAMBU)—IPCC A2 scenario (see Span-
genberg et al. 2012, for more information); mean projected temperature
rise in Europe at 2100 is 4.7°C; an intermediate change scenario based on

extrapolated current socioeconomic and policy decisions.

+ ‘Growth Applied Strategy’ (GRAS)—IPCC AIFI; mean projected temper-
ature rise in Europe at 2100 is 5.6°C; a maximum change scenario driven by
policies of deregulation and economic growth.

* ‘Sustainable European Development Goal’ (SEDG)—IPCC Bl scenario;
mean projected temperature rise in Europe at 2100 is 3.0°C; a moderate
change scenario driven by economic, social and environmental policies, re-
lated to stabilizing atmospheric greenhouse gases emissions and stopping

the loss of biodiversity.

Current land use was obtained from the Coordination of Information on the
Environment (CORINE) Land Cover at 250 x 250 m resolution (Bossard et al.
2000). The CORINE classes were reclassified as six classes to match the future
projections. Weremoved the class ‘others’ from our analysis because it represents
diverse land use types and was inexplicable in an ecologically relevant context for
bumblebee species. Future land use was obtained from the ALARM EU project
downscaled to 250 x 250 m for each of the three scenarios for 2050 and 2100
(Dendoncker et al. 2006; Spangenberg et al. 2012). At each grid resolution, we
determined the percentage cover for each land use covariate. The final five land
use layers were: percentage cover arable land; percentage cover forest; percentage

cover grassland; percentage cover permanent crops; and percentage cover urban.

The role of the covariates will be tested in three ways using three variable sets
in the models: (1) Dynamic climate-only models, suggesting that only climate
variables matter in the future distribution of bumblebee species. (2) Static land
use and dynamic climate, suggesting that land use variables are important in
delimiting species habitat suitability, but that their future change will be driven
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only by climate change and changes in land use are redundant. (3) Dynamic
climate and dynamic land use, suggesting that future distribution patterns will
be dependent on the interaction between changing climate and changing land

use.

5.3.5 Species distribution modelling

We used a SDM approach to compare the role of dynamic land use data in the
future distribution patterns of bumblebees. We modelled the distribution of 48
species using R (R Core Team 2017) with the biomod2 package (version 3.3-3;
Thuiller et al. 2013). We chose an ensemble modelling approach, which cre-
ates a consensus of the predictions of multiple algorithms and is an established
method to account for projection variability (Thuiller 2014a). Even small differ-
ences between algorithms can lead to different projections of future distribution
change. Ensemble modelling aims to limit the many uncertainties of forecast
modelling and has become increasingly used in studies of biodiversity change
(Thuiller 2014a).

We chose three algorithms to include in the ensemble model based on their
previous performances with analogous collection data for a similar insect species
group (Aguirre-Gutierrez et al. 2013). The three algorithms chosen were a gener-
alized linear model, GLM (Nelder & Wedderburn 1972), with linearand quadratic
effects, and stepwise selection based on the Akaike Information Criteria (AIC);
a generalized boosted model, GBM (Friedman 2001), with 3,000 trees and five
cross-validation folds; and Maximum Entropy Modelling (MAXENT; Phillips &
Dudik 2008), with linear and quadratic features. We decided to choose simplic-
ity and ecological clarity over model complexity by dropping detailed features,
such as product, threshold, hinge and polynomial.

Models for each species were trained at multiple resolutions at the European
scale; 5 x 5km, 10 x 10 km, 20 x 20 kmand 50 x 50 km. We had 462,636 records
available to use; these were aggregated as unique species occurrences for each grid
cell resolution. The number of occurrences per resolution is as follows: 67030 at
5 x 5 km, 49146 at 10 x 10 km, 30104 at 20 x 20 km and 21,162 at 50 x 50 km.
We modelled 48 species (see Table S5.1) with at least 50 unique records, and for
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which there are no ongoing taxonomic debates surrounding their species defini-
tion (see Rasmont et al. 2015a). A number of occurrences in the database were
not point level GPS coordinates, but were recorded as UTM grids of varying sizes.
To be confident in the spatial accuracy of collection records we removed occur-
rences that were recorded as UTM grids larger than 1 x 1, km. As the sampling
methods were diverse and non-systematic, there are likely spatial biases amongst
the records. To deal with this potential spatial autocorrelation between closely
sampled locations we selected a subset of points per species. A random starting
observation was selected and all points in adjacent grid cells removed; this was
then repeated for all remaining points. This produced a more even spread of ob-

servations and minimized the effects of heavy sampling at particular locations.

As true absences were not available (it is not possible to accurately say that a
bee species is not present during sampling) we generated randomly distributed
pseudo-absences for GBM and GLM and selected a background sample for MAX-
ENT (Elith et al. 2011; Phillips et al. 2009). We used target-group sampling to se-
lect our background points (Mateo et al. 2010; Phillips et al. 2009). We specified
that the background samples and pseudo-absences could only be selected from
areas where other bumblebees have been recorded since 1970. This approach is
more objective than taking the background and pseudo-absence samples from
sites that have not been sampled, accounting for potential sampling bias (Elith
etal. 2011; Phillips et al. 2009) and providing more accurate results (Mateo et al.
2010). To account for within algorithm variation we trained the models 10 times
for each of the 48 species, the three algorithms, the three model hypotheses,
and the four grid resolutions. This resulted in 360 models per species. We used
a bootstrap approach where random subsets of 80% of the data were used for
model training and the remaining 20% to produce Area Under the Curve (AUC)
values to test model performance (Bahn & Mcgill 2013; Jiménez-Valverde & Lobo
2007). For each covariate included in the model, we calculated variable contri-
bution as the change in correlation between the covariates and the response with
and without the selected variable (Thuiller et al. 2015). We then produced an
ensemble model for each of the three model hypotheses, creating a median rep-
resentation of the predictions of the 10 runs and three algorithms together. We
chose the median value as it is less sensitive to extreme values than the mean.
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We projected the models trained at 5 x 5 km, 10 x 10 km and 20 x 20 km,
onto BENELUX. BENELUX comprises no novel conditions under the scenarios
(i.e., thereare no conditions in BENELUX in 2100 that do not already occur within
Europe). Therefore, no forecasting into unknown ecological space occurred (Fig
S5.2). We also projected the data trained at 50 x 50 km onto the entire Euro-
pean study area. For each species we produced habitat suitability maps of the
median ensemble predicted distribution. One map was produced for each of the
three model types at 2050, and 2100 under the three change scenarios at the 4
grid resolutions. Habitat suitability maps were converted to binary presence ab-
sence maps using the values under which specificity and sensitivity is optimized
(Thuiller et al. 2015).

5.3.6 Statistical analysis

Analyses were conducted on the ensemble model map projections of binary pres-
ence/absence. To compare the projected distributions of the three model hy-
potheses we measured the change in three distribution metrics. We calculated
range change by looking at changes per species in areas of occupancy between
the current and future periods. Specifically, we analysed the percentage of grid
cells lost (present in the current period and absent in the future) by each species
under the different scenarios and the percentage of grid cells gained (percentage
of absent cells in the current period occupied in the future). To examine spatial
shifts we took the centroid of the species range from the present (2000) and the
future (2050 and 2100). A positive value indicates northerly shift and negative,
a southerly shift.

To determine the role of the different models, (i.e. climate-only model [COM],
dynamic LULC model [DLM] and static LULC model [SLM]), we created separate
mixed effects models for each of the three metrics for both Europe and BENELUX
projections. We included species as a random effect, as we were interested in
how changes in distribution of the species vary across the different model types,
periods and scenarios, and not in the inherent variation between species. Fur-
thermore, to determine if our results are related to the structure of the data we
also included the current range of the species as a covariate. Due to large num-

bers of zeros both range loss and range gain at the BENELUX scale were analysed
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with two separate mixed models: Bernouli distributed models of the probability
of gain or loss and a linear mixed effects model of values given range loss/gain

were projected.

Finally, in addition to presenting results for bumblebees as a group, we chose
two species, Bombus argillaceus (Scopoli 1763; increasing in range) and B. vet-
eranus (Fabricius 1793; decreasing in range), to look more closely at the differ-
ence between model projections with and without LULC covariates. We chose
these two species as they are at opposite end of the spectrum of climate risk,
both had high model performance values, both have a large number of collection
records within Europe and we believe them to be representative of two futures,
i.e. considerable range gain and considerable range loss, respectively (Rasmont
etal. 2015a). The current distribution of B. argillaceus is in Southern and South
Eastern Europe as well as Western Asia (Rasmont & Iserbyt 2013). In previous cli-
mate-only models of future conditions B. argillaceus was projected to increase its
range considerably in Western Europe (Rasmont et al. 2015a). Bombus veteranus
exhibits an already patchy distribution in the plains of Northern Europe and has
already declined in Belgium, shifting from an abundant species to one which is
barely present (Rasmont & Iserbyt 2013). Under future climate-only projections
B. veteranus is expected to decrease in range considerably (Rasmont et al. 2015a).

5.4 Results

5.4.1 Model training fit and variable contribution

For models trained on the current period, we assessed model fit using AUC scores.
An AUC value below 0.5 indicates a model fit that is not better than random,
values above indicate enhanced model fit. We used AUC values to compare the
change in model fit per species with LULC vs. a COM (Fig 5.1). The mean AUC
values for all species are above 0.7, indicating better than random model fit. For
all 48 species, model fit improves by the addition of LULC covariates. A paired
Wilcoxon rank sum test indicates that the mean difference between the AUC
values of the models with LULC and the COMs is 0.013 £0.004 (p value <.001).
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FI1G. 5.1: Area under the curve (AUC) statistics for median-ensemble-model performance visualized per

species. Black squares represent models with only climate covariates and grey triangles models with land use land

cover (LULC) covariates and climate covariates. Groupings represent Climatic risk as calculated by the Climate Risk

Atlas for Bumblebees (Rasmont et al. 2015a). Potential risk (PR), low risk (LR), Risk (R), high risk (HR), very high
risk (HHR), extreme risk (HHHR).

We also compared the variable contributions of the different explanatory co-
variates included in the models (Fig 5.2). Climatic variables are the most impor-
tantin explaining the current distribution of all species. The total annual number
of growing degree-days was included amongst the four most important variables
for 44 of the species modelled. The most important LULC covariate is the per-
centage cover of arable land but the percentage cover of forest is also important
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for a number of species (Fig 5.2). Overall LULC variables contribute 15% of total
variable importance.
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F1G. 5.2: Average variable importance values and standard er-

rors of all covariates included in the training models. Black

squares represent models with only climate covariates and grey tri-

angles models with land use land cover (LULC) covariates and cli-

mate covariates. The numbers in the brackets represent the number

of species for which this variable was one of the four most important
variables.

5.4.2 The future of bumblebees projected at the BENELUX
scale

Of the distribution change metrics analysed, the largest discrepancies were found
in the projected range loss (Fig 5.3a,b). There is considerable variability between
species and between scenarios but model type has a significant effect on the pro-
jections of whether species will lose range and how much range will be lost (Table
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5.1). Overall species are more likely to lose range under DLMs than both COMs
and SLMs (p < .001 and .002; Table 5.2). However, given range loss occurs (i.e.
excluding species that showed no range loss) then greater loss is projected by
COMs than both SLMs and DLMs (1.3%; p < .001; Table 5.2). However, this re-
lationship is highly variable and species specific. Under COMs 11 species show
greater mean range loss averaged across scenario and resolution, however, five
species show greater range loss under DLMs (Fig 5.3a). The relationship between
projected range loss of SLMs and DLMs, while not significant at the BENELUX
scale, (Table 5.2) also appears to be species specific, with some species below the
equal projection line, indicating greater range loss under DLMs (Fig 5.3b). There
are no significant interactions between model type and other explanatory vari-
ables, suggesting a consistent effect of model type across scenarios, periods and
resolutions (Table 5.1).
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F1G. 5.3: Comparison of percentage loss projections between model types for BENELUX 2000-2050. (a)

Climate-only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and

DLM. (a) N =36, (b) N = 38. Results are averaged across resolution 5 x 5, 10 x 10 and 20 x 20 km) and scenario

(BAMBU, SEDG, GRAS), represented by standard error bars (dashed lines). The equal projection line (dashed line

0,0 t0100,100) represents the point at which the two model projections are equal. Red = above the equal projection
line, Blue = below the equal projection line, Grey = overlapping the equal projection line.

Model type, period, scenario and resolution at which the modelling occurred
significantly influence the probability of range gain (Table 5.1). Only 50% of
species were projected to gain any range at all within BENELUX by 2100 (Fig
5.4a,b). The odds of range gain are significantly higher for DLM projections than
for COM and SLM (p < .0001; Table 5.2). When range gain occurs there is no
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TasLe 5.1: Effects of SDM variability on the distributional change of bumblebees.

BENELUX (20 x 20,10 x 10 and 5 x 5 km) Europe (50 x 50 km)

Probability Percentage Probability Percentage Centroid Percentage Percentage Centroid
of Loss Loss of Gain Gain Shift (km) Loss Gain Shift (km)

Explanatory variables

Single Terms

Range Size Present Europe - - - -

Model Type (COM, DLM, SLM) . ok ok . R e e e

Period (2000-50, 2050-80) R . ok . . . . ok

Scenario (BAMBU, GRAS, . . . . . wk .

SEDG)

Resolution (20 x 20, 10 x 10, xn e

5 x 5 km) -

Two-way Interactions

Range Size Present x Model

Type

Range Size Present x ek .

Period )

Range Size Present x

Scenario

Range Size Present x

Resolution

Model Type x Period - - - - - -

Model Type x Scenario - - - - - - -

Model Type x Resolution - - - - -

Period x Scenario - - - -

Period x Resolution - - - - -

Scenario x Resolution - - - -

Degrees of Freedom 1706 1511 1617 726 1361 853 856 847

p-values: .0l<p=<.05="*,.001<p=<0.0l=**and <.001 = *** The most parsimonious models as chosen by Bayesian

information criteria (BIC) for the percentage range loss, percentage range gain, and shift in the distributional cen-

troid for 48 bumblebee species at European and BENELUX scales. The significance of each term included in the

model is shown. The symbol “-” represents a variable not included in the best model. The random term for all
models was ‘1 | species.” For a detailed version of the table see Supporting Table S5.3.

significant difference between COMs and DLMs, however, both projected signifi-
cantly higherloss than SLMs (1.4 and 1.2%, p <.0001 & .03; Table 5.2). This can be
visualized in Fig 5.4a, where variation between species is evenly distributed and
clustered at zero and Fig 5.4b, where seven species have a considerably greater
range gain under DLMs.

Period and scenario at which the modelling occurred significantly influence
the directional shift of the distribution centroid (p < .001; Table 5.1). Model type
did not significantly affect the projected shift.

5.4.3 The future of bumblebees projected at the European
scale

At the European scale with lower spatial resolution (50 x 50 km), SLMs project
significantly less range loss than both COMs and DLMs (2.9% and 1.7%; p = <.001

and .02, Table 5.2). Overall, all 48 species are projected to lose at least some
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TasLe 5.2: Pairwise comparisons between model types.

BENELUX (20 x 20,10 x 10and 5 x 5 km) Europe (50 x 50 km)
Contrast Probability of Loss Percentage Probability of Gain Percentage Centroid Percentage Percentage Centroid
ontrasts (Odds Ratio) Loss (Odds Ratio) Gain Shift (km) Loss Gain Shift (km)
E%\I)[/I - 0.13%** 1.32%%* 0.30%* 117 NA 117 1.62%** 51.7%%*
58\7[ - 0.34%** 1327 0.58* 1.45%* NA 2.91%** 1.97%** 48.2%%
ot 257+ 1 1934+ 124% NA 174¢ 121+ 35

p-values: .01 < p <.05=%,.001 < p < .0l = ** and <.001 = *** Showing the fixed effect and the significance of the
best models as chosen by Bayesian information criteria BIC. Null hypothesis tested: that the difference between
contrasts is equal to 0. Values are averaged over other explanatory variables included in the model (see Table S5.3.)
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F1G. 5.4: Comparison of percentage gain projections between model types for BENELUX 2000-2050. (a)

Climate-only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and

DLM. (a) N =25, (b) N = 35 bumblebee species in BENELUX for 2000-2050. Results are averaged across resolution

(5 % 5,10 x 10 and 20 x 20 km) and scenario (BAMBU, SEDG, GRAS), represented by standard error bars (dashed

lines). The equal projection line (dashed line 0,0 to 70,70) represents the point at which the two model projections

are equal. Red = above the equal projection line. Blue = below the equal projection line. Grey = overlapping the
equal projection line.

range and the relationships between the different model types shows a strong
linear correlation, but with considerable deviation from the assumption of the
projections being equal (Fig 5.5a,b). Eighteen speciesare projected to lose greater
range under COMs whilst fourteen species are projected to lose greater range
under DLMs (Fig 5.5a). The relationship between DLMs and SLMs is clearer with
a higher number of species below the equal protection line than above, which
supports the significant effect found in the mixed models (1.21%, p < .01; Fig 5.5b
and Table 5.1).
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F1G. 5.5: Comparison of percentage loss projections between model types at European Scale 2000-2050.

(a) Climate-only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and

DLM. N =48. 50 x 50 km resolution. Results are averaged across scenario (BAMBU, SEDG, GRAS), represented by

standard error bars (dashed lines). The equal projection line (dashed line 0,0 to 100,100) represents the point at

which the two model projections are equal. Red = above the equal projection line. Blue = below the equal projection
line. Grey = overlapping the equal projection line.

At the European scale greater range gain is projected by COMs than SLMs
and DLMs (2% and 1.6%; p < .001; Table 5.2). DLMs project greater range gain
than SLMs (1.2%, p value = .01; Table 5.2). This relationship is visible in Fig 5.6a
with the majority of species considerably above the equal projection line. The
same pattern is observed for SLMs and DLMs, with 12 species below the equal
projection line. The majority of species only illustrate modest range gain, and

the differences between model types are emphasized when range gain is high
(Fig 5.6a,b).

Centroid distributional shifts are greater under COMs than SLMs and DLMs
(48.2 and 51.7 km; p < .001). There is no significant difference in centroid distri-
butional shift between SLMs and DLMs (Fig 5.7).

5.4.4 The role of other explanatory variables in the mixed
models

Scenario, period, and resolution are included in the majority of best models. The
effect of these explanatory variables is consistent across the different distribution
change measures and scales. The more extreme change scenario (GRAS) projects
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FiG. 5.6: Comparison of percentage gain projections between model types at European Scale 2000-2050.

(a) Climate-only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and

DLM. N =48. 50 x 50 km resolution. Results are averaged across scenario (BAMBU, SEDG, GRAS), represented by

standard error bars (dashed lines). The equal projection line (dashed line 0,0 to 15,15) represents the point at which

the two model projections are equal. Red = above the equal projection line. Blue = below the equal projection line.
Grey = overlapping the equal projection line.

greater loss and northern shift of the centroid than business as usual (BAMBU)
and sustainable scenarios (SEDG). The probability of range gain is lowest under
the GRAS scenario and the largest range gain occurs under SEDG. In the period
2000-2050 lower percentage range loss, and lower centroid shift were projected.
The SEDG scenario showed a significant interaction with period with range loss
and centroid shift much lower for the period 2050-2100. The effect of resolution
at the BENELUX scale did not interact significantly with model type, however,
overall lower range loss and greater gain occurs at the finer resolutions. Finally,
the current size of the distribution was also included in some best models, at the
European scale more widespread species lose less and gain more range (for full
details of all models see Table S5.3 and Figs. S5.3-S5.10).

5.4.5 Focus on one atypical and one representative species

Bombus argillaceus is atypical compared to the majority of European bumble-
bees. It is one of only two species projected to increase in range under climate
change. At the 5 x 5 km resolution B. argillaceus increases in range and lati-

tude underall model types and scenarios. The projected range gain percentage is
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F1G. 5.7: Mean and standard error of directional shift of species

distribution centroid. For Climate-only Models (COM), Dynamic

Land Use Models (DLM) and Static Land Use Models (SLM) at Europe

at 2050 (a) and 2100 (b) and BENELUX at 2050 (c) and 2100 (d) for
three change scenarios (BAMBU, GRAS, SEDG).

larger for COMs (BAMBU: 16%, GRAS: 42%, SEDG: 14%; Fig 5.8a-c) than DLMs
(9%, 34%, 7%; Fig 5.8d-f) or SLMs (10%, 36%, 10%; Fig 5.8g-i). At the BENELUX
scale only new areas of habitat suitability are projected. At the European scale
we observe that B. argillaceus is one of the few species to significantly increase in
range. This range gain is much less under SLMs and DLMs than COMs. Under
COMs B. argillaceus is projected to gain considerable range in the West and East
of Europe (Fig 5.9). A large amount of the projected range loss is in areas with

novel climatic conditions, making the predictions unreliable.
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F1G. 5.8: BENELUX maps showing 5 x 5 km resolution of change in habitat suitability between 2000 and
2100 for two species, Bombus argillaceus (a-i; atypical) and Bombus veteranus (j-1; representative of many
species). Habitat suitability change is shown for three future change scenarios (BAMBU, GRAS, and SEDG) and
for three model types (Climate-only [a-c, j-1], Dynamic LULC [d-f, m-o], and Static LULC [g-i, p-r]). Yellow: cells
that have remained as suitable habitat; Red: cells that were suitable in 2000 but unsuitable in 2100; Green: cells
that were unsuitable in 2000 but suitable in 2100; Grey: cells that were never projected as suitable habitat.

Bombus veteranus is one of the numerous European bumblebee species pro-
jected to lose a large part of its suitable habitat under climate change; it is there-
fore representative of the majority of bumblebees in Europe. Bombus veteranus
under BAMBU and GRAS is expected to lose almost its entire suitable habitat in
BENELUX. The species is not projected to go extinct at 5 x 5 km resolution, but
projections of the GRAS scenario show only a tiny pocket of remaining suitable
habitat in South-east Belgium (Fig 5.8k,n,q). Significant gain is only projected
under SEDG for COMs (25%; Fig 5.8l). At the European scale B. veteranus loses
more range under COMs (54%, 67%, 38%; Fig 5.9j-1) than SLMs (32%, 50%,
19%; Figure 5.9p-r) and DLMs (40%, 55%, 26%; Fig 5.9m-0). Bombus veter-
anus is projected to expand into Northern Europe, further under COMs. Overall
SLMs project more persistence in the landscape but less Northern shift. Finally,
the centroid of the distribution of B. veteranus is projected to shift further North
overall under DLMs than SLMs (BAMBU: +95 km, GRAS: +68 km SEDG: +98
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F1G. 5.9: European maps showing 50 x 50 km resolution of change in habitat suitability between 2000
and 2100 for two species, Bombus argillaceus (a-i; atypical) and Bombus veteranus (j-1; representative of
many species). Habitat suitability change is shown for three future change scenarios (BAMBU, GRAS, and SEDG)
and for three model types (Climate-only [a-c, j-1], Dynamic LULC [d-f, m-o], and Static LULC [g-i, p-1]). Yellow:
cells that have remained as suitable habitat; Red: cells that were suitable in 2000 but unsuitable in 2100; Green:
cells that were unsuitable in 2000 but suitable in 2100; Grey: cells that were never projected as suitable habitat.

km, Fig 5.9m-r).

5.5 Discussion

This study shows that incorporating dynamic LULC change scenarios, even those
with low precision and few classes, can have significant effects on the projected
distributions of bumblebee species. Species can only occur in a location at any
time when a series of critical conditions are met, including both suitable climate
and land use and land cover types that allow them to feed, grow, survive and re-
produce. Therefore, it is surprising that the use of climate change projections is
commonplace, whereas LULC change projections are rarely used in species fore-
casting (Titeux et al. 2016). We tested the effect of dynamic LULC variables on

projecting future distribution changes for 48 European Bombus species in 2050
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and 2100. Bombus being a genus for which change in major land use classes has
affected historical distribution patterns (Aguirre-Gutiérrez etal. 2015; Senapathi
etal. 2015).

5.5.1 Models including LULC compared to climate-only
models

All models improved in fit (AUC) when adding LULC covariates. However, this
refers to goodness-of-fit and does not necessarily mean greater predictive ability
(Thuiller et al. 2004). A number of species are influenced by LULC covariates,
in particular the percentage cover of arable land and forest. The results sup-
port research showing that using only climate covariates may over-represent the
species range in the present (Luoto et al. 2007; Sohl 2014; Stanton et al. 2012).
This is likely to misrepresent species range change as well as the shift of species
range limits. The importance of LULC change is dependent on whether habi-
tat requirements, namely nesting and feeding resources (Busch, 2006), can be
adequately captured by the relationship between these six land use covariates
and the climate change covariates. Therefore, we saw variation for bumblebees
as they differ significantly in their landscape requirements (Goulson et al. 2010;
Persson et al. 2015). A result unique to our study is that COMs (at the European
scale) projected greater range loss and lower range gain than when land use co-
variates were included. This is in part due to greater range size in the present
under COMs. However, there were also examples of areas that became suitable
for certain bumblebees with the introduction of LULC covariates. These results
suggest that for some species including LULC covariates, projects, on average, a
wider bioclimatic envelope and is more likely to project persistence in the land-
scape. In other words LULC covariates, provide a habitat filter over the climate
prediction. However, we did not observe the same pattern for all species, and
there were species, which showed greater loss and gain with dynamic land use
covariates. Overall, the relationship was highly variable (see Figs. S5.7-S5.10).
This inconsistent relationship indicates that dynamic LULC model predictions
are not simply a level up or down from climate-only models. Additionally, the
introduction of LULC covariates projected an inability of most bumblebees to



168 Chapter 5. Climate and land use change affects EU bumblebees

completely track Northern climate shifts, particularly into Scandinavia, support-
ing historical patterns (Kerr et al. 2015).

5.5.2 Models including dynamic LULC compared to static
LULC models

Including static LULC change in SDMs is based on the incorrect assumption that
LULC will not change in the future or that this change is negligible in comparison
to climate change (Stanton et al. 2012). In this study, loss and gain of suitable
habitat was more likely with dynamic LULC covariates. The distribution patterns
of DLMs represent more variable suitable habitat conditions in time than SLMs
under equivalent climate change, resulting in greater projected range loss and
gain. However, this pattern varied between species and was more discernible
for some over others. This variability is supported by other studies; including
dynamic LULC covariates previously led to more accurate model predictions for
invasive bullfrogs (Ficetola et al. 2010) and central European plants (Chytry et
al. 2012), but not so for a European butterfly species (Martin et al. 2013). Our
multi-species study indicates that a number species show projected distribution
changes under different model types, however, some do not show any. This, in
and of itself, is not surprising as species differ in their dependency on specific
characteristics of climate and land use. Therefore, including dynamic LULC co-
variates, even at coarse thematic resolution, can significantly alter the projected
distributional changes of certain species.

5.5.3 Inclusion of LULC in models for individual species dis-
tribution projections

We focused on the projections of two species, B. argillaceus was atypical com-
pared to the majority of species, demonstrating range. The results suggest that
dynamic LULC limits the availability of suitable habitat in the North. Overall,
this illustrates the necessity of dynamic LULC in prospective SDMs, and that
change in major land use classes such as grassland and urban affect observed
species range change under climate change. Bombus veteranus is representative

of the patterns observed for many species. Climate drove the distribution but
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LULC models projected extra areas of suitable habitat, which were rarely contin-
uous and perhaps indicative of real world patterns. Fragmented suitable habitat
increases the probability of losing local populations and decreases the probability
of establishing new populations, both of which severely affect a species’ tracking
of global change.

5.5.4 LULC-inclusive models for forecasting and guiding con-
servation efforts

The importance of including LULC projections depends on the goals and desired
outcomes of the modelling process. As a tool, SDMs explore unknown areas and
periods where conditions may be suitable for species occurrence, observe the role
of environmental covariates and influence conservation management (Franklin
2010). However, due to limitations in data availability and modelling methods
their value to conservation and ability to predict occurrence should not be over-
estimated (Lobo 2016), particularly in the case of undersampled and geograph-
ically and taxonomically restricted insect data (De Palma et al. 2016). Regard-
ing covariate influence, we observe that for at least some species dynamic LULC
covariates significantly affect projected distributions. Regarding conservation
management, variation between model types, model performance and projected
distributions suggests that using DLMs to inform conservation practices would
be suitable at the broad scale. The absence of dynamic LULC covariates could
lead to significantly underfitted potential distributions for specific landscapes or
species with implications for management. (Franklin 2013; Porfirio et al. 2014;
Wright etal. 2015). Overall, speciesand purpose-specificapproaches to covariate

selection should be preferred.

5.5.5 The generation of dynamic LULC scenarios deserves
more attention

The observed patterns strongly support the case for more detailed LULC change
scenarios. This supports the conclusions of similar studies (Barbet-Massin et al.
2012b; Martin et al. 2013). The scenarios presented here intend to provide a
platform on which to relate species conservation to socio-economic factors and
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policy decisions, they also aim to make it possible to assess which improvements
at landscape level are needed to improve species persistence (Van Vuuren et al.
2011). However, it is likely that the LULC change maps produced by these scenar-
ios will become superseded by updated, more detailed LULC change scenarios,
linked to new climate change models. Finer resolution and more detailed classes
would greatly improve LULC projections (Busch, 2006; Verburg et al. 2009).
In the case of bumblebees, we know that to model wild bee species adequately
we need ecologically relevant LULC covariates that represent local management
(Aguirre-Gutiérrez etal. 2015; Marshall etal. 2015; Scheperetal. 2015). New sce-
narios should emphasize a relevance to biodiversity and land use management,
for example, separating between natural-grassland and agricultural-grassland,
and intensive and less intensive farming systems. While the incidence of and
change in forest and arable land cover correlates with habitat suitability, this is
an indirect effect. The coarseness of these classifications does not provide an
adequate foundation to extract causal information or infer on the importance of
land use management (Thuiller et al. 2004). Moreover, national and interna-
tional policies, such as the CAP in Europe, tend not to change land cover per se
(grassland remains grassland), but the management level and thus biodiversity
value. For example, arable land cover is the most important LULC covariate for
the majority of bumblebees as defined by the correlative variable importance val-
ues (see Table S5.1). However, the ecological significance of this importance could
relate to agricultural intensification, pesticide use, availability of floral resources,

or most likely, a combination of these factors.

5.5.6 Differences between the data sources

Among the 48 bumblebees modelled there are examples of polytypic species rep-
resenting significant intraspecific variation (Rasmont 1983). For example, SDMs
at subspecies level for B. terrestris performed differently from aggregated models
with all subspecies as a single unit (Lecocq et al. 2016). We did not utilize this
variation; we modelled the habitat requirements of each species using all avail-
able records. Occurrence points were selected to represent the highest resolution
possible to model at 5 x 5 km resolution, and many points were removed. How-
ever, due to the nature of the data and the multitude of sources it is still likely that
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some point records were not accurately recorded, though we expect this number
to be minimal (Duputié et al. 2014).

There were distinctions between the resolution of the climate and land use
sources in the pastand in the future. Due to the coarse nature of Atmosphere-Oc-
ean General Circulation Models (AOGCMs) used to calculate the climate-change
covariates they do not represent accurately fine scale effects (Fronzek etal. 2012).
This means at the 10 x 10 and 5 x 5 km resolutions that fine-scale topographic
effects of climate may be lost. This may result in a more homogeneous repre-
sentation of climate at these resolutions, which may over-represent range size
and connectivity. However, this is representative of climate data often used in
studies of this type to model in the future, and in general climate is more ho-
mogeneous than land use, particularly at the BENELUX scale. To understand in
detail the climate effects on biodiversity, fine scale climate change projections are
required. The land-use change maps were downscaled to match the availability
of current LULC data at European scale. However, the downscaling algorithm is
likely to produce some clustering for the future LULC covariates (Dendoncker et
al. 2006). Therefore, we focused on percentage cover covariates and it was not
possible to include covariates of connectivity and edge effects, as they would not
be comparable to present conditions. Furthermore, the land-use change models
were created in congruence with climate variables; this means that present and
future comparisons are valid at the different modelled resolutions (Rounsevell et
al. 2006).

Finally, there are many methods for SDM and changes to the modelling al-
gorithms, covariates and resolutions can affect the results (Aguirre-Gutierrez et
al. 2013; Warren & Seifert 2011). We chose to use simplified algorithms in an
ensemble modelling approach to account for this variation (Thuiller 2014a).

5.6 Concluding Remarks

This work represents a detailed analysis of the effect of dynamic LULC scenarios
at different scales on the projected distributions of multiple species. We show
species dependent responses to the effect of dynamic LULC, which demonstrates
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that these types of scenarios can play a significant role in projecting species dis-
tributions under climate change. Climate variables alone, whilst driving habitat
suitability, are unlikely to project accurately the detailed distribution patterns of
all species. Therefore, we advocate repeated use and testing of these available sce-
narios with multiple species. However, new scenarios and projections of LULC
change at finer spatial and thematic resolutions that indicate management prac-

tices will be necessary to better assess biodiversity change in an uncertain future.
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Tables

TasLE S5.1: Average variable importance values across all resolutions for forty-eight

bumblebee species. Focus species highlighted gray.

Rainfall

Growing

Annual

Species Arable Wettest Forest Degree Grassland Diurnal Permanent Temp Urban Water
Month Days Range Crops Range Balance
! g
Bombus alpinus 0.07 0.02 0.05 0.91 0.03 0.01 0 0.01 0.02 0.07
Bombus argillaceus 0.06 0.68 0.07 0.06 0.17 0.06 0.05 034 0.06 0.23
Bombus balteatus 0.06 0.02 0.01 0.84 0.01 0.02 0.01 0.07 0.01 0.01
Bombus barbutellus 0.05 032 0.07 037 0.02 0.05 0 043 0.05 0.7
Bombus bohemicus 0.02 0.01 0.04 0.73 0.02 0.06 0 023 0.04 0.05
Bombus campestris 0.07 0.1 0.04 0.43 0.04 0.02 0 0.1 0.07 0.22
Bombus cingulatus 0.1 0.1 0.02 0.5 0.01 0.01 0.01 0.46 0 0.06
Bombus confusus 0.05 0.22 0.05 0.23 0.05 0.6 0.01 027 0.04 0.25
Bombus consobrinus 0.1 013 0.1 0.83 0.02 0.15 0.02 0.23 0.02 0.15
Bombus cryptarum 0.05 0.19 0.15 0.37 0.22 0.15 0.04 022  0.02 0.07
Bombus cullumanus 0.03 0.15 0.04 0.14 0.04 038 0.14 0.55  0.02 0.77
Bombus distinguendus  0.05 0.03 0.05 0.74 0.04 0.07 0.02 0.03 0.03 0.07
Bombus flavidus 0.12 0.02 0.01 0.69 0.01 0.01 0 0.19 0.01 0.03
Bombus gerstaeckeri 0.21 0.78 0.05 0.18 0.12 0.03 0.01 0.09 0.02 0.22
Bombus hortorum 0.02 0.02 0.01 0.24 0.03 0.08 0 059 0.04 0.05
Bombus humilis 0.01 039 0.04 03 0.01 0.02 0 0.12 0.02 0.79
Bombus hyperboreus 0.09 0.23 0.01 0.97 0.03 0.02 0 0.02 0.1 0.04
Bombus hypnorum 0.1 0.01 0.2 0.22 0.01 0.06 0.01 0.51 017 0.18
Bombus jonellus 0.08 0.02 0.01 0.43 0.01 0.01 0.01 0.16 0 0.05
Bombus lapidarius 0.02 0.02 0.01 036 0.01 0.03 0 0.17 0.05 0.19
Bombus lapponicus 0.02 0.05 0.04 0.87 0.04 0.05 0.01 0.07 0.03 0.09
Bombus lucorum 0.02 0.09 0.03 0.48 0.01 0.12 0 0.44 0.06 0.05
Bombus magnus 0.12 0.07 0.03 0.23 0.04 0.1 0.03 0.68 0.02 0.44
Bombus mendax 0.21 0.76 0.14 0.21 0.1 0.02 0.02 0.16 0.05 0.19
Bombus mesomelas 0.08 0.66 0.11 0.19 0.13 0.01 0.02 026  0.02 0.25
Bombus monticola 0.09 0.57 0.1 0.38 0.03 0.2 0.01 034 0.01 0.19
Bombus mucidus 0.18 0.78 0.07 0.3 0.09 0.01 0.01 0.19 0.02 0.23
Bombus muscorum 0.06 0.03 0.27 0.4 0.02 0.06 0 0.25 0.01 0.15
Bombus norvegicus 0.02 0.02 0.09 0.39 0.02 0.01 0.02 0.45 0.3 0.02
Bombus pascuorum 0.04 0.01 0.08 0.22 0.04 0.17 0 0.49 0.11 011
Bombus polaris 0.05 0.2 0.01 0.86 0.03 0.01 0 0.05 0.01 011
Bombus pomorum 0.09 0.36 0.13 0.32 0.02 0.03 0.01 0.18 0.02 0.68
Bombus pratorum 0.14 0.03 0.17 03 0.12 0.15 0.01 0.46 0.18 0.19
Bombus pyrenaeus 0.19 0.87 0.06 032 0.05 0.08 0.02 0.12 0.02 0.29
Bombus quadricolor 0.14 0.26 0.04 0.65 0.06 0.02 0 0.49 0.01 0.19
Bombus ruderarius 0.04 0.24 0.04 0.45 0.03 0.04 0 011 0.02 0.59
Bombus ruderatus 0.04 0.21 0.02 0.12 0.01 0.01 0 0.11 0.01 0.89
Bombus rupestris 0.05 0.25 0.02 0.41 0.01 0.01 0.01 0.2 0.04 0.74
Bombus sichelii 0.07 0.76 0.1 035 0.09 0.07 0.03 0.16 0.02 0.27
Bombus soroeensis 01 0.33 0.03 0.51 0.1 0.01 0 0.25 0 0.1
Bombus sporadicus 0.04 0.02 0.01 0.43 0.02 0.04 0.01 0.53 0 0.01
Bombus subterraneus  0.02 0.26 0.03 0.34 0.02 0.09 0.01 0.31 0.01 0.8
Bombus sylvarum 0.1 0.21 0.03 0.25 0.02 0.01 0 0.1 0.02 0.66
Bombus sylvestris 0.02 0.01 0.07 0.4 0.01 0.04 0 0.25 0.1 0.19
Bombus terrestris 0 0.02 0.04 0.26 0.01 0.05 0 024 0.04 0.09
Bombus vestalis 0.04 0.01 0.01 0.43 0.03 0.01 0 0.14 0.04 0.09
Bombus veteranus 0.04 0.11 0.02 0.54 0.07 0.12 0.05 0.42 0.01 0.18
Bombus wurflenii 0 0.69 0.04 0.58 0.01 0.02 0 0.26 0.01 0.17
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TasLe S5.2: Climate covariate selection All available
climate variables and those selected for the modelling

process.
Climate Variable Final Model
Annual Mean Temperature No
Average Annual Precipitation No
Max Temperature Coldest Month No
Max Temperature Warmest Month No
Mean Diurnal Range Yes
Mean Precipitation Driest Month No
Mean Precipitation Wettest Month Yes
Mean Temperature Coldest Month No
Mean Temperature Warmest Month No
Min Temperature Coldest Month No
Min Temperature Warmest Month No
Temperature Annual Range Yes
Total Annual Growing Degree Days (>5°c) Yes

Water Balance - Year Sum (Mean monthly
precipitation - monthly PET)

TasLg $5.3: Detailed Effects of SDM variability on the Distributional Change
of Bumblebees.The most parsimonious models as chosen by Bayesian informa-
tion criteria (BIC) for the percentage range loss, percentage range gain, and shift
in the distributional centroid for forty-eight bumblebee species at European and
BENELUX scales. The random term for all models was ‘1 | species.” p-values: .01
<p=<.05=%.001<p=.0l="**and <.001 = ***,

Percentage Loss EUROPE

Estimate Std. Error ~ DF tvalue P(>|t|)
Intercept 50 2.59 144 19.29 <0.001 ***
Current Range Size EU ~ -0.47 0.06 412 -7.98 <0.001 ***
Model Type (DLM) -117 0.68 823 -1.71 0.087
Model Type (SLM) -2.91 0.68 824 -4.26  <0.001 ***
Scenario (GRAS) 6.07 0.96 815 634 <0.001 ***
Scenario (SEDG) 0.1 0.96 815 01 0.921
Period (2050-2100) 3.48 1.06 863 3.29 0.001 **
GRAS:2050-2100 5.44 136 818 4 <0.001 ***
SEDG:2050-2100 -16.68 136 815 -1231  <0.001 ***

Percentage Gain EUROPE (log)
Estimate Std. Error ~ DF tvalue P(>|t|)
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Table S5.3 continued from previous page
Intercept -2.8 0.42 126 -6.69 <0.001 ***
Current Range Size EU 0.09 0.01 566 9.8 <0.001 ***
Model Type (DLM) -0.57 0.1 822 -5.51 <0.001 ***
Model Type (SLM) -0.82 0.1 823 -7.94  <0.001 ***
Period (2050-2100) 0.78 0.17 843 4.66 <0.001 ***
Range Size: 2050-2100  -0.02 0.01 830 -4.15 <0.001 ***
Centroid Distributional Shift EUROPE

Estimate Std. Error df tvalue Pr(>|t])
Intercept 92.42 25.63 151 3.61 <0.001 ***
Current Range Size EU 3.52 0.62 275 5.68 <0.001 ***
Model Type (DLM) -51.51 7.79 820 -6.61 <0.001 ***
Model Type (SLM) -48.25 7.8 821 -6.19  <0.001 ***
Scenario (GRAS) 50.73 10.91 810 4.65 <0.001 ***
Scenario (SEDG) 9.59 10.91 810 0.88 0.379
Period (2050-2100) 37.59 15.42 832 2.44 0.015*
Range Size: 2050-2100  -0.33 0.41 831 -0.8 0.424
GRAS:2050-2100 4139 15.56 815 2.66 0.008**
SEDG:2050-2100 -79.5 15.42 810 -516  <0.001 ***

Probability of Loss BENELUX (Bernouli)

Estimate Std. Error zvalue Pr(>|z|)
Intercept 6.34 1.97 3.22 0.00129**
Model Type (DLM) 2.04 03 6.72 <0.001 ***
Model Type (SLM) 11 0.26 413 <0.001 ***
Scenario (GRAS) 0.72 0.29 2.46 0.0139*
Scenario (SEDG) -0.54 0.26 -2.06  0.0390*

Percentage Loss BENELUX (log)

Estimate Std. Error ~ DF tvalue Pr(>|t])
Intercept 4.25 0.27 104 15.6 <0.001 ***
Current Range Size EU ~ -0.02 0.01 1088 -3.25 0.001**
Model Type (DLM) -0.28 0.05 1488 -541  <0.001 ***
Model Type (SLM) -0.28 0.05 1488 -533  <0.001 ***
Scenario (GRAS) 034 0.07 1484 5.01 <0.001 ***
Scenario (SEDG) -0.12 0.08 1515 -1.45 0.147
Period (2050-2100) 0.49 0.07 1485 6.92 <0.001 ***
Resolution (10km) -0.33 0.05 1486 -6.63 <0.001 ***
Resolution (5km) -0.48 0.05 1486 -9.6 <0.00] ***
GRAS:2050-2100 0.24 0.1 1484 2.44 0.015*
SEDG:2050-2100 -0.67 0.1 1485 -6.81 <0.001 ***

Probability of Gain BENELUX (Bernouli)
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Table S5.3 continued from previous page

Estimate Std. Error zvalue Pr(>|z|)
Intercept -233 0.65 -3.61 0.538
Model Type (DLM) 1.61 0.29 55 <0.001***
Model Type (SLM) 0.24 0.28 0.86 0.386
Scenario (GRAS) -0.83 0.27 -3.08  0.002**
Scenario (SEDG) 0.18 0.27 0.69 0.478
Period (2050-2100) -2.19 0.4 -5.53  <0.001 ***
Resolution (10km) 1.95 0.22 8.96 <0.001***
Resolution (5km) 3.15 0.24 1313 <0.001 ***
DLM: 2050-2100 -0.82 0.42 -1.96 0.048*
SLM: 2050-2100 0.62 0.41 1.51 0.132
GRAS:2050-2100 -0.52 0.41 -1.26 0.205
SEDG:2050-2100 1.52 0.38 3.97 <0.001 ***

Percentage Gain BENELUX (log)

Estimate Std. Error ~ DF tvalue Pr(>|t])
Intercept 1 03 42 3.33 0.002
Model Type (DLM) -0.16 0.1 706 -1.48 0.139
Model Type (SLM) -0.37 0.1 704 345  <0.001 ***
Scenario (GRAS) 0.09 0.1 702 0.81 0.421
Scenario (SEDG) 0.35 0.09 704 3.66 <0.001 ***
Period (2050-2100) -0.84 0.09 705 -9.84  <0.001 ***

Centroid Distributional Shift BENELUX

Estimate Std. Error ~ DF tvalue Pr(>|t])
Intercept 2.24 49 40 0.46 0.65
Scenario (GRAS) 19.16 2.54 1333 7.54 <0.001 ***
Scenario (SEDG) -6.79 2.38 1334 -2.85 0.004**
Period (2050-2100) 12.51 2.03 1340 6.15 <0.001 ***
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Figures
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F1G. S5.1: Extent of study area and Bumblebee collections (1970-2000).
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. Novel Conditions

Historic Conditions

GRAS SEDG

F1G. S5.2: Novel climatic conditions present in 2100 that did not occur in Europe in 2000 for the 3 change
scenarios (GRAS, BAMBU, SEDG).
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F1G. S5.3: Comparison of percentage loss projections between model types for BENELUX 2050-2100. (a)

Climate Only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and

DLM. Results are averaged across resolution (5 x 5, 10 x 10 and 20 x 20 km) and scenario (BAMBU, SEDG, GRAS)

and represented by standard error bars (dashed lines). Red = above the no difference line, Blue = below the no
difference line, Grey = overlapping the no difference line.
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F1G. S5.4: Comparison of percentage gain projections between model types for BENELUX 2050-2100. (a)

Climate Only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and

DLM. Results are averaged across resolution (5 x 5, 10 x 10 and 20 x 20 km) and scenario (BAMBU, SEDG, GRAS)

and represented by standard error bars (dashed lines). Red = above the no difference line, Blue = below the no
difference line, Grey = overlapping the no difference line.
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FiG. S5.5: Comparison of percentage loss projections between model types for Europe 2050-2100. (a) Cli-

mate Only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and DLM.

Results are averaged across scenario (BAMBU, SEDG, GRAS) and represented by standard error bars (dashed lines).
Red = above the no difference line, Blue = below the no difference line, Grey = overlapping the no difference line.
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F1G. $5.6: Comparison of percentage gain projections between model types for Europe 2050-2100. (a) Cli-

mate Only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and DLM.

Results are averaged across scenario (BAMBU, SEDG, GRAS) and represented by standard error bars (dashed lines).
Red = above the no difference line, Blue = below the no difference line, Grey = overlapping the no difference line.
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FiG. S5.7: Comparison of percentage loss projections between model types for BENELUX. Climate Only

Models (COM) vs. Dynamic Land Use Models (DLM) for 2000-2050 (a) and 2050-2100 (b). Static Land Use

Models (SLM) vs. DLM for 2000-50 (c) and 2050-2100 (d). Colours represent change scenarios (BAMBU, SEDG,
GRAS) and shapes represent resolution (5 x 5, 10 x 10 and 20 x 20 km).
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F1G. S5.8: Comparison of percentage gain projections between model types for BENELUX. Climate Only
Models (COM) vs. Dynamic Land Use Models (DLM) for 2000-2050 (a) and 2050-2100 (b). Static Land Use
Models (SLM) vs. DLM for 2000-50 (c) and 2050-2100 (d). Colours represent change scenarios (BAMBU, SEDG,

GRAS) and shapes represent resolution (5 x 5, 10 x 10 and 20 x 20 km).
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F1G. S5.9: Comparison of percentage loss projections between model types for Europe. Climate Only Models
(COM) vs. Dynamic Land Use Models (DLM) for 2000-2050 (a) and 2050-2100 (b). Static Land Use Models (SLM)
vs. DLM for 2000-50 (c) and 2050-2100(d). Colours represent change scenarios (BAMBU, SEDG, GRAS).
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F1G. S5.10: Comparison of percentage gain projections between model types for Europe. Climate Only Mod-
els (COM) vs. Dynamic Land Use Models (DLM) for 2000-2050 (a) and 2050-2100 (b). Static Land Use Models
(SLM) vs. DLM for 2000-50 (c) and 2050-2100(d). Colours represent change scenarios (BAMBU, SEDG, GRAS).
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6.1 Abstract

Under climate change species are expected shift their geographic ranges pole-
wards and to higher elevations. To quantify ongoing climate change effects long-
term surveys of biodiversity are necessary. Few studies have looked at how species
distribution within a community have shifted periods over a hundred years. In
this study we compare the distribution of a plant-pollinator community 115 years
apart. In 1889 Professor Julius MacLeod recorded the plant and plant visitors
of Gavarnie-Gedre, a commune in the Hautes-Pyrénées in the South France. In
2005-06 the same areas and plant communities were resampled, this time with a
focus on the visitor community. Here we present the overall patterns and changes
observed for the distribution of the bumblebee, day-flying Lepidoptera and plant
community sampled in 1889 and in 2005-06. The composition of the commu-
nity shows relative stability in species richness and many of the pollinator’s and
plants observed in both periods were found within the same interactions in both
1889 (40%) and 2005-06 (30%). We also observed clear shifts to higher eleva-
tions for the bumblebee and butterfly visitors and their visited plants. Bumble-
bees have shifted on average 168m, day-flying Lepidoptera 236m and the visited
plants 227m further uphill. The region also shows significant warming in the
past 115 years and the modelled historical land use maps suggests a shift in the
tree line with an increase in forest at higher elevations. The results allow us to hy-
pothesize that these observed increases in elevation are being driven by these en-
vironmental changes. Increases in temperature and loss of habitat may decrease
the survival and size of pollinator populations at their range edges. Overall, ob-
served and expected trends suggest that certain rare and/or specialist species may
be forced to move even further uphill and potentially face extinction in the near
future.
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6.2 Introduction

Climate change is expected to increase temperatures globally particularly at high
latitudes and elevations (IPCC 2014). Climate change can strongly impact the
spatial distribution of biodiversity (Bellard et al. 2012; Pecl et al. 2017); species
move polewards increasing in latitude (Bebber et al. 2013; Root et al. 2003;
Sagarin et al. 1999), and at the same time species also track climate change by in-
creasing in elevation where possible (Parmesan & Yohe 2003; Pounds et al. 1999;
Walther et al. 2002). This leads to an increase in species richness at cooler lati-
tudes and elevations and may result in species which dominate in warmer areas
out-competing species from these cooler areas (Warren et al. 2001). Alongside
these spatial shifts, species also show temporal shifts to climate change with many
species altering their phenology and following the climate by being active earlier
in the year (Menzel et al. 2006). The changing climate also interacts with land
use/land cover (LULC) changes increasing the impact on biodiversity patterns.
Shifts in elevation, in particular, are expected to be more apparent and quicker
than shifts in latitude (Parmesan & Yohe 2003). Areas of high elevation often
contain rapidly changing climate conditions across small stretches and therefore
are easier for species to follow (Chen et al. 2011). Overall expected patterns of
range change in high elevation include the extinction of populations at lower
elevation and more species colonizing higher elevations. However, in practice,
species from lower elevations may not adequately conceal the loss of high ele-
vation species going extinct or shifting even higher, and this may result in the

dominance of widespread species at all elevations (Wilson et al. 2007).

Bumblebees, butterflies and day-flying moths (day-flying Lepidoptera) are
ideal representative groups to show how species distributions patterns in high-
elevation areas have shifted over long time periods of climate and LULC change.
Elevation gradients in alpine habitat provide in-situ opportunities to see how
species adapt to changing environments (Kérner 2007). Insects are likely to show
physiological and behavioural responses to the conditions as elevation increases
(Hodkinson 2005). Morphologically and physiologically, bumblebees are well
adapted to alpine conditions (Dillon & Dudley 2014; Goulson 2010; Peat et al.
2005). Foraging behaviour of bumblebees also varies by elevation; species when



188 Chapter 6. Bumblebees and butterflies shift in elevation over 115 years

foraging in the productive subalpine habitats were found to be more specialized
than when foraging in more disturbed montane habitats or in less productive
alpine habitats (Miller-Struttmann and Galen 2014). Bumblebees and butter-
flies, in high elevation habitats, are both known to increase developmental times
and maximizing heat retention (Semme 1989). Certain species of butterfly have
dark wings which can be angled towards to the sun to improve heat absorption
and are able to initiate flight at lower temperatures (MacLean et al. 2016). These
adaptations allow these species to deal with colder temperatures; as tempera-
tures in high-elevation areas increase these adaptations will be less essential to
these species and may lead to lower survival rates at previously suitable eleva-
tions (Hodkinson 2005). Bumblebees and butterflies are also two groups that
show considerable range loss and extinctions when modelled under future sce-
narios of climate and LULC change (Marshall et al. 2018; Rasmont et al. 2015a;
Settele et al. 2008).

Previous studies have compared historical and modern surveys of species
distributions in high elevation areas. The majority of studies show an increase in
elevation over decades. For example in a 42-year time period moths on Mount
Kinabalu, Borneo, shifted in elevation by an average 67m (Chen et al. 2009).
Over a 35 year period in the Sierra Nevada Mountains, the majority of butterfly
species shifted significantly higher in mean elevation, consistent with the climate
warming in the area (Forister et al. 2010). Bird species in Peru shifted 49m in
average elevation over a 41 year time period (Forero-Medina et al. 2011). Far
greater elevation range change was observed over 35 years in butterflies of the
Guadarrama mountains in central Spain, where on average species shifted 293m
further up the elevation gradient (Wilson et al. 2007). In contrast in northern
Sweden two surveys 60 years apart did not show a clear trend of insect species

moving to higher elevations (Franzén and Ockinger 2012).

Many bumblebees, butterflies and moths cannot freely track climate, as
they rely on plant species as a food source. Plant species have also shown sig-
nificant increase in elevation in a number of areas; in Southern California plant
species shifted in elevation on average by 65m over a 30 year period (Kelly and
Goulden 2008); in western Europe comparing plant species mean elevation over

the last 100 years shows an shifted on average by 29m per decade (Lenoir et al.
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2008), and in southern Québec, vegetation has moved an average of 9m per
decade (Savage and Vellend 2014). Due to the reliance of these insect species on
plants you would expect that this interaction will also shift with climate change
and that the pollinators will follow their preferred plants uphill. However, loss of
spatial occurrence as well as phenological shifts may lead to mismatches in co-
occurrence of bees and plants, as observed over 120 years of difference in Illinois
(Burkle et al. 2013).

In this study we have the unique opportunity to compare an alpine com-
munity of bumblebees, day-flying Lepidoptera and the plants they visit in the
Pyrenees, 115 years apart. Not only does this allow for the comparison of distinct
groups but also to measure change over a far longer time period than equivalent
studies. Specifically we will use observations of plant and plant-visitor communi-
ties documented in “De pyreneeénbloemen” made in 1889 (MacLeod 1891), and
compare them to surveys conducted in the same areas in 2005-06. Specifically
we aim to test three hypotheses: (1) that significant climate and land use changes
occurred in the Pyrenees National Park in the last 115 years; (2) that the compo-
sition of the bumblebee, butterfly and plant community altered and/or shifted
in mean elevation over 115 years; and (3) that bumblebee traits explain their ob-

served elevation patterns and shifts.

6.3 Materials and Methods

6.3.1 Study area

We studied the long-term temporal changes of bumblebees and the plants they
visit in the area of the commune Gavarnie-Gedre in the Hautes-Pyrénées depart-
ment of France, next to the border with Spain (Fig 6.1). The surveyed area is
part of the Pyrenees National Park (est. 1967) located in the western part of the
Pyrenees. The elevation in the national park ranges from approximately 1000m
a.s.l to its maximum of 3298m a.s.l, the Vignemale Peak. The region straddles
the borders of the Atlantic and Mediterranean biogeographic zones and there-
fore is home to broad and diverse biodiversity with a large quantity of endemic
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species (Feuilletand Sourp 2011). Whilst protected, the region is still home to set-
tlements and agricultural land, with settlements usually at lower elevations and
agricultural areas higher up the mountainside, up to 2000m (Mottet etal. 2006).
Broadly, the vegetation of the region can be described as hay meadows and pine
forest, with the tree line around 2200m (Crampe et al. 2007). Climatically the
areas receives both oceanic and mountain climates with an average annual tem-
perature of approximately 6.5°C and average annual rainfall of 1049mm.

A 2005-06 Collection Locations . Buffer Zones Around Expected 1889 Collection Locations

FiG. 6.1: Locations of survey sites in 1889 and 2005-06 in the Pyrenees national park. Grey circles represent
the expected sampling locations in 1889. Black triangles represent exact sampling locations in 2005-06.



6.3. Materials and Methods 191

6.3.2 Bumblebee, Lepidoptera and plant surveys

We focused the study on wild bumblebees and large day-active Lepidoptera, as
they are abundant in the historical surveys are well adapted to the high elevation
region, well known, and relatively easy to survey and identify. In the 2005-06
survey, bumblebee species that were not identifiable in the field were collected
and identified later by Stuart Roberts. Two separate surveys in the region, both
conducted in August, were compared. Between the 5™ and 31 of August 1889
biologist and naturalist Professor Julius Macleod sampled the plant and plant
visitor communities. In 2005 (8 to 25" August) and 2006 (14" to 315t August)
efforts were made to resample the same areas as MacLeod had visited, this time
limiting the survey to the plant species with insect visitors recorded in 1889, with
an increased focus on the visitors themselves and not the plants. Other plant

species that were abundantly visited were also recorded.

6.3.3 1889 Collections

Between the 5™ and 31t of August 1889 and the 8th of June to 3rd of July 1890
biologist and naturalist Professor Julius Macleod sampled the plant and plant
visitor communities in the Luz Valley in the Pyrenees mountains in Southern
France. Only the records collected in August were used in this study. Specifi-
cally he sampled plant communities in the areas of Gédre (1000m), Cascade de
Gavarnie (1500m), port de Gavarnie (2300m), cirque de Troumouse (2000m),
the bréche de Roland (2800m), Saugué (1500m - 1650m) and Héas (1450m).
These areas encompass elevations ranging from 1000m until 2800m above sea
level (asl), plant visitors were found from 1000m to 2100m. He published an
account of the plants and plant visitors he observed in 1891 in “De pyreneeén-
bloemen” (MacLeod 1891). The goal of MacLeod’s survey was to make a compari-
son of the floral community along habitat and elevation gradients in the Pyre-
nees specifically to compare to a similar study conducted in the Alps (Miiller
1881). The collection of insect visitors to these plants was deliberate but inci-
dental to the overall aim. Nonetheless, MacLeod collected and identified all
insects visitors observed when surveying the plant community. MacLeod sur-
veyed 263 separate plant species with 569 separate insect visitors. The bumble-
bees collected by MacLeod were identified by Professor Otto Schmiedeknecht.
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A number of species names did not correspond with present day terminology
and we used Schmiedeknecht’s publication, Die Hymenopteren Mitteleuropas,
to compare to the checklist of bumblebees from the Natural History Museum
(Williams 2016), to determine the correct taxonomic names which would corre-
spond with present day bumblebees (Schmiedeknecht 1907). The Lepidoptera
collected by MacLeod where identified by Dr. Otto Staudinger. As with the bum-
blebees a number of the names attributed to occurrences do not coincide with
modern day systematics and a comparison of historical name changes was made
using the original publications of Staudinger (Staudinger 1871) and Butterflies
and Moths of the World from the Natural History Museum (http://www.nhm.
ac.uk/our-science/data/butmoth/search/). The plant species which were
identified by MacLeod himself were compared using the “The Plant List”, an on-
line resource with historical synonyms of the majority of global plants (http:
//www.theplantlist.org/).

6.3.4 2005/06 Collections

In 2005 (8" to 25™ August) and 2006 (14" to 31t August), two surveys were con-
ducted to analyse the plant visitor community of the most visited plant species
in the same areas that MacLeod sampled in 1889. The fundamental difference
between the two surveys is the target organism. In 1889 the plant species were
targeted for the survey and the visitors collected as seen. In 2005-06 the target
was the plant visitors and a selection of plants was made, based on MacLeod’s
findings, to maximize sampling of the pollinator community. Therefore, direct
comparisons of whole networks are not possible. At each location surrounding
the area mentioned by Macleod for each of the plant species chosen a plot was
made and observed for 15 minutes. During the 15 minutes observation window
all flower visitors were either identified by sight but not caught, or caught and
later identified by experts. The surface area of each plot was measured and its
flower density was recorded. Other plant species with abundant visitors not ob-
served in 1889 were also included. The altitude and GPS coordinates (WGS1984)
for each plot were also recorded.


http://www.nhm.ac.uk/our-science/data/butmoth/search/
http://www.nhm.ac.uk/our-science/data/butmoth/search/
http://www.theplantlist.org/
http://www.theplantlist.org/
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6.3.5 Climate Change

Climate data was generated using the software package ClimateEU (v4.63; Ham-
ann et al. 2013). Climate provides minimum, maximum and mean temperature
records and precipitation for sample locations with known elevation. We ex-
tracted these metrics ata 1 x 1km grid resolution for a 10km buffer surrounding
the centroid of all collection records. We aggregated the values for decades by tak-
ing the mean value across all 10 years. Since the climate records available in the
ClimateEU software start at 1900 we took the decade 1900 to 1910 as a proxy for
the period 1885 to 1895. For the modern day records we also aggregated the data
between 2000 and 2010 to the mean value of each metric across all 10 years. We
then compared each of the temperature metrics using paired two sample t-tests
to examine whether temperature and rainfall values were significantly different
between the two periods, both annually and for August. We also calculated the
annual mean temperature and the mean temperature of August for all years be-
tween 1900 and 2006 to test whether there was a significant trend in changing
temperature. Due to the nature of the collection records, specifically that we do
not have exact coordinates for the collection records in 1889 it is infeasible to di-
rectly test whether climate changes at specific sites have resulted in community

changes, we therefore focus on climate changes at the regional scale.

6.3.6 Land Use/Land Cover Change

Land use/land cover (LULC) maps for the Pyrenees in 1889 were not available.
To estimate LULC change in the area we used historic reconstruction maps for
Europe (Fuchs et al. 2015). These maps represent modelled reconstructions of
LULC in Europe from 1900 until 2010 using a combination of historical LULC
data sources and a modelling approach called Historic Land Dynamics Assess-
ment or HILDA (Fuchs et al. 2013). This resource provides a rough estimate of
how the LULC in the study area has shifted in the past 110 yearsata 1 x 1km grid
resolution. We used LULC maps from two decades to show changes in the time
periods of the surveys (1900 and 2010). Due the coarseness of the LULC data
there were not enough grid cells to analyse the change in elevation in each 200m
elevation zone. Therefore, we split the mountain into two regions of different
elevation, 1000-1799m (Montane) and 1800-2299m (Sub-alpine) (Gémez et al.
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2017). Chi-square tests were used to assess differences in the proportions of each
LULC class at montane and subalpine elevations between the two time-periods.
We also included a trend analysis of all decades to show how LULC changed over
110 years in our study area. The LULC classes available in the historic LULC maps
include forests, grasslands, cultivated land, human settlements, water and other.
The “other” category comprises the areas of ruderal vegetation, beaches, bare

floors, rocks, and other parts of the landscape difficult to classify.

6.3.7 Community Change

For the bumblebee and day-flying Lepidoptera assemblages, we examine the cha-
nge in proportion of the different species between the two time periods as well
as describe the species that were not found in either of the two periods. We
examine the changes in proportion at , 1000-1799m (Montane) and 1800-2299m
(Sub-alpine) elevations. Due to differences in sampling intensity, protocol and
target species between the two periods, we had to limit our community analysis
to species of bumblebee, day-flying Lepidoptera and plants which were observed

during both surveys.

6.3.8 Elevation Change

MacLeod’s descriptions of his sampling locations are not clear enough to pro-
vide exact areas to attribute to the collection records. Therefore, as we do not
know exactly where MacLeod sampled and potentially the location areas from
both periods do not overlap exactly, we grouped the occurrences into elevation
ranges rather than sites (elevation is provided by MacLeod for each observation).
We split the occurrences into elevation ranges of 200m, i.e. from 1000-1200m
to 2000-2200m. The number of occurrences collected at each elevation range
are not uniform between the two time periods. Therefore to avoid any bias of
oversampling at certain elevations we used the approach of Chen et al. (2009)
to determine the average elevation of individuals in 1889 and in 2005-06. This
entailed measuring the mean elevation of each species in each time period us-
ing three methods. The first method (ml) simply implies using all available oc-

currences in each time period to calculate the average elevations. The second
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method (m2) deals with the fact that certain species may make up a greater pro-
portion of the species at one elevation range over another, therefore we took the
weighted mean of each species based on its proportion in the six elevation classes.
The final method (m3) recognizes that the sampling intensity in each elevation
range is not equal in the two time periods. Therefore, at each elevation range
the time period with the greater number of records was re-sampled to coincide
with the time period with lower sampling intensity and then the mean elevation
of each species was calculated. This was repeated 1000 times and the average
of all mean values per species was used at the final value. For all three methods
for each of the three groups we compared the elevation ranges in both periods
to assess whether there was an increase or decrease in elevation overall and per
species using t-tests or a Wilcoxon rank sum test when the sample means are not

normally distributed.

6.3.9 Trait Responses

The traits of the bumblebees recorded in both periods were extracted from the
“European bee traits database” (established by ALARM, www.alarm-project.
ufz.de, and developed by STEP, www.STEP-project.net). We extracted traits
relating to (1) habitat specialization, (I to 8, number of habitat types where a
species occurs); (2) feeding specialization (oligolectic, polylectic, no lectic sta-
tus); (3) length of flight period (2 to 9 months); and (4) tongue length as mea-
sured by Obeso (1992) for bumblebee populations in the northern part of the
Iberian Peninsula. We chose this resource for tongue lengths as it included all
non-parasitic species from our study, comes from a geographically close region,
and was measured as an average of individuals across an elevation gradient. We
tested whether different trait had different relationships to elevation and eleva-

tion change between periods.


www.alarm-project.ufz.de
www.alarm-project.ufz.de
www.STEP-project.net
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Fig. 6.2: Difference in minimum, mean and maximum temperature
changes in Luz Valley in August at different elevations between 1889 and
2005-06.

6.4 Results

6.4.1 Climate Change

At the landscape level we observe considerable climate change between the two
time periods. The mean annual temperature significantly increased by 0.02°C
peryear (f=2667, df=38802, p=<0.001; Fig S6.1). Furthermore, the average mean,
minimum and maximum temperatures of August between the 1901-1910 and
2001-2010 show significant differences. The mean temperature increased on
average by 2.1°C (¢=1351.7, df=355, p=<0.001). The minimum temperature in-
creased on average by 2.3°C (#=1210.1, df=355, p=<0.001) and the maximum tem-
perature by 1.9°C (#=990.9, df=355, p=<0.001). The temperature also increased
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consistently at all elevations in the surrounding area. The increase is consistent
from lower to higher elevations. Equivalent temperatures are all found higher
in elevation in 2005-06. The equivalent average temperature in August is now
on average 425m £44m higher, the minimum 513m +24m and the maximum
299m +80m (Fig 6.2). Overall less change has occurred for the extreme maxi-
mum temperatures of August.

6.4.2 Land Use/Land Cover Change
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FiG. 6.3: Land use change in Luz Valley between 1900 and 2010. Reconstructed as part of the His-
toric Land Dynamics Assessment (HILDA; Fuchs et al. 2013; Fuchs et al. 2015).

Land use/land cover (LULC) data from 1889 in the region was not available
sowe used coarse LULC estimates from the year 1910 as a proxy. We calculated per
elevation zone changes in the main LULC types for the surrounding study region.
There are only three LULC classes at the broad thematic resolution of the LULC
maps available for both time periods; (i) forest, (ii) grassland, and (iii) other land.
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When split into montane (1000-1800m) and sub-alpine (1800-2300m) areas we
observe a significant change in land use composition between the three classifi-
cations. In1910 in montane elevations 16% of the LULC was forest, 72% grassland
and 11% other, this changes to 38% forest, 42% grassland 19% other in 2010 (chi
square: x2=13.9, df=2, p=<0.001; Fig 6.3). Sub-alpine LULC shows the same pat-
terns with forest increasing from 1% to 8% and grassland increasing from 50%
to 49%, other land changed slightly from 48% to 43% (x2=6.6, df=2, p=0.03, Fig
6.3).

6.4.3 Community Composition

The total number of bumblebee species found in 1889 was 16 and increased to
17 in 2005-06. Twelve species were found in both surveys (Fig 6.4). Unique
to 1889 were B. mendax, B. monticola, B. mucidus, and B. pratorum. Bombus
mendax and B. mucidus are singletons. On the other hand, B. monticola (2%) was
found more abundantly. Singletons found in 2005-06 but not in 1889 include B.
rupestris, B. sylvarum, and B. sylvestris. Bombus bohemicus (5%), B. pyrenaeus
(2%) on the other hand were absent in 1889 and found with a moderately high
abundance in 2005-06. In 1889, 47 species of butterfly or day flying moth were
found, 16 of which were singletons. In 2005-06, 27 species were found, of which
7 were singletons. Nineteen species were found in both surveys, 11 of which had
more than a single record in both periods (Fig 6.4). Species which were found
abundantly in a single period include Boloria pales (6%), Erebia tyndarus (5%),
Parnassius apollo (4%) in 1889, and Issoria lathonia (4%), Thymelicus sylvestris
(4%) in 2005-06.

6.4.4 Elevation Shifts

We measured the change in elevation of the 12 bumblebee species present in both
time periods using three different methods as explained above (Fig 6.5a). Over-
all using ml, bumblebee species shifted 206m up the mountain (paired t-test:
t=4.59, df=l11, p=<0.001, 95%CI = 107.3, 304.9). Of the 12 species 10 showed an
shift in mean elevation. Using m2 we observed an overall mean shift of 147m up-
wards (#=2.56, df=11, p=0.026, 95%CI = 20.5, 273.2). Of the 12 species 9 showed a
shift in elevation. Using m3 we observed an overall shift upwards of 151m (t=2.64,
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FiG. 6.4: Relative abundance of bumblebee species in different elevation zones in

1889 and 2005-06.Black: 1889, Grey: 2005-06, Red: unique to 1889 and Green: unique to

2005-06.

0.023, 95%CI = 24.9, 277). Of the 12 species 8 showed an shift in mean
elevation under all three methods. The species that shifted the most in elevation

df=11, p

were B. wurflenii, B. gerstaeckeri and B. lapidarius. Regardless of the method,
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all three species showed large shift in mean elevation. Depending on the three
calculation methods B. wurflenii had an average elevation shift of between 333m
and 446m with a minimum of 1000m and maximum of 1700m in 1889 and a
minimum of 1491m and maximum of 2200m in 2005-06 (Fig 6.5a). Bombus
gerstaeckeri had an average elevation shift of between 328m and 400m with a
minimum of 1600m and maximum of 1900m in 1889 and a minimum of 2100m
and maximum of 2200m in 2005-06. Bombus lapidarius shifted between 344
and 467m. The only species that shows a downhill trajectory between the time
periods is B. soroeensis, which had an average elevation decrease of between -53m
and -217m.

The change in elevation of the day-flying Lepidoptera found in both 1889
(n=164) and 2005-06 (n=138) surveys (Fig 6.5b) using ml shows an overall shift
in elevation of 262m (W=13, df=10, p=0.002, 95%CI=127.1, 398.2). Using m2 the
the day-flying Lepidoptera show an overall a shift in elevation of 249m (W=26,
df=10, p=0.03, 95%CI=57.8, 440.6). Finally, using m3 there was an overall shift
of 198m (¢=3.41, df=10, p=0.007, 95%CI = 68.2, 327). Of the 11 species 8 showed
an shift in elevation under all three methods. The greatest shift of elevation was
observed for Colias croceus Leiden (between 421m and 742m) and Aglais urticae
(between 444m and 459m). The only species to show a consistent downhill trend
in average elevation difference was Macroglossa stellatarum which decreased be-
tween 26m and 217m.

As mentioned before, we limited our analysis to the plants where bum-
blebee, butterfly and day flying moth species were found to be visiting in both
time-periods (Fig 6.5¢). Twenty-six plant species were observed for visitors in
both time periods and 16 of these were recorded with bumblebee, butterfly and
day moth visits more than once. Again, the majority of species showed an uphill
trend comparing 1889 to 2005-06, ml shows and overall shift of 243m (W=67.5,
df=15, p=0.02, 95%CI=151.9, 333.3). Using m2 the visited plants show an average
of 225m movement uphill (W=74, df=15, p=0.04, 95%CI=120.5, 328.6). Finally,
m3 shows an shift of 214m (W=64.5, df=15, p=0.02, 95%CI=128.7, 301.2). Thir-
teen of the 16 species displayed an uphill trend under all three methodologies.
Cirsium arvense (between 497m and 521m), Allium lusitanicum (between 456m
and 482m) and species of the Aconitum genus (between 386m and 476m) showed
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the greatest average shift in mean elevation. Not a single plant species measured

show an overall downhill trend in mean elevation.
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FIG. 6.5: Elevation change between 1889 and 2005-06 For (a) bumblebees, (b) day-flying Lepidoptera and (c)

their visited plants. Dashed line: 1889. Solid line: 2005-06. Shapes refer to different methods to calculate mean

elevation shift: Circle: (ml) uses using all available occurrences in each time period to calculate the average eleva-

tions. Cross: (m2) weighted mean of each species based on its proportion in the six elevation classes (1000-1200,

1200-1400, 1400-1600, 1600-1800, 1800-2000, 2000-2200m). Triangles: (m3) in each elevation class the time

period with the greater number of records was resampled to coincide with the time period with lower sampling
intensity and then the mean elevation of each species was calculated.
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6.4.5 Bumblebee Specialization

Habitat-specialist bumblebees were found much higher up the mountain than
generalists and this relationship has a strong correlation in both time periods.
We compared the re-sample means, as these represent the most conservative es-
timations of elevation shift. Pearson correlation coefficients were -0.53 in 1889
and -0.58 in 2005-06 (Fig 6.6). We also observe that specialists occur in higher
elevations in 2005-06 than in 1889, but that the same comparison between gen-
eralists does not show a difference in elevation (Fig 6.6). There is also a weak
relationship (Pearson r= -0.2) between elevation change and habitat specializa-
tion (Fig S6.2a). Overall, we do not see generalists higher up the mountain as
hypothesized (Fig 6.6). Additionally, there is a high correlation between habitat
specialization and number of flying months (Pearson r=0.79; Fig S6.2b) so we
treat the two traits as similar, and therefore choose to show habitat specializa-
tion. We do not observe any clear patterns for tongue-length other than that B.
gerstaeckeri, one of the species with the greatest shift in mean elevation, has a
far longer tongue than all other species (see Obeso 1992; Fig S6.2c). Bombus ger-
staeckeri also represents the only oligolectic bumblebee found in both periods. It
is therefore found higher up the mountain (mean=1950m) in both periods than
both the polylectic (1471m) and parasitic species (1224m; Fig S6.2d).

6.5 Discussion

In this study we compared two plant pollinator communities 115 years apart. We
specifically tested three hypotheses; (1) that significant climate and land use
changes occurred in the Pyrenees National Park in the last 115 years; (2) that the
composition of the bumblebee, butterfly and plant community altered and/or
shifted in mean elevation over 115 years; and (3) that bumblebee traits explain

their observed elevation patterns and shifts.

Over 115 years of changes in the Gavarnie/Gedre region of the Hautes Pyre-
nees the community of bumblebees, day-flying Lepidoptera and the plants they
visited were found to significantly increase their mean elevation. The bumblebee

communities showed a stable trend in species richness over 115 years, with only
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FIG. 6.6: Mean elevation against species habitat specialization. Elevation calculated
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elevation of each species was calculated. Green:1889, Red:2005-06. Habitat specialization

from 1-8 based on the number of different European biomes where the species has been
found previously.

slight changes in species composition and proportions. The sampled butterfly
and day flying moth community showed more significant differences between
the two time periods but this is most likely explained by a different sampling in-
tensity and focus on the smaller less conspicuous species in 1889. The upward
shifts for all three groups suggest and average shift of approximately 200m and
this is in line with similar studies of long-term elevation change of butterflies
in other locations (Chen et al. 2009; Wilson et al. 2005; Wilson et al. 2007).
For bumblebees on the other hand this study is one of the few studies to show
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a long-term elevation shifts for a bumblebee assemblage at one site. Franzen &
Ockinger (2012) measured changed in bumblebee elevation in Sweden but ob-
served no significant increase across 60 years. At the larger spatial scale Kerr et
al. (2015) observed that in the US and Europe Southern species showed an over-
all increase in elevation of approximately 300m since 1974. This effect varied
by species but the geographical effect of North versus South was stronger, with
Northern species decreasing in elevation (Kerr et al. 2015). This supports the
observed differences between this study and that by Franzen & Ockinger (2012)
as the Pyrenees are far further south in Europe than the Swedish mountains of
their study. In the Rocky Mountains in Colorado Pyke et al. (2016) find similar
results when measuring the elevation increase of bumblebees between 1974 and
2007. As with our study they find that the elevation increase is not consistent for
all species, with some species moving more than 400m and others showing no
change at all. The shorter time period of the other studies on butterflies and the
continental study of bumblebees show similar values in mean elevation increase
for species which suggests that the majority of these changes may have occurred
in the last 50 years and that the trend in elevation increase is not steady over time
but has been triggered by particular changes later in the 20th century. For exam-
ple climate changes since 1950 have occurred at a faster rate than those observed
before the 1950s (IPCC 2014).

The majority of bumblebees species can forage over large distance and while
they can occur at very high altitudes, they are generally not restricted to particu-
lar elevations across the whole range of species (Goulson 2010; Walther-Hellwig
& Frankl 2003). However, in lower latitudes of the Northern hemisphere bum-
blebees can often be found to be restricted to high elevation mountain habitats
(Vereecken 2017; Williams et al. 2009a). Therefore the decrease of a species at
lower elevation and increase at higher elevations in areas such as the Pyrenees
indicates that climate and/or land use/land cover (LULC) changes at lower ele-
vations have restricted the availability of feeding and nesting resources and are
driving species uphill (Parmesan & Yohe 2003; Pyke et al. 2016). The observed
changes in the environment support the indication that the elevation increases
aredriven by changes in climate, LULC and floral resource availability. Equivalent
minimum, mean and maximum temperatures have shifted between 300m and
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500m uphill, the montane LULC of 1889 is closer to the LULC at the sub-alpine
elevations in 2005-06 and the plants that were observed with bumblebee and
day-flying Lepidoptera visitors in 1889 shifted in similar magnitudes uphill. It is
therefore difficult to separate the drivers, and the results observed are most likely
due to the interaction between all three changes. Climate changes provide more
suitable agricultural areas higher up the mountain and both climate and LULC
change shift the climatic niche of flowering plants uphill (Dale 1997; Lenoir et al.
2008). The variation observed between species would suggest that it is not only
one consistent changing factor causing these changes in elevation.

Interestingly, the minimum and mean temperatures have changed more
than the maximum temperature of August over the last 115 years, suggesting the
absence of extreme heat wave conditions. Extreme temperatures during the fly-
ing period of the species can lead to significant decreases in abundance and po-
tentially local extinctions of butterfly and bumblebee species (Parmesan et al.
2000; Rasmont & Iserbyt 2012; WallisDeVries et al. 2011). Our results suggest
that the distributional shifts are driven by consistent changes in temperature over
time rather than extreme conditions. However, this could change in the near fu-
ture according to climate change predictions. However, as Pyke et al. (2016),
we do not see an overall shift of bumblebee elevation that matches the upward
shift in climate which we would be around 425m. The modelled climate change
data shows that equivalent maximum temperatures in August have shifted less
in elevation than the minimum and mean. This could lead to the hypothesis
that bumblebees are more affected by extreme temperatures and therefore their
distribution patterns are more likely to be affected by shift in the maximum tem-
perature. This is in line with the hypothesis that heat waves are causing local
extinctions in bumblebees (Rasmont & Iserbyt 2012). Climate change is pre-
dicted to have a significant influence on the distribution of bumblebees across
Europe, with the majority of species expected to decline considerably in range
(Rasmont et al. 2015a). High-elevation habitats are predicted to become in-
creasingly important for maintaining the biodiversity of bumblebees and day-
flying Lepidoptera, as they are likely to become refuges of colder temperatures
that may no longer exist at lower elevations under different scenarios of climate
change (Penado et al. 2016; Rasmont et al. 2015a; Settele et al. 2008). At a finer
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scale in the Swiss Alps the bumblebee community was predicted to not only lose
range and increase in elevation but also to become more homogenized under
climate change (Pradervand et al. 2014). We do not observe any clear indica-
tion of homogenization of the bumblebee community but if elevation increases
continue, then the more generalist bumblebees will likely begin to occupy the
same space as the more specialist species, which often results in the decline in
abundance of specialist species (MacLean & Beissinger 2017). Fine scale species
distribution models for plants in the Alps suggest that plant species will persist
in high elevation areas under climate change and are unlikely to go extinct even
under extreme scenarios (Randin et al. 2009). This suggests that bumblebees
and the day-flying Lepidoptera in this region are unlikely to go extinct from a
lack of feeding resources.

Furthermore, potential land use changes alongside climate change scenar-
ios are likely to make these refuges even smaller and more important in a land-
scape context (Marshall et al. 2018). The results presented here suggest that
this interaction between climate and LULC change has already caused distribu-
tional changes in pollinator communities. Due to climate warming, the tree line
in woodland areas of the alps has shifted uphill (Gehrig-Fasel et al. 2007). This
presented by an overall increase in forested area. In the Pyrenees this movement
is less pronounced and the tree line movement seems to generally be driven by
past anthropogenic disturbances (Ameztegui et al. 2016). Either way, movement
of the tree line shifts important forage and nesting resources for wild pollina-
tors further uphill. In the nearby commune of Villelongue, also in the Hautes-
Pyrenees and the Pyrenees national park, pastures have increased from 4.9% to
25.8% of total surface area between 1950 and 2003 of which the majority was the
conversion of meadows (Mottet etal. 2006). The data we have available from the
late 19th and early parts of the 20th century do not allow us to analyse the quality
of the grassland present at different time periods. However, the conversion of
meadows to pasture removes necessary resources and will result in the decrease
in populations of wild pollinators and is one of the main drivers of decline of
wild pollinator populations worldwide (Potts et al. 2016b). In addition to this
information in 2005 and 2006 there was significant grazing at lower elevations,
which may explain the smaller number of species found at these elevations.
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Climate and LULC change can both potentially explain the shifts observed
and one of the key mechanism by which this occurs is the loss or movement of
floral resources (Kennedy et al. 2013). Non-parasitic bumblebees provide polli-
nation services to many wildflowers and range from generalist to specialist inter-
actions with plant species; due to their temperament for cold conditions and large
flowering range, bumblebees are vital pollinators for plants which exist in cold,
unpredictable climates, and in fragmented habitats (Goulson 2010). A good ex-
ample of this is the pollination services bumblebees provide in European moun-
tain habitats including the Pyrenees (Iserbyt et al. 2008). Spatial mismatches
and phenological shifts caused by climate change between plants and their pol-
linators will decrease the effectiveness of this service and in specialist cases will
result in significant population declines (Burkle etal. 2013). Aswell as being spe-
cialized in feeding, species may be more or less specialized in the types of land-
scape they can survive in as well. This is likely to influence the response of species
to environmental changes, habitat specialist butterflies in the UK showed that
whilst half of generalist species increased their distributions, 89% of specialists
decreased (Warren et al. 2001). We observe in general that specialist species are
found higher up the mountain than generalists. The change in elevation is also
greater for specialist species and very small for generalists. The plant-pollinator
interactions of the consistent species suggest that there is considerable variation;
particularly in the generalist pollinators in terms of what plants they visit. How-
ever, we do observe potential evidence that at least the persistent interactions
may be shifting in unison, suggesting that the observed changes in pollinators is
due to an interaction between climate, land use and plant distribution changes.

A potential exhibit of these different drivers in action can be observed in the
species B. gerstaeckeri, a red listed vulnerable species and also the only feeding
specialist of the observed assemblage (Nieto et al. 2014; Ponchau et al. 2006).
The genus of species on which B. gerstaeckeri collects pollen is Aconitum. In the
surveys Aconitum also showed an increase in elevation of approximately 400m.
This suggests that B. gerstaeckeri has been driven to higher elevations to main-
tain access to its solitary food source. This narrow diet is likely to significantly
increase the vulnerability of bumblebees to drivers of decline (Rasmont & Mer-
sch 1988; Williams et al. 2009b). Additionally, B. gerstaeckari prefers sub-alpine
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woody habitats, and therefore movements in the tree line will shift suitable habi-
tat (Rasmont et al. 2015b). Species specialized in high-elevation areas are likely
to suffer greater from climate change than others (Dirnbock et al. 2011). Aconi-
tumspp. are deep flowers and B. gerstaeckeri has a far longer tongue than any of
the other bumblebee species (Obeso 1992). Previous studies with B. gerstaeckeri
have implicated the lower ratio of queens to workers compared to other bum-
blebees which feed on Aconitum spp. as a potential example of its vulnerability
(Ponchau etal. 2006). These factors combined explain why we see a large change
for this species. The other species to show a large increase is B. wurflenii, which is
classified on the red list as least concern but does show a decreasing trend (Nieto
et al. 2014; Rasmont et al. 2015c). Bombus wurflenii is also known to feed on
Aconitum spp. (Ponchau et al. 2006), and was found visiting it in high numbers
in both time periods. It has also been observed in other studies to show a ten-
dency towards feeding specialization (Kamper et al. 2016). Continued monitor-
ing in the region and other areas is therefore a must. The only bumblebee species
to show a decrease in elevation is B. soroeensis, which is defined as high altitude
species in southern Europe (Williams et al. 2007). This is an unexpected result,
and should be explored in more detail. Surveys of B. sorooensis from other high
elevation areas should be examined to see if the species is decreasing in mean

elevation across its extent.

Repeated surveys offer the unique opportunity to quantify how communi-
ties have changed over time. However, comparing a study from the 19th century
brings with it its own exceptional challenges when comparing to studies using
modern day research techniques. From the published account of the surveys in
1889 and 1890 it is difficult to know the intensity of the insect visitor sampling
when we know that the focus of the study was on plant diversity in the region.
Furthermore, the age of the work provides a number of taxonomical difficulties
and many names used in 1889 were later changed (see Table S6.1). We would
hesitate to draw any conclusion related to declines or extinction of the butterfly
and particularly the day flying moth species because of this taxonomic differ-
ence and the less targeted sampling in 2005-06. There is also a discrepancy in
the sampling intensity at different elevations, we have used statistical methods
to account for this, but any comparison with 1889 will be limited by MacLeod’s
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sampling intensity. Overall to draw more conclusions for what is happening in
this region there is a necessity of repeated sampling, these snapshots can only
reveal limited information (Dawson et al. 2011). A future sampling of the entire
plant and insect community would allow for a more robust comparison, show-
ing both long-term change in multiple groups and being able to compare short
and long-term changes for groups such as the bumblebees. A particular focus of
different months would also be useful, for example B. pratorum has been found
regularly in the region in recent times suggesting that its presence in August 1889
and absence in August 2005-06 is potentially due to phenological shifts, as rarely
would B. pratorum still be flying so late in the season. The current datasets from
2005-06 are focused on August and do not allow an estimate of phenological
shifts, future surveys should therefore encompass June and July as well.

Significant climate and land use changes have occurred in the Pyrenees Na-
tional Park in the last 115 years. This has not caused significant species losses
but has altered the distribution patterns of the bumblebee and day-flying Lep-
idoptera community. Many species show an increase in elevation that corre-
sponds to these changes as well as shifts in the elevation of their preferred plant
species. We also see that specialist species are found higher up the mountain and
may be more vulnerable to change. Overall, this indicates that there are likely
complex interactions between climate, land use and plant distribution changes,
however the results clearly indicate that specialist species in these habitat are at
risk of significantly declining in range if these changes persist.
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6.6 Supporting Information

Tables

TABLE S6.1: Name changes of bumblebees, day-flying Lepidoptera and plants. From the original 1889 and/or
2005-06 classification to the accepted classification in the present day.

Bumblebees Day-flying Lepidoptera
Original Final Original Final
Bombus agrorum Bombus mesomelas Agrotis decora Euxoa decora
Bombus agrorum var. pascuarum Bombus pascuorum Agrotis ocellina Chersotis ocellina

Bombus alticola
Bombus mastrucatus

Bombus pomorum var. elegans

Bombus rajellus
Bombus soroénsis var. laetus
Bombus variabilis
Bombus lapponicus

Bombus sichelii
Bombus wurflenii
Bombus pomorum
Bombus ruderarius
Bombus soroeensis

Bombus humilis
Bombus monticola

Plants

Original

Final

Allium fallax
Allium montana
Carduus carlinifolius
Carduus medius
Cirsium lanceolatum
Galeopsis pyrenaica
Galeopsis angustifolia
Mentha sylvestris
Parnassia rotundifolia

Allium lusitanicum
Allium lusitanicum
Carduus defloratus
Carduus defloratus
Cirsium vulgare

Galeopsis ladanum
Galeopsis ladanum
Mentha longifolia
Parnassia palustris

Argynnis euphrosine
Argynnis pales
Botys nigrata

Botys purpuralis var. ostrinalis

Callimorpha hera
Choreutis pretiosana
Colias edusa
Epinephele janira
Erebia lappona
Erebia stygne
Hercyna phrygialis
Ino statices var.
Leucophasia sinapsis
Lycaena aegon
Lycaena astrarche
Lycaena bellargus
Lycaena corydon
Lycaena hylas
Lycaena icarus
Melanargia galathea
Melitaea dictymna
Nemeobius lucina
Nisoniades tages
Pararge maera var. adrasta
Plusia gamma
Polyomnatus virgaureae
Rhodecera rhamni
Satyrus alcyone
Simaethis oxyacanthella
Sphinx convolvuli
Syrichthus alveus
Syrichthus malvae
Syrichthus sao
Syrichthus serratulae
Tancalia leeuwenhoeckella
Thecla rubi
Vanessa antiopa
Vanessa Io
Vanessa urticae
Venilia macularia

Boloria euphrosyne
Boloria pales
Pyrausta nigrata
Pyrausta purpuralis
Euplagia quadripunctaria
Tebenna pretiosana
Colias croceus
Maniola jurtina
Erebia pandrose
Erebia meolans
Metaxmeste phrygialis
Adscita statices
Leptidea sinapis
Plebejus argus
Aricia cramera
Polyommatus bellargus
Polyommatus coridon
Polyommatus dorylas
Polyommatus icarus
Melanargia lachesis
Melitaea diamina
Hamearis lucina
Erynnis tages
Lasiommata maera
Autographa gamma
Lycaena virgaureae
Gonepteryx rhamni
Hipparchia alcyone
Anthophila fabriciana
Agrius convolvuli
Pyrgus alveus
Pyrgus malvae
Spialia sertorius
Pyrqus serratulae
Pancalia leuwenhoekella
Callophrys rubi
Nymphalis antiopa
Aglais io
Aglais urticae
Pseudopanthera macularia
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Figures

Mean Annual Temperature (°C)

1920 1950 1980 2010

FIG. S6.1: Mean annual temperature trends between 1900-2010. Line repre-
sents linear relationship with 95% confidence interval.
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7.1 Overview

The study of the distribution of biodiversity in space and time is a fundamen-
tal aspect of ecology, evolutionary biology and conservation. Understanding
these patterns can provide information on where species are distributed glob-
ally, population trends (increasing or decreasing), threat of extinction, the role
of these species in the ecosystem, and the best ways to protect these species
(Patterson 1994; Shaffer et al. 1998; Rodrigues et al. 2004; Pimm et al. 2014).
The study of biodiversity distributions and conservation increases in significance
when coupled with large-scale, rapid global change. Anthropogenic climate and
land use/land cover (LULC) change has already fundamentally affected global
biodiversity and is expected to continue to do so in the future (Thomas et al.
2004; Millennium Ecosystem Assessment 2005; Barnosky et al. 2011; Bellard et
al. 2012; Newbold et al. 2015; Newbold et al. 2016). This creates an urgency
to comprehend where species are distributed, what factors affect this distribu-
tion, how is this distribution likely to change and what can we do to ensure the
continued existence of these species. These themes form the backbone of this
thesis and have been explored for wild bee species at different spatial and tem-
poral scales in Europe. Due to the impacts of climate and LULC changes in the
past and future, we have focused on these two factors as drivers of wild bee dis-
tribution patterns The general objective of this thesis was to examine how
LULC and climate conditions impact the diversity and distribution pat-
terns of wild bee species at different spatial and temporal scales. In this
discussion we will explore the results of the four separate scientific chapters to-
gether in terms of how they explore and test the three aims we proposed in the
introduction. Specifically, to (1) test the efficacy of using statistical modelling
tools to understand wild bee distributions in the present and future and suggest
how to improve these methods; (2) provide novel understanding of how wild
bee community assemblages are structured at large geographical scales and what
drives this structure; and (3) quantify and compare how past, present, and future
changes to wild bee and specifically, bumblebee distributions are expected to be
influenced by LULC and climate changes.

In summary, related to the first aim, we show that based on the restricted
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extent and unequal species coverage of available wild bee collection data, robust
methods to predict distribution patters are required. We used species distribu-
tion models (SDM) for this purpose. We show that, when applied to wild bees,
SDM performance varies depending on the agricultural landscape where species
are collected and on the traits of the modelled species (chapter 3). We show that
incorporating co-occurrence between wild bee species improves model perfor-
mance (chapter 4) and that incorporating LULC change variables also improves
model performance in the present and results in significant differences in pro-

jected distributions for bumblebees in the future (chapter 5).

We focused on the second aim in chapter 4, and show clearly that habitat
filtering explains the majority of wild bee assemblage patterns but that there is
unexplained variation shared between species. Furthermore, we show that habi-
tat filtering patterns show a clear phylogenetic signal, but that it is not explained

by traits.

Finally, for the third aim we show that the interaction between climate and
LULC projections for future do not affect all bumblebee species equally (chapter
5); and that changes in LULC and climate have occurred simultaneously in the

Pyrenees forcing certain species to move towards higher elevations (chapter 6).

The general discussion is structured into three sections; firstly we explore
the relevance of the results of the four chapters concerning the current literature
and state of the art in ecology, biodiversity and conservation fields. Secondly, we
expand upon the relevance and describe the implications of this thesis from a
scientific point of view but also its implications to society in general. Finally we
take the aforementioned relevance and implications, and formulate proposals

and recommendations for future research.
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7.2 Relevance

7.2.1 Modelling distribution patterns

The approaches available to estimate and predict how and where species are dis-
tributed have proliferated since the beginning of the century. Species distribu-
tion models (SDMs) are an excellent example of these approaches as they specifi-
cally provide the opportunity for researchers to combine occurrence records and,
environmental and biotic variables to produce estimate of distribution patterns
(Guisan & Thuiller 2005; Elith & Leathwick 2009). These methods are constantly
being improved and applied to different problems. Many questions surround the
use of SDMs at all stages of the model building and interpretation stages. A com-
mon question with SDMs is, what are the appropriate environmental covariates
to use when constructing SDMs? Early SDMs and the majority of prospective
SDMs used climate variables to delimit species distributions (Aradjo & Guisan
2006; Elith & Leathwick 2009; Titeux et al. 2016). We support a long-term
consensus of studies that indicate the importance of including LULC variables
alongside climate variables to better capture the environmental niche of species,
especially in areas with few climate extremes such as the Netherlands (Pearson
et al. 2004; Aratjo & Pearson 2005; Del Barrio et al. 2006; Luoto et al. 2007;
Titeux et al. 2009; Clavero et al. 2011). However, this is not only shown at the
smaller scale of the Netherlands, where LULC variables explain the majority of
the variation in wild bee habitats (chapter 4), but also at the larger European
scale, where model performance increases with the addition of LULC variables
and significantly affects projected outcomes (chapter 5). The improvements to
satellite technology and algorithms for classifying LULC, and its changes, has
increased the availability of high resolution LULC maps for many parts of the
globe (Kuemmerle et al. 2013; Congalton et al. 2014; He et al. 2015; Almeida et
al. 2016; Gémez et al. 2016). Furthermore, this data is increasingly more acces-
sible. Investments into ‘big data’ create online platforms for geodata and there
has been progress in encouraging researchers to publish data sources (Costello
2009; Hampton et al. 2013). Satellite data and social mapping data is also in-
creasingly more accessible (Hu et al. 2016; Reiche et al. 2016). Consequently,
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combined with open access software, the analysis of this data is more stream-
lined (Reichman et al. 2011). Therefore, there is little reason to focus purely on
climate envelope modelling when trying to predict species distribution patterns.

Another issue around SDM construction concerns the importance of eco-
logical/biotic factors in SDMs and the methods available to include them. The
consensus states that SDMs with only environmental covariates are missing inter-
specific interactions, a fundamental aspect of ecology (Kissling et al. 2011; Wisz
et al. 2012). We show that even over a relatively large geographic extent co-
occurrence between species are a small but significant part of the niche variation
observed in wild bee species in the Netherlands (chapter 4). Together with the
results from Aratjo et al. (2013) our results provide evidence against the Eltonian
noise hypothesis!, we show that biotic interactions might have a noticeable effect
at large resolutions and across large extents. Furthermore, our study uses state-
of-the-art methods which can provide estimates of biotic interactions based on
co-occurrence patterns and does not rely on a priori knowledge of how species
interact (Wisz et al. 2012; Ovaskainen et al. 2015; Ovaskainen et al. 2017). The
results presented are summarized at the national scale but it would be possible
to look deeper into the data and begin to extract specific species pairs that show
strong positive or negative correlations. The logical next step is then to begin to
hypothesize on the mechanisms behind these positive interactions and poten-
tially incorporate these mechanisms in models accounting for these ecological
interactions. For example, the mechanism behind the interaction between bee
hosts and bee parasites is clear (Giannini et al. 2013). However, the mechanism
behind why two species outcompete each other for resources (Godsoe & Harmon
2012; Meineri et al. 2012) or mechanisms of potential facilitative interactions are
likely more complex (Gutiérrez et al. 2005; Heikkinen et al. 2007). However
complicated these interactions may be, trying to understand the mechanisms of
why SDMs improve when species are modelled together is a necessary step to
improve the efficacy of SDMs. Another way of potentially incorporating the in-
teractions between species is to model functional groups rather than individual

species (Kissling et al. 2011). However, as we observe in chapter 3 there is still

IThe ‘Eltonian noise hypothesis’ is the hypothesis that large spatial extents and low resolutions,
found in many geographic sources, are too coarse grained for biotic interactions between species to
influence a species distribution (Soberén & Nakamura 2009).
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considerable variation in model performance not explained when species are ag-
gregated to functional trait groups and the results of chapter 4 show that the
traits presently available for wild bees may not be suitable for modelling func-
tional groups at this stage.

As SDMs have proliferated as a tool in ecology, the validation and inter-
pretation of models has become increasingly important. It is therefore neces-
sary to ask how effective are SDMs when applied to different species in different
locations? In chapter 3 we show clearly that using a simple measure of model
performance - habitat suitability in areas where independent collections were
conducted - that the ability to predict habitat suitability can vary considerably
depending on the location and the species functional group modelled. Further-
more, we even show that the method used to collect species can influence the
performance of species distribution models, indicating that certain techniques
may increase the likelihood of a species occurrence in a training or testing dataset.
This shows clearly the inherent uncertainty in SDMs, an aspect which can never
be removed and should be clear in the methodology used and any resulting model
interpretation (Aragjo et al. 2005; Buisson et al. 2010). How the species model
is interpreted should relate directly to the original goal of the model (Guillera-
Arroita et al. 2015). For example, in chapter 5 we create projected futures for
bumblebees under different scenarios using different selections of covariates, the
specific purpose of these models was not to predict the exact locations of bum-
blebees in 2050 and 2100, the aim was to observe how covariate selection altered
projections of distribution patterns in the future. Therefore, we would hesitate
to use the predictions to draw conclusions on actual distributions of bumblebees
in Europe in 2050 or 2100, i.e. if the resulting maps were to be used to influ-
ence conservation practices either by selecting high risk areas, areas of future
refuges, or predicting species extinctions (Sinclair et al. 2010; Ochoa-Ochoa et
al. 2016), then they should be re-modelled with this specific goal and using the
information obtained from the results of chapter 5 to limit the amount of uncer-
tainty. (Sinclair et al. 2010; Ochoa-Ochoa et al. 2016). In chapter 4 on the other
hand we have far less uncertainties in the hierarchical modelling of species com-
munities (HMSC) model. As expected when modelling an entire community of
species, performance varies according to the species. However, we include high
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resolution variables, species co-occurrence and we are not using the model to
predict into unknown space but only to find patterns within the model training
boundaries, therefore we feel more confident on the relevance of the conclusions

reached regarding assemblage distributions and conservation recommendations.

Prospective modelling in the age of rapid global change is an important
tool but one which comes with a number of caveats. As mentioned prospective
modelling has widespread uncertainties in all aspects of the modelling process
(Bellard et al. 2012), including the collection of species records in the present
(particularly for insects; Lobo 2016), the models used to predict climate or LULC
change (Dendoncker et al. 2008; IPCC 2014; Alexander et al. 2017), the algo-
rithms used to train the models (Aguirre-Gutierrez et al. 2013), and the methods
used to simplify and visualize the projections (Jiménez-Valverde & Lobo 2007;
Calabrese et al. 2014). All these uncertainties could imply that these methods
should not be used at all and only introduce noise to an already complicated and
discordant conservation biology field. We believe that this is not the case and,
that even with these uncertainties, prospective modelling shows an upward trend
in use and quality, and has become a useful addition to conservation during the
last decades, given that uncertainties are clearly discussed (Porfirio et al. 2014).
This correlates strongly with the improvements to occurrence data quality, vari-
able selection (Austin & Van Niel 2011), increases in the availability and number
of approaches (Pacifici et al. 2015), improved climate change projections (Kay et
al. 2015; Fick & Hijmans 2017) and more recently LULC models (De Rosa et al.
2016; Alexander et al. 2017), and an overall more robust and critical SDM field.
Our study in chapter 5 is therefore an important stepping stone in this trend, as
we show clearly that the inclusion of even coarse LULC change projections will
result in significant differences when modelling the distribution patters of some
bumblebees at the European and BENELUX scales. However, in all the aspects
mentioned and including our study many improvements are still possible to in-

crease the usefulness of prospective models of biodiversity patterns.

Land use/land cover change projections must improve. We clearly show
that greater thematic resolution of LULC classes influences the modelled predic-
tions of wild bees distributions. In chapter 4 we show that specific LULC classes

such as sandy areas, natural grasslands and heathland appear from the models
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as fundamental LULC types, which support a specific diversity of wild bees. In
comparison to the LULC covariates in the present for the Netherlands, the LULC
change covariates used in chapter 5 are more thematically coarse. Aggregated
classes such as grassland and arable eliminate the nuance of the interaction be-
tween wild bees and LULC. However we show that these classes do influence
bumblebee distributions even without this nuance. Therefore, the next step re-
quires high resolution LULC change models built using scenarios that include
these important LULC classes. We show that while these coarse LULC classes
may influence bumblebees, solitary bees are often more specialized and forage
in a smaller range and therefore these coarse classes are likely to be inappropri-
ate to model their distributions. These improvements to LULC change models
are expected and different methods that will maintain high thematic resolution
have been proposed (Rickebusch et al. 2011; Verburg etal. 2011). This means that
the work shown in chapter 5 can and should be repeated. As improvements are
made to the quality of occurrence, and climate and LULC change models then
the same questions proposed here should be revisited with the long-term aim to
obtain useful predictions of distribution patterns to influence the conservation

of wild bees.

Prospective modelling of biodiversity with SDMs suffers from the same
criticism as all SDMs, namely that several elements of the species biology are not
taken into account. In particular the dispersal ability of a species and its phe-
notypic plasticity are important factors for prospective modelling. Whether or
not a species will establish in an area depends on the environmental conditions
of that area, i.e. if the climate conditions are suitable for the physiology of the
species and the LULC offers necessary resources. This aspect is captured by a
SDM. However, regardless of whether a habitat is suitable, a species is limited to
areas that it can successfully reach based upon its dispersal capabilities. This is a
difficult aspect to measure for many species. In chapter 5 we partially account for
it by treating bumblebee species with two extremes, either complete dispersal or
no dispersal. Our results also tentatively suggest that maybe LULC can act as a
proxy for dispersal showing increased limitations for the Northern movement of
bumblebees. However, the absence of dispersal in our models is a strong limita-
tion especially as we know that bumblebees are not equivalent in their dispersal
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capabilities (Darvill et al. 2010; Lepais et al. 2010). This is a fundamental as-
pect of prospective modelling that needs to be accounted for (Dormann 2007).
Including dispersal ability has been shown to improve plant abundance models,
especially alongside co-occurrence (Boulangeat et al. 2012) but this requires a
priori knowledge of both inter and intra-specific variation in dispersal ability or
at least an accurate method to estimate it. Furthermore, the dispersal capabili-
ties of the populations at the leading edge of the range are more important than
those across the whole range (Fordham et al. 2012). There are no clear estimates
of short-term dispersal capability for the majority of bumblebees, only across

evolutionary time periods (Williams et al. 2017).

Alongside dispersal capabilities, a significant assumption of prospective
SDMs is that species ecology and behaviour are static and that their relationship
to the environment is in equilibrium and will not change in the future (Aratjo &
Pearson 2005). This is inherently incorrect as we know that species can exhibit
significant intraspecific variation and are capable of adapting to changing con-
ditions (Bellard et al. 2012). Therefore, the plasticity and evolution of species is
a vital aspect to prospective modelling. For example preliminary work into heat
tolerances of bumblebees would provide a more mechanistic view to whether fu-
ture climate conditions would be suitable for a species (Martinet et al. 2015), and
would not rely entirely on the current climate distribution of the species to esti-
mate this tolerance. Early results suggest significant differences between species
with a widespread common species such as B. lucorum tolerating consistent high
temperatures for a long period of time and an alpine species, B. alpinus, showing
much lower tolerance (Martinet et al. 2015). Other insect species have shown the
potential to increase their upper thermal limits (Hoffmann et al. 2013). As with
dispersal, knowing the phenotypic plasticity of populations at the leading edges
of the range is most important. The plasticity of these populations is likely to
strongly influence the persistence of the species under changing conditions (Val-
ladaresetal. 2014). However, the speed at which climate change is occurring may
negatively impact even the most adaptable species (Gunderson & Stillman 2015).
We propose that the true effectiveness of prospective biodiversity scenarios made
using SDMs will not be realized until actual knowledge of species behaviour and
ecology is consistently incorporated into prospective modelling frameworks.
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7.2.2 Community Assembly

Assembly Patterns

Species demonstrate a large amount of intraspecific variation and this may influ-
ence their responses to changing conditions. However, species do not exist in iso-
lation and form interacting assemblages, communities and ecosystems. There-
fore, to fully appreciate how changing conditions will affect species we need to
analyse how and where groups of species form and specifically what factors drive
these assemblages. A long-term and ongoing debate in community ecology and
biogeography centers around whether a species range is defined by its environ-
ment and its physiological and ecological requirements or whether it responds to
its interactions with other species representing assembly rules, including com-
petition and facilitation (Cody et al. 1975; Connor & Simberloff 1979). In chapter
4 we quantified and described the factors that influence the assemblages of wild
bees in the Netherlands. The results show that the relationship with the environ-
ment drives the majority of the patterns observed but that species co-occurrence
explains additional variation in the observed distributions of wild bees. The rela-
tionship between different wild bee species was estimated during the modelling
process and no prior knowledge of competitive or facilitative interactions was

included.

Biotic interactions in species assembly has been shown to be an impor-
tant factor in separating the realized niche, actual space an organism inhabits,
from the fundamental niche, environmental conditions in which the species can
survive (Hutchinson 1957). The single species SDMs used in chapters 3 and 5
use only covariates which estimate the fundamental niche of the wild bees, i.e.
climate and LULC conditions, while in chapter 4 we explored the co-occurrence
structure of wild bee assemblages, a closer estimate of the realized niche. The
results from chapter 4 indicate that there are aspects of the community assem-
blages of wild bees that we do not capture when looking at the fundamental niche
alone. Due to limitations on data quality and availability the models run in chap-
ter 4 were limited to a resolution of 10 x 10 km. The effects of species interaction,

particularly competition, on community assembly are likely to be more visible at
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finer resolutions (Aratjo & Rozenfeld 2014; Thuiller et al. 2015). This might in-
dicate why we observe only positive interactions between wild bee species, which
could be a landscape resources shared by the species but not captured exactly at
the resolution modelled and with the covariates selected. Furthermore, we see a
similarity in niche for closely related species but co-occurrence is not significantly
more likely. At finer resolutions both geographically and in thematic resolution
of LULC covariates we might expect to see a more clear representation of the
community including competitive interactions between wild bee species around
nesting or floral resources. We would also need to test the role of phylogenetic
relatedness at finer resolution, to see if the correlation between habitat filter-
ing and phylogenetic relatedness persists and whether we can see more clearly
if closely related species actually co-occur more or less than expected by chance.
We would hypothesize that competitive interactions, at the fine scale, are likely
to be greater for closely related species than distantly related species.

Chapter 6 also includes community patterns and tentatively explores whe-
ther mutualistic interactions between species (plants and pollinators) lead to
similar responses to environmental changes. There is also a large body of lit-
erature which suggests that facilitative interactions between species are more
apparent in community assembly in stressful conditions, such as high elevation
habitats where extreme environmental conditions may be responsible for delim-
iting species (Bertness & Callaway 1994; Michalet 2005; Cavieres et al. 2016;
D’Amen et al. 2017). There is also evidence that as these extreme conditions
increase the likelihood of facilitative interactions then the likelihood of compet-
itive interactions may decrease (Callaway et al. 2002; He et al. 2013). While
we do not specifically test this hypothesis we see evidence that the community
from 1889 has not shifted in unison over 115 years but specific species of bumble-
bees, day-flying Lepidoptera and wild flowers have shifted. However, the results
do suggest that plants and pollinators may have shifted together. The facilitative
interaction between plants and pollinators may also explain the influence of the

positive co-occurrence between wild bee species observed in chapter 4.
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Role of traits in distribution patterns

Another way to group and define communities is based on the traits found in
different assemblages. Trait based ecology has been a steadily growing field in
response to the limitations of purely taxonomic approaches. The application of
trait-based ecology to terrestrial arthropods is often a necessity because of ex-
treme diversity found in the phylum (Wong et al. 2018). In the case of globally
diverse groups like wild bees the results presented in this thesis could be appli-
cable in other areas of the globe. Specifically, the hope is that well-studied areas
with a less diverse fauna, i.e. the Netherlands, could produce results and pat-
terns that at the trait level could be transferred and applicable to areas with a
more diverse and less well-studied wild bee fauna. However, we would hesitate
to say that the results of our studies that include traits are sufficient to allow us to
predict wild bee responses to the environment in the Netherlands, let alone for
other locations. This hesitation stems from the fact that it is difficult to deter-
mine whether observed patterns in the relationship between traits and distribu-
tion modelling or habitat filtering are processes that are inherent to the group of
wild bees or if they are a response to the factors driving the patterns of distribu-
tion. A potential cause of this is that we do not define, a priori, the traits that may
present a greater response to the different, for example we could have hypothe-
sised that nesting traits and feeding traits may show a clearer relationship with
environmental drivers than traits related to demography. The incompletely sup-
ported assumptions associated with trait-based plant ecology are transferable to
trait-based insect or bee ecology as well. Namely, we do not have a clear picture
of whether wild bee functional traits link to actual measurements of fitness. We
also do not take into account intra-specific variation in traits and the degree to
which functional traits show a general measurable relationship to environmental
conditions is not always supported (Shipley et al. 2016).

In chapter 3, we see that wild bee species can be grouped together based
on their traits and that highly specialized bees are likely to be better captured by
SDMs in agricultural locations and large generalists less so. However the distinc-
tion we made when grouping species could always be extended. In the case of
chapter 3 we see clearly that bumblebees are separated into their own functional

trait group but even within the bumblebees distinctions can be made based on,
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for example, their degree of habitat and feeding specialization. In chapter 6 we
see that elevation distributions are linked to the habitat specialization of bumble-
bees. This is reinforced by the results of chapter 4, where we see that species are
structured taxonomically in their responses to LULC and climate defined habi-
tats/‘niches’ but that the included traits do not capture this adequately. This
implies that our selection of traits is not an efficient proxy for the patterns shared
by taxonomically similar species. In other words, these traits are not sufficiently
phylogenetically conserved? (Freckleton et al. 2002). One explanation as to why
we do not see a strong pattern from shared functional traits is that maybe these
traits do not actually have a high degree of functionality and consequently do not
influence evolutionary history of the species enough to have an observable effect
(Shipley et al. 2016). Trait responses can differ significantly to phylogenetic re-
sponses if the trait shows a weak phylogenetic signal. This has been observed
for diversity losses and its relationship to body size in mammals (Fritz & Purvis
2010). This is supported by results of wild bee diversity losses in Europe, which
were more or less extreme depending on whether phylogenetic, functional or
species diversity was measured (De Palma et al. 2017). Furthermore the sensi-
tivity of wild bee species to LULC was explained in part by species traits but this
was not consistent across LULC types (De Palma et al. 2015). Therefore, our at-
tempt to relate niche characteristics to sets of similar traits may be somewhat too

complex for the traits we had available to us.

We hypothesize that traits more closely related to actual feeding behaviour
and flower choice would result in clearer relationships with habitat suitability
and distribution patterns. One such example would be actual tongue length of
wild bees which is highly related to the flowers visited (Obeso 1992; Michener
2000). In chapter 6 we use tongue-length of the different bumblebee species
and the species with the longest tongue and most specialized feeding habit was
one of the species to most shift in elevation. Furthermore, wild bees differ in
their methods to collect and store pollen, for example bumblebees use a corbic-

ula, a basket like structure on the tibia to store pollen while many solitary bees

2Phylogenetically conserved indicates how far back in time a trait is found among all organisms
in a clade. A highly phylogenetically conserved trait is shared by organisms in larger, older clades,
whereas a trait which is less phylogenetically conserved is shared among organism in smaller clades
(Martiny et al. 2012).
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use a set of dense hairs called scopa (Michener 2000). The location and com-
plexities of these structures can differ a lot between species and can help species
avoid competition, for both plants and bees (Michener 2000; Ruchisansakun et
al. 2016). Nesting habit could also be expanded from the modest classifications
used in this thesis. Greater information on the actual substrate used would more
closely resemble landscape requirements (Cane 1991). These traits may better
capture the difference and similarity between species that separate them at the

finest scale.

7.2.3 Land Use/Land Cover and Climate Effects

The availability of nesting and feeding resources is what defines the suitability of
a landscape for wild bees. These necessary conditions can occur at an incredibly
fine scale and be highly species specific (Michener 2000). This degree of accu-
racy when estimating and predicting LULC from aerial photographs and satellite
images is not yet feasible. Therefore, we have to use more broadly defined LULC
as proxies for wild bee suitable habitat. The limitation of the thematic resolution
of LULC increases when we analyse the past and the future instead of the present.
In chapters 3 and 4 we had access to present day LULC maps which allow for a
number of specific LULC classes. We show that specific natural habitats are of
extreme importance for distinct wild bee species and assemblages. Natural and
semi-natural habitats act as a source of wild bees for crop pollination services
(Ockinger & Smith 2006; Garibaldi et al. 2011; Klein et al. 2012; Le Féon et al.
2013; Kleijn et al. 2015), however the inherent value of these areas for maintain-
ing a high or distinctive biodiversity are less well studied. We show in chapter 4
that, by looking at occurrence records collected within these semi-natural habitat
types, they can account for distinct assemblages of wild bees. The results illus-
trate the relevance of using a nationwide database of wild bee occurrences and
not being limited to surveys from particular habitat types. Additionally, conser-
vation of wild bees often focuses on the improvement to already intensively man-
aged landscapes (Goulson 2003a; Winfree 2010; Kleijn et al. 2018). Whereas we
show that the diversity of wild bees in the Netherlands would only be conserved

adequately if the unique semi-natural habitat types are maintained. The species
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which contribute to this uniqueness are often not included among the most abun-
dant crop pollinators (Kleijn et al. 2015), however, these species may influence
the behaviour and effectiveness of the more abundant pollinators and their role
in crop pollination may change across temporal and geographic scales (Garbialdi
et al. 2013; Winfree et al. 2018). Often these rarer species have highly special-
ized interactions with their habitat, which results in them being more accurately
modelled by SDMs in chapter 3.

For the past and future the available thematic resolution of the LULC co-
variates is significantly lower than for the present. This is because the scenarios
were developed to examine the principle LULC classes of Europe, resulting in
6 classes (See section 2.2.2; Rounsevell et al. 2006). This means we are less
able to focus on particular habitat use and instead examine how climate and
LULC changes over time may influence wild bee distribution patterns. Potts et
al. (2016b) in their assessment report of the current state of pollinator and polli-
nations conclude that “there remain relatively few published assessments of the
combined effect of land use and climate change on pollinators and pollination”.
With this thesis we make a contribution to fill this gap. Specifically, regarding
the interaction and connectedness between the two drivers we show clearly that,
even at low thematic and spatial resolution, the inclusion of LULC change along-
side climate change results in significantly different future projections for certain
bumblebee species. We observe that incorporating LULC change does not only
influence the distribution patterns within the climate envelope already defined
by the model, but also that for certain bumblebee species LULC change can either
enhance or mask the effects of climate change. Clavero et al. (2011) find similar
results; they show that the present climate range occupied by Catalan breed-
ing birds significantly differs depending on the LULC occupied, therefore any
changes to the LULC would also directly affect the climate range of the commu-
nity. The results presented in this thesis reinforce the importance of LULC as an
indicator of habitat suitability for wild bees but more importantly emphasize the
necessity to include LULC changes in future biodiversity scenarios because not
only does LULC change alter the distribution patterns within a climate range, it
may also result in a shift of the full projected range. In general the interaction be-
tween climate and LULC changes suggests smaller ranges for bumblebees in the
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future. Therefore, the results can be added to the list of studies showing that bio-
diversity loss is greater when the interaction between LULC and climate change
is included in future scenarios (Jetz et al. 2007; Barbet-Massin et al. 2012b; Ri-
ordan & Rundel 2014; Sohl 2014; Visconti et al. 2016). The dialogue around this
subject should therefore shift from whether or not to include LULC change co-
variates, to how to produce better LULC change projections with a clear temporal
dimension for use in biodiversity scenarios (de Chazal & Rounsevell 2009; Titeux
etal. 2016).

Wealso observe in chapter 6 that in a 115-year period both significant LULC
and climate changes can occur. Therefore, when looking at a snapshot of two
single years it becomes difficult to separate the drivers of the observed shift in
wild pollinators. Ongoing climate changes and LULC changes are difficult to
separate and are likely to be interactive. Climate changes are likely to influence
LULC changes and vice versa. However, in chapter 6 we see evidence that climate
change and elevation shifts are occurring together. This matches a number of
other studies which suggest climate change may be driving the observed shifts in
elevation in mountainous areas (Chen et al. 2009; Franzén & Ockinger 2012).
However, aspects such as deforestation or land abandonment in mountains may
result in precipitation or temperature increases (Fairman et al. 2011; Payne et al.
2017), therefore, as we observed for the future, the changes affecting wild bees
are unlikely to be occurring in isolation. For an area like the Netherlands which
does not have climate extremes but does have a long history of LULC changes
we see that the majority of the variation in wild bee niches is explained by LULC
rather than climate, this is unlikely to be consistent in areas where the climate
varies to a greater degree across smaller geographic areas, such as mountainous
areas. Our results show, based on the responses of wild bees, that the influence
of LULC and climate will not be consistent at different geographic and temporal
scales, however we can confidently state that climate is unlikely to be the only
important driver of biodiversity change.
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7.3 Implications

The results presented in this thesis can be expanded upon to provide implica-
tions for research and society in general. We separate the implications of this
thesis into three main areas (1) methodological, (2) wild bee research and (3)
wild bee conservation. We outline here how our understanding of these areas

has increased or changed based on the results presented in the thesis.

7.3.1 Methodological

Chapters 3, 4 and 5 reinforce the idea that the realized niche of species is unlikely
to be accounted for by the climatic envelope alone. This implies that when mod-
elling species distributions researchers should take into account more aspects
of the habitat requirements and the ecology of the species they are modelling.
Therefore, when available LULC covariates should be included along with species
interactions. The main implication of chapter 5 is that LULC variables, even
when of low thematic resolution, will be important when defining the present
day ‘niche’ of species and changes to those LULC classes will result in different
projected futures for the bees. We hope therefore that the results presented will
encourage researchers looking at biodiversity scenarios in the future to include

LULC change projections.

However, the results also imply that from a modelling perspective a one size
fits all approach is likely not suitable and researchers should implement species-
specific modelling where applicable. Adapting a modelling approach per species
is time consuming but fitting multiple models and including a priori information
of the species ecology will improve modelling performance. For example, moun-
tainous bumblebees may be adequately modelled with climate covariates but a
widespread parasitic bumblebee will be better modelled taking into account the
range of its host (Suhonen et al. 2015, 2016). Unfortunately, as we show in chap-
ter 4 if we want to estimate co-occurrence importance for many species it is not
possible to have a species by species modelling process, and therefore some mod-
els may be of low performance. An ideal situation for modelling wild bees would
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involve having a clear understanding of the mechanisms driving their distribu-
tions. Specifically, that would involve knowing a priori the relationship between
the fine scale environmental conditions, the interactions with other species (bees
and other organisms) and the direction of these interactions, facilitative or re-
strictive. Overall, this represents a technical and analytical barrier to modelling
a group of species. The best model for a species will always include all the pa-
rameters relevant to its specific niche, however, to model a group of species it is
necessary to use a subset of important, shared parameters. This means that when
modelling multiple species we increase the ability to compare between species
but at the same time are likely to decrease in model accuracy per species.

The results from chapter 3 additionally imply that whilst using indepen-
dent collections to test model performance is the ideal situation (Elith & Leath-
wick 2009), this is not easily accomplished with wild bees. Model performance
differs depending on the methods used to collect species with pan traps and tran-
sect netting resulting in different collections. It is well known that different col-
lections methods result in different estimates of a wild bee community (West-
phal et al. 2008) and therefore our research implies that to ensure sampling of
the rarest and most specialized species, for a testing or training dataset, sampling
intensity should be high and expertise is required.

7.3.2 Wild bee research

Wild bee communities are difficult to sample in their entirety, small, specialized
bees which are active for only a short part of the year can easily be missed when
sampling (Westphal et al. 2008). Therefore, an implication of this thesis and
potential limitation is the indication that more wild bee occurrence records are
required to obtain a detailed overview of all wild bee diversity. Models are made
to deal with incomplete databases of occurrences but generally the conclusions
and results will be improved if the models are trained with more detailed surveys
(Braunisch & Suchant 2010). Even in well-sampled areas such as the Netherlands
and other part of Western Europe there remain many wild bee species for which
we do not have a clear enough picture of their distribution and habitat require-
ments. In chapters 3 and 4 when we select species based on a certain number

of records in recent years we are limited to a Dutch wild bee fauna of 193 or 204
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species of an expected approximately 300-350 species (Peeters et al. 2012). This
implies that the methods and conclusions presented in this thesis may be irrel-
evant for the rarest and possibly most endangered species. There is no simple
solution to this issue as the rarest species are difficult to observe regularly and
cannot be sampled in large numbers. This indicates why there are few long-term
studies of wild bee decline and the majority are from North America or Europe
(Potts etal. 2016b). One way to improve this is to find and repeat more historical
studies. Our results from chapter 6 imply that we can observe interesting changes
in communities when repeating historical studies and that more effort should
be made to find and digitize old collections, particularly in countries outside of
North America and Europe. However, there is certainly a positive trend associ-
ated with the number of collection records, and technological advancements are
improving their quantity and accuracy. This thesis illustrates the importance of
long-term records of species distribution patterns. The results presented would

not be possible without having the presence of large databases of species records
(Shaffer et al. 1998).

However, even with an imperfect database of wild bee collection records
the results presented have clear implications regarding wild bee research. The
results of chapter 5 imply that bumblebee species in Europe are likely to have
smaller ranges and more fragmented habitats in the future if LULC change pro-
jections are included alongside climate changes. This more pessimistic projec-
tion of the future also indicates that the assumption that bumblebee species will
disperse further north at their northern boundaries, as presented in climate only
projections (Rasmont et al. 2015a), may be unrealistic. Combined with the re-
sults of chapter 6, that support the conclusion that some southern European
bumblebees are increasing in elevation (Kerr et al. 2015), we can conclude that
distribution patterns of bumblebees are not easily grouped together and that to
be able to adequately conserve them we must account for greater gradation in
their relationships with the environment and each other. This is supported by
chapter 4’s conclusion, that for all wild bees multiple factors affect the commu-
nity assemblage structure and conservation groupings. In other words the results
of this thesis illustrate clearly the complexities of wild bee distribution patterns
and indicate that future research should focus on these complexities.
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7.3.3 Conservation of wild bees

The results presented in this thesis provide some clear implication related to the
conservation of wild bee species. Wild bee conservation is a topic that has been
brought into focus in recent years as more information of honeybee declines and
wild bee declines and their potential causes permeates everyday news. This ev-
idence is often distorted in the mainstream media; honey bees and pesticides
are often given the majority of focus when they represent only a single species
and a single driver (Vanbergen & The Insect Pollinators Initiative 2013; Geld-
mann & Gonzélez-Varo 2018). We hope that the results in this thesis illustrate
the subtleties of wild bee distribution patterns and their conservation require-
ments. However, it is clear that it is an unrealistic goal to collect and monitor all
populations in a certain area. Therefore, we need to find ways to group species to-
gether and simplify the complexity whilst still maintaining precise directed con-
servation initiatives. The models in chapter 4 provide assemblages which can be
considered as conservation units at the Dutch scale. These assemblages corre-
spond to particular habitat types that can be, and in many cases are already, con-
served. These areas are rarely conserved with the direct goal of conserving wild
bees, but for other aspects of biodiversity and ecosystem services. The results im-
ply that they are home to unique wild bee assemblages and therefore monitoring
wild bee populations and making this information accessible could provide ad-
ditional support to the efficacy of these conservation measures. In chapter 5 this
is reinforced as we see that when accounting for LULC change, areas of particular
importance for wild bees become smaller, demonstrating that these models may
indicate refuges for bumblebees in the future when using the correct information

at the appropriate scale.

The clearest conclusions concerning distribution patterns at a species level
are found for more specialized species. In chapter 3 the distributions of habitat
and feeding specialists are better accounted for using SDMs than more general-
ist groups. We also see that in chapter 4 the species that define assemblages are
often specialized in certain habitats and in chapter 6 we see that elevation pat-
terns in bumblebees are correlated with a species degree of habitat specialization.
These results imply that specialized species could be useful as indicator taxa for
conservation. In other words these species should be monitored, and increases
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and decreases in their ranges and abundances may indicate overall well-being of
the wild bee community (Carignan & Villard 2002). L6hmus and Runnel (2018)
however advise against putting too much value in indicator taxa, they show the
value of an indicator can vary depending on survey effort and that covariation
between species may not be a sufficient factor to justify an indicator species. Ad-
ditionally, chapter 4 results imply that phylogenetic relationships may also be
used to conserve species. For example species of the same genera may have simi-
lar environmental requirements and protecting these requirements could benefit
the entire genera of wild bees.

7.4 Future Research

The results presented in the thesis indicate a number of research avenues that
warrant exploration in the future. These avenues concern both methodological
and applied research. We show clearly in this thesis that including LULC within
SDMs improves our ability to predict wild bee distributions. However, the coarse
LULC included in chapters 5, and 6 and even the higher thematic resolution
LULC in chapters 3 and 4 still only act as a substitute for the actual mechanisms
which cause a wild bee to be present in one location and not another. Therefore,
using remotely sensed and mapped LULC and LULC change models, which are
both continually improving in accuracy and resolution (Congalton et al. 2014),
we should be constantly testing and comparing our predictions of species distri-
bution with LULC maps of different thematic resolution. The current detail of
LULC maps for the present and future are not equivalent in number of classes. For
the future we should be using LULC change models which incorporate variables
similar to those used in chapter 4, we know that more specific LULC classes such
as heathland, dunes, and the separation of agricultural and semi-natural grass-
lands are important, therefore we should use models which project how these
habitat types may change in the future. Direct future research that we hope to
engage in will build on the results of chapter 5 and use LULC change projections
with higher thematic resolution to model bumblebee distribution patterns until

2050 for Belgium. This includes using maps of how agricultural land use at the
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parcel level is likely to shift (Beckers et al. 2018) as well as how fine scale natu-
ral land cover elements may change in the future in Belgium (Vanderhaegen et
al. 2015). Furthermore, we aim to explore not only the effect of higher thematic
resolution on Bumblebees but also sweat bees (family: Halictidae). Sweat bees
include a number of solitary wild bee and are often smaller and more specialized
(Michener 2000). Therefore, they are likely to have a finer scale relationship with
LULC covariates and we aim to test if they respond differently from bumblebees

in the future when modelled with higher thematic resolution.

The current need is for clearer separation not only in LULC categories but
also accounting for variation in quality and management of certain LULC classes.
For example, organic farms often support a higher wild bee diversity (Holzschuh
etal. 2008; Happe et al. 2018), and oil seed rape is an important food source for
wild bee as it is a late-season, mass-flowering crop (Westphal et al. 2003). Being
able to include and compare organic fields to conventional fields, or late season
and early season crops, may provide a greater accuracy when predicting wild bee
distributions. Therefore, next research steps should look at comparing SDMs

that include land use management against models which only include LULC.

The methodology used in this thesis is focussed around statistical mod-
elling techniques where we have examined the relationships and response of
many species to differences and changes in explanatory factors. However, there
is a clear role for process based models to deal with the research needs identi-
fied in this thesis. Specifically, we identify that a greater understanding of mor-
phological, physiological, and behavioural knowledge of wild bee species would
provide key information to concentrate the statistical/correlative models within
a predefined range of possibilities. Statistical models would clearly benefit from
greater understanding of the traits, fithess components and habitat requirements
of wild bees (Kearney & Porter 2009). For example, standard operative envi-
ronmental temperature models .can be used to estimate the thermal biology
of insects and allows for the comparison of thermal stress in different environ-
ments (Dzialowski 2005; Kearney & Porter 2009). These models have previously
been used to test activity levels diurnally for Euglossine bees (Armbruster & Berg

3“Standard operative temperature relates heat loss from an animal in a complex thermal environ-
ment to a reference laboratory environment” (Dzialowski 2005)
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1994). However, these models also require realistic ranges of species environ-
mental conditions for calibration, in this case more correlative models can be
useful in providing these limits (Dzialowski 2005). Additionally, the knowledge
of clear biotic interactions, for example wild bees which feed exclusively on one
plant species or parasite bees with a single host could lead to more process based
correlative models, where the species dependent on the other is modelled only

with the known range of its food source or host.

Agent-based models which examine behavioural and physiological respo-
nses at the individual level can provide Agent-based models have only very re-
cently been applied to wild bee species. Becher et al. (2018) has produced a
model for six bumblebee species which can simulate colony dynamics and forag-
ing within a spatially explicit landscape. The outputs from these models for these
six species could provide additional information regarding the carrying capacity
of certain habitats and fine scale dispersal. This information can either support
or contradict habitat suitability maps from SDMs by indicating the type of habi-
tats which can support a greater number of colonies. Furthermore, when high-
resolution pesticide maps are available for correlative modelling these models
could provide a priori estimates on pesticide exposure allow the statistical model
to limit the response of species to within their known ranges. In the future how-
ever, a key requirement to be able to use more process based models would be
to move away from the focus on model bee species, such as A. mellifera and B.
terrestris and conduct more physiological and behavioural experiments on non-

managed wild bees.

There is also the possibility of the results presented here providing use-
ful information for process based models. For example the results presented in
chapter 4 provide estimates of species pairs that share a response to an unknown
latent factor, these correlations could be used to estimate and assume a priori
interactions between species. Furthermore, where we observe a strong relation-
ship between a particular habitat and species this information could provide ad-
ditional support to process based models of habitat use among wild bees.

Furthermore, new technologies such as LiDAR provide three-dimensional
representations of the landscape in the form of vegetation structure (Bergen etal.
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2009; Heetal. 2015). In the future it would be interesting to explore the ability of
vegetation structure, as a covariate, to accurately model wild bee abundance. We
would hypothesis that, when correctly calculated, covariates of vegetation struc-
ture may be able to distinguish between similar LULC classes of differing quality.
The effectiveness of vegetation structure covariates, to model diversity, has been
shown for butterflies in the Netherlands (Aguirre-Gutiérrez et al. 2017b).

Higher resolution of land use classes that capture the fine scale differences
at the landscape level relates directly to another area that needs to be explored for
wild bee distribution modelling. Specifically, that all bee species visit flowering
plants as a food resource. High-resolution information of wildflower occurrences
exists for many locations. A simple first examination of the importance of wild
flowers for wild bees would involve SDMs using plant distributions at the family
or genera level to predict wild bees patterns, as has been shown for specialist wild
bees in Brazil (Giannini et al. 2013). A more complex analysis would build upon
the results of chapter 4. It would be possible to use the HMSC framework to ex-
amine the role of co-occurrence and predict not only wild bee assemblages, but
also whole communities of plants and pollinators. This could even be extended to
include below ground co-occurrence with arbuscular mycorrhizal fungi species;
which have been shown to minimize disruptions in plan-pollinator communi-
ties (Bennett & Cahill Jr 2018). Modelling whole communities increases the link
to ecosystem functioning and potentially estimating services in unknown areas.
The next step would be to model the distributions of co-occurring species con-
currently, and project these models on to future conditions to improve accuracy
and usefulness of biodiversity scenarios.

The results from chapter 4 also demonstrate the importance of accounting
for wild bee interactions when trying to interpret community assembly patterns.
Ourresults imply that there is still a large amount of work necessary to determine
what is driving these positive interactions. Are the positive interactions driven by
a shared resource at coarser spatial resolutions? Are there competitive interac-
tions at finer scales? Therefore, research into wild bees needs to take interactions
between wild bee species into account. A first step would be to see if we are ca-
pable of modelling the interactions between hosts and parasites accurately. This

has been shown somewhat for bumblebees but remains a significant gap for other
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wild bees (Giannini et al. 2013; Suhonen et al. 2015, 2016). Host parasite rela-
tionships often demonstrate significant chemical similarities (Michener 2000),
and therefore are likely to be a more essential factor for the distribution of the
two species than shared environmental conditions. The knowledge about wild
bees and their parasites is often imprecise and parasites may have multiple hosts
and vice versa. Therefore, a first step would be to focus on highly specialized host
parasite relationships, testing if the latent effects in the HMSC framework cap-
ture these relationships and then modelling the species in conjunction. Finally, a
number of papers have observed that biotic interactions, and in particular facili-
tation, between species is likely to be stronger in severe environments (Bertness
& Callaway 1994; Callaway et al. 2002; Michalet 2005; He et al. 2013; Cavieres
et al. 2016; D’Amen et al. 2017), therefore we propose to repeat the analysis in
chapter 4 for species communities (including flowering plants) across a more
extreme abiotic gradient for example a habitat similar to that explored in chap-
ter 6. The majority of the studies that show these patterns are focused on plants
and evidence from pollinator assemblages ora plant-pollinator community would

represent novel research.

In this thesis we focus on the interaction between LULC and climate change
as drivers of wild bee decline. We know that there are a number of other drivers,
including pesticide use, pathogens and invasive species (Potts et al. 2010; Van-
bergen & The Insect Pollinators Initiative 2013). Future research should address
the multiple effects of all drivers in combination including their impacts on wild
bee declines but also there interactions and additive effects (Potts et al. 2010).
These goals are limited by the quality of the data, and whilst there is widespread
collection data as well as LULC and climate maps, we do not have access to long-
term data regarding genetic diversity of bees, pesticide use or disease preva-
lence and the data available is often geographically restricted (Maebe et al. 2016;
Schoonvaere et al. 2018). Detailed data mining and analysis is required to find
sufficient data to look at the interaction between multiple drivers at sufficiently

large spatial and temporal scales.

Finally, a fundamental research step in the future involves collecting more
data on wild bee occurrence, particularly from under-sampled areas. One way to

improve occurrence data is by using high quality citizen science data. The work
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presented in this thesis depends on large quantities of high quality occurrence
data and utilized databases with a number of citizen science records. The cryp-
tic morphology of many wild bee species means that citizen science effort will
never be 100% accurate (Williams 2007; Carolan et al. 2012). However, along-
side high quality photos and experts to verify collections there is the potential to
produce far more records than are currently available. Citizen scientists are also
a vital resource for digitizing historical collections (Beaman & Cellinese 2012).
Historic collections are necessary for examining diversity and distribution trends
over time, including pollinators (Bartomeus et al. 2018). Future studies search
the literature for historical wild bee collections from areas that have not been
sampled in recent times, such as the study conducted by MacLeod presented
in chapter 6 (MacLeod 1891). There are many historical records in museums or
even recorded in old publications that are yet to be digitized (Scoble 2010). Com-
bining these records with modern wild bee monitoring schemes could provide
datasets they will be incredibly useful in answering question regarding changes
to the diversity and distribution of wild bees throughout history.

7.5 Final Conclusion

The overall objective of this thesis was to examine how land use/land cover (LULC)
and climate conditions affect the diversity and distribution patterns of wild bee
species at different spatial and temporal scales. In this thesis we explored the
impact of LULC and climate alongside other factors using historical records and
statistical techniques to show how present day distributions of wild bees in the
Netherlands can be modelled and how bumblebees may show changes in diver-
sity and distribution due to climate and LULC changes. Our results indicate that
species distribution models (SDMs) vary in their accuracy depending on the wild
bee species and locations being predicted. However, wild bees do not occur in
isolation from each other and we observed that combining wild bee species to-
gether in a joint SDM (JSDM) approach shows significant positive patterns of
co-occurrence that explain additional variation of wild bee distributions to that
explained by environmental conditions alone, and in turn that there are phy-
logenetic groupings that influence the distribution of wild bees. This indicates
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a complex system, which rejects the idea that wild bees can be conserved as a
single homogeneous group. The influence of LULC on present day wild bee dis-
tributions in the Netherlands, imply that LULC covariates are of importance in
explaining changes in diversity and distribution of wild bees over time as well. We
tested this for the future at broad temporal and geographic scales showing that
dynamic LULC covariates significantly affect the projected distribution patterns
of European bumblebees under different scenarios modelled until 2100, often
resulting in even more restricted distributions. At a finer geographical scale but
also over a long time period (1889 -2005-06) we see that high elevation popula-
tions of bumblebees and their host plants exhibit an overall shift uphill that is as-
sociated with measured climate changes and directional LULC changes, but that
some species have shifted dramatically while others did not shift at all. Through-
out all four studies we see that specialized species often respond differently than
more generalist wild bee species, frequently showing clearer statistical trends.
Furthermore, there are species-specific differences that can be difficult to cap-
ture using traits or phylogenetic relatedness.

Considering these studies collectively we are able to show the importance
of historical collections for measuring trends in biodiversity, as well as providing
advice for conserving wild bees. In conclusion this thesis has explored a set of dis-
tinct questions united by the common theme of modelling wild bees and their
interactions with the environment through space and time. These results are not
exhaustive but provide evidence to fill gaps in the knowledge of wild bee distribu-
tions. The results also provide clear opportunities for future research including
more detailed information on wild bee dispersal, preferences, and interactions
and to examine the drivers of decline together and not in isolation. Wild bees are
declining and face a number of threats, we hope that the results presented here
can in a small way influence the conservation of wild bee species and ensure the
persistence of high diversity wild bee communities which have an intrinsic worth

as well as provide important benefits to society.
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A — Appendix

A.1 Nederland Zoemt

Nederland Zoemt is a project from LandschappenNL, Naturalis Biodiversity Center, IVN
and Natuur & Milieu with the aim of “structurally increasing the food and nesting resources
for wild bees in the Netherlands”. A specific objective of the project was to create region-
specific advise for monitoring and protecting wild bees. These advises should be usable
across the country by local governments, educational facilities, contractors, green work-
ers and gardeners. Furthermore, these plans should be used in conjuction with citizen
science monitoring programs and an application outlining the suitable bee plants present
in the Netherlands. The best way to implement these advises was to create them at the
municipality level.

During my PhD we produced a wild bee advise document for each of the 388 mu-
nicipalities in the Netherlands. The wild bee occurrence data from Chapters 3 and 4 were
used to create a list of all species which have been found in a municipality since 2000.
This list was then extended using species distribution models (SDMs) to show which ex-
tra’ species have suitable habitat within the municipality. Each SDM is projected onto
current conditions and each projection produces a map of suitable habitat at the scale of
the Netherlands. These habitat suitability maps are then simplified into presence absence
maps by creating a threshold which converts areas of high suitability to a one and areas
of low suitability to a zero. We then published a map showing areas of high and low wild
bee habitat suitability for the whole municipality. Furthermore, for each municipality we
made a list of ’special’ species (rare species with a clear ecological role) which have been
found previously, and give clear guidelines for their management. Finally, the document

contains general management advise for wild bees applicable across the country.

An example document for the municipality of Leiden is presented below. All munci-

pality documents are avaiable to download at www.nederlandzoemt .nl.


www.nederlandzoemt.nl

Nederland
MT
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Advies voor Leiden

Suggesties voor het verbeteren van de leefomgeving voor wilde bijen in jouw gemeente

Dit advies is specifiek voor jouw gemeente opgesteld binnen het project Nederland Zoemt. Hierin geven we een
beeld van de bijen die in jouw gemeente gevonden zijn of zouden kunnen voorkomen en van de bijenhotspots
in de gemeente. Daarnaast geven we suggesties voor het verbeteren van de leefomgeving voor wilde bijen.
Om dit advies op te stellen is gebruik gemaakt van waarnemingen die tussen 2000 en 2017 zijn gedaan door
heel Nederland. Dit advies is een mooi begin om bijvriendelijke gemeente te worden. Als je nog aanvullend
advies of monitoring uit wil voeren, vind je hier de partijen om bij aan te kloppen.

De wilde bijen in Leiden

Kennis over bijen in Nederland komt van verschillende databronnen, waarbij niet elke gemeente even goed
onderzocht is. In jouw gemeente zijn 613 waarnemingen gedaan' van in totaal 68 verschillende soorten
(achteraan dit document vind je daar een lijst van). Bij goed beheer voorspellen wij dat de leefomgeving
potentieel voor 87 soorten geschikt is. Hieronder staat een overzicht van wilde bijen groepen die gevonden
zijn, en het totaal aantal wilde bijen groepen die bij goed beheer voor zouden kunnen komen (potentieel).

Soortgroep Gevonden  Potentieel

Behangersbijen
Bloedbijen
Bonte viltbijen
Dikpootbijen
Ertsbijen
Groefbijen
Hommels
Houtbijen
Kegelbijen
Klokjesbijen
Langhoornbijen
Maskerbijen
Metselbijen
Mortelbijen
Pluimvoetbij
Roetbijen
Rouwbijen
Sachembijen
Slobkousbijen
Tronkenbijen
Tubebijen
Viltbijen
‘Wespbijen

Wol en Harsbijen
Zandbijen
Zijdebijen
Totaal
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LEr zijn niet in elke gemeente evenveel waarnemingen gedaan. Als hier weinig waarnemingen staan, wil dit zeker niet zeggen
dat er in jouw gemeente weinig soorten voorkomen, het kan ook zijn dat er weinig waarnemers actief zijn.



Bijenhotspots in Leiden

Onderstaande kaart voorspelt voor jouw gemeente hoe geschikt de omgeving is voor wilde bijen. De
voorspelling is gedaan op basis van het landschapstype en klimaatdata. De groene stukken hebben de hoogste
potentie voor bijen, terwijl de witte stukken volgens onze modellen minder geschikt zijn. Het instandhouden
en uitbreiden van de groene stukken is van groot belang voor de wilde bijen. Daarnaast liggen er op de witte
plekken dus kansen voor verbetering, bijvoorbeeld door bijvriendelijke planten te plaatsen, het beheer aan te
passen en de agrarische sector te betrekken.

Mogelijk onderneemt jouw gemeente al veel actie in bepaalde gebieden, maar zie je dit niet terug op de kaart.
Dat komt omdat wij in onze landschapsanalyses deze lokale initiatieven niet mee hebben kunnen nemen.

minst geschikt voor bijen meest geschikt voor bijen



Speciale soorten in Leiden

Voor de wilde bijensoorten hieronder heeft jouw gemeente een speciale verantwoordelijkheid, omdat deze
relatief vaak gevonden zijn en een relatief groot deel van het geschikte gebied voor deze soort in deze gemeente
valt. Door rekening te houden met de wensen van deze soorten kan de gemeente sterk bijdragen aan het
behoud van deze soorten voor Nederland.

1. Lichte wilgenzandbij (Andrena mitis): Nestelt op open, zandige plekken. Is afhankelijk van wilgen als
voedselbron met name Grauwe wilg en Schietwilg, De soort kan gevonden worden tussen mrt-jun.

[N

. Fluitenkruidbij (Andrena prozima): Afhankelijk van dolle kervel, fluitenkruid en zevenblad. Te vinden
op heide en ruderale, voedselrijke graslanden. Ze nestelen op begroeide plekken. De soort kan gevonden
worden tussen apr-aug.

[

. Roodbuikje (Andrena ventralis): Leeft van wilgen en maakt haar nest in zanderige, lichtbegroeide grond.
Nest en wilgen moeten in een straal van maximaal 210m van elkaar zijn. De soort kan gevonden worden
tussen mrt-mei.

4. Grote klokjesbij (Chelostoma rapunculi): Nestelt in bestaande gaatjes, bijvoorbeeld gemaakt door
keverlarven. Is volledig afhankelijk van bloemen uit de klokjes familie. De soort kan gevonden worden
tussen mei-aug.

ot

. Wormkruidbij (Colletes daviesanus): Is afhankelijk van bloemen uit de composietenfamilie, met name
boerenwormkruid en jacobskruiskruid. Ze kunnen zelf nestelplaatsen maken in de grond, maar kunnen
ook in bijenhotels met gaatjes van 6mm nestelen. De soort kan gevonden worden tussen jun-sep.

o

. Resedamaskerbij (Hylaeus signatus): Is afhankelijk van reseda en nestelt in holle stengels. De soort kan
gevonden worden tussen mei-sep.

-

. Klokjesdikpoot (Melitta haemorrhoidalis): Is athankelijk van de klokjesfamilie en nestelt in de grond.
De soort kan gevonden worden tussen jun-sep.

Aan de slag met bijvriendelijk beheer

Wil je je gemeente bijvriendelijker maken? Dat kan door te zorgen dat er altijd voedsel en nestgelegenheid
voor wilde bijen aanwezig is, het liefst op korte afstand van elkaar (max. 200m). We beschrijven hieronder
beknopt hoe de gemeente daarvoor kan zorgen.

Voedsel

Bijen zie je vaak druk van bloem naar bloem vliegen. Dat doen ze voor de nectar die dient als brandstof
en voor het stuifmeel (pollen) dat essentieel is als voedsel voor de larven. De mate waarin bloemen waarde
hebben voor bijen verschilt per soort. Sommige bijen zijn gespecialiseerd op één of enkele planten terwijl
andere soorten minder kritisch zijn. Over het algemeen geldt: hoe groter de diversiteit hoe meer soorten
bijen. Bloeiende bomen, heesters en struiken zijn goede opties om aan te planten in perken, denk daarbij aan
bramen, mei- of sleedoorn, inheemse wilgen en lindes, maar bijvoorbeeld ook Spaanse aak. Andere vaste
planten zijn rozen, klokjes, salie, lupine, et cetera. Vermijd bij gekweekte planten de cultivars met gevulde
bloemen (zoals bij rozen vaak het geval is), die leveren nauwelijks stuifmeel en nectar. Bij het zaaien van
kruidachtige planten heeft het gebruik van lokale soorten de voorkeur. Dat kan bijvoorbeeld door maaisel
afkomstig van een kruidenrijke plek in de buurt op een nieuwe plek neer te leggen. Sommige planten zoals
wilde peen, pastinaak, rode klaver, duizendblad, paardenbloem en akkerdistel kunnen in heel Nederland
gebruikt worden. In het voorjaar kunnen bloeiende bolgewassen van belang zijn voor hommels. Kijk hier voor
nog meer voorbeelden van geschikte planten voor wilde bijen. Bijen kunnen niet alleen geholpen worden met
het aanplanten van bijvriendelijke planten maar ook door het niet weghalen van spontaan opgekomen planten.
Zo kunnen hondsdraf en dovenetel die spontaan onder een heg zijn opgekomen belangrijk zijn voor hommels.



Nestgelegenheid

De eisen die worden gesteld aan nestgelegenheid verschillen per soort (kijk hier voor meer informatie). Een
deel van de soorten nestelt in de grond en graaft daar gangetjes. Andere soorten nestelen bovengronds in
door kevers gemaakte gaten in hout of holle stengels van bijvoorbeeld braam, riet of afgestorven kruiden. Op
veel plekken is een groot deel van de grond bedekt met tegels, grind of houtsnippers en worden afgestorven
stengels in het najaar verwijderd. Het achterwege laten van bodembedekking en het laten staan van kruiden
in de winter zijn eenvoudige manieren om nestgelegenheid voor bijen te vergroten. Veel soorten maken hun
nest bij voorkeur op plaatsen waar niet al te dichte vegetatie wordt afgewisseld met stukjes onbedekte bodem.
Over het algemeen geldt: hoe meer variatie, hoe meer bijen. Het is ook mogelijk om actief nestgelegenheid
aan te bieden in de vorm van bijenhotels. Kijk hier voor instructies voor het maken van een bijenhotel. Dat
is goed voor de bijen maar ook leuk voor iedereen die bijen graag een keer van dichtbij aan het werk wil
zien. Een groot, professioneel bijenhotel plaatsen kan natuurlijk ook. Bij www.bijenhotelkopen.nl hebben ze
verschillende typen die veel nestgelegenheid bieden. Met een informatiebord kun je bewoners bewust maken
van het belang van bijen en wat er in de stad voor bijen gedaan kan worden. Een andere mogelijkheid om
actief nestgelegenheid aan te bieden is het maken van een bijenheuvel, een grotendeels onbegroeide heuvel
van klei of zand op een zonnige plek. Door de bult weer vrij te maken en de zijkanten af te steken als deze
eenmaal begroeid is geraakt, kan de heuvel elk jaar weer ruimte bieden aan bijen. Hommels maken wat
grotere nesten, bijvoorbeeld in oude muizenholen. Rommelige en ruige vegetatie langs randen van heggen
biedt goede nestplek voor hommels.

Beheer

Na het aanplanten of zaaien is goed beheer van groot belang. Bijen hebben doorlopend bloeiende planten
nodig en maaien moet daarom gefaseerd gebeuren. Probeer daarbij minimaal 15% van het oppervlak te laten
staan. Maai het liefst na de bloei en maximaal 2 keer per jaar. Verder is het belangrijk dat maaisel afgevoerd
wordt om te zorgen dat de grond schraler wordt en grassen niet te dominant worden. Probeer klepelen te
vermijden, dit is niet goed voor alle dieren en planten. Ook is het van belang niet te zware machines te
gebruiken om zo de bodemstructuur te behouden en de nesten in de bodem niet teveel te beschadigen. Kijk
hier voor nog meer tips voor goed maaibeheer.

Lijst met gevonden soorten in Leiden

‘Witbaardzandbij Andrena barbilabris Tronkenbij Heriades truncorum
Tweekleurige zandbij Andrena bicolor Gewone maskerbij Hylaeus communis
Goudstaartzandbij Andrena carantonica Tuinmaskerbij Hylaeus hyalinatus
Goudpootzandbij Andrena chrysosceles Resedamaskerbij Hylaeus signatus
‘Wimperflankzandbij Andrena dorsata Gewone geurgroefbij Lasioglossum calceatum
Grasbij Andrena flavipes Breedkaakgroefbij Lasioglossum laticeps
Vosje Andrena fulva Gewone smaragdgroefbij  Lasioglossum leucopus
Roodgatje Andrena haemorrhoa Matte bandgroefbij Lasioglossum leucozonium

Gewone dwergzandbij
Lichte wilgenzandbij
Viltvlekzandbij
Vroege zandbij
Fluitenkruidbij
Witkopdwergzandbij
Grijze rimpelrug
Doornkaakzandbij
Roodbuikje

Grote wolbij
Gewone sachembij

Andrena minutula
Andrena mitis
Andrena nitida
Andrena praecox
Andrena prozima
Andrena subopaca
Andrena tibialis
Andrena trimmerana
Andrena ventralis
Anthidium manicatum
Anthophora plumipes

Ingesnoerde groefbij
Langkopsmaragdgroefbij
Gewone franjegroefbij
Biggenkruidgroefbij
Gewone slobkousbij
Tuinbladsnijder
Gewone behangersbij
Grote bladsnijder
Bruine rouwbij
Klokjesdikpoot
Roodzwarte dubbeltand

Lasioglossum minutissimum

Lasioglossum morio

Lasioglossum sexstrigatum

Lasioglossum villosulum
Macropis europaea
Megachile centuncularis
Megachile versicolor
Megachile willughbiella
Melecta albifrons
Melitta haemorrhoidalis
Nomada fabriciana



Tuinhommel
Boomhommel
Steenhommel
Veldhommel
Akkerhommel
‘Weidehommel
Vierkleurige koekoekshommel
Grote koekoekshommel
Lathyrusbij

Grote klokjesbij
‘Wormkruidbij
Duinzijdebij
Pluimvoetbij
Roodpotige groefbij
Parkbronsgroefbij

Bombus hortorum
Bombus hypnorum
Bombus lapidarius
Bombus lucorum
Bombus pascuorum
Bombus pratorum
Bombus sylvestris
Bombus vestalis
Chalicodoma ericetorum
Chelostoma rapunculi
Colletes daviesanus
Colletes fodiens
Dasypoda hirtipes
Halictus rubicundus
Halictus tumulorum

Gewone wespbij
Gewone kleine wespbij
Kortsprietwespbij
Roodsprietwespbij
Smalbandwespbij
Donkere wespbij
Signaalwespbij
Geelzwarte wespbij
Rosse metselbij
Gedoornde slakkenhuisbij
Pantserbloedbij
Gewone dwergbloedbij
Dikkopbloedbij
Geelgerande tubebij
Blauw zwarte houtbij

Nomada flava
Nomada flavoguttata
Nomada fucata
Nomada fulvicornis
Nomada goodeniana
Nomada marshamella
Nomada signata
Nomada succincta
Osmia bicornis
Osmia spinulosa
Sphecodes gibbus
Sphecodes miniatus
Sphecodes monilicornis
Stelis punctulatissima
Xylocopa violacea

ot
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