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“the more clearly we can focus our attention on the wonders and realities of the

universe about us, the less taste we shall have for destruction”

– Rachel Carson
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Summary

Wild bee diversity across space and time: the role of land use/land cover

and climate

by Leon MĆėĘčĆđđ

Rapid anthropogenic environmental changes have a widespread detrimental ef-

fect on global patterns of biodiversity. Climate change and land use/land cover

(LULC) changehave long been recognizedas twoof thedriversof biodiversity loss

and shifts in species’ distributions. Climate and LULC changes can alter species’

habitats through changes in temperature, rainfall and extremeweather patterns,

and land conversions from areas rich in resources to areas with insufficient re-

sources. Species are then forced to move into areas with tolerable conditions

and adequate resources or face local extinction. To be able to interpret historical

dynamics, recognize present day patterns, and project changes under potential

futures, it is essential to understand in detail climate and LULC requirements of

different species at a variety of different extents and locations.

Wild bees representan ideal studyorganism toexplore these themes. Wild

bee species are needed to pollinate the majority of wild flowers and can greatly

influence crop pollination, supporting food provisioning for humans. Wild bees

have also experienced significant changes in many areas over the last ͱͰͰ years,

showing large shifts in their distribution patterns, declines in diversity and abun-

dance, and many local extinctions. In order to protect wild bees and mitigate

the influence of rapid global changes, it is necessary to quantify the influence of

LULC and climate effects on wild bees. Consequently, the general objective of

this thesis is to examine how LULC and climate conditions impact the diversity

and distribution patterns of wild bee species at different spatial and temporal

scales.

To achieve the general objective we focused on three aims: to (ͱ) test the

efficacy of using statistical modelling tools to understand wild bee distributions
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in the present and future, and suggest how to improve these methods; (Ͳ) pro-

videnovel understandingof howwild beecommunityassemblagesarestructured

at large geographical scales and what drives this structure; and (ͳ) quantify and

compare howpast, present, and future changes towild bee and specifically, bum-

blebee distributions are expected to be influenced by LULC and climate changes.

In order to accomplish these aims a variety of statistical techniques were

utilized throughout the thesis. In particular, a common theme of the thesis is

the use of species distribution models (SDM) to model the relationship between

wild bee occurrence records and the environment, and to use this relationship

to project distribution patterns. Furthermore, species interactions, phylogenetic

relationships and functional species traits were included in the analyses to pro-

vide more ecological detail in explaining the observed patterns of diversity and

distribution. Firstly, we introduce the background and knowledge gaps in chap-

ter ͱ, general introduction and then present the material and methods used in

the thesis in chapter Ͳ. The three aims are explored across four chapters (ͳ-Ͷ)

with narrower objectives each representing a separate scientific study. Finally,

we explore the relevance and implications of the thesis in chapter ͷ, general dis-

cussion.

The objective of Chapter ͳ was to quantify the performance of species dis-

tribution models when modelling wild bee distributions. Specifically, we exam-

ined how habitat suitability predictions for Dutch wild bees are contingent on

the LULC context where a species is predicted to occur and the functional trait

groupings of all species. Independent collections made after the construction of

SDMswere used to test the models. In total ͵Ͳ wild bees species, of the total ͱ͹ͳ

modelled species, were collected in independent collections from agricultural

habitats, specifically, arable fields and orchards. The ͵Ͳ wild bee species were

grouped into ʹ separate functional trait groups representing small intermediate

specialist, small generalist, highly specialised, and large generalist species. Habi-

tat suitability projections were significantly better for highly specialised species

and species collected in orchard habitats. The results suggest that SDMs forwild

bees can be more or less useful depending on the species modelled. Specifically,

projections made for specialist species and within stable habitats are likely to be

the most accurate.
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The objective of chapter ʹ was to build on the results and implications of

chapter ͳ and to quantify and visualize the influence of habitat filtering and co-

occurrence when modelling the assembly patterns of wild bee species. Again,

this study was focused on the Netherlands. Firstly, the spatial co-occurrence of

all Ͳ͹ͷwild bee specieswas analysed. Wild bee species generally showed a strong

positive correlation in co-occurrence. Suggesting, thatmanywild bee species are

found together significantlymore than expected by chance alone. Following this,

a joint SDM (JSDM) approach was used to classify the significance of habitat fil-

tering, biotic interactions, functional traits and phylogenetic relatedness on the

geographic patterns of wild bee assemblages. The results showed that habitat

filtering explained themajority of the geographic distribution of wild bee assem-

blages. The relationship betweenwild bee species and the environmental condi-

tionswasonlyweaklyexplained by traits but showed a strong phylogenetic signal,

suggesting closely related species have similar habitat filtering requirements. In-

cluding species co-occurrencematrices into the JSDMapproach improvedmodel

performance signifying that there are unexplained factors that certain species

pairs require not captured in the modelling process. Overall, the study provides

a clear representation of the geographic distribution of wild bee assemblages, the

factors influencing this distribution and provides clear implications for wild bee

conservation. The results indicate potential conservation units in the form of

spatially explicit community and habitat profiles as well as outlining potential

indicator species, which are representative of diverse and distinct assemblages.

The objective of chapter ͵ was to look at aspects of habitat filtering at

broader temporal and spatial scales and precisely to quantify the influence of

dynamic land use/land cover projections on the projected distributional change

of bumblebees under climate change. Using three model types, (ͱ) only climate

change covariates, (Ͳ) climate change and static LULC covariates and (ͳ) climate

change and dynamic LULC covariates the distribution of ʹ͸ bumblebees were

modelled at the European and BENELUX scale. There were clear differences in

the projections of range changes produced by the different model types. The im-

plication of these results for modelling wild bee species under changing climate
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are that when available LULC change projections should be utilized in prospec-

tive biodiversity scenarios. Furthermore, the results indicate the need for im-

proved anddetailed LULCchangeprojections that take intoaccount smaller scale

natural habitat types and land management.

Chapter Ͷ presents a historical look at the impacts of environmental chan-

ges in the Pyrenees with the objective to measure a specific case of how the com-

position and distribution of a wild pollinator group has changed over time due

to the influence of LULC and climate changes. Using two collections datasets,

one from ͱ͸͸͹ and a follow-up conducted in ͲͰͰ͵-ͰͶ, the composition and dis-

tribution of the bumblebee, day-flying Lepidoptera and their visited plants were

compared. Overall, all groups show an upward shift in mean elevation, but this

shift is not evenly spread across all species. For the bumblebees, specialist species

are found higherup themountainandalsoexperiencegreatershifts in theireleva-

tion. Furthermore, communitycompositiondoes notchangedrastically. There is

also an indication that pollinators and their visited plants are shifting in unison.

The results lend support to predicted climate change effects on biodiversity, and

indicate certain specialized species that could be in dangerof significant declines

if conservation efforts are not implemented.

In conclusion, this thesis highlights the significance of historical wild bee

occurrence data and the utility of SDMs for investigating key environmental re-

quirements of wild bee species and assessing long-term trends in distribution.

We show that wild bees distribution patterns are highly dependent on LULC

conditions in the present and future. The work also emphasizes the strong in-

teraction between climate and LULC and how necessary it is to incorporate both

in future biodiversity scenarios. It also shows for the first time influence of co-

occurrencepatternson the formationof nationalwild beeassemblages. Which in

turn increased our knowledge the processes behind patterns of distribution and

multiple measures of diversity, including community, functional and phyloge-

netic. Finally, this thesis provides significant advice to conserve wild bee species

individually and collectively.

Theresultsclearly indicateareasof interest for futurestudies,whichshould

focus on the complexities and the interactions of the relationships shown here.
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The drivers of wild bee decline strongly interact and therefore should be exam-

ined simultaneously. In particular, greater focus is needed on the ecological

drivers of wild bee distribution patterns, including dispersal capabilities, biotic

interactionswithfloweringplants, otherbeesandpathogens, aswell as howphys-

iological tolerance will influence the impacts of global change. Additionally, fu-

ture LULC maps and projections which incorporate high-resolution depictions

of natural areas and differences in land management will improve our ability to

analyse and understand the environmental requirements of wild bees. As wild

bee species are expected to continue to decline globally this thesis increases the

knowledge and tools available to ensure that highdiversitywild bee communities

continue to persist.
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1 General Introduction

L. Marshall



Ͳ Chapter ͵. General Introduction

1.1 Overview
Biodiversity is declining globally and some scientists suggest that we are in the

midst of a sixth mass extinction event (Barnosky et al. ͲͰͱͱ; Ceballos et al. ͲͰͱ͵).

The central drivers of this extinction are anthropogenic in nature, including cli-

mate change, due to increases in atmospheric COͲ and other gases, and land

use/land cover (LULC) change, due to urbanization and agricultural intensifica-

tion among other pressures, (Millennium Ecosystem Assessment ͲͰͰ͵; Bellard

et al. ͲͰͱͲ; Pimm et al. ͲͰͱʹ; Ostberg et al. ͲͰͱ͵). Bees represent an important

group of global pollinators, the majority of which are free living and not man-

aged by humans, i.e. wild. Inwell studied regionswith long-term species records

wild bees showadeclining trend, particularly themore conspicuous bumblebees

(Williams ͱ͹͸Ͳ; Biesmeijer et al. ͲͰͰͶ; Goulson et al. ͲͰͰ͸; Potts et al. ͲͰͱͰ;

Cameron et al. ͲͰͱͱ; Bommarco et al. ͲͰͱͲ; Bartomeus et al. ͲͰͱͳ; Carvalheiro et

al. ͲͰͱͳ). Land use/land cover and climate change have been outlined as two of

the main drivers of these observed declines, by limiting access to and removing

important habitat and feeding resources required bywild bees (Potts et al. ͲͰͱͰ;

Vanbergen & The Insect Pollinators Initiative ͲͰͱͳ). Therefore, to protect wild

bees and the pollination services they provide it is of vital importance to under-

stand how LULC and climate interact to drive diversity and distribution of wild

bee species. Furthermore, the effects of LULC and climate on wild bee diversity

and distribution will vary dependent on the spatial and temporal scale at which

it is analysed (Carsten ͲͰͰ͵).

Therefore, thegeneralobjectiveof this thesis is toexaminehowLULC

and climate conditions impact the diversity and distribution patterns of

wild bee species atdifferent spatial and temporal scales. For themajority of

wild bee species there is an absenceof information regarding theprocesseswhich

influence their relationship with the environment. Therefore, due to the com-

plexity of these patternswe rely on statistical techniques to explore relationships

and hypothesize processes. Using long-termoccurrence records and high resolu-

tion environmental information we create species distribution models (SDMs),

which allow us to predict how environmental factors influence the diversity and

distribution of wild bees and how thesemay change in the future. Consequently,
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the general objective of the thesis can be split into two separate focus areas; (ͱ)

methodological, how SDMs can be used and improved tomodel the relationship

between land use, climate, wild bee species occurrence and community assem-

blage patterns and (Ͳ) applied, how does the relationship between land use and

climate influence the distribution patterns of wild bee species and assemblages

and what are the implications regarding their decline and conservation.

1.2 Biodiversity and Biodiversity Loss

1.2.1 Measuring Biodiversity

Biological diversity (biodiversity) is a broad concept which includes the entire

variability of life on earth and its interactions (Wilson ͱ͹͸͸). The concept of

biodiversity is often strongly related to ecosystems and ecosystem functioning,

specifically that higher biodiversitymaintainsmorecomplex, higher-quality eco-

systems, which consequently provides more services and can better withstand

disturbances (MacArthur ͱ͹͵͵; Peterson et al. ͱ͹͹͸). Biodiversitymeasurements

act as a vital criterion in ecology and conservation and can be measured in a va-

riety of ways (Williams et al. ͱ͹͹ͳ). Biodiversity is often portrayed simply as

species richness, the total number of separate species found in a chosen loca-

tion, however this does not represent all diversity and therefore importance or

value of a particular location. Other measurements of biodiversity can be clas-

sified at different levels of organization: (i) ecological diversity e.g. landscapes,

ecosystems; (ii) genetic diversity e.g. populations, genes; and (iii) organismal

diversity e.g. number of species or families (Heywood & Watson ͱ͹͹͵; Purvis

& Hector ͲͰͰͰ). In this thesis we do not limit our definition of biodiversity to

species richness. Specifically, in the different chapter’s we measure biodiversity

using a variety metrics, including beta-diversity ͱ, functional and phylogenetic

diversity, and diversity of interactions. These metrics are used at different scales,

examining diversity at local fine-grained scales but also at forwhole assemblages

and communities and at national scales.

ͱBeta-diversity is the ratio between regional and local species diversity (Whittaker ͱ͹ͶͰ).
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Not only is it important what measure of biodiversity we use but the scale

at which it is measured is also essential. For a long time the distribution patterns

of biodiversity were thought to be consistent across spatial scale gradients, how-

ever changes in both spatial extent (how large a geographic area is) and grain size

(unit at which biodiversity is measured) can result in varying conclusions of bio-

diversity trends (Carsten ͲͰͰ͵). Conclusions as to whether biodiversity trends

are positive or negative can change depending on the spatial scale at which the

analysisoccurs (Purvis&HectorͲͰͰͰ). Theability todetectbiodiversitypatterns

depends on the scale at which measurements are made and to define this scale

it is necessary to recognize or hypothesize the processes driving these patterns

and the scale at which these processes operate (Levin ͱ͹͹Ͳ). When examining

biodiversity patterns two characteristics of scale are of significant importance,

focus and extent. Focus refers to the spatial resolution at which measurements

are made, for example measuring species occurrence could be within 10 × 10 m

areas; extent refers to the total geographical space in which measurements are

made, for example Europe or the Netherlands (Willig et al. ͲͰͰͳ). At different

scales different processes are driving the observed patterns, for example at the

local scale observed species richness in a community may be driven by resource

availability, habitat requirements and biotic interactions. At the regional scale

the total diversity, from which the local community is derived, may be driven by

geology, the size of the area or climatic conditions. Finally at the broad-scale the

regional species diversity is likely affected by evolutionary processes including

speciation and extinction (Huston ͱ͹͹͹; Gaston ͲͰͰͰ). It is therefore funda-

mental that multiple scales are compared and contrasted when measuring bio-

diversity patterns using statistical techniques (Gaston ͲͰͰͰ).

The same holds true for the importance of the temporal scale at which

biodiversity is measured. Changes in global biodiversity can be measured on

many time-scales from geological time periods where evolutionary patterns of

biodiversity and extinctions can be measured (Purvis & Hector ͲͰͰͰ), to more

recent term time periods that show the influence of human society on biodi-

versity through climate (Parmesan & Yohe ͲͰͰͳ; Root et al. ͲͰͰͳ) and LULC

change (Foley et al. ͲͰͰ͵), or short-term temporal scales where biodiversity is

measured before and after specific disturbances (Hooper et al. ͲͰͰ͵). Given the
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significance of scale, we specifically target a variety of spatial and tempo-

ral scales, and resolutions to measure diversity and distribution patterns

throughout this thesis.

1.2.2 Biodiversity Loss

Globally, biodiversity is being lost at an alarming rate and has been described as

a sixth mass extinction event, with themain cause being anthropogenic, due in a

largepart to thepressure humans impart on the landscapeand climate (Barnosky

et al. ͲͰͱͱ; Ceballos et al. ͲͰͱ͵). Pimm and Raven (ͲͰͰͰ) conclude that even a

best case scenario of protecting global biodiversity hotspots from these anthro-

pogenic pressures would still result in the loss of ͱ͸% of species. The potential

impacts of these biodiversity losses could be far reaching and necessitate actions

and initiatives to protect, restore and manage biodiversity. The importance of

biodiversity can be considered distinct and separate from humans, often referred

toas intrinsicvalue; fromaconservationperspective this implies that biodiversity

should be protected because it has a right to exist (Pearson ͲͰͱͶ). A more prac-

tical view of nature and biodiversity expresses its instrumental value and what

use biodiversity has to humans. Consequently, a common inquiry is how much

species loss canwe afford before the ecosystem functioning is negatively affected

and in turn humanwell-being (Cardinale et al. ͲͰͱͲ; Hooper et al. ͲͰͱͲ). Specif-

ically, biodiversity loss may impact the stability of food provisioning, regulation

and ability to recover from disturbances and natural disasters, and directly im-

pact human health (Díaz et al. ͲͰͰͶ; Worm et al. ͲͰͰͶ; Cardinale et al. ͲͰͱͲ).

For example, the loss of crop pollination by wild bees directly impacts food pro-

visioning services (Klein et al. ͲͰͰͷ).

1.2.3 Drivers of Biodiversity Loss

Climate Change

Biodiversity loss is occurring due to a number of factors, many of a directly an-

thropogenic nature. Two of themain drivers, and focus of this thesis, are climate

and LULCchanges (MillenniumEcosystemAssessment ͲͰͰ͵; Bellard et al. ͲͰͱͲ;

Pimm et al. ͲͰͱʹ; Ostberg et al. ͲͰͱ͵). Observed changes to the climate over the
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last century are unmistakable, and have manifested as warmer atmosphere and

ocean temperatures, a loss of snow and ice, and an increase in sea level (IPCC

ͲͰͱʹ). These changes have been driven by anthropogenic greenhouse gas(GHG)

emissions which have led to levels of these gases in the atmosphere far higher

than ever experienced in modern history and far beyond fluctuations expected

by natural variability (IPCC ͲͰͱʹ). The implications of warming temperatures on

biodiversity include changes in species geographic ranges, alterations to migra-

tion patterns and timing, and shifts in community structure and interactions. In-

crease in temperatures, particular at higher latitudes and elevations are expected

to push species polewards and to higher elevations as well as causing shifts to

theirphenologyͲ (Parmesan&Yohe ͲͰͰͳ; Menzel et al. ͲͰͰͶ). Extremeweather

events such as heat waves and heavy rainfall may lead to higher rates of mortal-

ity and eventually, population extinctions, alterations to morphological and be-

havioural characteristics, and mismatches between interacting species (Parme-

san et al. ͲͰͰͰ).

The likelihood of continued GHG emissions means that existing climate

change effects are predicted to worsen in the future. Simulated global surface

temperatures suggest increases between Ͱ.ͳ-ͱ.ͷ°C under low emission scenar-

ios (Representative Concentration Pathways (RCP) Ͳ.Ͷ) ͱ.ͱ-ͳ.ͱ°C under medium

scenarios (RCP ʹ.͵, RCP Ͷ.Ͱ), and Ͳ.Ͷ-ʹ.͸°C under extreme remission scenarios

(RCP ͸.͵) by ͲͱͰͰ (Fig ͱ.ͱ; IPCC, ͲͰͱʹ). These scenarios of climate change have

been used to predict future changes to global biodiversity (Bellard et al. ͲͰͱͲ).

Pereira et al. (ͲͰͱͰ) estimate overall losses between ͱͱ% and ͵͸% for vertebrates

by ͲͱͰͰ under different scenarios of climate change. Thomas et al. (ͲͰͰʹ) es-

timate that between ͱ͸-ͳ͵% of species could be committed to extinction under

future climate change ranging from low to high emission scenarios. Examining

biodiversity loss due to climate change depends on a number of factors includ-

ing scale effects, scenarios used, species interactions and interactions with other

drivers (see Fig ͱ.Ͳ; Bellard et al. ͲͰͱͲ). It is therefore vital to try and under-

stand the biology of the species and their interactions with other species and the

environment when trying to predict diversity and distribution patterns under a

changing climate.

ͲPhenology is the study of how the environment influences the life-cycle timing of species and
populations.
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FĎČ. ͱ.ͱ: Modelled changes in global average surface temperature (a) and global
mean sea level rise (b) from ͲͰͰͶ to ͲͱͰͰ. The lowest and highest emission sce-
narios are shown. Coloured bars at the right hand size show themean and uncertainty
for all scenarios. The number above the lines refers to the number of models used to

calculate the multi-model mean. Source: figure taken from IPCC (ͲͰͱʹ).

Land Use/Land Cover Change

Land use/land cover (LULC) change due to intensification of the landscape re-

sults in the loss of habitat resources needed by many species and has been pro-

posed as the leading cause of biodiversity loss in the last century (Millennium

Ecosystem Assessment ͲͰͰ͵; Pimm et al. ͲͰͱʹ). One of the leading causes of

habitat loss is the conversion of natural areas such as semi-natural grasslands,

forest andwetlands into agricultural systems and urban areas (Foley et al. ͲͰͰ͵).

The loss of natural habitats and the degradation of remaining habitat has al-

ready led to biodiversity losses. Terrestrial vertebrate species have declined by

͵͸% between ͱ͹ͷͰ and ͲͰͱͲ, with habitat loss cited as the main cause (WWF
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FĎČ. ͱ.Ͳ: Issues and challenges formeasuring biodiversity lossesdue to climate change. Multiple interacting
issues are responsible for biodiversity loss. The effect of these issues is often over or underestimated. Therefore
there is a number of challenges to better estimate the influence of the different issues. Green factors are likely
overestimated, while red factors are likely underestimated; black factors and question marks are used when the
direction or extent of error in estimation is unknown; double arrow means a very large expected effect. Source:

figure taken from Bellard et al. (ͲͰͱͲ).

ͲͰͱͶ). Newbold et al. (ͲͰͱ͵) estimate that terrestrial biodiversity losses due to

land-use and associated changes has already decreased average per sample rich-

ness by ͱͳ.Ͷ% and in the worst affected areas this sample may have decreased by

ͷͶ%. Newbold et al. (ͲͰͱͶ) suggest from measurements of remaining biodiver-

sity in local ecosystems that up to ͵͸% of total global surface has been pushed

past the safe limit of biodiversity loss, particularly grassland habitats. Aswith cli-

mate change, LULC changes are expected to continue occurring into the future,

especially as human populations increase. Global scenarios and expert opinions

suggest that significant LULC changes in the future will have the most influence
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on biodiversity loss for all biomes (Sala et al. ͲͰͰͰ).

Compared to modelled climate change projections there are fewer projec-

tions of how LULCwill likely change in the future (Rounsevell et al. ͲͰͰͶ; Titeux

et al. ͲͰͱͶ). This does not reflect accurately the extent towhich LULC is expected

to impact biodiversity. The few studies that doutilize LULC changemodels reach

varying conclusion about the importance of LULC change for modelling future

biodiversity patterns. Sohl (ͲͰͱʹ) shows that model performance is lower and

range size is greater when LULC projections are excluded from future scenarios

of bird distributions in theUS. However, Martin et al. (ͲͰͱͳ) conclude that LULC

change projections in their current form do not improve future distribution pre-

dictions of a European butterfly species. Using only LULC covariates Ficetola et

al. (ͲͰͱͰ)modelled thedistributionof bullfrogs, suggesting that habitat suitabil-

ity would remain relatively stable. However, overall, LULC and climate change

are often examined in isolation and the interactions between the two, par-

ticularly when used to project biodiversity changes, represents a significant gap

in our knowledge of how biodiversity losses are likely to progress in the future

(de Chazal & Rounsevell ͲͰͰ͹; Titeux et al. ͲͰͱͶ). Throughout this thesis we

aim toexamine theeffectsof LULCand climateonbiodiversity simultane-

ously, in the past, present and in the future.

1.2.4 Measuring Biodiversity Loss

As stated earlier, the importance of LULC and climate as drivers of biodiversity

loss is indisputable but measuring and predicting their effects at the global scale

remains an immense task. Accordingly there are a number of tools available to

measure these different types of biodiversity at different scales. The proliferation

of online databases for occurrence records, phylogenetic data, conservation sta-

tus, geographic maps, among others, allows for the collation and dissemination

of biodiversity data on a global scale (Purvis & Hector ͲͰͰͰ). However, these

data generally only come from a few areas in the world and have multiplied in

recent years leading to both a spatial and temporal bias in our view of global bio-

diversity (Boakes et al. ͲͰͱͰ). To remedy this situation researchers need detailed

occurrence records at the species level that come from long-term monitoring.

To ensure accurate estimates of total diversity different collection techniques are
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required, for example distance samplingͳ ormark recaptureʹ allow for the calcu-

lation of accurate species abundance values. However, generally these methods

are time consuming and expensive and therefore, count statistics (occurrences)

are often used (Yoccoz et al. ͲͰͰͱ). Furthermore, to understand long-term bio-

diversity trends it is often necessary to use older collection records, often collated

and stored in natural historymuseums (Ponderet al. ͲͰͰͱ). Toestimate and pre-

dict biodiversity patterns and trends researchers rely on statistical tools to draw

conclusions on the distribution of species in areas and time periods that would

be infeasible or impossible to sample in their totality. In particular species distri-

bution models (SDMs), which are used throughout this thesis, combine known

occurrence records and environmental variables to predict for unsampled areas

where species are likely to be distributed (Elith & Leathwick, ͲͰͰ͹). Improving

our ability to predict and understand biodiversity patterns in the past, present,

and future is essential if weare tomanageand avoid theproblemsassociatedwith

global changes.

1.3 Wild Bees
Wild bees comprise approximately ͲͰ ͰͰͰ species foundworldwide on all conti-

nents except for Antarctica (Michener ͲͰͰͰ). There are ͷ extant families of bees

(Fig ͱ.ͳ). A broad functional distinction between wild bees can be made based

on their sociality. Themajority of bees are solitary bees which means that the fe-

males build their own nests with food resources to deposit their offspring (Lins-

ley ͱ͹͵͸). The offspring emerge after the female has died. The non-solitary bees

are organized into colonies, with division of labour, and are referred to as social

species. These range from highly eusocial bees, where the queen is dependent on

the colony and develops differently to other femaleswhich are incapable of form-

ing their own colonies; primitively eusocial colonies have queens and workers

ͳDistance sampling is a method to estimate the total species richness of a chosen area. The
methodology is based on line or point transects, the species are surveyed along these lines or from
these points and are measured as a perpendicular or radial distance (Buckland et al. ͲͰͱ͵).

ʹMark recapture involves sampling species richness by capturing a subset of a population of
species, marking these species and then resurveying the population, the resulting proportion of
marked individuals should represent their proportion in relation to the total population size (South-
wood & Henderson ͲͰͰ͹).
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that share morphological and behavioural similarities (Libbrecht & Keller ͲͰͱ͵).

In Europe the only highly eusocial bees are the western honeybees (Apis mellif-

era). Primitively social species in Europe include species in the genera Bombus

(bumblebees) and Lasioglossum. The bumblebees comprise over Ͳ͵Ͱ species

globally in the genus Bombuswhich is the only extant genus in the tribe Bombini

which is found in family Apidae (Fig ͱ.ͳ; Michener ͲͰͰͰ). Some bees display

a vastly different life history whereby they parasitise the nests of other bees. In

the bumblebees there is a sub genus, Psithyrus spp.; species of this subgenera

subdue or kill the queen of existing colonies and lay eggs reared by the workers

of the original colony (Goulson ͲͰͱͰ). In the solitary bees this cleptoparasitic

behaviour also exists, where females lay eggs in the nest of another bee species

and either the larva or the female kills the existing host egg and the new larva

utilize the available food provisions (Rozen ͲͰͰͱ). The two most diverse genera

of cleptoparasitic bees in Europe are Nomada spp. and Sphecodes spp. The high

diversity of wild bees in species number and behaviours means that for many

species there is minimal data on distribution patterns and many studies on wild

bees focuson the larger, moreconspicuousand longerflying bumblebees (Pottset

al. ͲͰͱͶb). Studies looking at the entire community of wild bees in a large

geographic area are uncommon, therefore we aim to analyse the patterns

of distribution and community structure of all wild bees at a national scale

in chapters ͳ and ʹ. In chapters ͵ and Ͷ the larger spatial and temporal scales

involved limit the analysis of long-term changes to the bumblebees for which far

more species occurrence data is available.

The important ecological role that themajority of bees provide is the polli-

nation of different plant species. Animals are estimated to be responsible for the

pollination of approximately ͸ͷ% of all flowering plants (Ollerton et al. ͲͰͱͱ).

Bees are considered as the most important of all animal pollinators because of

theirdiversity, hairiness and relianceon floral resources (Potts et al. ͲͰͱͶa; Oller-

ton ͲͰͱͷ). Bees and angiosperms can form highly specialized mutualisms and

the diversity in both groups is strongly linked (Johnson & Steiner ͲͰͰͰ; Oller-

ton ͲͰͱͷ). These specialized relationships can be vulnerable to changes in the

environment (Schleuning et al. ͲͰͱͶ), as both the plant and bee species are de-

pendenton theabundanceand survival of theother. However, often thevarietyof
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FĎČ. ͱ.ͳ: Time calibrated phylogenetic tree of all bees. Location of Bumblebees in the bombini tribe shown.
Species from six of the seven families are found in the Netherlands, all but Stenotritidae. Source: figure taken and

adapted from Cardinal and Danforth (ͲͰͱͳ).
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interactionsand generalizationof certain speciesmaintainswild plant-pollinator

networks (Memmott et al. ͲͰͰʹ). Furthermore, as crop pollinators, bees are

vitally important for humans. Approximately ͷ͵% of crops require some form

of animal pollination to improve productivity, of which bees are the most com-

mon pollinators (Klein et al. ͲͰͰͷ). The importance of pollination services by

wild bees can also be measured economically. Total global pollination value has

been estimated at over ͳͰͰ billion us dollars (Lautenbach et al. ͲͰͱͲ). Hon-

eybees constitute the most widespread single pollinator species across all crops,

but wild pollinator communities contribute as much to world crop pollination

(Garibaldi et al. ͲͰͱͳ). In addition, pollinator diversity leads to higher and more

stable yields (Garibaldi et al. ͲͰͱͱ) as different species play important roles at

different scales (Winfree et al. ͲͰͱ͸). Honey bees, which only comprise seven of

the total bee species globally are intensively managed by humans and therefore

face their own unique threats which do not necessarily overlap with those faced

by wild bees. The landscape ecology and distribution patterns of honey bees are

not dealt with in this thesis.

In different crop systems honey bees are usually the most abundant polli-

nator but are far from being the most efficient͵ and effectiveͶ crop pollinators,

generally visiting fewer flowers per individual and producing lower quality yields

when the only pollinator (Garibaldi et al. ͲͰͱͳ). A number of wild bee species

have an influential role in crop production, this is only a subset of the total wild

bee diversity, but is crucial nonetheless (Kleijn et al. ͲͰͱ͵). Even in the absence

of honey bees wild bees are effective crop pollinators and can improve a num-

ber of aspects of crop production, most importantly increasing yield and quality

(Garibaldi et al. ͲͰͱͳ). Wild pollinators may contribute to crop pollination by

replacing managed pollinators (Winfree et al. ͲͰͰͷ; Garibaldi et al. ͲͰͱͱ), by al-

tering managed pollinator’s foraging behaviour (Greenleaf & Kremen ͲͰͰͶ; Car-

valheiro et al. ͲͰͱͱ; Brittain et al. ͲͰͱͳ) and improving seed and fruit set through

combined pollination (Chagnon et al. ͱ͹͹ͳ). The diversity of wild bees required

for pollination of a single crop is limited to a small subset of total diversity (Kleijn

͵Pollinator efficiency is the total contribution of a pollinator species to the fruit or seed set of a
crop including visitation frequency (Willcox et al. ͲͰͱͷ).

ͶPollinator effectiveness refers to the total seed set of fruit per single pollinator visit (Willcox et al.
ͲͰͱͷ).
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et al. ͲͰͱ͵). However, pollinator species turnover across a landscape implies that

a far higher total diversity is required to pollinate crops in large-scale agricultural

areas (Winfree et al. ͲͰͱ͸). Therefore, it is necessary to study wild bee diversity

and distributions patterns together at the community scale as the services they

provide are likely tied closely to interactions between and within species assem-

blages. Therefore, in chapter ʹ we take a comprehensive view of wild bee

species assemblage patterns to understand how the entire wild bee com-

munity interacts and how this is linked to the surrounding landscape, in

particular how the climate and LULC conditions influence the geographic distri-

bution of wild bee assemblages. The pollination service provided by wild bees

is under pressure. The global decline of wild bees will significantly impact the

pollination services they provide and consequently have a pronounced impact

on human society. This indicates a need to understandwherewild bees are

distributed and how different factors affect their distribution and diver-

sitypatterns in order to ensure continued provisionof their pollination services.

1.3.1 Wild Bee Decline

The important rolewild beesplay indifferentecosystems is under threat. There is

considerable evidence of decreases in species richness and diversity of wild bees.

However, detailed evidence of decline is only available for a few well studied ar-

eas. In theNetherlands and Britain a comparison between species records before

and after ͱ͹͸Ͱ showed a considerable decline in species richness of wild bees in

many areas, which correlated with a decline in pollinated plants (Biesmeijer et

al. ͲͰͰͶ). This is supported by a more recent study in Belgium, the Nether-

lands and the UK that shows significant declines in richness and a shift towards

a more homogeneous community before ͱ͹͹Ͱ, but suggests that these declines

have decreased since ͱ͹͹Ͱ (Carvalheiro et al. ͲͰͱͳ). In the United States (US) a

study looking at ʹͳ͸ bee species over ͱʹͰ years found thatwhilst only bumblebee

species showed a significant decline, communities became more homogenized

and in particular the diversity of alien species increased (Bartomeus et al. ͲͰͱͳ).

In Belgium, a comparison of the relative number of species before and after ͱ͹͵Ͱ

showed that Ͳ͵.Ͳ%weredecreasing nationally, with bumblebees shown tobepar-

ticularly vulnerable (Rasmont et al. ͲͰͰ͵; Vray ͲͰͱ͸). Select bumblebees in the
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UK and Ireland, generally those emerging late, have also shown significant de-

creases in range since the ͱ͹ͶͰs (Williams ͱ͹͸Ͳ; Goulson et al. ͲͰͰͶ; Fitzpatrick

et al. ͲͰͰͷ).

At the local scale there are studies that have re-sampled areas where sur-

veys had been conducted in the past. These studies also, generally, show a de-

creasing trend in wild bee species richness. Bumblebees in Illinois showed dra-

matic losses over ͶͰ years with half of the species previously found absent from

the latest surveys (Grixti et al. ͲͰͰ͹). Grasslands in Brazil surveyed ͲͰ years

apart over a ͶͰ year period showed a ͲͲ% decrease in wild bee species richness

(Martins et al. ͲͰͱͳ). A study in Colorado grasslands showed more positive re-

sults, they observed a generally stable wild bee community when comparing oc-

currences from ͱ͹Ͱͷ against ͲͰͰͱ-Ͱ͵ (Kearns & Oliveras ͲͰͰ͹). This suggests

that declines are unlikely to be occurring everywhere and that certain spatial lo-

cations and habitats are more vulnerable. For example when comparing ͱʹ sites

over an ͸Ͱ year period in the UK, Senapathi et al. (ͲͰͱ͵) found that species rich-

ness declines of bees and wasps were correlated to changes in land cover and

particularly in habitats at the borders between land covers. Long-term studies of

changing populations are a vital resource to help improve our understanding of

how and why wild bees are declining (Bartomeus et al. ͲͰͱ͸). Therefore, efforts

should be made to repeat surveys when historical data is available, in chapter Ͷ

we have the unique opportunity to compare a mountain pollinator population in

ͱ͸͸͹ against ͲͰͰ͵-ͰͶ.

The majority of studies have looked at declines in species richness but

long-term trends of decline in population size/abundance of wild bee species

are almost unknown (Potts et al. ͲͰͱͶb). This is reflected clearly in the IUCN red

listof European bees, whereby ͵ͷ%of species areclassified asdatadeficient, indi-

cating that there is not enough data on species occurrences along a temporal gra-

dient to draw conclusions on population trends (Fig ͱ.ʹa; Nieto et al. ͲͰͱʹ). The

exception to this are the bumblebees, which at the European level have almost

all been assessed for the IUCN red list (͹ͱ.Ͳ%). Twenty eight percent of the Ͷ͸

European bumblebees are included as either near threatened (ʹ.ʹ%), vulnerable

(ͱͱ.͸%), endangered (ͱͰ.ͳ%) or critically endangered (ͱ.͵%); and overall ʹ͵.Ͷ% of

all European bumblebees show a decreasing population trend (Fig ͱ.ʹb; Nieto et
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FĎČ. ͱ.ʹ: Summary of the number of bee species within each Red List threat category in Europe. a) All
European bee species. (b) Only European bumblebees. DD: data deficient; LC: least concern; NT: near threatened;
VU: vulnerable; EN; endangered; CR: critically endangered. Source: data taken from the European Red List of Bees

(Nieto et al. ͲͰͱʹ).

al. ͲͰͱʹ). Certain species of US bumblebees were found to be declining in rel-

ative abundance at the national scale, with up to ͹Ͷ% decline recorded, higher

pathogen levelswere found in those specieswith greater declines (Cameron et al.

ͲͰͱͱ). In Scandinavia the relative abundance of bumblebee species has changed

significantly in clover fields. In Sweden two species became far more abundant

and the others declined over ͷͰ years (Bommarco et al. ͲͰͱͲ). In Denmark over

a ͶͰ year period in red clover fields the abundance of long-tongued bumblebees

severely declined and ͵ species were lost completely (Dupont et al. ͲͰͱͱ).

A furthermeasureof decline involvesmeasuring thedecline in the services

wild bees provide, namely pollination services. Any decline in wild bee diver-

sity or population sizes will result in a decrease in pollination services be that

crop pollination or wild flower pollination. In a long-term comparison across

ͱͲͰ years Burkle et al. (ͲͰͱͳ) found that in a complex plant-pollinator network

in Illinois the overall network structuredeteriorated and ͵Ͱ%of bee specieswere

lost. Furthermore, a review of studies on the effects of habitat fragmentation on

plant reproduction implied that pollination limitation is the most likely cause of

decreased reproductive success of plants (Aguilar et al. ͲͰͰͶ). Therefore, any

decline in pollinators should directly result in a decline in wildflower pollination
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services. Declines in crop pollination services have also been observed, the de-

cline in clover fields of bumblebees in Sweden also resulted in declines to the

clover yield (Bommarco et al. ͲͰͱͲ). The outcomes of these declines in services

could lead to the over-reliance on generalist pollinators for wild flowers and the

overreliance on managed bees in agricultural systems (Potts et al. ͲͰͱͰ).

Theavailable evidence suggestswidespreadwild beedeclines, however the

causes of these declines may be various and interactive. The trends observed in

many countries also imply that wild bee declines will be an ongoing concern in

the future and suggest that habitat loss due to LULC and climate changes may be

a significant driver. We therefore examine different temporal scales during the

thesis to provide an overall picture of the influence of these drivers.

1.3.2 Drivers of Wild Bee Diversity and Declines

The factors which drive wild bee distribution patterns and inevitably influence

their decline are numerous and are unlikely to act in isolation. In the review

by Potts et al. (ͲͰͱͰ) the main drivers of decline are listed as LULC changes,

increasing pollution and pesticide use, lower diversity in feeding resources, in-

vasive species, pests and pathogens and climate change. Brown et al. (ͲͰͱͶ) use

a horizon scan method to split these drivers into key issues that pollinators are

likely to face in the future. The common themeof thedifferentdrivers of wild bee

decline is that they either directly result in the mortality or decreased reproduc-

tive success of individuals or indirectly reach the same outcome by preventing

access to or remove feeding and habitat resources. At the broad scale two drivers

have significant effects on the availability of necessary resources, namely LULC

change and climate change. It is therefore important to understand how these

two drivers interact to drive the wild bee distribution patterns, diversity and de-

cline. Hence, we intend to study these drivers at a variety of spatial and temporal

scales, to observe in part how they influence observed distribution patterns of

wild bees in the past, present and future. A current knowledge gap in studies of

wild bee decline concerns how these different drivers interact and influence each

other as well as wild bees (Potts et al. ͲͰͱͶb). We explain in detail the existing

research into these drivers below. We also outline the influence of other drivers

as well as LULC and climate change because these drivers do not act in isolation
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and LULC and climate changes can directly affect the other drivers and vice versa

(see Fig ͱ.͵).

FĎČ. ͱ.͵: Overview of the interactive and combined impacts of different pressures on pollinators and pol-
lination. Source: figure taken from Potts et al. (ͲͰͱͶb).

Land Use/Land Cover Impacts onWild Bees

Landscape ecology explores how the biodiversity within a landscape is affected

by the structure and arrangement of surrounding land uses and land covers. The

wide diversity in physiology and behaviour of wild bees means that the land-

scapes theyoccupy canvary greatly in size. Two keyvalues regulate the landscape

size of a wild bee; the distance from their nesting area to suitable food resources

and their maximum flight distance (Roulston & Goodell ͲͰͱͱ). Land use/land

cover effects on wild bees can be summarized from the perspective of bees nest

and forage choices in a landscape, i.e. does a particular LULC allow for the pres-

ence of sufficient nesting and foraging resources for a diverse community of wild

bees? Therefore, a suitable landscape for a wild bee has the required flowering
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plants and the necessary nesting substrates within its maximum flying distance

all in an area with suitable climate conditions. Wild bees do not respond uni-

formly toenvironmental conditions and species-specific responseexist (Cariveau

&Winfree ͲͰͱ͵). However, overall, it is widely accepted that the degradation and

loss of habitat negatively influences pollinator communities by decreasing popu-

lation size, altering compositionandcausing local extinctions (see reviewPottset

al. ͲͰͱͶb). The impact of anthropogenic transformation of LULC types is one of

the main issues faced by wild bee species, specifically the conversion of unman-

aged natural areas such as certain forests and wetlands into intensively managed

agricultural and urban areas. In the last century these conversions have removed

swathes of suitable nesting and feeding habitat of wild bees.

A large body of research exists regarding the interaction between agricul-

tural land use and different measurements of wild bee biodiversity (Potts et al.

ͲͰͱͶb). Generally the consensus is that modern day intensive agriculture has a

negative impact on wild bee diversity (Potts et al. ͲͰͱͰ). However, just as agri-

culture practices exist in a gradient of low intensity to high intensity, so too do

their effects on biodiversity. The problems caused by agricultural landscapes for

wild bees are enhanced as the intensity of agricultural practices increases. In

general, agricultural intensification results in complex natural ecosystems be-

ing converted into simple heavily managed systems. For example Ollerton et

al. (ͲͰͱʹ) found that the extinctions observed of pollinating bees and wasps in

the UK were strongly tied to the increase in agricultural intensification begin-

ning in the ͱ͹ͲͰs. Such loss of heterogeneity and complexity of the landscape

produces declines in the richness, diversity and abundance of wild bees (Win-

free et al. ͲͰͱͱ). On the other hand less intensive farming methods, with lower

levels of pesticide use, fertilizer, more heterogeneous crop cover in smaller ar-

eas can provide suitable habitats for many species of wild bees (Holzschuh et al.

ͲͰͰ͸; Kennedyetal. ͲͰͱͳ). Thesemethodscombinedwithmore sensibleand re-

strained use of pesticides, herbicides and fertilizer alongside biological methods

of pest control can create an agricultural landscape inwhich a far higherdiversity

of wild bees can survive (Potts et al. ͲͰͱͶb). Specifically, agricultural areas with

a modified landscape that allows for a greater heterogeneity in LULC, increases

diversity and the ability of wild bees to colonize agricultural landscapes (Winfree
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et al. ͲͰͱͱ; Senapathi et al. ͲͰͱ͵).

The absence of flower rich habitat in managed systems negatively influ-

ences wild bee biodiversity (Potts et al. ͲͰͱͶb). In a review of floral resource

restorationVaudoet al. (ͲͰͱ͵) conclude that high diversity floral resources shou-

ld be added to areas with high agricultural intensification. Due to the high di-

versity of bees species, managers should take into account the nutritional needs

of the species they wish to benefit. Kennedy et al. (ͲͰͱͳ) also conclude that

the most important LULC factor for bees in agricultural areas is the presence of

nearby high-quality habitat with feeding and nesting resources. The presence of

suitable nesting habitat is also an important determinant of wild bee diversity.

Carrié et al. (ͲͰͱ͸) found that the presence of slopes (important for nesting)

was positively correlated to wild bee diversity in French agricultural landscapes.

Another negative impact associated with intensive agriculture is the loss of con-

nectivity between areas with suitable resources. Increased fragmentation means

smaller patch sizes of suitable habitats and this supports lower wild bee diver-

sity (Steffan-Dewenter et al. ͲͰͰͲ; Bommarco et al. ͲͰͱͰ). Whereas a more

connected habitat should allow for more species in a smaller habitat patch area

(Steffan-Dewenter ͲͰͰͳ; Kennedy et al. ͲͰͱͳ).

Intensive landscapemodification resulting in both lower connectivity and

higher fragmentation does not only impact diversity measurements of wild bees

but also affects the pollination services they provide. Fragmentation has been

linked to a decrease in reproductive success of plants which require pollination

(Aguilar et al. ͲͰͰͶ). In crop pollination, as the distance from suitable habi-

tat increases the richness of pollinators in crop systems decreases (Ricketts et al.

ͲͰͰ͸). These suitablehabitats need tooccurwithinaspecificdistance to theagri-

cultural system and this estimate varies, and is likely dependent on the specific

species of crop pollinator (Garibaldi et al. ͲͰͱʹ; Potts et al. ͲͰͱͶa). For example,

bumblebees, which travel further than the majority of wild bees are positively

affected by the presence of mass flowering crops at the landscape level, such as

oil seed rape (Westphal et al. ͲͰͰͳ).

Alongside agricultural land use changes, urbanization of the landscape

over the last centuries has had significant impacts on biodiversity (Seto et al.
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ͲͰͱͲ). The impacts of urbanization on wild bees vary and not all urbanization

is detrimental to all wild bees; the degree of homogeneity, fragmentation and

connectivity are also important when discussing wild bee diversity in an urban

context (Potts et al. ͲͰͱͶb). Large-generalist bees appear to do well in an urban

context. Carré et al. (ͲͰͰ͹) found that bumblebee density increased with ur-

ban habitat cover and in the UK the urban bee community was found to be more

generalist (Baldock et al. ͲͰͱ͵). The benefits that urban areas may provide stem

from the increased heterogeneity of LULC patches (McKinney ͲͰͰ͸). For exam-

pleurbangardensprovidenecessarynesting and floral resources formanyspecies

(Goddard et al. ͲͰͱͰ). Urban areas may also provide resources for above ground

cavity nesting bees but have decreased availability of exposed soils for ground-

nesting bees (Cane et al. ͲͰͰͶ). Additionally, urban parks in San Francisco have

been shown to support larger bumblebee populations compared to parks in a

less urbanized setting (McFrederick & LeBuhn ͲͰͰͶ). Alternatively, Martins et

al. (ͲͰͱͳ) propose that the abundance and species richness losses of wild bees

in Brazil are due to increased habitat loss and feeding resource homogenization

caused by urbanization. Fortel et al. (ͲͰͱʹ) found, along an urbanization gradi-

ent near Lyon, France, that wild bee abundance was lowerwith increased urban-

ization and that diversity was highest in intermediate Urban areas. Finally, the

structureof urbanareasmay interactwith anotherdriverof wild beedistribution,

climate change, by creating warmermicro-climates which allow for the presence

of species that would not have suitable conditions nearby outside the urban area

(Seto & Shepherd ͲͰͰ͹).

In both urban and agricultural areas diversity of wild bees increases with

the quantity of patches of suitable high-quality habitat. This habitat is often

classified as natural or semi-natural and often supports large source communi-

ties of wild bees (Öckinger & Smith ͲͰͰͶ). Less abundant, more natural habi-

tats which can maintain a broad diversity of nesting substrates and wild flower

resources allow for a variety of niches and therefore specialization and greater

diversity. Flower-rich grasslands are an example of habitats which contain these

necessary resources in abundance. For example low grazing pressure and less

mowing often results in higher pollinator diversity (Potts et al. ͲͰͱͶb). More

specifically these grasslands often contain many leguminous species which are
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important food source for bees. In the UK the loss of flower-rich grasslands and

in particular leguminous species was correlated with fewer long-tongued bum-

blebee colonies (Goulson et al. ͲͰͰ͵). In Europe heathland is strongly associ-

atedwith a particularwild bee community. In theUK the loss of heathland is tied

to the loss of flower-rich habitat as a driver of bumblebee declines, specifically

those species specializing on Ericaceae species found in heathlands (Goulson et

al. ͲͰͰ͵). The same importance of heathland was found for specialist bumble-

bees in Belgium (Moquet et al. ͲͰͱͶ). Furthermore, Forup et al. (ͲͰͰ͸) discov-

ered that restored heathlands in the UK supported less complex plant-pollinator

networks compared to historic undisturbed heathland sites. Due to thevariety of

LULCand theireffectsonwild bee specieswe intend tobuild upon the knowledge

of how diverse groups of bee species in different areas are affected by these dif-

ferent LULC, and at the same time increase the scientific knowledge on the

role LULC plays in defining wild bee distribution and diversity patterns.

Particularly by looking at habitat filteringͷ to explain distribution patterns and

examining how changes to LULC in the future may affect these patterns. Specif-

ically, in this thesis we aim to utilize high resolution LULC data available in the

past, present and future to examine its influence at different spatial and tempo-

ral scales. We intend to show for the first time how a national community

of wild bees is spatially structured in relation to its habitat among other

factors (chapter ʹ). Furthermore, we illustrate, for bumblebees, the influence

that LULC data could have in conjunction with climate change at a broad

national and continental scale in the future (chapter ͵) and has had in a

mountain habitat in the past (chapter Ͷ).

Climate Impacts onWild Bees

Climate change is expected to influence biodiversity patterns in threemainways,

affecting the phenology of species as well as causing them to shift polewards and

higher in elevation (Parmesan & Yohe ͲͰͰͳ). The influence of climate change on

wild bees has beenwell studied and its significance as a driver of wild bee decline

ͷHabitat filtering is defined as the establishment and survival of species in response to the envi-
ronmental characteristics of a habitat, species unsuited to aparticular habitat are ‘filtered’ out (Keddy
ͱ͹͹Ͳ).
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is expected to becomemore apparent in the near future (Potts et al. ͲͰͱͶa). Phe-

nological shifts in the breeding, flying time, emergence, and flowering of bees

and their host plants to earlier in the year could lead to a mismatch in pollina-

tion systems, affecting pollination services and henceforth the survival of wild

bees and wild plants (Fig ͱ.Ͷ; Hegland et al. ͲͰͰ͹; Potts et al. ͲͰͱͶb). Men-

zel et al. (ͲͰͰͶ) estimates this phenological shift in Europe as approximately

ͳͰ% of plants showing a trend of flowering significantly earlier in the year. In

a review of climate change impacts on plant pollinator networks Hegland et al.

(ͲͰͰ͹) observe that in many cases the phenological shifts in plants and pollina-

tors may occur simultaneously and at the same rate, but that mismatches have

been observed. For example, in Japan, early flowering plantswere observed flow-

ering even earlier when spring temperatures were higher, this did not coincide

with bumblebee emergence and resulted in a lower seed production (Kudo & Ida

Takashi ͲͰͱͳ). Long-term studies into changing phenology of wild bees support

these patterns of earlier emergence. Bartomeus et al. (ͲͰͱͱ) calculated that ͱͰ

generalist bees species in the US have shifted ͱͰ days earlier on average across

the last ͱͳͰ years but with the majority of change in the last ʹͰ years. Moreover,

phenological shifts were highlighted as one of the potential causes of loss of con-

nectivity and general degradation of a plant pollinator network over ͱͲͰ years

(Burkle et al. ͲͰͱͳ). These results suggest that phenological shifts have been on-

going and are likely to increase with greater climate change effects predicted in

the near future.

Shifts in the rangesof suitablewild beehabitatarealsoanticipated asacon-

sequence of climate change. The long-term historical patterns of climate change

on wild bee species require a large time-series of wild bee diversity in the same

areas. This information is difficult to obtain and therefore, studies of climate ef-

fects on wild bees are generally restricted to countries with a culture of taking

and maintaining entomological records which extends far into the past; namely

westernEuropeancountriesand theUS. Themostcomprehensiveexaminationof

the effects of long-termclimate changeonwild bee rangeswas conducted byKerr

et al. (ͲͰͱ͵) who looked at bumblebee species range shifts in the past ͱͱͰ years

in Europe and the US. They found comparable broad scale responses by species

across the two continents with species showing an overall decrease in range due
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FĎČ. ͱ.Ͷ: Overviewof how climatewarmingmay affect the phenology and, distribution of plants and polli-
nators. Source: figure from Hegland et al. (ͲͰͰ͹).

to losses at their Southern limits and the absence of equivalent changes at their

Northern limits, suggesting that bumblebee species cannot track climate change.

In addition certain southern species increased in elevation in both study areas

(Kerr et al. ͲͰͱ͵). However, there is a larger body of research showing historical

change in range and increase in elevation for butterflies due to climate change

than for wild bees (Wilson et al. ͲͰͰ͵; Wilson et al. ͲͰͰͷ; Chen et al. ͲͰͰ͹;

Chen et al. ͲͰͱͱ; Bedford et al. ͲͰͱͲ; Devictor et al. ͲͰͱͲ); more research is re-

quired to see if thesepatterns persist forwild bees. In chapter Ͷwe intend

to see how bumblebee elevation patterns have increased during ͱͱ͵ years

of LULC and climate change in amountain habitat.

The effects of LULC and climate do not occur in isolation but most defi-

nitely interact (Dale ͱ͹͹ͷ) and “there remain relatively few published assessments

of the combined effect of LULC and climate change on pollinators and pollination”
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(Potts et al. ͲͰͱͶb). Additionally, the studies that do exist generally concern but-

terflies (Warren et al. ͲͰͰͱ; Forister et al. ͲͰͱͰ) or pollination services (Giannini

et al. ͲͰͱ͵). Therefore the interactive effects of climate and LULC change

on wild bee distribution remain a hole in our knowledge of drivers of de-

cline. Kerr et al. (ͲͰͱ͵) examine this interaction and concluded that climate is

themain driver behind observed pattern changes in bumblebeedistribution over

the last century. This may be the case statistically at very large continental scales

with only increases in agricultural LULC, as used in the study. However in reality

this appears unlikely, as LULC changes have been shown to impact wild bees at

finer scales. Forexample, increases in temperature, which are likely to cause local

wild bee extinctions can be mitigated by increasing the amount of semi-natural

habitat and green areas (Papanikolaou et al. ͲͰͱͶ). In this thesis we intend

to directly examine the effects of climate and LULC in conjunction, using

modelled future conditions with changes of both drivers (chapter ͵) and

looking at how fine scale historic changes in both LULC and climate have

affected a single community over a large time period (chapter Ͷ).

Other Causes of Wild Bee Decline

A largebodyof researchexists around theeffectsof pesticidesonwild bees, which

differdepending on the species, the type of pesticide, the toxicity of the pesticide

and the means of exposure, among many others (Potts et al. ͲͰͱͶb). The dan-

ger posed towild bees by pesticides also differs when measured in the laboratory

as opposed to in the field and so far the majority of pesticides effects have only

been tested on a few of the most common bees, therefore the overall patterns on

wild bees in general require further research (Arena& Sgolastra ͲͰͱʹ). Pesticides

such as Neonicotinoids have been shown to have lethal and sub-lethal effects on

honey bees, bumblebees and mason bees (Tsvetkov et al. ͲͰͱͷ; Woodcock et al.

ͲͰͱͷ). Land use and pesticide pressure strongly interact, specifically high inten-

sity managed landscapes have higher rates of pesticide use (Foley et al. ͲͰͰ͵).

Invasive species pressures on wild bees include those from invasive bees,

invasive plants and other invasive animals. For example the widespread intro-

duction of B. terrestris as amanaged pollinator around theworld has led to novel
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pathogens being introduced and to competitive displacement of native bumble-

bees and a loss in productivity of native plants (Morales et al. ͲͰͱͷ; Aizen et

al. ͲͰͱ͸). Introduced honey bees are also linked to an increase in pathogens to

which social wild bees are particularly vulnerable, for example deformed wing

virus which is spread through Varroa destructor, is also present in bumblebees

(Genersch et al. ͲͰͰͶ). Honey bees can also displace local species through com-

petition (Goulson ͲͰͰͳb; Howlett & Donovan ͲͰͱͰ). In areas with few floral re-

sources the negative effects of competition with introduced bees are likely to be

more extreme and result in changes to the previously present bee fauna (Roubik

&Wolda ͲͰͰͱ; Hudewenz & Klein ͲͰͱͳ). Invasive plants can lead to bee declines

by dominating within a system and changing the structure of plant-pollinator

networks (Hudewenz & Klein ͲͰͱͳ; Albrecht et al. ͲͰͱʹ), and potentially the

availability of forage resources or by offering lower quality resources and directly

impacting bee health (Potts et al. ͲͰͱͶb). Invasive species pressure as a driver of

decline for wild bees is also expected to strongly interact with LULC and climate

(Vanbergen et al. ͲͰͱ͸). Managed systems, such as urban and agricultural areas,

can facilitate invasive species establishment and climate is expected to increase

the spread of invasive species globally (Foley et al. ͲͰͰ͵; Hellmann et al. ͲͰͰ͸).

Pathogens and pests can result in mortality and decreased reproductive

success causing declines in bee populations (Vanbergen & The Insect Pollina-

tors Initiative ͲͰͱͳ). A number of parasites and pathogens affect solitary wild

bees ranging from viruses to bacteria and animal pests, including a number of

pathogens found in honey bees (Ravoet et al. ͲͰͱʹ; Potts et al. ͲͰͱͶb). Pest and

pathogen pressure can be increased with LULC and climate changes. The chance

of disease spread from managed bees towild bees is expected to increase in agri-

cultural areas and the distribution and spread of diseases is expected to increase

with climate changes; furthermore species weakened by pesticide use are likely

to be more vulnerable to pests and pathogens (Schweiger et al. ͲͰͱͰ; Vanbergen

& The Insect Pollinators Initiative ͲͰͱͳ).

It is clear that the impact of potential drivers of declines do not act in iso-

lation. While it is still difficult to look at all factors together, due to issues of

data availability and scale, efforts should be made to explore these interactions

in greater detail. We do not explicitly examine the roles of these other drivers
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as this is out of the scope of the thesis. However, the work presented is part of

a larger project which looks to examine the many drivers of wild bee decline in

isolation and in conjunction (BELBEES; seeMaterials andMethodology Ͳ.ͱ). The

results from this thesis, concerning LULC and climate impacts, will be combined

with studies of the other drivers into a meta-analysis to determine the overall

influence of all hypothesized drivers of decline.

We focus in this thesis on climate and LULC as drivers for a number of rea-

sons. Both drivers are expected to significantly impact wild pollinators; on the

European red list the major threats to wild bees are almost exclusively related to

LULC and climate (Fig ͱ.ͷ; Nieto et al. ͲͰͱʹ; Potts et al. ͲͰͱͶb). Climate change

has been shown repeatedly to have a strong influence on the distribution pat-

terns on a number of other pollinator groups, specifically the butterflies and has

been shown to be influential to bee distribution at continental scales (Kerr et al.

ͲͰͱ͵; Rasmont et al. ͲͰͱ͵a; Settele et al. ͲͰͰ͸). Climate change is also expected

to strongly correlate with other potential drivers of wild bee decline (Potts et al.

ͲͰͱͰ). Climate change also represents an issue which has global significance at

the scientific level but is also a key issue politically and for society in general

(IPCC ͲͰͱʹ). In a meta-analysis across ͵ʹ separate studies the most influential

factor on negative trends in bee communities was found to be from habitat loss

and fragmentation (Winfree et al. ͲͰͰ͹). Additionally, two of the key conserva-

tion initiatives regarding wild bees is the restoration of natural habitat and the

introduction of diverse agricultural landscapes (Winfree ͲͰͱͰ). Understanding

the relationship between species diversity distribution and LULCwill provide di-

rect benefits for achieving this conservation goal. Additionally, in terms of data

availability, climate and LULC information is far more abundantly available than

other drivers. This allows us to explore their impacts across large spatial and

temporal scales. They are also the only drivers for which we have future change

projections available (Bellard et al. ͲͰͱͲ; De Rosa et al. ͲͰͱͶ). The focus on cli-

mate and LULC is not to suggest that these are the only two factors which will

have a meaningful impact on wild bees. The true extent of the effect of pests,

pathogens, pesticides and invasive species is still being determined (Potts et al.

ͲͰͱͶb), and the ideal situation would be to have data available for all drivers at

multiple spatial and temporal scales.
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FĎČ. ͱ.ͷ: Major threats towild bees in Europe. Based on data from the European Red List for Bees. Source: figure
from Nieto et al. (ͲͰͱʹ).

1.3.3 Modelling Wild Bee Distribution Patterns

Asmentioned before, climate and LULC impacts onwild bee species are complex

and vary due to many processes. Therefore, to understand patterns and interac-

tions between wild bee diversity and distribution, and LULC and climate effects

researchers use modelling techniques. Modelling techniques includemechanis-

tic/process based modelling and phenomenological/statistical modelling. Pro-

cess based modelling is specified by the biological processes (mechanisms) be-

hind the observed data, based on a theoretical understanding of the ecological

mechanisms driving a species response to, for example, changing environmen-

tal conditions (Cuddington et al. ͲͰͱͳ). Statistical modelling on the other hand

seeks to find a relationship between different variables which best describes the

observed data. In other words, a mechanistic model explains why and how the

parameters interact as observed whereas the statistical modelling approach only

describes the relationship, with the assumption that the observed relationship

continues beyond the observed data (Hilborn & Mangel ͱ͹͹ͷ). Long-term goals

for modelling wild bees would be to move toward more process based models

for wild bees but currently only managed bees such as honey bees, B. terrestris

and some managed mason bees (Osmia spp.) can adequately be modelled this
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way (Becher et al. ͲͰͱ͸). During this thesis we use statistical models, with a fo-

cus on species distribution modelling, because when examining the total diver-

sity or wild bees, including bumblebees, it becomes apparent that the biological

and ecological processes which drive the distribution patterns for themajority of

species are not well understood and still require analysis. We therefore aim to

find patterns and relationshipswhich can be used to infer the processes thatmay

be behind the observed data.

Species DistributionModelling

Species distribution models (SDM) are popular tools to understand and predict

biodiversity patterns. They are statistical tools used to combine species occur-

rence records as presence/absence or abundance with measurements of spatial

environmental conditions (Elith & Leathwick ͲͰͰ͹). The desire to understand

the influence of environmental factors such as climate and LULC has on species

and communities is a persistent aspect of ecology, and with the increase in com-

puter performance and statistical techniques the methods and applications of

SDMs have increased greatly (Guisan & Zimmermann ͲͰͰͰ). Species distribu-

tion models may also be known as bioclimatic models, climate envelopes, eco-

logical niche models (ENMs) and habitat models among others; these terms are

often interchangeable but can also be used to indicate differences in modelling

approach (Elith & Leathwick ͲͰͰ͹). There are a number of uses of SDMs in the

fields of ecology, biogeography and evolution. These include but are not lim-

ited to locating un-sampled areas of high species diversity, quantifying a species

environmental niche, calculating a species invasive potential, measuring the im-

pact of future changes in climate and LULC on species distributions, providing

support for management and conservation planning and modelling species as-

semblages and communities (Guisan & Thuiller ͲͰͰ͵). Throughout this thesis

we specifically use SDMs to quantify niche space (Chapters ͳ, ʹ and ͵), find un-

sampled high-diversityareas (Chapter ͳ), measure the impactof futureLULCand

climate change (Chapter ͵), provide support for conservation planning (Chapter

ʹ) and estimate species assemblages (Chapter ʹ). Constructing a SDM requires,

in its simplest form, three elements: (ͱ) species occurrences collected in the field,

(Ͳ) a representation of the environment in the formof predictor variables and (ͳ)
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a technique bywhich to interpret the relationship between (ͱ) and (Ͳ) (Guisan &

Zimmermann ͲͰͰͰ). These three inputs are combined to create projections of

species distributions in time and space (Fig ͱ.͸).

Species occurrence data can be obtained in a number of ways. Franklin

(ͲͰͱͰ) describes these sources in two distinct groups based on the scale of col-

lection data, ecological scale and biogeographical scale. Ecological scale refers

to targeted species collections, at consistent fine resolutions, which do not need

to be aggregated for SDMs; biogeographical data refers to pre-existing data sets

at different resolutions and with different sampling intensities and purposes and

therefore require aggregation (Franklin ͲͰͱͰ). At the ecological scale SDMs use

data obtained from a sampling approach designed specifically for the purpose of

the SDM. This method is likely to result in higher resolution occurrence data,

improved model accuracy, and often includes co-occurrence and absence data

(Franklin ͲͰͱͰ). Another source of similar, high-quality data are biological sur-

veys and species inventories. These surveys often provide long-term high-resol-

ution data repeated yearly for the same geographic area; an example from the

Netherlands is the national monitoring of butterfly species conducted yearly al-

ong the same routes across thewhole flying season (van Swaay et al. ͲͰͱͱ). How-

ever, these methods involve significant time and energy costs and sampling the

full range of even a single species can require extremely intensive work.

At the biogeographical scale the occurrence data consists of collated data

from many existing surveys (Austin ͲͰͰͷ), and large datasets of historical mu-

seum collections (Newbold ͲͰͱͰ). The occurrence records used in this thesis

are most representative of this type of biogeographical data. These data are of-

ten from a variety of sources and need to be aggregated to the same spatial and

temporal scales and resolutions. This allows the construction and interpretation

of broad-scale SDMs using many occurrence records. However, this introduces

a number of caveats to the modelling process, the coarser resolution introduces

greater environmental heterogeneity and may blur the true relationship between

the recorded environmental conditions and the conditions in which the species

occurs, furthermore the temporal variation within and between years for occur-

rence records cannot adequately be captured with a single snapshot of the en-

vironmental conditions in a particular moment (Franklin ͲͰͱͰ; Newbold ͲͰͱͰ).



͵.ͷ. Wild Bees ͳͱ

Additionally, aggregating species occurrence records in this manner can intro-

duce species absences where they do not exist, because they were not the target

species in the sampling (Franklin ͲͰͱͰ). Given these caveats, these detailed big

datasets still represent a great resource for constructing large-scale predictions of

species distributions. A number of methods exist to limit biases associated with

sampling bias and data aggregation, see materials and methods Ͳ.ͳ.ͱ for more

details.

Occurrence data is also needed to test the performance of SDMs which

is usually done using cross-validation methods with a partitioned subset of the

training data are used to validate model performance (Elith & Leathwick ͲͰͰ͹).

However, the ideal situation is tousedata independentlycollected from the train-

ing data, the reality is that due to the difficulty in obtaining high quality oc-

currence data the majority of studies do not have a second independent testing

dataset. In chapter ͳ we collect an independent dataset and use it to test

the performance of SDMs in agricultural habitats.

Forecasting and hindcasting in time are common uses of SDMs, to fill

gaps in historical distribution records and to estimate the potential shifts and

changes in distribution of species under future global conditions (Elith & Leath-

wick ͲͰͰ͹). Studies toooften focuson bioclimatic envelopemodels alone, which

become increasingly less useful at finer scales (Pearson & Dawson ͲͰͰͳ). Whilst

climatemay be themost important predictor at broad scales, at finer scales more

specific environmental predictors related to disturbance and resource use are

necessary (Araújo & Rozenfeld ͲͰͱʹ). The introduction of LULC data has been

shown to improve model predictive performance for certain species (Pearson et

al. ͲͰͰʹ; Thuiller et al. ͲͰͰʹ). Soil conditions have also been shown to improve

SDM performance for insect species (Titeux et al. ͲͰͰ͹). Land use/land cover

change variables are likely to strongly improve model performance and ecologi-

cal significance of forecasting models but are almost never used and represent a

large gap in the knowledge of modelling future biodiversity scenarios (Titeux et

al. ͲͰͱͶ). As a tool, forecasting SDMs can be vitally important in informing fu-

ture management and conservation efforts to prevent biodiversity loss. However

their efficacy can be improved upon through more informed covariate selection

(Austin &VanNiel ͲͰͱͱ). Therefore, throughout this thesisweexamineclimate
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FĎČ. ͱ.͸: Simplified workflow of the data sources necessary and process to construct a species distribu-
tion model (SDM). Species distribution models require spatial observation of species occurrence, true absence
or pseudo-absences and spatial data of environmental conditions. Different algorithms can then be used to create
mathematical representation of a species known distribution in environmental space. These models should evalu-
ated with independent collected data to determine the predictive performance, these data are rarely available and
often a subset of the training is retained from training to be used as a validation dataset. These models are then
projected onto geographic areas that can be inside or outside the geographic space of the training area and at differ-
ent time periods. These projections can be visualized as habitat suitability maps of high and low suitability or these
maps can be simplified into maps of presence or absence which can be combined with other species’ distribution

maps to form estimates of species richness and community assembly.

and LULC as predictors of species distributions, comparing and contrast-

ing their importance at different spatial and temporal scales.

One of the other ways to improve SDMs is related to one the most com-

mon criticisms of SDMs: that by focusing on the environmental conditions only,

a number of important aspects of the ecology of a species is ignored. One of

these aspects is the biotic interactions between species which can play an im-

portant role in the realized niche that a species occupies and may also result

in niche limitation in areas otherwise environmentally suitable (Götzenberger
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et al. ͲͰͱͲ). The solution to this problem is to include these interspecific bi-

otic interactions in the SDM process. The most straightforward method to ac-

count for species interactions is to include, as covariates, the distribution pat-

terns of known, a priori, interacting species (Wisz et al. ͲͰͱͲ). For example,

Gutiérrez et al. (ͲͰͰ͵) demonstrated that the geographical distribution of an

ant species was the most important predictor of the distribution of its mutualist

butterfly. The same results were observed for woodpeckers and owls; facilitative

and competitive species interactions improved model performance (Heikkinen

et al. ͲͰͰͷ). This has been touched upon inwild bees aswell, withmodel perfor-

mance increasing when bee host and parasites are modelled together (Giannini

et al. ͲͰͱͳ). The key aspect of this methodology is that the interactions must be

known or at least have some evidence a priori. This is rarely the case and other

methods of including biotic interactions need to infer these relationship from

the data available (Wisz et al. ͲͰͱͲ). One such method, which is used in chap-

ter ʹ of this thesis, is multiple independent equations, which is a form of joint

species distribution modelling (JSDM); each species is modelled with its habitat

requirements and the resulting residuals are compared to a correlation matrix of

all species co-occurrence, to determine if patterns in the residuals are shared by

species which co-occur more or less than expected by chance (Ovaskainen et al.

ͲͰͱͰ; Pollock et al. ͲͰͱʹ; Ovaskainen et al. ͲͰͱ͵; Ovaskainen et al. ͲͰͱͷ). These

methods however are rarely used in themajority of SDM studies and rep-

resent a significant absence in the literature and should be continued to

be explored with various species groups (Wisz et al. ͲͰͱͲ), which is what

we intend to dowith wild bee communities in chapter ʹ.

Species distribution models have been applied to wild bees in different

contexts, measuring historical drivers of change (Aguirre-Gutiérrez et al. ͲͰͱͶ;

Aguirre-Gutiérrez et al. ͲͰͱͷa), determining potential crop pollination service

losses (Polce et al. ͲͰͱͳ; Polce et al. ͲͰͱʹ; Giannini et al. ͲͰͱͷ), finding under-

sampled areas (Penado et al. ͲͰͱͶ), calculating invasive risk (Lecocq et al. ͲͰͱͶ)

and quantifying potential climate change effects (Rasmont et al. ͲͰͱ͵a). With

this thesis we aim to add three additional topics to this list. Specifically, testing

model performance and the role of traits for wild bee SDMs with independent

datasets, inferring wild bee interactions and community assembly, and testing
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potential impacts of LULC and climate change on bumblebees in conjunction.

Wild bees representadifficultgrouptomodel as theyaresmall, diverseand highly

mobile and include species with a large variety of traits. However, due to their

importance as pollinators and the cost and difficulty associated with widespread

sampling it is important to utilize statistical techniques to understand their pat-

terns of diversity and distribution. This is especially important as manywild bee

species are threatened by global changes to LULC and climate and in turn so

are the benefits they provide through pollination (Potts et al. ͲͰͱͶa; Potts et al.

ͲͰͱͶb).

Modelling Land Use/Land Cover Effects onWild Bees

Land use/land cover is a key driver in the diversity and distribution of wild bees.

For certain species of bees or by generalizing bee behaviour it is possible to look

at more process based models. For example, investigators can directly model the

relationship between land use and pollination services. Kremen et al. (ͲͰͰͷ)

show how an agent-based model of pollination services can be used to predict

influence of LULC change on pollination services in the form of yield and mon-

etary value by taking into account markets, pollinator biology and government

policies. Over time similar models have been built and take into account more

factors thatmay influence crop pollination services, such as preferential foraging

by pollinators, dispersal capacity and population growth (Häussler et al. ͲͰͱͷ).

The impact of LULC changes on plant-pollinator networks have also been mod-

elled and can be used to predict how plants will benefit or be disadvantaged by

landscape disturbance and the loss of biotic interactions (Weiner et al. ͲͰͱʹ).

These models often suggest that negative LULC changes will lead to a more gen-

eralist and homogeneous community of wild bees.

However, due to the scarcity of and difficulty in obtaining long-term oc-

currence records and the huge variation in ecology and behaviour of wild bees,

researchers often use statistical techniques to interpolate and extrapolate the re-

lationships between wild bee diversity and distribution, and LULC to different

spatial and temporal scales. For example the historical distribution patterns of

wild bees in the Netherlands were modelled for three time periods to determine
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which environmental variables explained themajority of the variation in the dis-

tribution of species across time (Aguirre-Gutiérrez et al. ͲͰͱͷa). The authors

concluded that overall, landscape compositionwas a key factor in explaining dis-

tributionpatterns and that habitat fragmentationwasmore important in theear-

lier time period than the latter. Additionally, in the Netherlands, SDMs of LULC

and climate were used to model spatial shifts in the distribution of wild bees

grouped by their functional traits; Aguirre-Gutiérrez et al. (ͲͰͱͶ) clearly show

that generalist species have shown a greater range expansion than specialists and

that small bees have shifted further North than larger bees. Crop pollination ser-

vice models have been combined with SDMs of climate and LULC conditions to

predict pollination services and the role of managed wild pollinators in different

locations across the UK (Polce et al. ͲͰͱͳ). Overall, SDMs with LULC covariates

can beused indifferent situations toderive importance, predict distributions, in-

fluence conservation and predict service provisionof wild bees. These studies are

often limited by the quality and detail of the available LULC variables. As greater

more detailed and up-to-date LULC maps become available then habitat filter-

ing patterns should be continued to be explored. In chapter ʹweuse the latest

LULC maps available to determine the classes which are most important

for diverse and distinct wild bee assemblages at the national scale.

While LULC changes in the past and present have been clearly shown to

influence wild bee diversity and distribution, projected future LULC changes are

rarelyused instudiesof biodiversitydespite their importanceasadriverof decline

formany species (Titeux et al. ͲͰͱͶ). Forwild bees in particular the knowledgeof

the influence of future LULC changes is almost non-existent. Using global data

onwild beeoccurrencesDePalmaet al. (ͲͰͱͶ) examined thedifficulties inherent

in extrapolating models of future LULC changes onwild bee communities due to

the geographical and taxonomic restrictions of many data. Geographical regions

showed considerable differences in the relationship between different diversity

indices and LULC (De Palma et al. ͲͰͱͶ). Land use/land cover change effects

remain a significant absence in the prediction and estimation of future conserva-

tion priorities and measures for wild bees. Weaim to build upon studies that

have looked at future climate change effects and examine the combined

rolewith LULC change, using available LULC change projections (chapter
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͵).

Modelling of Climate Change Impacts onWild Bees

Climate change is often claimed to be greatest threat to biodiversity in main-

stream media, a statement which is often challenged by historical evidence that

overexploitation of species and the loss of habitat have most impacted threat-

ened and extinct species (Millennium Ecosystem Assessment ͲͰͰ͵; Maxwell

et al. ͲͰͱͶ). However, there are still many examples of studies which exam-

ine the impact of climate change on wild bee diversity and distribution in isola-

tion. Overall, the modelling of wild bee diversity and distribution under climate

change paints a bleak picture with many areas likely to suffer significant losses

of species richness and abundance, and many species likely to experience sub-

stantial range declines. However, modelling of climate effects is not limited to

looking at future changes and SDMs have also been used to find under sampled

areas with suitable climate for bumblebees (Penado et al. ͲͰͱͶ) and to predict

the invasive potential of different populations of B. terrestris in Europe based on

each population’s climate preferences (Lecocq et al. ͲͰͱͶ). In regards to mod-

elling climate change effects on wild bees the biggest gap in the knowledge

persists around how climate change has - and is likely to - interact with

other drivers to influence distribution patterns.

The studies which examine how communities of wild bees have altered in

the past usually focus on shifts in phenology, range or elevation. These same

measurements are used to see how potential changes may occur in the future.

Memmott et al. (ͲͰͰͷ) used different scenarios of climate change to predict phe-

nological shifts in interaction networks. Depending on themodel conditions the

pollinators were predicted to lose up to ͵Ͱ% of their floral resources. A simpli-

fied summaryof modelled climate changeon range changes suggests that species

would need tomove up to ͱͰͰkmwithin the next century tomaintain within the

bounds of their current climate suitability (Leadley et al. ͲͰͱͰ). Rasmont et al.

(ͲͰͱ͵) modelled the future distributions of ͵Ͷ bumblebee at the European scale

under threeclimatechangescenariosuntil ͲͰ͵Ͱand ͲͱͰͰ; themajorityof species

are expected to decrease in total suitable range size across the whole continent
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particularly under the more extreme climate change scenarios (see Fig ͱ.͹). Fur-

thermore, themodelled distributions suggest a latitudinal and elevation increase

for themajority of species (Rasmont et al. ͲͰͱ͵a). We intend tobuild upon the

results of climateonlymodelling for bumblebees at the European level by

incorporating LULC change variables into the model and quantifying the

interaction and influence of LULC and climate change in combination.

FĎČ. ͱ.͹: Projectedchanges inclimaticallysuitableareas forEuropeanbumblebeespecies in ͲͰ͵Ͱand ͲͱͰͰ.
The values represent the number of species in each change category. SEDG: ‘Sustainable European Development
Goal’, a moderate change scenario driven by economic, social and environmental policies, related to stabilizing
atmospheric greenhousegases emissions and stopping the loss of biodiversity BAMBU: ‘Business asMight BeUsual’,
based on extrapolated current socio-economic and policy decisions. GRAS: ‘Growth Applied Strategy’, a maximum
change scenario driven by policies of deregulation and economic growth. Source: figure taken from Rasmont et al.

(ͲͰͱ͵).

Statistical models are an important tool and can be used to discover and

represent relationships between the environment and diversity/distribution. -

However, it is important to recognize model complexity and ensure that ecolog-

ically relevant information is available from the chosen models. One such way

to provide additional ecological relevance is to try and estimate the influence of

more processes and species-specific information, for example looking at shared

similarities in traits and phylogenetic relatedness between species.
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1.3.4 Wild Bee Traits and Phylogenetic Relatedness

Wild bees represent a globally diverse group, with species which respond differ-

ently to changing environmental conditions. To simplify these patterns bees are

often grouped together based on their functional traits (Biesmeijer et al. ͲͰͰͶ;

Williams et al. ͲͰͱͰ; Bartomeus et al. ͲͰͱͳ; De Palma et al. ͲͰͱ͵). Traits are

defined as phenotypic characteristics that are measured on individual organ-

isms and are referred to as functional when they interact with the environment

and other species to affect performance and subsequently an individual’s fitness͸

(McGill et al. ͲͰͰͶ; Wong et al. ͲͰͱ͸). These traits can be morphological (e.g.

tongue length), behavioural (e.g. sociality), physiological (e.g. heat tolerance)

or ecological (e.g. diet breadth). The degree of sociality or parasitism can have a

strong influenceon howabiotic and biotic conditions affect bee survival and how

beespeciesuse resources in the landscape. Forexample, incentral Europecuckoo

bee richness has been shown to be positively affected by habitat complexity, and

social bumblebee richness by the percentage of semi-natural habitats (Hopfen-

muller et al. ͲͰͱʹ). The richness of cuckoos bees is also strongly determined

by the distribution and abundance of the hosts species; bumblebee hosts with a

large range and that are classified as non-threatened are likely to support more

cuckoo bees (Suhonen et al. ͲͰͱ͵, ͲͰͱͶ). Parasites also have the potential to act

as indicator species representing higher quality wild bee habitat and responding

earlier to disturbances (Sheffield et al. ͲͰͱͳ).

Wild bee species can also display differences in their nesting habits, feed-

ing specialization, phenology among many others (for greater detail see Materi-

als and Methods section Ͳ.Ͳ.ʹ). In particular the response of species to drivers

of decline such as LULC change can be attributed to their traits. In a global

review above-ground nesting bees were shown to be more sensitive to the loss

of suitable habitat and agricultural intensification than below-ground nesters

(Williams et al. ͲͰͱͰ). Bommarco et al. (ͲͰͱͰ) observed that the response of

species to habitat loss in Northern European countries could be measured by

their traits, with small generalist bees experiencing greater impacts than small

specialist bees. This may be explained by De Palma et al. (ͲͰͱ͵), they found that

͸Fitness refers to the measure of the reproductive success (number of offspring) provided by a
particular genotype of phenotype.
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overall specialist feeding, long-tongued species that nest below-ground did not

occur readily in habitats strongly influenced by humans. They also observed that

the length of flight period significantly affected the abundance and occurrence

of wild bees; species with a longer flight season duration were shown to be more

likely to occur and be abundant with increased land use intensity (De Palma et

al. ͲͰͱ͵). Small solitary bees also showed greater vulnerability to habitat loss in

calcareous grasslands (Jauker et al. ͲͰͱͲ).

Declines in diversity and changes in distribution for wild bees also show

trends, which can be attributed to trait specifications. In the US Bartomeus et al.

(ͲͰͱͳ) detected that the greatest loss in relative abundance was experienced by

feeding specialists and species with large body sizes. In the UK and Netherlands,

Biesmeijer et al. (ͲͰͰͶ) also observed that feeding and habitat specialists had

shown greater decline than other groups. This is supported byAguirre-Gutiérrez

et al. (ͲͰͱͶ) where habitat generalists in theNetherlands have shownmore range

expansion than specialists in the last ͶͰ years. Crop pollination effectiveness

is strongly linked to the traits of crop pollinating species, in general a higher

functional diversity results in a higher quality pollination and yield (Hoehn et al.

ͲͰͰ͸; Winfree & Kremen ͲͰͰ͹). Overall, traits represent an important tool to

classify and explain the response of highly diversewild bee communities globally

into patterns which can be linked to conservation and management strategies.

However, the variability of responses to LULC impacts of different traits

groups across varying geographic locations requires more studies look-

ing at howwild bee traits influencesobservedpatternsof distributionand

diversity. Therefore, we use wild bee traits to look at SDM model perfor-

mance, community assembly patterns and long-term changes in distribu-

tion.

Along the same line as functional traits, phylogenetic relationships be-

tween species can be used to group and simplify species and their responses to

different drivers. A phylogenetic relationship indicates the relative period in the

pastwere twospecies had the samecommonancestor, specieswhich shareamore

recent common ancestor are more closely related than species that share a com-

mon ancestor further in the past (Baum & Smith ͲͰͱͳ). For example the wild
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bee family Colletidae are more closely related to the Halictidae, common ances-

tor approximately ͹͵mya than the Andrenidae, common ancestor approximately

ͱͰ͵mya (see Fig ͱ.ͳ). Overall, however, very fewstudies have looked at howphylo-

genetic patterns of wild bees influences the impacts of LULC and climate drivers.

Looking at phylogenetic patterns may influence howwe view the threatened sta-

tus of bumblebee species (Vereecken ͲͰͱͷ), which is appropriate as thedecline in

bumblebeesglobally is notevenly spread acrossdifferent subgenera (Arbetmanet

al. ͲͰͱͷ). De Palma et al. (ͲͰͱͷ) additionally show that wild bee decline is more

extreme when outlined in terms of phylogenetic diversity than simply species

diversity. These studies show that phylogenetic diversity and relatedness could

be key measurements to help frame and understand the diversity and distribu-

tion patterns of wild bees. Therefore, as the use of traits and trait based metrics

have becomemore apparent in the literature so too has the need formore studies

that link diversity and distribution of wild bees to phylogenetic measurements.

Along with multiple other factors, in chapter ʹ we use a phylogenetic dis-

tance matrix for ͲͰʹ wild bees to provide preliminary evidence for how

habitat filtering in adiverse communityof wild bees is affect by thephylo-

genetic relationship between species. Wild bee diversity is vast and there is

almost certainly not a one size fits all explanation of their relationshipwith LULC

and climate effects. However, being able to simplify and represent these relation-

ships based on traits or phylogenetics provides important knowledge which can

be used to better conserve wild bees.

1.3.5 Conservation of Wild Bees

The conservation and management of wild bees is a necessity given the observed

declines and the strongly anthropogenic nature of the drivers of this decline.

However, due to the largediversity inwild bee species globally, there is unlikely to

be aone size fits all approach to their conservation. Conservation initiatives need

to incorporate knowledge as to how the variety of wild bee species respond to the

different drivers of decline and diversity. Therefore, there is a huge variety in

the potential methods for conserving wild bee diversity (Brown & Paxton ͲͰͰ͹;

Winfree ͲͰͱͰ). One of the most direct approaches to wild bee conservation is

formally protecting species classified as threatened (Winfree ͲͰͱͰ). An example



͵.ͷ. Wild Bees ʹͱ

of this is seven species of Hylaeus bees and the rusty patched bumblebee (B. affi-

nus) in the USwhichwere added to the list of endangered US species in ͲͰͱͶ and

ͲͰͱͷ, ensuring their protection (Guertin ͲͰͱͶ). However, insect protection is in-

credibly low, globally compared toother animal groups and the expected number

of vulnerable insects does not coincidewith global conservation of insect species

(Black et al. ͲͰͰͱ). Furthermore, this method suffers from the fact that for over

͵Ͱ% of wild bee species in Europe and for far more globally there is not enough

evidence available to make informed decisions on their threatened status (Nieto

et al. ͲͰͱʹ).

A more complete and achievable strategy for wild bee conservation is at

the community level, specifically attempting to restore wild bee habitat to max-

imize diversity and abundance. In general this method has most often been ap-

plied in an agricultural context, where bees provide important services (Winfree

ͲͰͱͰ; Garibaldi et al. ͲͰͱͷ). Habitat restoration specifically involves restoring

floral and nesting resources required by wild bee species. This involves detailed

knowledge on the necessary resources for the wild bee community that needs to

be restored in the landscape. Due to the fact thatmany floral restoration projects

are focused on agricultural areas (Winfree ͲͰͱͰ), this is likely to emphasize the

conservation of generalist species, which can be sustained with a relatively low

species richness of plants (Carvell et al. ͲͰͰͶ; Winfree ͲͰͱͰ).

In many countries worldwide, agriculture is the dominant form of land

use. Therefore improving agricultural practices and the surrounding landscape

can have a positive influence on wild bees. A shift to less intensive farming prac-

tices should improve wild bee abundance and richness even without improve-

ments made to the surrounding landscape (Carrié et al. ͲͰͱͷ). Organic farming

alone showed benefits to overall species richness of solitary wild bees whereas

small scale farming practices were necessary to improve bumblebee richness in

wheat fields in Central Germany (Happe et al. ͲͰͱ͸). However, these impacts

will be improved upon with landscape level changes to increase wild bee habi-

tat. The restoration of hedgerows was shown to have higher rates of persistence

and species colonization in intensive agricultural areas and increased native bee

diversity in adjacent fields in California (Morandin & Kremen ͲͰͱͳ; Meyer et al.

ͲͰͱͷ).
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A specific method of wild bee conservation in agricultural landscapes is

the use of agri-environmental schemes (AES) inwhich land owners are rewarded

for providing biodiversity conservation measures on their land. One of the most

common forms of AES is the restoration of floral resources in the form of floral

strips alongside agricultural habitats. The benefits of floral strips for restoring

wild bee diversity and abundance vary depending on the local landscape con-

text, in particular how much floral richness was increased in the local landscape

with the introduction of the floral strips (Scheper et al. ͲͰͱ͵). In general the

effectiveness of AES seems to occur in heterogeneous landscapes with moderate

land use intensity and the presence of some semi-natural habitat elements com-

pared to already diverse habitats with large amount of semi-natural and natural

habitat or highly intensive landscapes with no nearby source populations (Kleijn

et al. ͲͰͱͱ). Additionally, AES do not seem to provide the necessary resources or

beapplied in the landscapewith thegreatest need, to benefit themost threatened

wild bee species (Kleijn & Sutherland ͲͰͰͳ; Kleijn et al. ͲͰͰͶ).

The importance of forested areas for conserving wild bees is not as well

studied, as the needs of forest bees are not as well-known as the needs of other

wild bee species (Winfree ͲͰͱͰ). However, certain wild bee species rely on forest

resources in at least part of their life-cycle, for example Euglossine bees in Brazil

(Roubik ͲͰͰͱ). Ensuring themaintenance of diverse floral resources that require

forested areas will in turn protect and manage the wild bee species that require

these resources.

Alongside floral resources, restoration of nesting sites is a an equally im-

portant conservationmeasure. However, the knowledge of the nesting resources

required by most species is unknown or at least only partially understood. Wild

bee hotels for above ground bees are often used in agricultural and urban areas

to provide nesting resources, but they only benefit a small subset of total wild

bee diversity and may expose wild bees to an increased pathogen and pest risk

(MacIvor & Packer ͲͰͱ͵). The restoration and maintenance of soils and unman-

aged land is required for the many belowground nesting bees but overall the soil
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requirements for wild bees vary markedly (Cane ͱ͹͹ͱ). Additionally, forest frag-

mentation can havevarying impacts ondifferentwild bee assemblages, for exam-

ple, stingless bees͹ which require tree cavities to nest are unlikely to be found far

from substantial forest areas (Brosi et al. ͲͰͰͷ). Restoration of habitats is possi-

ble, but it is not a simple fix and improvements to the landscape can be followed

by a lag of ʹ-͸ years before bee populations respond (Iles et al. ͲͰͱ͸). Therefore,

preserving already diverse wild bee habitat is a must.

Natural habitats with high importance and special wild bee communities

with high conservation value are rarely managed or protected with the explicit

goal of protecting wild bees. Throughout this thesis we specifically set out

todiscuss the resultsobtained in thecontextof wild beeconservationand

management. In the context of bee decline this thesis will have greater impact

if the results obtained can be distilled into conclusions than can be disseminated

and understood by interested parties in the effort to ensure the protection and

conservation of wild bee species.

1.4 Thesis outline
Pollinator decline is a high profile issue globally, and threats faced by wild bees

are likely to persist in the future and declines are expected to continue (Brown

et al. ͲͰͱͶ). As discussed above, in this thesis we aim to fill a number of gaps

related to understanding wild bee diversity, distribution and declines. The gen-

eral objective of this thesis is to examine how land use/land cover (LULC)

and climate conditions impact the diversity and distribution patterns of

wild bee species at different spatial and temporal scales. Specifically we

aim to (ͱ) test the efficacy of using statistical modelling tools to under-

stand wild bee distributions in the present and future and suggest how to

improve these methods; (Ͳ) provide novel understanding of how wild bee

community assemblages are structured at large geographical scales and

whatdrives thisstructure; and (ͳ)quantifyandcomparehowpast, present,

and future changes to wild bee and specifically, bumblebee distributions

͹Stingless bees refer to species in the tribeMeliponini, they are highly social species usually found
in tropical and subtropical areas globally and produce honey (Michener ͲͰͰͰ).
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areexpected tobe influencedbyLULCandclimatechanges (Fig ͱ.ͱͰ). These

aims are tackled throughout the different chapters of the thesis at different spa-

tial and temporal scales (Fig ͱ.ͱͱ). Firstly, in chapter Ͳ, material andmethods,

we describe in detail the different data sources and methodologies used in the

scientific chapters. The document is then split into four chapters representing

separate scientific studies, each with a clear objective directly related to the gen-

eral objective (Table ͱ.ͱ), followed by a general discussion.

• Chapter ͳ. Quantify the performance of SDMswhenmodelling wild

bee distributions.

In this chapter we use SDMs to model the distribution of wild bee species

in the Netherlands based on their climate and LULC preferences with the spe-

cific aim to see how model performance depends on landscape context and the

functional traits of the species modelled. We use independent collections from

stable agricultural habitats (orchards) and unstable agricultural habitats (arable

fields) to test the performance of the SDMs, which is rarely done for biodiversity

studies (Elith & Leathwick ͲͰͰ͹; Newbold et al. ͲͰͱͰ). Weexamine how habitat

suitability values from themodel projections depend on the LULC contextwhere

a species was collected and the functional group to which that species belongs.

This study answers the question of whether LULC and climate species distribu-

tion models accurately model the Dutch wild bee fauna and if that accuracy is

higher for particular trait groups and in stable or less stable agricultural habitats.

Chapter ͳ looks at individual species distributions, however, wild bee spe-

cies are notdistributed independently of eachother and formassemblageswhere

certain species are more likely to be found together than others. The role of co-

occurrence in structuring assemblagedistribution is rarelyexplored forother taxa

and has never been explored forwild bees (Wisz et al. ͲͰͱͲ). Therefore, in chap-

ter ʹ we look at the community structure of the entire wild bee population of the

Netherlands.

• Chapter ʹ. Quantify and visualize the influence of habitat filtering

and co-occurrence when modelling the assembly patterns of wild
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bee species.

In this chapter we use joint species distribution models to examine how

habitat filtering based on high resolution LULC and climate conditions inter-

acts with the co-occurrence of wild bee species. Biotic interactions are rarely

accounted for in SDMs. For bees only Giannini et al. (ͲͰͱͳ) has modelled bee

parasites and bee hosts together, which showed improved model performance.

Therefore, chapter ʹ represents a novel look at how co-occurrence among wild

bees influences their distribution patterns. Furthermore, we examine whether

these patterns are phylogenetically related and produce spatially explicitwild bee

assemblage maps which can be used in wild bee conservation.

Chapter ͳ and ʹ show a clear importance of habitat filtering in individual

species distribution and assemblage patterns. Therefore, in chapter ͵ we expand

our focus to showhowLULC changewill influence projected bumblebeedeclines

under a changing climate.

• Chapter ͵. Quantify the influence of dynamic land use/land cover

projections on the projected distributional change of bumblebees

under climate change

Chapter ͵ represents an increase in spatial and temporal scale and exam-

ines the interactionbetweenprojected LULCandclimatechangeon themodelled

distribution patterns of bumblebee at the European and Belgium, Netherlands

and Luxembourg (BENELUX) scale. We examine and quantify the range change

and range shiftsof ʹ͸ European bumblebeeswhenmodelledwith (ͱ) onlyclimate

change covariates, (Ͳ) climate change and static LULC covariates and (ͳ) climate

change and dynamic LULC covariates. Chapter ͵ represents a novel approach

to examining the effects of global change on wild bees, as LULC change projec-

tions are rarely used in biodiversity studies and never with bees. Additionally,

chapter ͵ examines the interaction between two of the main drivers of wild bee

decline, climate and LULC change, which are often examined in isolation (Potts

et al. ͲͰͱͰ).

modelled future changes to bumblebees represent an important tool for

conservation and management. However, observed changes in the future, at the
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large scale are less effective without a comparison to actual observed changes

in bumblebee distribution and diversity patterns at the finer scale. Therefore,

in chapter Ͷ we present a case study showing how measured climate and LULC

changes over ͱͱ͵ years have affected a mountain plant and pollinator community

in a high diversity area of the Pyrenees.

• Chapter Ͷ. Measure a specific case of how the composition and dis-

tributionof awild pollinatorgrouphas changedover timedue to the

influence of LULC and climate changes.

We quantify the range and diversity changes in bumblebees, butterflies

and their host plants surveyed in ͱ͸͸͹ and ͲͰͰ͵-ͰͶ (ͱͱ͵ year period), with par-

ticularly focusonelevation shifts that haveoccurred in thealpine habitat. Similar

studies often focus on butterflies alone and do not encompass such a large time

difference between surveys (Wilson et al. ͲͰͰͷ; Chen et al. ͲͰͰ͹). Chapter

Ͷ provides context into the impacts that climate and LULC change have already

had on biodiversity patterns. Altogether these four chapters represent important

insights into understanding how wild bee distributions patterns are influenced

by LULC and climate at varying scales, and how this interacts with ecological dif-

ferences between species. Moreover, we explore how we can best measure this

influence and how this information can informwild bee conservation measures.

Inchapterͷ, thegeneraldiscussion,wepresentasynthesisof the results

from the different chapters. We discuss the results in terms of their relevance to

species distribution modelling and the distribution and diversity of wild bees,

with a focus on the knowledge gaps thatwe have outlined here. Furthermore, we

discuss the implications of the results with a focus on their significance to wild

bee research and conservation. We finally broaden the focus of the discussion

to future research prospects within the context of modelling wild bee distribu-

tion and diversity patterns, before summarizing the conclusions of the thesis as

a whole.
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TĆćđĊ ͱ.ͱ: Thesis overview and principle results: How do land use/land (LULC) cover and climate conditions
affect the diversity and distribution patterns of wild bee species at different spatial and temporal scales?
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FĎČ. ͱ.ͱͰ: Thesis outline
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FĎČ. ͱ.ͱͱ: Summary of spatial and temporal scales, main themes and main results of thesis.
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2.1 BELBEES
As mentioned earlier, this thesis is part of the federal project BELBEES (”Multid-

siciplinary assessment of BELgian wild bee decline to adapt mitigation manage-

ment policy”, www.belbees.be; Fig Ͳ.ͱ). The BELBEES project is a conservation

research project funded by the Federal Science Policy (BELSPO; BR / ͱͳͲ / Aͱ /

BELBEES)with theobjective toestimate thedeclineof wild bees in Belgiumusing

a multidisciplinary approach in order to adapt conservation policy. This project

brings together several partners: theUniversityof Mons (Pierre Rasmont, project

coordinator), Royal Institute of Natural Sciences of Belgium (Jean-Luc Boevé),

Ghent University ͱ (Dirk de Graaf), University of Namur (Nicolas Dendoncker),

University of Liège Gembloux Agro Bio-Tech (Marc Dufrêne), Ghent University

Ͳ (Guy Smagghe), and naturalist associations Natagora (Wallonia) and Natuur-

punt (Flanders). The goals of the BELBEES project are to (ͱ) collect all old data

available indatabasesandcollections to identify thearea thathavebeenwell sam-

pled in the past. In the same places, new wild bee specimens will be collected in

the wild to be compared to old specimens; (Ͳ) identify the role of the five poten-

tial drivers by analysing specimens (diseases, genetics, pesticides), pollen load

(food resource, pesticides) and biophysical environment (food resource, habitat

structure, climate change); and (ͳ) analyse the respective roles and interactions

between the five drivers through meta-analyses, and to model wild bee distribu-

tion dynamics with a part of the drivers (land use and climate change). Thework

presented in this thesis focuses on the third goal, in particular “to model wild bee

distribution dynamics with a part of the drivers (land use and climate change)”.

2.2 Data Overview
Throughout this thesis we rely on data in a variety of formats and from a variety

of sources to test our objectives. Broadly these data can bedefined as spatially ex-

plicit species occurrence data and representations of environmental conditions.

Specifically, thework presented here requires occurrence datawith known local-

ity information. Ideally, these data should have the locality recorded in the form

of GPS coordinates, so that records can bemapped at a high resolution. The land
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FĎČ. Ͳ.ͱ: BELBEES Logo

use and climate data is also available in the form of spatially explicit maps. De-

pending on the source thesemaps can either be in raster format or vector format.

Raster data consists of a matrix of grid cells each with a particular value. These

values can either be thematic, i.e. representing a particular LULC, or continuous,

i.e. representing changing temperatures across a landscape. The advantages of

using raster-based maps is that they represent a simple and easily interpretable

structure using spatial and statistical analyses, they are the best format to rep-

resent continuous data such as temperature and rainfall and they can easily be

combined with other data sources when aggregating (ESRI ͲͰͱͳ). The disadvan-

tages of using rasters to store data are that restrictions on cell dimensions can

lead to spatial inaccuracies and a loss of precision when aggregating data, they

can also become very large datasets and take a lot of time and computer power

to analyse (ESRI ͲͰͱͳ). The other format of LULC and climate data that we use

in this thesis is vector data. Vector data is also a coordinate based mapping for-

matand it representsgeographical informationaseitherpoints, linesorpolygons.

Theadvantagesof using vectormaps are that thedata can bepresented at its orig-

inal resolution and with accurate representations of geographic locations (ESRI

ͲͰͱͳ). The disadvantages of using vector maps are that they cannot accurately

present continuous data, high resolution vectors can be processing intensive and

within polygons data cannot be filtered (ESRI ͲͰͱͳ). We use a combination of

both formats to maximize the quality of the environmental data. The other data

we use in the thesis is ecological and genetic and comes from expert opinion and
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literature resources as well as separate analysis (see sections Ͳ.Ͳ.ʹ and Ͳ.Ͳ.͵).

2.2.1 Wild Bee Occurrence Data

The distribution patterns of wild bees analysed in this thesis are estimated from

wild bee occurrence data collected from a variety of sources. These sources in-

clude museum collection data, validated and verified citizen science data, and

data systematically sampled as part of scientific research projects. Museum col-

lection data represents a high-quality source of specimens often going far back

in time and with high taxonomic reliability (Newbold ͲͰͱͰ). Museum collec-

tion data is often the only source of historical wild pollinator occurrences on

which trends of diversity and distribution can be measured over long time pe-

riods (Bartomeus et al. ͲͰͱ͸). However, there are a number of biases associated

with museum occurrences, these include spatial and temporal biases, biases to-

wards certain very rare or very common specimens over others, and biases due to

unknown sampling effort (Ponder et al. ͲͰͰͱ; Graham et al. ͲͰͰʹ; Boakes et al.

ͲͰͱͰ). Citizen science data can also be a great source of widespread and numer-

ous species occurrence data. The involvement of a large number of individuals

means that far more records can be collected in a shorter period of time, than

it would take a skilled amateur or expert researcher (van der Wal et al. ͲͰͱ͵).

The greatest difficulty with citizen science records is ensuring their accuracy tax-

onomically and spatially. This requires expert knowledge to be used to verify

and validate records of citizen scientists. The increase in high-quality portable

photographic equipment makes this job easier and enhances the value of citizen

science records (Suzuki-Ohno et al. ͲͰͱͷ). Data collected as part of systematic

scientific studies is the highest quality data available often involving repeated

visits to the same areas to sample the same community using the same methods.

Unfortunately these data are also the most costly requiring considerable time,

energy and greater monetary costs.

The wild bee and bumblebee collection data used throughout the thesis

have been collated from a range of sources and have been made available to use

through intensive long term database management. The wild bee data of the

Netherlands used in chapters ͳ and ʹ was obtained from a database containing

historical museum occurrences, citizen science data, and scientific collections
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FĎČ. Ͳ.Ͳ: European Invertebrate Survey (EIS) Wild Bee Database for the Nether-
lands. (a) Total number of species collected per year between ͱ͸Ͷ͵ and ͲͰͱͶ. (b) Total

number of occurrence records collected per year between ͱ͸Ͷ͵ and ͲͰͱͶ.

(Fig Ͳ.Ͳ). This database is managed by The European Invertebrate Survey Ken-

niscentrum Insecten (EIS; https://www.eis-nederland.nl/). The database

contains a total of Ͳʹ͵ ͷ͵͵ collection records made between ͱ͸ͰͰ and ͲͰͱͶ for

a total of ͳͶͲ species. During this time period eleven species have been found

only once, and the species with most recorded occurrences, ͱͰ ͹ʹͶ, is Bombus

pascuorum. The highest yearly species richness was recorded in the ͱ͹͵Ͱs (Fig

Ͳ.Ͳa), but the greatest number of occurrence records have been in recent years,

ͲͰͱͶ contained the most records for a single year (Fig Ͳ.Ͳb). A large part of the

https://www.eis-nederland.nl/
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data has been published in ‘de Nederlandse bijen’ by Peeters et al. (ͲͰͱͲ).

In chapter ͳ we build species distributions models using a subset of the

data from ͱ͹͹Ͱuntil ͲͰͱͳ. To limit thechanceof over-fitting thedataand because

wewere interested in species likely to be foundwhendoing independent surveys,

we limited the number the species modelled to those with at least ͳͰ records

(Fig Ͳ.ͳ). Therefore, a total ͱ͹ʹ species of Ͳ͵ genera remained. We also collated

collection records of wild bees from ͷͳ agricultural locations which we used as

an independent dataset to test model performance, in total ͵Ͳ unique wild bee

species were collected from these ͷͳ locations (Fig Ͳ.ͳa).

FĎČ. Ͳ.ͳ: Geographic distribution of wild bee occurrence data in the Netherlands. (a) Wild bee occurrence
records used in Chapter ͳ, collected between ͱ͹͹Ͱ and ͲͰͱͳ for species with aminimumof ͳͰ records (ͱ͹ͳ species).
Orange points represent the occurrence records. Black squares refer to ͷͳ locations where independent collections
weremadebywhich to test SDMperformance. (b)Wild beeoccurrencerecordsused inChapterʹ, collected between
ͲͰͰ͵-ͲͰͱͶ (ͳͰʹ species). Orange points represent the occurrence records. Light green squares represent ͱͰ x ͱͰ
km areas where high-quality consistent sampling has occurred within this time frame. Orange points represent the

occurrence records.

In chapter ʹ we used the same data source to model wild bee distributions

in the Netherlands (Fig Ͳ.ͳb). However, in this case we were interested in co-

occurrence patterns between species, therefore we decreased the time period of

occurrence records (ͲͰͰ͵-ͲͰͱͶ) and limited ouranalysis to specieswith at least ͵

records. A total of ͲͰʹ speciesweremodelled. In both chapters there is sufficient

wild beeoccurrencedata so that themajorityof theNetherlands is included. Cer-

tain biases exist in the South and towards coastal areas, but overall the collection
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records are relatively evenly spread (Fig Ͳ.ͳ).

FĎČ. Ͳ.ʹ: Geographic distribution of bumblebee species in European areas between ͱ͹ͷͰ and
ͲͰͰͰ as defined by future ALARM scenarios of Land Use Change (Green areas). Number of
records per country after removing duplicate species records at the same location. AU: Austria; BE:
Belgium; DA: Denmark; EZ: Czech Republic; FI: Finland; FR: France; GM: Germany; GR: Greece; HU:
Hungary; IT: Italy; LG: Latvia; LH: Lithuania; LO: Slovakia; LU: Luxembourg; NL: Netherlands; NO:

Norway; PL: Poland; PO: Portugal; SP: Spain; SW: Sweden; SZ: Switzerland; UK: United Kingdom.

In chapters ͵ and Ͷ we focused our analysis on a subset of wild bees, the

bumblebees (Bombus spp.). Firstly, in chapter ͵ we used bumblebee collection

records collated as part of the EU FPͷ project STEP (Potts et al. ͲͰͱͱ) which is

aggregated and available to view on the Atlas Hymenoptera webpage (Fig Ͳ.ʹ;

Rasmont & Iserbyt ͲͰͱͳ). The STEP project was created with the general aim “to

assess the current status and trends of pollinators in Europe, quantify the relative
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importance of various drivers and impacts of change, identify relevant mitigation

strategies and policy instruments, and disseminate this to a wide range of stake-

holders” (Potts et al. ͲͰͱͱ). A result of this projectwas the collation and organiza-

tionof historical wild bee collections frommany European countries into a single

database. Weextracted the bumblebeedataused in chapter ͵ from this database.

Due to the availability of future LULC change projections our total study area in-

cluded ͲͲ European countries. These ͲͲ countries were chosen as they were

included in the geographical range of the Assessing LArge-scale environmental

Risks with tested Methods (ALARM) Scenarios (Spangenberg et al. ͲͰͱͲ; Fig

Ͳ.ʹ). We tried to ensure that we could get as close to the total climatic range for

all bumblebee species to ensure that the responses to changing conditions were

accurate and within the tolerances of each species. The occurrence records used

were collected between ͱ͹ͷͰ and ͲͰͰͰ to ensure that therewere enough records

per species and tomatch the time frame forwhich the climate datawas recorded.

Overall, within these spatial and temporal restrictions, Ͷͳ wild bee species were

found. For the final analysis we limited the database to the ʹ͸ species with a

minimum of ͵Ͱ unique occurrences (see Table S͵.ͱ in supporting information

chapter ͵). For each of the ʹ͸ species we aggregated their collection records to ʹ

different spatial grid resolutions used in themodelling process; 5× 5 km, 10× 10
km, 20 × 20 km and 50 × 50 km. As with the Dutch wild bee occurrence data, B.

pascuorum (ͱͶ ͸͹͹ observations) was the most abundant across Europe.

The bumblebee data show a clear bias towards certain areas, in particu-

lar the United Kingdom has far more records than any other country, Northern

Europe is over represented and the Alps and Pyrenees mountain ranges are heav-

ily sampled compared to other locations (Fig Ͳ.ʹ). In the case of the bumble-

bee data, because there is unevenness in the sampling, it is more likely that the

species will have a number of records in close proximity and this will introduce

a spatial auto correlation effect that does not represent the true distribution of

the species. Positive spatial autocorrelation occurs when a value is more likely to

occur close in space to other similar values. To deal with the potential for spatial-

auto correlation bias in the occurrence records we used a method of re-sampling

tominimize the effect of aggregations of records in particular areas. Thismethod

was adapted from Broennimann et al. (ͲͰͱͲ). For each species at the different
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spatial grid resolutions we (ͱ) took a random grid cell occurrence as the starting

location; (Ͳ) removed all occurrences of the same species in adjacent grids cells;

(ͳ) reselected a random grid cell occurrence; (ʹ) repeated the process of remov-

ing adjacent grid cells. This process was continued until grid cell occurrences

did not have adjacent occurrence of the same species. The re-sampling process

resulted in a more even range of occurrences and limited the impact of potential

spatial auto-correlation effects.

2.2.2 Land Use Data

Netherlands Scale

The Dutch rural land-use file version six (LGN Ͷ) file is a raster file with a resolu-

tion of 25 × 25 m. The file represents land use in the Netherlands for the years

ͲͰͰͷ/ͲͰͰ͸. The theme and geometry of TOPͱͰNL vector forms the basis for

LGNͶ for the majority of classes. Moreover, satellite images, aerial photographs

and spoil and nature maps were also used (Hazeu et al. ͲͰͱͰ). In total ͳ͹ differ-

ent typesof land usearedistinguished in the rasterfile. TheLGNͶ rasterwasused

in chapter ͳ where the land use classes were reclassified and aggregated together

to form ͹ land use types used tomodel wild bee distribution patterns (Table Ͳ.ͱ).

These ͹ land use classes were then converted into percentage cover per 1 × 1 km

grid cells. Model selection resulted in a final selection of ͵ land use classes used

in the final SDM: Percentage Cover Agriculture, Coniferous Forest, Moors/Peats,

Sandy Soils, and Urban.

TĆćđĊ Ͳ.ͱ: Reclassification tableof theoriginal LGNͶ land usemap to the ͹most
general landuseclasses in theNetherlands. Land use type translated fromDutch.

Number Original land use type Reclassified land use type

ͱ Managed grassland Grassland

Ͳ Maize Agriculture

ͳ Potatoes Agriculture

ʹ Beets Agriculture

͵ Cereals Agriculture

Ͷ Other crops Agriculture
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Table Ͳ.ͱ continued from previous page

ͷ Greenhouses Urban

͸ Orchards Agriculture

͹ Flower bulbs Agriculture

ͱͰ Deciduous forest Deciduous forest

ͱͱ Coniferous forest Coniferous forest

ͱͲ Fresh water Not available

ͱͳ Salt water Not available

ͱʹ Construction in primary urban area Urban

ͱ͵ Construction in secondary urban area Urban

ͱͶ Primary forest in built-up areas Mixed forest

ͱͷ Secondary forest in built-up areas Mixed forest

ͱ͸ Grass in primary urban area Grassland

ͱ͹ Bare soil in primary urban area Urban

ͲͰ Roads and railways Urban

Ͳͱ Buildings in the outlying Urban

ͲͲ Grass in secondary urban area Grassland

Ͳͳ Salt marshes Swamps

Ͳʹ Open sandy coastal area Sandy soil vegetation

Ͳ͵ Dunes with low vegetation (<ͱm) Sandy soil vegetation

ͲͶ Dunes with high vegetation (>ͱm) Sandy soil vegetation

Ͳͷ Dune heath Sandy soil vegetation

Ͳ͸ Open drifting sand and / or river sand Sandy soil vegetation

Ͳ͹ Heather Moors/Peat

ͳͰ Moderately grazed heath Moors/Peat

ͳͱ Strongly grazed heath Moors/Peat

ͳͲ Moors/Peat Moors/Peat

ͳͳ Forest bog area Mixed forest

ͳʹ Other swamp vegetation Swamps

ͳ͵ Reed vegetation Swamps

ͳͶ Forest in wetland Mixed forest

ͳͷ Natural grassland Grassland

ͳ͸ Nurseries Agriculture
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Table Ͳ.ͱ continued from previous page

ͳ͹ Fruit farms Agriculture

The TOPͱͰNL is a nationwide vector of the topography of the Nether-

lands. TOPͱͰNL originated from aerial photographs, panoramic photographs,

field recordings and information fromexternal sources (Kadaster ͲͰͱͲ). Weused

the TOPͱͰNL vector in chapter ͳ to obtain measurements of different linear fea-

tures in the Dutch landscape (Fig Ͳ.͵).

FĎČ. Ͳ.͵: Anexampleof linear features available from theTOPͱͰNLVector.
Blue: water features, green: roads and black: train tracks.

In chapter ʹ we used land use classes for the Netherlands with far higher

thematic resolution. Weutilized three separate sources to obtain a detailed over-

view of LULC in the Netherlands. The three sources can broadly be described as

nature, agricultureandurban. Thenaturemapwasavectorof nature typesacross

the Netherlands called the Index Natuur en Landschap (INL; Inter Provinciaal
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Overleg ͲͰͱͶ). The INLwas produced with landscape management in mind and

themap is split into types of nature (ͱͷ)with each nature type having a numberof

possible management types, ʹ͹ in total. Each of these ʹ͹ land use management

types was then aggregated into ͷ broader categories of nature land cover types to

model wild bee habitat filtering (Table Ͳ.Ͳ). These ͷ land use classes were:

ͱ. Water

Ͳ. Heathland

ͳ. Semi-natural woodland

ʹ. Production woodland

͵. Marsh and swampland

Ͷ. Semi-natural grassland

ͷ. Dune areas

TĆćđĊ Ͳ.Ͳ: Reclassification tableof the IndexNatuuren Landschap (INL) to ͷ natural land
cover classes in the Netherlands. Land cover type translated into English from the original

Dutch (Inter Provinciaal Overleg ͲͰͱͶ).

Code Original Management Type English Management Type Aggregation

NͰͱ.Ͱͱ Zee en wad Sea and mudflats Water

NͰͱ.ͰͲ Duin- en kwelderlandschap Dune and salt marsh landscape Peat/Marshland

NͰͱ.Ͱͳ Rivier- en moeraslandschap River and marsh landscape Peat/Marshland

NͰͱ.Ͱʹ Zand- en kalklandschap Sand and lime landscape NaturalGrassland

NͰͲ.Ͱͱ Rivieren Rivers Water

NͰͳ.Ͱͱ Beek en bron Brook and water source Water

NͰʹ.Ͱͱ Kranswierwater Algae fields Water

NͰʹ.ͰͲ Zoete plas Sweet puddle Water

NͰʹ.Ͱͳ Brak water Brackish water Water

NͰʹ.Ͱʹ Afgesloten zeearm Closed sea arm Water

NͰ͵.Ͱͱ Moeras Swamp Peat/Marshland

NͰ͵.ͰͲ Gemaaid rietland Mowed reed Peat/Marshland

NͰͶ.Ͱͱ Veenmosrietland en moerasheide Sphagnum meadows and marshland Peat/Marshland

NͰͶ.ͰͲ Trilveen Floating mat peat Peat/Marshland

NͰͶ.Ͱͳ Hoogveen Moors Peat/Marshland

NͰͶ.Ͱʹ Vochtige heide Moist heather Heathland

NͰͶ.Ͱ͵ Zwakgebufferd ven Weak buffered bog Peat/Marshland

NͰͶ.ͰͶ Zuur ven of hoogveenven Acid bog or high peat Peat/Marshland

NͰͷ.Ͱͱ Droge heide Dry heather Heathland

NͰͷ.ͰͲ Zandverstuiving Sand drift Heathland

NͰ͸.Ͱͱ Strand en embryonaal duin Beach and embryonic dune Dune
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Table Ͳ.Ͳ continued from previous page

NͰ͸.ͰͲ Open duin Open dune Dune

NͰ͸.Ͱͳ Vochtige duinvallei Moist dune valley Dune

NͰ͸.Ͱʹ Duinheide Heathland dune Heathland

NͰ͹.Ͱͱ Schor of kwelder Salt marsh Peat/Marshland

NͱͰ.Ͱͱ Nat schraalland Wet nutrient poor grassland NaturalGrassland

NͱͰ.ͰͲ Vochtig hooiland Moist meadowland NaturalGrassland

Nͱͱ.Ͱͱ Droog schraalland Dry nutrient poor grassland NaturalGrassland

NͱͲ.Ͱͱ Bloemdijk Flower embankment NaturalGrassland

NͱͲ.ͰͲ Kruiden- en faunarijk grasland Herbs and fauna rich grassland NaturalGrassland

NͱͲ.Ͱͳ Glanshaverhooiland Ryegrass meadow NaturalGrassland

NͱͲ.Ͱʹ Zilt- en overstromingsgrasland Silt and flood grassland NaturalGrassland

NͱͲ.Ͱ͵ Kruiden- en faunarijke akker Herbs and fauna rich fields NaturalGrassland

NͱͲ.ͰͶ Ruigteveld Rough field NaturalGrassland

Nͱͳ.Ͱͱ Vochtig weidevogelgrasland Wet meadow bird grassland NaturalGrassland

Nͱͳ.ͰͲ Wintergastenweide Winter migrant bird grassland NaturalGrassland

Nͱʹ.Ͱͱ Rivier- en beekbegeleidend bos River and stream accompanying forest NaturalForest

Nͱʹ.ͰͲ Hoog- en laagveenbos High and low peat forest NaturalForest

Nͱʹ.Ͱͳ Haagbeuken- en essenbos Hornbeam and ash forest NaturalForest

Nͱ͵.Ͱͱ Duinbos Dune forest NaturalForest

Nͱ͵.ͰͲ Dennen-, eiken-, en beukenbos Pine, oak, and beech forest NaturalForest

NͱͶ.Ͱͳ Droog bos met productie Dry forest with production ProductionForest

NͱͶ.Ͱʹ Vochtig bos met productie Moist forest with production ProductionForest

Nͱͷ.Ͱͱ Vochtig hakhout en middenbos Moist chopping wood and middle forest ProductionForest

Nͱͷ.ͰͲ Drooghakhout Dry chestnut NaturalForest

Nͱͷ.Ͱͳ Park- en stinzenbos Park and estate forests NaturalForest

Nͱͷ.Ͱʹ Eendenkooi Duck decoy Water

Nͱͷ.Ͱ͵ Wilgengriend Willow forest NaturalForest

Nͱͷ.ͰͶ Vochtig en hellinghakhout Moist and slope chopping wood NaturalForest

The agricultural land use information in chapter ʹ comes from the Basis-

registratie Gewaspercelen (BRP, EZK ͲͰͱ͵). All users of agricultural parcels in

the Netherlands must record, annually, the type of crop which has been grown

on a particular parcel of land. The BRP is the spatially-explicit vector represen-

tation of this information and contains the locations of all agricultural parcels in

the Netherlands including the crops grown each year. We used the BRP to create

three classes used to model wild bee habitat filtering.We reclassified them using

expert opinion and literature reviews. A decision was made as to whether they

flower and if they do flower, do they reward visiting pollinators. Of the ͵Ͷ crop

types ͲͶ were classified as potential food sources for bees which corresponds to

ͱʹ% of the total number of crop parcels in the Netherlands. Furthermore, we

classified all areas which are defined as agricultural grasslands.
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Finally, urban and other land use information not obtained from theprevi-

ous two fileswas extracted from the Bestand Bodemgebruik Productbeschrijving

(BBG; CBS ͲͰͱͲ). The BBG is a vector filewhich represents functional land use in

the Netherlands with ͳͷ land use types and is recorded from aerial photographs,

map material and other digital sources. In particular the BBG separates land use

types found in urban areas. The BBG covers the entirety of the Netherlands. We

aggregated the Urban land use classes of the BBG into two classes, urban gray

and urban green. Urban green refers to recreational areas and gardens within an

urban setting. However, we observed that, when aggregated to 10 × 10 km grid

cells, both urban grey and greenwere strongly positively correlated and therefore

could not be adequately separated in their ecological significance. We therefore

made the decision to aggregate them together in a single urban class.

To calculate the covariates needed to model wild bee habitat filtering we

first needed to join all three sources (nature, agriculture and urban) together and

deal with any spatial mismatches and/or overlaps. To do this we ranked each of

the three sources to produce a hierarchy whereby the highest ranked mapwould

take precedence in case of overlap and disagreement in classes. The ranking

included the nature map first, as we believed that the nature map would most

accurately represent the distinctions between important LULC classes for bees

and it was the most recent of the three files. Secondly, we chose the agricultural

parcel map because it has a higher accuracy and greater focus than the urban

map. The urban map is also the oldest of the three sources. Using ArcGIS soft-

ware we merged the three maps together removing overlapping areas based on

the aforementioned hierarchy (ESRI ͲͰͱͳ). Themerged mapwas then converted

into a ͱͰ × ͱͰ m raster. Each of the LULC classes in the raster were then aggre-

gated as percentage cover measurements at a 10 × 10 km grid resolution. Twelve

classes remained of which ͱͰ (freshwater and saltwaterwere removed) were used

to model wild bee habitat filtering and community assembly patterns in chapter

ʹ (Fig Ͳ.Ͷ).

European Scale

Corine land cover (CLC) is an inventory of LULC at the European scale produced

first in ͱ͹͹Ͱ and then again ͲͰͰͰ, ͲͰͰͶ and ͲͰͱͲ (EEA ͲͰͰͰ). The CLC is a



Ͷ.Ͷ. Data Overview Ͷ͵

FĎČ. Ͳ.Ͷ: Final map used in chapter ʹ to measure habitat filtering in wild bee
species. Aggregation of three sources, (ͱ) Index Natuur en Landschap (INL; Inter
Provinciaal Overleg ͲͰͱͶ); (Ͳ) Basisregistratie Gewaspercelen (BRP, EZK ͲͰͱ͵); and

(ͳ) Bestand Bodemgebruik Productbeschrijving (BBG; CBS ͲͰͱͲ).

raster with a resolution of 100 × 100 m. The CLC is bases on satellite images and

integration with existing geographic information systems (GIS). In chapter ͵ the

baseline LULC used for training the species distribution models is aggregated

and reclassified from the CLC ͲͰͰͰ. The baseline map (ͲͰͰͰ) was reclassified

to Ͷ classes and a 250× 250 mresolution tomatch the future projections of LULC

change:

ͱ. Settlement
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Ͳ. Arable

ͳ. Permanent crops

ʹ. Grassland

͵. Forest

Ͷ. Other

FĎČ. Ͳ.ͷ: ALARM scenarios of Land Use Change for ͲͰ͸Ͱ. (a) Baseline map from ag-
gregated ͲͰͰͰ Corine Land Cover map. (b) Business as might be usual (BAMBU) land use
projection for ͲͰ͸Ͱ. (b) Business AsMight BeUsual (BAMBU) land use projection for ͲͰ͸Ͱ.
(c) GRowthApplied Strategy (GRAS) landuseprojection forͲͰ͸Ͱ. (d) Sustainable European

Development Goal (SEDG) land use projection for ͲͰ͸Ͱ.

From this baseline a set of future LULCchange scenarioswas created (Rou-

nsevell et al. ͲͰͰͶ; Spangenberg et al. ͲͰͱͲ). Three storyline, socio-economic,

scenarios were produced and included a business as might be usual scenario,

a liberal growth scenario and a more sustainable scenario (for more detail see
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methods in chapter ͵ and Spangenberg et al. ͲͰͱͲ). Simulated LULC changewas

undertaken by combining a variety of differentmodels, specifically econometric,

ecosystem, land use and climate models (Spangenberg et al. ͲͰͱͲ). The time-

frames of the different models ranged between ͲͰͰͰ and ͲͱͰͰ. The resulting

output consisted of land usemaps for ͲͰͲͰ, ͲͰ͵Ͱ and ͲͰ͸Ͱ for each of the three

scenarios. Each of these map outputs was downscaled to 250 × 250 m to match

the data from the present (Dendoncker et al. ͲͰͰͶ). We utilized the maps for

ͲͰ͵Ͱ and ͲͰ͸Ͱ for ͵ of the LULC classes, emitting ‘other’ because it is difficult to

ascribe ecological meaning to the variety of classes of which it is comprised (Fig

Ͳ.ͷ). To use in the SDMs each LULC class was aggregated to a percentage cover

raster at 5 × 5 km, 10 × 10 km, 20 × 20 km and 50 × 50 km grid resolutions.

The scenarios used in these analyses represent three different narratives

or storylines of LULC at the European scale. The storylines describe the poli-

cies, philosophies and instruments behind the scenarios. This information is

then used with quantitative data related to the economy, climate and land use

to simulate potential futures. The three scenarios can be broadly described as

exploratory (GRAS and BAMBU) and normative (SEDG). Exploratory scenarios

take trends from the present and extrapolate into the future analysing the re-

sponse of LULC to specific questions. Normative scenarios by contrast involve

backcasting fromadesired future condition, and describing the decisionmaking

that would lead to said scenario. Each storyline (scenario) results in projections

of climate and socio-economic trends. These two projections, alongside the sto-

ryline then influence the spatially explicit land use model, which we use in our

analyses in chapter ͵. The list below shows a elaborated overview of each of the

three scenarios, a simpler representation is available in the methods section of

chapter ͵. All this information is taken from Spangenberg et al. (ͲͰͱͲ).

• ‘Business as Might Be Usual’ (BAMBU)—IPCC AͲ scenario; mean pro-

jected temperature rise in Europe at ͲͱͰͰ is ʹ.ͷ°C; an intermediate change

scenario based on extrapolated current and proposed socio-economic and

policy decisions. Policy decisions that already exist at the EU level are in-

cluded. For example the energy policy is focused on reducing greenhouse

gas emissions by ͲͰ% by ͲͰͲͰ and ͸Ͱ% by ͲͰ͸Ͱ, while increasing nuclear

and renewable energy sources. Trade policy promotes free trade and EU
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funds are targeted at infrastructure and growth in developing areas.

• ‘GrowthApplied Strategy’ (GRAS)—IPCC AͱFI; mean projected temper-

ature rise in Europe at ͲͱͰͰ is ͵.Ͷ°C; a maximum change scenario driven

by policies of deregulation and economic growthwith a focus on globaliza-

tion. For example the energy policy is focused on increasing efficiency and

only implementing renewable sources where cost effective. Trade policy

promotes free trade at the global scale and EU funds will be eliminated.

• ‘Sustainable EuropeanDevelopmentGoal’ (SEDG)—IPCC Bͱ scenario;

mean projected temperature rise in Europe at ͲͱͰͰ is ͳ.Ͱ°C; a moderate

change scenario driven by economic, social and environmental policies,

related to stabilizing atmospheric greenhouse gases emissions and stop-

ping the loss of biodiversity, leading to an environment in good condition,

a healthy economy and international cooperation. For example the energy

policy is focused on reducing greenhouse gas emissions by ͷ͵%, increasing

renewable energy sources and shifting consumption. Trade policy includes

reduce global sourcing and EU funds are targeted at local green develop-

ments, education and employment.

Pyrenees Scale

In chapter Ͷ, historical land use maps of the Pyrenees National Park for the late

ͱ͹th century were not available. Therefore we used land cover data from Histor-

ical HILDA the project ”Historic Land Dynamics Assessment” (HILDA) version

Ͳ.Ͱ (Fuchs et al. ͲͰͱͳ; Fuchs et al. ͲͰͱ͵). This project aimed to reconstruct

land use at the scale of Europe from ͱ͹ͰͰ to ͲͰͱͰ, based on data available for

each decade at a spatial resolution of ͱ × ͱ km. Land cover is classified into six

categories.

ͱ. Forests: including transition zones between bushes and forest, tree nurs-

eries, and reforestation areas.

Ͳ. Grasslands: including natural grasslands, wetlands and pastures.

ͳ. Cultivated land: including orchards and arable land.

ʹ. Human settlements: buildings, roads, railways etc. and green urban areas.
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͵. Water

Ͷ. An ”other” category grouping the areas of ruderal vegetation, beaches, bare

floors, rocks, etc.

Weused thesemapsandcategories tocalculatemodelled shifts in landusechange

for a ͱͰ km buffer around the area were wild pollinators were collected in ͱ͸͸͹

and ͲͰͰ͵-ͰͶ.

2.2.3 Climate Data

Netherlands Scale

In chapter ͳ we used the ͱ͹ Bioclim variables available from worldclim.org (Ta-

ble Ͳ.ͳ). The ͱ͹ Bioclim variables are available at the global scale and are de-

scribed as biologically meaningful. These ͱ͹ variables are derived from monthly

temperature and rainfall values and are available as ͳͰ second resolution rasters

(Hijmans et al. ͲͰͰ͵). Thesevariables are calculatedwith climatedata from ͱ͹ͶͰ

until ͱ͹͹Ͱ. For each bioclimatic variable we clipped the extent to the outline of

the Netherlands and re-projected the raster to a 1× 1 km resolution. During the

SDM process we then selected the final variables based on correlations between

covariates, ecological significance to bees and importance in the SDM. This re-

sulted in ͵ of the ͱ͹ Bioclim variables being used:

ͱ. Mean diurnal range of monthly temperature (BioͲ)

Ͳ. Mean temperature of warmest quarter (BioͱͰ)

ͳ. Precipitation of driest month (Bioͱʹ)

ʹ. Precipitation of warmest quarter (Bioͱ͸)

͵. Temperature seasonality (Bioʹ)

In chapter ʹ we wanted to improve the spatial and temporal accuracy and use

climate measurements specific to the Netherlands. Therefore, we calculated the

same ͱ͹ Bioclim variables (Table Ͳ.ͳ) but this time using a Netherlands specific

source for the temperature and rainfall values. Specifically, we downloaded daily

worldclim.org
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temperature and rainfall statistics from Royal Netherlands Meteorological In-

stitute (KNMI) online API (available at https://data.knmi.nl/wms/cgi-bin/
wms.cgi). We downloaded daily temperature minimum, maximum and means,

and rainfall for everyday between ͲͰͰ͵ and ͲͰͱʹ as raster files, each containing

ʹ͸,Ͳ͹ͷ values. Again, ͵ of the Bioclims were used in the final analysis:

ͱ. Minimum temperature of coldest month (BioͶ)

Ͳ. Mean temperature of driest quarter (Bio͹)

ͳ. Mean temperature of warmest quarter (BioͱͰ)

ʹ. Annual precipitation (BioͱͲ)

͵. Precipitation of driest month (Bioͱʹ)

TĆćđĊ Ͳ.ͳ: Overview of bioclimatic variables used in species distribution modelling (Hi-
jmans et al. ͲͰͰ͵) The ͱ͹ bioclimatic variables, available from worldclim.org and can be pro-

duced using the Dismo R package (Hijmans et al. ͲͰͱͷ).

Temperature Moisture

Bioͱ Annual Mean Temperature BioͱͲ Annual Precipitation

BioͲ
Mean Diurnal Range

(Mean of monthly (max temp - min temp))
Bioͱͳ Precipitation of Wettest Month

Bioͳ
Isothermality

(BIOͲ/BIOͷ) (* ͱͰͰ)
Bioͱʹ Precipitation of Driest Month

Bioʹ
Temperature Seasonality

(standard deviation of annual temperature *ͱͰͰ)
Bioͱ͵

Precipitation Seasonality

(Coefficient of Variation)

Bio͵ Max Temperature of Warmest Month BioͱͶ Precipitation of Wettest Quarter

BioͶ Min Temperature of Coldest Month Bioͱͷ Precipitation of Driest Quarter

Bioͷ Temperature Annual Range (BIO͵-BIOͶ) Bioͱ͸ Precipitation of Warmest Quarter

Bio͸ Mean Temperature of Wettest Quarter Bioͱ͹ Precipitation of Coldest Quarter

Bio͹ Mean Temperature of Driest Quarter

BioͱͰ Mean Temperature of Warmest Quarter

Bioͱͱ Mean Temperature of Coldest Quarter

European Scale

The climate data used in chapter ͵ represents temperature and rainfall variables

for ͱ͹ͷͱ-ͲͰͰͰ as the baseline period and climate change projections for ͲͰͲͱ-

ͲͰ͵Ͱ and ͲͰͷͱ-ͲͱͰͰ (Newet al. ͱ͹͹͹; Mitchell et al. ͲͰͰʹ). Thesevariableswere

https://data.knmi.nl/wms/cgi-bin/wms.cgi
https://data.knmi.nl/wms/cgi-bin/wms.cgi
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available globally at ͱͰminute resolution. Weused these values to produce ͱʹ cli-

mate variables with which analyse the climate requirements of European bum-

blebees of which, after accounting for correlation and ecological significance, ͵

were selected (see supporting information chapter ͵, Table S͵.Ͳ).

The future climate change projectionswere created using the same scenar-

ios used for the future land use change models and each scenario is associated

with a scenario of climate change from the Intergovernmental Panel on Climate

Change (IPCC ͲͰͰͱ). Specifically, BAMBU is connected to the IPCC AͲ scenario,

GRAS is connected to AͱFͱ and SEDG the Bͱ scenario (Spangenberg et al. ͲͰͱͲ).

The IPCC scenarios use representative concentration pathways (RCPs) which are

modelled trajectories (until ͲͱͰͰ) of four greenhouse gases. These models were

integrated into the ALARM scenario projections of climate change for ͲͰ͵Ͱ and

ͲͱͰͰ. Precisely, the final climate scenarios were derived from a coupled Atmo-

sphere-Ocean General Circulation Model (HadCMͳ; New et al. ͱ͹͹͹). For each

scenario and each of the five climate variables we aggregated them to rasters at

50 × 50 km and 20 × 20 km resolution grids, and downscaled them to 10 × 10
km and 5 × 5 km resolution grids.

Pyrenees Scale

For the Pyrenees study area in chapter Ͷ it was neccesarry to have long-term

high resolution climate data to observe if climate change is ongoing in the re-

gion. We therefore utilized the ClimateEU software, version ʹ.Ͷͳ, (available at

http://tinyurl.com/ClimateEU). Using coordinates and elevation values in

the surrounding area we extracted monthly temperature conditions in the Pyre-

neesNational Park from ͱ͹ͰͰ until ͲͰͰ͹ (Hamannet al. ͲͰͱͳ;Wang et al. ͲͰͱͶ).

For a detailed methodology see Hamann et al. (ͲͰͱͳ).

2.2.4 Trait Data

Traitdata representan important tool that can beused togroupspecies according

toshared characteristics. Species traitsareoftenusedasaproxy for the taxonomic

separation between species and can be useful to attribute a measure of diversity

in functions rather than a purely species diversity (Keddy ͱ͹͹Ͳ). One of themain

http://tinyurl.com/ClimateEU
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goals of including traits in ecological studies is to simplify complex ecological

systems (Dray & Legendre ͲͰͰ͸). The trait data used within this thesis was ex-

tracted from the “European bee traits database” (established by ALARM, www.
alarm-project.ufz.de, anddeveloped bySTEP, www.STEP-project.net). The
extraction for the Netherlands used in chapters ͳ and ʹ consisted of traits data

for ͳʹ͹ species. The traits used in the thesis were selected based on ecological

relevance to habitat selection and data availability for the majority of wild bee

species. The traits used include:

ͱ. habitat specialization: a number from ͱ - ͸ representing the number of

habitat types a species has been found in. These ͸ habitat types broadly

denote the number of biomes present in Europe.

Ͳ. feeding specialization (Lecty): a categorical variable with ͵ levels. Polylec-

ticdefines a bee specieswhich collects pollen frommultiple unrelated flow-

ers. Oligolectic refers to bees which only collect pollen from a single plant

family or genus. Monolectic bees only collect from a single plant family

and represent the most specialized feeding habit. Some species are classi-

fied as oligolectic or polylectic as certain populations of the species may ex-

hibit both behaviours. Finally parasitic species which do not collect pollen

are classified as having no lectic status. For the thesis we have simplified

this characteristic to three classes, with monolectic species grouped with

oligolectic species and those species representing both behaviours grouped

basedon themorecommonlyobserved behaviour. Wechose tosimplify the

classifications to these threeclasses becausewebelieve theseclassifications

capture the likely relationship that a bee species will have with its environ-

ment. Specifically, whether a bee species requires a flower rich habitat, or if

the presence of a particular plant genus or family is more important (Mich-

ener ͲͰͰͰ).

ͳ. body size: a continuous variable measured as the distance in millimetres

between wing tegulas. The tegula is defined as ‘the anterior most indepen-

dent sclerite associated with the wing base’ (Headrick & Gordh ͲͰͰ͹). In

other words the plate on the thorax of the bee where the wing joins the

body.

www.alarm-project.ufz.de
www.alarm-project.ufz.de
www.STEP-project.net
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ʹ. sociality: categorical variable of ͹ classes ranging solitary bees to highly eu-

social bees with cleptoparasites and social parasites. Sociality is described

in detail in the introduction section (ͱ.ͳ). For the purpose of the thesis

we simplified sociality to three classes. Solitary bees, bees which show any

formof sociality and parasitic bees. In this thesis we do not consider honey

bees, which is theonly highly eusocial species in Europe, therefore sociality

refers only to those species classified as primitively eusocial.

͵. nesting habit: as with sociality nesting habit refers to a large number of

potential behaviors which are simplified in the context of this thesis. In

chapter ͳ we either classified bee as belowor above-ground nesters. Which

was changed in chapter ʹ, with species classified as either excavators who

create their own nest spaces or renterswhouse existing cavities. In practice

themajority of excavator species are also classified as belowground nesters

therefore there is little difference between the classificationsmade in chap-

ter ͳ or chapter ʹ. We simplified this trait to only two variables because,

as with lecty we believe that at the landscape scale more detailed classifi-

cations would not be captured by the LULC and climate resolution used.

Parasites were classified based on the nesting habit of their most common

host.

Ͷ. length of flight period: continuous variable of the number of months a

species is found flying throughout the year.

ͷ. voltinism: a categorical variable which refers to the number of broods or

generations that a species has within a single year. Categories were sim-

plified to either univoltine, a single generation per year, or multivoltine,

two or more generations per year. Species whose populations show differ-

ent behaviors were again classified based on the most commonly observed

behavior.

2.2.5 Phylogenetic Data

In chapter ʹweuse amatrix of phylogenetic relatedness tomeasure phylogenetic

niche conservatism among Dutch wild bees. The matrix and the database to
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produce it was gathered and processed by Grégoire Noël from the University of

Liège, Gembloux Agro-Bio Tech. The following outlines the process he used.

Molecular data selection

Mitochondrial gene of cytochrome oxidase I (COI), or barcode sequences (Rat-

nasingham & Hebert ͲͰͰͷ), is commonly sequenced for identifying bee species

(e.g. Magnacca & Brown ͲͰͱͲ; Schmidt et al. ͲͰͱ͵). When COI sequences were

available, one barcode, at least, was randomly extracted on Ͳ͹th April ͲͰͱͶ from

GenBank (Benson et al. ͲͰͱʹ) for each Belgian bee species, of which Dutch wild

bees species are a subset (N.J. Vereecken, personal communication). In total, ͳ͵͵

bees barcodes were retrieved. Four random barcodes of Crabronidae wasps fam-

ily (Pison chilense, Philantus triangulum, Bembix troglodytes, Sphecius specio-

sus), recognized as sistergroupof Anthophila clade (Danforth et al. ͲͰͱͳ; Hedtke

et al. ͲͰͱͳ) were also added to molecular dataset as an out-group to root phylo-

genetic tree. See Table Sʹ.ʹ for accession details for all species.

All COI bees sequences were aligned using ClustalX v.Ͳ.ͱ. (Larkin et al.

ͲͰͰͷ) with defaults parameters and pairwise deletion for gap treatments. After

quality control of all barcodes, the obtained alignment included atmost ͱʹ͸ͱ nu-

cleotide characters. jModelTest Ͳ.ͱ.ͱͰ. (Darriba et al. ͲͰͱͲ) was used to explore

best nucleotidesubstitutionmodel onouralignedDNAbarcodesequences. Gen-

eralized Time-Reversible model with invariables sites and gamma model of rate

heterogeneity (GTR + I + Γ; Tavaré ͱ͹͸Ͷ) was selected as best nucleotide substi-

tution model for our aligned COI sequences.

For phylogenetic reconstruction, maximum likelihood (ML) method was

conducted in RAxML v.ͷ.ͷ.ͱ. (Stamatakis et al. ͲͰͰ͸; Stamatakis ͲͰͱʹ) on the

CIPRES Science Gateway (Miller et al. ͲͰͱͰ; http://embnet.vital-it.ch/raxml-

bb/). ͱͰͰ rapid bootstrap inferences were executed and followed by a thorough

ML search. All free model parameters will be estimated by RAxML sofware. ML

estimate of alpha-parameter, I + Γmodel parameters were estimated up to an ac-

curacy of Ͱ.ͰͰͱ Log Likelihood units. Bipartition information from best known

ML tree (i.e. best ML tree compiled from ML boostrapping in Newick format)
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FĎČ. Ͳ.͸: ML tree constructed using ͳ͵͵ COI sequences (ͱʹ͸ͱ bp) of Belgian bees
species from public repositories (GenBank). This phylogenetic tree is rooted with an
outgroup of ʹ Crabronidae wasps COI sequences: Pison chilense, Philantus triangulum, Be-
mbix troglodytes, Sphecius speciosus. All bees families are encompassed by colored rect-
angle. Values at node depict bootstrap support (%) in the ML method. This phylogenetic
tree was drawn using FigTree v.ͱ.ʹ.ͳ. (Rambaut ͲͰͱͷ) and modified with Inkscape v.Ͱ.͹Ͳ.Ͳ.

Phylogenetic tree created by Gregoire Noel.
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was used to draw wild bees phylogenetic tree (Fig Ͳ.͸) by FigTree v.ͱ.ʹ.ͳ. (Ram-

baut ͲͰͱͷ). Then, branch lengths of bees phylogenetic tree were calculated by

setting the p-parameter to ͱ (Hoiss et al. ͲͰͱͲ).

Phylogenetic reconstruction

All COI bees sequences were aligned using ClustalX v.Ͳ.ͱ. (Larkin et al. ͲͰͰͷ)

with defaults parameters and pairwise deletion for gap treatments. After quality

control of all barcodes, the obtained alignment included at most ͱʹ͸ͱ nucleotide

characters. jModelTest Ͳ.ͱ.ͱͰ. (Darriba et al. ͲͰͱͲ) was used to explore best nu-

cleotide substitutionmodel onouralignedDNAbarcodesequences. Generalized

Time-Reversible model with invariables sites and gamma model of rate hetero-

geneity (GTR + I + Γ; Tavaré ͱ͹͸Ͷ) was selected as best nucleotide substitution

model for our aligned COI sequences.

For phylogenetic reconstruction, maximum likelihood (ML) method was

conducted in RAxML v.ͷ.ͷ.ͱ. (Stamatakis et al. ͲͰͰ͸; Stamatakis ͲͰͱʹ) on the

CIPRES Science Gateway (Miller et al. ͲͰͱͰ; http://embnet.vital-it.ch/
raxml-bb/). One-hundred rapid bootstrap inferences were executed and fol-

lowed by a thorough ML search. All free model parameters will be estimated by

RAxML sofware. ML estimate of alpha-parameter, I + Γ model parameters were

estimated up to an accuracy of Ͱ.ͰͰͱ Log Likelihood units. Bipartition informa-

tion from best known ML tree (i.e. best ML tree compiled from ML boostrap-

ping in Newick format) was used to drawwild bees phylogenetic tree (Fig Ͳ.͸) by

FigTree v.ͱ.ʹ.ͳ. (Rambaut ͲͰͱͷ). Then, branch lengths of bees phylogenetic tree

were calculated by setting the p-parameter to ͱ (Hoiss et al. ͲͰͱͲ).

2.3 Methods Overview
In this thesis we use statistical analyses to evaluate complex ecological questions

related to howwild bee species interactwith their environment. Todo thisweuse

a variety of different statistical techniques and approaches to deal with different

problems. Weutilize regression techniques to estimate the relationship between

different variables, using both maximum likelihood and Bayesian approaches.

http://embnet.vital-it.ch/raxml-bb/
http://embnet.vital-it.ch/raxml-bb/
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Regression techniquesallowus tomakecausal inferencesonwhichprocessesmay

be driving observed patterns. Furthermore, we use machine learningͱ methods

within a species distribution modelling framework to classify habitat suitability

at different spatial scales and resolutions. All the statistical methods used are

capable of analysing the large datasets available regarding wild bees and their

environments. In the following section these statistical methods are outlined

and discussed.

2.3.1 Species Distribution modelling

Species distributionmodels (SDMs) are statistical toolswhich take knownoccur-

rences of species and use computer algorithms to create a mathematical repre-

sentation of the environmental space occupied by a species. This representation

can then be used to project the distribution of the species into different environ-

mental spaces. We use SDMs in chapters ͳ, ʹ and ͵ in this thesis.

SDMOccurrence Data

In thewild bee data section (Ͳ.Ͳ.ͱ) we outlined the eclectic nature of thewild bee

occurrence records used in this thesis and the potential biases associated with

them. There are a number of techniques available to improve the quality of these

data for their use in SDM. The first step of analyseswith these datasets is detailed

miningof the records todetermine thespatial and temporal qualityand reliability

of each occurrence record. For example, in chapter ͵ species occurrence records

are either recorded with GPS point coordinates or on a grid. When aggregating

the species records to different grid resolutions we removed all records that were

recorded ata lower resolution thanourgrid, and thereforeunreliable. Wealsodid

this by limiting our analyses to species with a certain number of species records

to avoid modelling under-sampled species. Furthermore, as mentioned in the

wild bee data section (Ͳ.Ͳ.ͱ) we employed re-sampling methods to avoid spatial

auto-correlation due to spatially biased sampling (Broennimann et al. ͲͰͱͲ). In

chapter ͵ we specifically incorporate spatial auto-correlation into the models to

ͱMachine learning refers to automated methods of data analysis which can detect patterns in big
data sources. Machine learning can be used for regression and classification problems and progres-
sively improves model performance building upon each model (Murphy ͲͰͱͲ).
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quantify theeffect that it hason the relationshipbetween species and theirniches

(Ovaskainen et al. ͲͰͱͷ). We also use species records across a temporal range to

ensure a more detailed sample. This is a direct trade-off with knowing the exact

conditions of where and when a species was found, but we decided that having

sufficient records with which to model the species was more important.

The available data is described as presence-only data as true absence val-

ues are unavailable (Barbet-Massin et al. ͲͰͱͲa). This stems from the fact that

a small and highly mobile wild bee individual cannot be classified as absent in a

survey, regardlessof thecollectioneffort. Therefore, weneed toprovide themod-

elswithareaswhereweestimate the species is absent. This isoftendoneby taking

a background sample of locations used in the SDM and randomly defining areas

where a species has not been found as an absence, these absences are referred

to as pseudo-absences (Phillips et al. ͲͰͰ͹). To deal with the bias of areas that

have not been sampled within our study boundary we utilize target background

sampling, whereby the background sample from which pseudo-absence values

are obtained is only taken from areas where wild bees have been surveyed previ-

ously and limiting the introduction of incorrect absences (Phillips et al. ͲͰͰ͹;

Mateo et al. ͲͰͱͰ).

Furthermore, when projecting into a unknown time period it is important

to train models with as much data as possible to fully capture the entire range of

the species being modelled, limiting the species to part of geographical range is

likely to result in inaccurate predictions (Titeux et al. ͲͰͱͷ). We have attempted

to do this in chapter ͵ by using species occurrence records from the entire extent

of the LULC covariates, evenwhen projecting onto the smaller BENELUX region.

Variable Selection

Selecting theappropriateenvironmental covariateswithwhich tomodel a species

distribution is a fundamental step in the SDM process. When selecting covari-

ates focus should be applied to ecological theory and the known causal relation-

ship betweena specific covariate and species occurrence (Guisan& Zimmermann

ͲͰͰͰ). Understanding causality is additionally important when deciding be-

tween correlated variables (Dormann et al. ͲͰͱͳ). For example, when projecting
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into the future under climate change scenarios the selection of climate variables

can result in different projections and may signify the difference between a pro-

jected species extinction and no visible change (Harris et al. ͲͰͱͳ). Guisan &

Thuiller (ͲͰͰ͵) separate environmental factors into three categories, described

here with examples appropriate for wild bee species; (ͱ) limiting factors associ-

ated with the eco-physiology of a species, e.g. the majority of bumblebees oc-

cur in areas where summer temperatures are between ͵-Ͳ͵°C (Goulson ͲͰͱͰ);

(Ͳ) disturbanceswhichmodify environmental systems, e.g. intensive agriculture

limiting resources for wild bees (Kremen et al. ͲͰͰͲ); and (ͳ) resources which

can be used by the target species e.g. availability of heathland as a feeding re-

source for specialized wild bees (Moquet et al. ͲͰͱͶ) or sandy soils as a nesting

resource (Cane ͱ͹͹ͱ). Themost available and commonly used predictor variables

are climate variables, as they are the most readily available variables at the global

scale (Elith & Leathwick ͲͰͰ͹). Nineteen bioclimatic variables are commonly

used in studiesof climateeffecton speciesdistributions and representanattempt

to increase the causal relationship between species distribution and climate by

calculating climate variables more illustrative of species ecology and directly ap-

plicable to SDMs (Table Ͳ.ͳ; Busby ͱ͹͹ͱ; Hijmans et al. ͲͰͰ͵; Hijmans & Elith

ͲͰͱʹ).

Algorithms

Onceaprospectivemodellerhaschosen thespeciescollectiondataandcovariates

then the next step involves selecting the appropriate algorithm to train themodel

and statistically represent the relationship between occurrence and the environ-

ment. There are many algorithms available to use in SDM studies. The choice

of algorithm can make a significant difference to model outputs, and can vary in

fit, variable selection and predictive accuracy (Aguirre-Gutierrez et al. ͲͰͱͳ). In

chapter ͳ we used maximum entropy (MaxEnt) to construct the SDMs, in chap-

ter ʹ we used GLMs as part of a hierarchical Bayesian framework and in chapter ͵

we used an ensemble modelling approach of three different algorithms, general-

ized linear models (GLMs), generalized boosted regressions model (GBMs) and

MaxEnt.

MaxEnt
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Maximum entropyͲ (MaxEnt) is an algorithm for modelling the distribution of

species. MaxEnt is used when only presence occurrence records are available and

there are no recorded absences for a species (Phillips & Dudík ͲͰͰ͸). Therefore

MaxEnt is an ideal method to use with museum collections (Elith et al. ͲͰͱͱ).

MaxEnt is perhaps the most widely used methodology for SDM studies because

of its robust ability to deal with a variety of presence-only data and explanatory

covariates (Phillips et al. ͲͰͰͶ; Phillips & Dudík ͲͰͰ͸; Elith et al. ͲͰͱͱ; Merow

et al. ͲͰͱͳ).

MaxEnt estimates a species distribution within a given geographic space,

specifically it compares the variation in probability density within the covariate

space in presence locations against the probability density of a background sam-

ple of the same covariate space (Elith et al. ͲͰͱͱ). In other words MaxEnt defines

the suitability of certain habitats for the modelled species. MaxEnt requires co-

variateswhich explain the habitat availablewithin a defined landscape boundary

(background) and spatially explicit occurrence records of species found within

this landscape (presence-only records). MaxEnt will then use this information

to provide a conditional (conditional to the species being present) probability

of presence at the chosen resolution for each species. MaxEnt does this by first

calculating the conditional density of the covariates in areas where the species is

present f1(z) and the unconditional density of covariates across the total study

area f (z). The estimate of f1(z) is made based on the presence values, many

distributions are possible so MaxEnt tries to choose the distribution closest to

that of the background total study area f (z). The probability distribution across

locations is then estimated based on the ratio between f1(z) and f (z) (Elith et

al. ͲͰͱͱ). This is fit as a log linear model similar in form to a generalized linear

model (GLM). The resulting estimates can be seen as a measure of habitat suit-

ability per location. The relationship between species presence and the model

covariates is oftenmore complicated than a simple linear relationship and there-

fore MaxEnt provides different feature options which can be used to fit more

complex relationships. MaxEnt has ͵ feature types for the covariates; (ͱ) linear

(the covariate itself); (Ͳ) quadratic (the square of the covariate); (ͳ) product (the

ͲMaximum entropy modelling refers to the idea in information theory that when defining an
unknown response with a statistical model, the best solution will always be the one with maximum
entropy (Jaynes ͱ͹͵ͷ). Entropybeingameasureof the informationproduced byarandomdatasource.
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product of two covariates); (ʹ) threshold (a step function where a different re-

sponse to the covariate is possible above and below a threshold) and (͵) hinge

(similar to the threshold but the different response above and below the thresh-

old is a linear relationship). For a more detailed explanation of the theory and

statistical basis of MaxEnt’s use in ecology see Elith et al. (ͲͰͱͱ). In chapter ͳ

we use MaxEnt species distribution models to model the distribution of ͱ͹ͳ wild

bees in the Netherlands, using ͱͳ covariates of land use and climate conditions.

We chose to use only MaxEnt models because MaxEnt had previously been the

best performing method for a similar group of species, hoverflies, in the same ge-

ographic extent (Aguirre-Gutierrez et al. ͲͰͱͳ). In chapter ͵ we also use MaxEnt

but this time as part of an ensemble mode to increase our ability to account for

uncertainty and variation observed when modelling different species.

Generalised linear models (GLMs)

Generalised linear models (GLMs) are a technique for weighted linear regres-

sionwithmodel observationsdistributed todifferentexponential familiesfitwith

maximum likelihood (Nelder & Baker ͱ͹ͷͲ). A simple linear model is described

as:

Y = x + Xβ + ε

Where Y is the response variable, x refers to the intercept, X is a vector of

the known values of the independent explanatory variables, β is a vector of the

regression parameters for each explanatory variable; and ε is the error and any

unexplainedmodel variation (Guisan et al. ͲͰͰͲ). Alongside the linearpredictor

outlined above the generalized linear model introduces a probability function

distribution for the necessary exponential family and a link function (Nelder &

Baker ͱ͹ͷͲ). The role of the link is todefine the relationship between themeanof

the response variable (distribution function)ͳ and the chosen linear predictors,

(Guisanetal. ͲͰͰͲ). The link function transforms theexpected valueof response

variable and allows it to depend on the explanatory variables. The majority of

ͳThemean of thedistribution function refers to average value of the cumulative distribution func-
tion that describes the distribution of the residuals of a binomial response variable (Ͱ or ͱ).
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SDMsusepresence/absencedataand thereforearebestmodelledwithabinomial

distribution with a logit or probit link function (Guisan et al. ͲͰͰͲ; Hijmans &

Elith ͲͰͱʹ). A GLM is described as:

g(E(Y)) = LP = x + Xβ

Where the expected value of the response variable E(Y) with a link func-

tion g() is associated with a linear predictor, X (Guisan et al. ͲͰͰͲ). Whilst not

the most consistent or accurate algorithms GLMs provide a simpler interpreta-

tion than many of the other algorithms used in SDM analysis (Elith & Graham

ͲͰͰ͹; Aguirre-Gutierrez et al. ͲͰͱͳ). Generalized linear models also allow step-

wise variable selection using Akaike Information Criterion (Akaike ͱ͹͹͸; Guisan

etal. ͲͰͰͲ). GLMsareused in chapter ʹwithaprobit functionaspartof Bayesian

framework and in chapter ͵ with a link function as part of an ensemble SDM.

Generalised boosted regressions model (GBMs)

Generalised boosted regressions model (GBMs) utilize gradient boosting, a me-

thod of regressionwhich uses a large ensemble of multiple models in the form of

decision trees (Friedman et al. ͲͰͰͰ). The algorithmused as part of an ensemble

model in chapter ͵ is a boosted regression tree. Each of the models that form

the large ensemble of models is a single regression tree (Friedman ͲͰͰͱ). Each

regression tree is sequential to thepreviousand therefore learns fromtheerrorsof

each previous tree. For SDMs, GBMs use a Bernoulli distribution (Ͱ or ͱ, present

or absent) as the response variable. GBM permeates through each relationship

between covariate and response in the form of regression trees (Friedman ͲͰͰͱ).

Each tree is fitted incrementally with each tree predicting the residuals of the

tree before it (Friedman et al. ͲͰͰͰ; Elith et al. ͲͰͰ͸). This iterative process

results in a final model that predicts presences based on continuously adding

trees and re-weighting the relationships within the data to reflect previous poor

models (Friedman et al. ͲͰͰͰ). Cross-validation, when the data is split into

testing and training subsets to test the accuracy of the trained model, is used to

validate iterative trees in the building process. Furthermore, to avoid over-fitting



Ͷ.ͷ. Methods Overview ͸ͳ

themodel, it is important to specify themaximum number of trees which can be

fitted (Elith et al. ͲͰͰ͸).

Ensemble modelling

Ensemblemodellingasused inchapter͵ involvesutilizingavarietyof approaches,

fitting multiple model algorithms and then analysing the resulting projections

(Araujo & New ͲͰͰͷ). Ensemble models can be utilized in two ways; either by

selecting the best model based on your chosen validation criteria (Elith et al.

ͲͰͰͶ) or by creating a consensus of all model predictions, as we do in chapter

͵ (Barbet-Massin et al. ͲͰͱͲb). Consensus ensemble modelling provides sig-

nificant benefits over modelling with a single algorithm, Instead of providing a

single value of habitat suitability per grid cell it allows for the calculation of aver-

ages and variances measures overall and per choice of input, algorithms, model

features, scale and resolution (Marmion et al. ͲͰͰ͹; Thuiller ͲͰͱʹb). Ensemble

modelling techniquesareoftenapplied to forecasting speciesdistributionsunder

shifting global climate and LULC states because they offer the possibility of cal-

culating and presenting the inherent variability associated with projections into

variable future conditions (Araujo & New ͲͰͰͷ). In Chapter ͵ we utilize median

ensemble predictions of three algorithms. The three models chose were GLMs,

GBMs and MaxEnt. The decision to include these three algorithmswas based on

their performance in modelling hoverflies, a species group with similar mobility

and behaviour to bees (Aguirre-Gutierrez et al. ͲͰͱͳ). Authors found that GLMs

performed well for widespread common species and also represent a more easily

interpreted model, GBMs had higher consistency in variable selection and also

obtained good models for more widespread species, whereas MaxEnt does well

withmore narrowdistributionand specieswith fewer records (Aguirre-Gutierrez

etal. ͲͰͱͳ). Therefore, webelieved thatacombinationof these threemodel types

would adequately deal with the variation in spatial distribution and number of

records in the European bumblebee collection records.

Validation

Following the training of models a vitally important step is to test the model

performance to justify the use of the model for its particular purpose. Model

verification measures howwell a model fits the data used to train it, whereas the
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more important step isvalidationwhichcompares the SDMto independentlycol-

lected species occurrence data (Araújo & Guisan ͲͰͰͶ). The most common way

models are validated is with a split-sample approach as part of a cross-validation

procedure, where a subset of the data is not used to train the model and is in-

stead used to test the accuracy of the model predictions; this process is repeated

with several split samples tomeasuremodel performance across thewhole range

data (Elith & Leathwick ͲͰͰ͹). In all three chapters where we use SDMs we use

cross-validation technique to validate the models. Cross-validation involves a

priori splitting the occurrence records into training and testing subsets. In all

three chapterswith SDMswe apply the same ͸Ͱ% training and ͲͰ% testing split.

When using cross validation a number of different statistics can be calculated to

measure model performance. These statistics are calculated using a confusion

matrixʹ were observed testing records are compared to predicted occurrences

(Fielding & Bell ͱ͹͹ͷ). It provides four values: sensitivity (true positive fraction),

specificity (true negative fraction), the false positive fraction (ͱ-sensitivity) and

false negative fraction (ͱ-specificity; Table Ͳ.ʹ). Sensitivity is measured as a ra-

tio between sites where the model has correctly predicted a true presence and

the total number of presences sites. Specificity is the ratio between absence sites

correctly predicted as such and total numberof absences or pseudo-absences. To

obtain thesemeasures habitat suitability values from the SDMmust beconverted

into binary presence or absence predictions (Fielding & Bell ͱ͹͹ͷ). This is done

using a threshold, see Threshold section.

TĆćđĊ Ͳ.ʹ: Confusion matrix showing the discriminatory ability of a Species Distribution
Model (SDM).

Actual Occurrences

Present Absent

Model Prediction
Present a b

Absent (Pseudo-absences) c d

Sensitivity Specificity

a/(a+c) d/(b+d)

ʹAconfusionmatrix is a table that describes the efficacy of a classificationmodel (SDM) to predict
known values.
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A commonly used statistic to validate themodel based on the ability of the

model to discriminate between presence and absence is the area under the curve

(AUC) of the receiver operating characteristic (ROC). The ROC is measured as

the relationship between the rateof false positives (ͱ-specificity) and the sensitiv-

ity. The AUC is independent of the threshold as it checks discrimination across a

range of thresholds. Amodel is deemed to be accuratewhen it shows a curve that

has high sensitivity (y-axis) with low values for the fraction of false positives (x-

axis, Fig Ͳ.͹; Jiménez-Valverde ͲͰͱͲ). In other words, the AUC value represents

relationship between the proportion of true positives and the proportion of false

positiveswhen the threshold varies fromͰ to ͱ. Amodelwhich shows nodiscrim-

ination, a random predictor, is represented by an AUC of Ͱ.͵. In the case where

there are no absences available the specificity is plotted against the background

or pseudo-absence points predicted as present. This changes the interpretation

slightly, as in this case theAUCmeasureswhether themodel discriminates a true

presence site from a random background site (Phillips et al. ͲͰͰͶ). Therefore,

in all the cases where we use cross-validation in the thesis we use the AUC value.

In chapter ͳ we additionally outline in detail howweuse independently collected

data to test model performance.

Threshold

Threshold values are required for many SDM applications to convert projected

habitat suitability values into presence or absence predictions (Jiménez-Valverde

& Lobo ͲͰͰͷ). We utilize threshold values to convert the predictions of bum-

blebee distributions under future conditions into binary presence absencemaps.

This allows us to look at specific locations and determine if a species has lost or

gained suitable habitat from the present to the future. A number of methods

are available to select thresholds, for more information see Liu et al. (ͲͰͰ͵) and

Jiménez-Valverde and Lobo (ͲͰͰͷ). We used the threshold point at which the

modelmaximizes the sumof sensitivity and specificity (mas SSS) values (Thuiller

et al. ͲͰͱ͵). Max SSS has been criticized as a threshold criterion forpresenceonly

models, specifically because without true absence data specificity is unreliably

calculated (Braunisch & Suchant ͲͰͱͰ; Merow et al. ͲͰͱͳ). However, Liu et al.

(ͲͰͱͳ) show that max SSS consists in calculating a threshold value regardless of
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FĎČ. Ͳ.͹: Receiver operating characteristic (ROC) curve. Dotted
line shows a model with perfect discrimination area under the ROC
curve (AUC) of ͱ. Black thick line, curve of a model showing im-
perfect discrimination. Diagonal black line shows a model with no
discrimination, AUC = Ͱ.͵. The dashed line shows points at which
sensitivity (Se) equals specificity (Sp). Source: figure modified from

Jiménez-Valverde (ͲͰͱͲ).

whether presence/absence or presence only data is used, it is also objectively se-

lected and uses both sensitivity and specificity predictions. Therefore, we believe

it is the most appropriate threshold selection to use to convert habitat suitability

values into presence absence maps.

2.3.2 Linear Mixed Effects Models (LMM)

Linearmixed effects models (LMM) and generalized linearmixed effects models

(GLMM) are an extension of linear regression and generalized linear modelling

(see Species Distribution Models). The key component of a LMM is that it con-

tains both fixed and random effects (Zuur et al. ͲͰͰ͹). In general LMMs are

used when the data have a hierarchical nested structure, where measurements

are repeated across the same units or groups of units (Bolker et al. ͲͰͰ͹; Zuur et

al. ͲͰͰ͹). In other words the model assumes that measurements coming from

the same ‘unit’ are non-independent. For example, multiple measurements of
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species richness from the sameagricultural field are non-independent as they are

likely to be affected by the conditions specific to that field. The random structure

is useful when dealing with a random subset of a larger population. The agricul-

tural fields in the example are a subset of a many agricultural fields which could

be sampled. For example, if a researcher is interested inwhat environmental fac-

tors influence species richness measurements they are most likely not interested

in the inherent variability between different agricultural fields, in this case the

fields should be treated as a random effect. The fixed effects of the LMM work

exactly as described in aGLM. The randomeffect component of themodel allows

for each statistical unit to have a different baseline value of the response variable

in the formof a random interceptwhich themodel estimates (Winter ͲͰͱͳ). The

linear mixed effect model takes the form of:

Y = x + Xβ + Zu + ε

Where Y is the response variable; x refers to the intercept; X is a vector of

the known values of the independent explanatory variables (fixed effects); β is a

vector the regression parameters for each explanatory variable; Z is the random

component of the fixed X (random effects); and u the random components to

the fixed β and ε is the residual error and any unexplained model variation. We

use LMMs in chapters ͳ and ͵ to examine how model performance and distribu-

tion metrics are affected by different explanatory covariates, given that we have

multiple measurements from sites and for species.
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3.1 Abstract
Species distribution models (SDM) are increasingly used to understand the fac-

tors that regulate variation in biodiversity patterns and to help plan conserva-

tion strategies. However, these models are rarely validated with independently

collected data and it is unclear whether SDM performance is maintained across

distinct habitats and for species with different functional traits. Highly mobile

species, such as bees, can be particularly challenging to model. Here, we use in-

dependent sets of occurrence data collected systematically in several agricultural

habitats to test how the predictive performance of SDMs forwild bee species de-

pends on species traits, habitat type, and sampling technique. We used a species

distribution modelling approach parametrized for the Netherlands, with pres-

ence records from ͱ͹͹Ͱ to ͲͰͱͰ for ͱ͹ͳ Dutch wild bees. For each species, we

built aMaxentmodel based on ͱͳ climate and landscape variables. We tested the

predictive performance of the SDMs with independent datasets collected from

orchards and arable fields across the Netherlands from ͲͰͱͰ to ͲͰͱͳ, using tran-

sect surveys or pan traps. Model predictive performance depended on species

traits and habitat type. Occurrence of bee species specialized in habitat and diet

was better predicted than generalist bees. Predictions of habitat suitability were

also more precise for habitats that are temporally more stable (orchards) than

for habitats that suffer regular alterations (arable), particularly for small, solitary

bees. As a conservation tool, SDMs are best suited to modelling rarer, specialist

species thanmore generalist andwill work best in long-term stable habitats. The

variability of complex, short-term habitats is difficult to capture in such mod-

els and historical land use generally has low thematic resolution. To improve

SDMs’ usefulness, models require explanatory variables and collection data that

include detailed landscape characteristics, for example, variability of crops and

flower availability. Additionally, testing SDMs with field surveys should involve

multiple collection techniques.
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3.2 Introduction
Pollinators are responsible for the pollination of over ͸Ͱ% of flowering plants

(Ollerton et al. ͲͰͱͱ), and the vast majority of global food crops benefit from

animal pollination, with approximately half of these crops being highly depen-

dent (Klein et al. ͲͰͰͷ). While the honeybee (Apis mellifera L.) is considered

the most economically valuable pollinator species for agriculture, wild pollina-

tors can be more efficient per individual in enhancing the yield and quality of

many crops (Klein et al. ͲͰͰͷ; Garibaldi et al. ͲͰͱͳ). Yet, their diversity has de-

clined in Europe (Biesmeijer et al. ͲͰͰͶ; Dupont et al. ͲͰͱͱ; Bommarco et al.

ͲͰͱͱ; Carvalheiro et al. ͲͰͱͳ) and elsewhere (Bartomeus et al. ͲͰͱͳ; Martins et

al. ͲͰͱͳ). These declines have been attributed to a multitude of factors, such as

land-use intensification, climate change, alien species, and pests and pathogens

(Potts et al. ͲͰͱͰ; Vanbergen & The Insect Pollinators Initiative ͲͰͱͳ). Several

pollinator-friendly practices have been, and continue to be, applied to provide

semi-natural and natural resources within agricultural landscapes (Kleijn et al.

ͲͰͱͱ; Garibaldi et al. ͲͰͱʹ). However, as wild pollinators often require specific

environmental conditions (Cane et al. ͲͰͰͶ), the efficiency of such practices can

depend on the characteristics of the surrounding landscape and other environ-

mental variables (Scheper et al. ͲͰͱͳ). Understanding which environmental fac-

tors determinewherewild bees occur in the landscape is essential for the success

of such targeted interventions.

Species distribution models (SDMs) can help in understanding how the

distribution of and decline in wild bee species is regulated by land-use and cli-

mate variables (Elith & Leathwick ͲͰͰ͹). Due to the increase in computer power

and data availability, species distribution modelling is becoming a widely used

ecological tool in studies of biodiversity, predicting occurrence of species in un-

known areas, and predicting future occurrences (Franklin ͲͰͱͳ). These predic-

tions can help prioritize areas in need of conservation interventions and estimate

the impact of environmental change, such as human land-use changes (Guisan

& Thuiller ͲͰͰ͵; Polce et al. ͲͰͱͳ). However, while SDMs are generally based on

haphazardly collected data of varying spatial and temporal scale (e.g., museum

collectiondata) and aggregated overa numberof years, they areoften used to test



͹Ͳ Chapter ͷ. Testing projected wild bee distributions

hypotheses at finer scales and at particular moments in time (Guisan & Thuiller

ͲͰͰ͵). The efficacy of SDMs for these purposes is therefore a reason of concern.

The importanceof testing theaccuracyof SDMs iswidely recognized (Elith

& Leathwick ͲͰͰ͹). However, such accuracy tests often use subsets of the same

collection data used to build the model. These tests violate the independence

expected between training and testing data (Bahn & McGill ͲͰͱͳ). Additionally,

these tests require a large number of collection points for the data partitioning

to be valid (Allouche et al. ͲͰͰͶ; Fawcett ͲͰͰͶ). Testing the models by collect-

ing independent presence data is the ideal approach, but is rarely applied due

to logistic constraints, particularly when dealing with highly mobile organisms

(Evangelista et al. ͲͰͰ͸; Peltzer et al. ͲͰͰͷ). Therefore, formanyanimal species,

it is uncertain whether SDMs can accurately predict species presence in specific

locations, and hence, how useful and reliable the results can be in guiding pol-

icy for the protection of biodiversity, or estimating the presence of economically

valuable species.

In this study, we test the performance of SDMs in correctly predicting wild

beeoccurrences fromrecentfield surveysand howthisvaries betweenspeciesand

landscape. As the effects of disturbance and fragmentation depend on sociality,

body size, and nesting behavior of bees (Bommarco et al. ͲͰͱͰ; Williams et al.

ͲͰͱͰ; Brittain& Potts ͲͰͱͱ), weexpect theperformanceof the SDMs todependon

these traits. Previous studies show that specialized, plant and amphibian species,

with specific habitat requirements, are more accurately modelled (Evangelista et

al. ͲͰͰ͸; Peltzer et al. ͲͰͰͷ; Newbold et al. ͲͰͱͰ), and we hypothesize that the

bees specialized in habitat and feeding will have higher habitat suitability pre-

dictions for their occurrences than generalist, widespread species. Additionally,

we expect that rarer species will have higher predicted habitat suitability due to

the reduced geographical range they usually occupy (Franklin et al. ͲͰͰ͹; Rebelo

& Jones ͲͰͱͰ). Finally, as the SDMswill be based on species recordswith variable

spatial and temporal precision, we hypothesizemodel predictions in agricultural

habitats which have a greater temporal stability (e.g., orchards) will have higher

suitability values than for agricultural areas subjected to accentuated temporal

changes (such as crop rotation) or subjected to ephemeral establishment of ar-

eas rich in flower resources (e.g., wildflower strips).
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3.3 Methods

3.3.1 Species distribution model development

This study focuses on the Netherlands, a region for which we have access to rela-

tively extensive and detailed data on species distributions, land use, and climate.

The bee collection data were provided by European Invertebrate Survey (Peeters

et al. ͲͰͱͲ). We used records collected since ͱ͹͹Ͱ, and due to the number of

available explanatory variables, we included species for which we had more than

ͳͰ recorded observations. This led to a total of ͱ͹ͳ species across Ͳ͵ genera (from

a total availability of ͳͰʹ species in ͳͰ genera). A total of ʹͳ ͹͸͹ observations

were used to model the species’ distributions. The number of collection points

perspeciesmodelled ranged fromͳͱ (Bombus cryptarum Fabricius, Lasioglossum

pallens Brullé, and L. rufitarse Zetterstedt) to ͱ͸ͶͲ (B. pascuorum Scopoli).

We modelled the distribution of these ͱ͹ͳ species across the Netherlands

using R (R CoreTeam, ͲͰͱͲ)withpackagebiomodͲ (Thuilleret al. ͲͰͰ͹) and the

species distribution modelling algorithm Maxent (Phillips & Dudík ͲͰͰ͸). We

choseMaxent because it has previously performed well on similar data for a vari-

ety of evaluation measures and is robust against overfitting (Phillips et al. ͲͰͰͶ;

Aguirre-Gutiérrez et al. ͲͰͱͳ). The models were constructed with the BIOCLIM

climate variables obtained from WORLDCLIM database (Hijmans et al. ͲͰͰ͵),

and land-use variables obtained from the Dutch rural land-use file version six

(Hazeu et al. ͲͰͱͲ) and the TOPͱͰNL (Kadaster, ͲͰͱͲ). The original resolution

of the land-use variables was 25 × 25 m; to match the coarser resolution of the

bee collections and climate data, we rescaled the land-use data to ͱ km² by calcu-

lating the percentage cover (i.e., percentage of 25 × 25 m cells) of each land-use

class within each ͱ kmͲ.

Someprecipitationand temperaturevariables fordifferentpartsof theyear

(i.e., warmest, coldest, and wettest quarters of the year) were strongly correlated

(Pearson’s pair-wise correlation coefficient >Ͱ.ͷ). In these situations, we selected

the variable thought to have a greater impact on the distribution of bees, such as

the variables related to the periods when bees are most active, for example, the

warmest quarter. To minimize the overall number of explanatory variables in
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the model and avoid problems of overfitting, we ran initial MAXENT models for

each species with all environmental variables available (Ͳͷ variables) and then

looked at the variable importance value of each variable across all species. We

then selected the variables that were consistently among the three most impor-

tant variables for each species and removed those that were not. The final SDM

incorporated thirteen variables: seven land-use variables, five climate variables,

and elevation (see Table Sͳ.ͱ).

Maxent requires a background sample to be selected from the covariates

included in the model (Elith et al., ͲͰͱͱ; Phillips et al. ͲͰͰ͹). We used tar-

get-group sampling to select our background points (Phillips et al. ͲͰͰ͹; Mateo

et al. ͲͰͱͰ). We specified that this background sample could only be selected

from areas where wild bee species have been found since ͱ͹͹Ͱ. This approach is

more objective and realistic than taking the background sample from sites that

have not been sampled, accounting for potential sampling bias (Phillips et al.

ͲͰͰ͹; Elith et al. ͲͰͱͱ), and provides more accurate results (Mateo et al. ͲͰͱͰ).

We ran themodel ͱͱ times for each species: ͱͰ timeswith random subsets of ͸Ͱ%

of the data and once with ͱͰͰ% of the data. Using a common procedure of val-

idation of SDMs, we then used the remaining ͲͰ% of the data to produce area

under the curve (AUC) values, which is a measure of the proportion of instances

correctly predicted against the proportion of absences incorrectly predicted as

presences (Jiménez-Valverde ͲͰͱͲ). All species models had an AUC of at least

Ͱ.Ͷ.

We validated the full models (run with ͱͰͰ% of the data) with indepen-

dent datasets collected during field surveys (see methods below). Model output

consisted of a habitat suitability score between Ͱ and ͱ for each species per ͱ kmͲ,

with Ͱ indicating not suitable and ͱ most suitable.

3.3.2 Field surveys

Thedata used to test thepredictive performanceof the SDMswere collected from

four independent studies, details of which are described below (for site locations

see Fig Sͳ.ͱ). Bee species collected and identified to species level were used to

test themodels. Thedifferent studieswere independent of eachother, data being
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gathered in different time periods, by different collectors, and using a systematic

survey across several sites and over short time periods. Theywere experimentally

set-up to test particular research questions associated with specific farm types

and habitats: arable oilseed rape fields and associated field margins; arable fields

with wildflower strips, and apple and pear orchards. While these agricultural

landscapes do not represent Dutch farmland as a whole, they cover important

types of agricultural landscape with different levels of temporal stability. Or-

chards are perennial cropsmaintained for several years; arable fields have annual

crops, with crop species rotating every ͱ or Ͳ years. Measures to enhance bio-

diversity in arable fields (permanent field margins vs. annual wildflower strips)

will also interfere with the temporal stability of the landscape. The studies also

differed with respect to the sampling methods used.

Furthermore, the SDMs presented here are independently validated based

on data from agricultural sites only. In order to fully understand the efficacy

of SDMs for modelling wild bee species distributions, natural habitats can also

be included, in which bee diversity is much larger than in agricultural habitats

(Ricketts et al. ͲͰͰ͸).

Arable oilseed rape fields and field margins (sampling method: Transect)

Data were collected in ͲͰͱͱ and ͲͰͱͲ in ͱͶ arable oil seed rape fields and sur-

rounding boundaries located in the eastern part of the Netherlands. Bee surveys

were conducted along ͱ͵Ͱ mͲ transects (ͱ͵ min pure collecting time per tran-

sect). When sampling within fields, two transects of 1 × 150 m were used, one

located at the edge of the field and one located in the center of the field. Field

boundary transects varied in size depending on the length and width of the field

boundaries (butwere in most cases 2× 75 m). Oil seed rape fieldswere surveyed

twice a year during oil seed rape flowering, and the field boundaries were sur-

veyed four times a year: twice during and twice after the flowering period of the

oil seed rape. Bees were collected using net and hand trapping and identified to

species level in the laboratory.
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Arable fields with wildflower strips (sampling method: Pan Trap)

In ͲͰͱͱ (first season of wildflower strips) and ͲͰͱͲ (second season), data were

collected on Ͷ͸ arable fields throughout the Netherlands using pan traps. Wild-

flower strips had been established along the edge of each arable field. Eachwild-

flower stripwas ͳ–͹m in length. The arable fields consisted of potato, sugar beet,

or cereal crops. Pan trapping was conducted once at each site. All pan traps were

yellow and four were placed at each site, in a square formation two traps in the

wildflower strip and two traps in the field each ͲͰ m apart. Each set of pan traps

was left for a Ͳʹ-h period. All species of insects collected in the pan traps were

identified, the majority to species level.

Apple and pear orchards (sampling method: Transect)

Six apple and six pear orchard locations were sampled in ͲͰͱͰ and ͲͰͱͱ, and ͱ͵

apple orchards were sampled in ͲͰͱͳ. All sites were located more than ͳ km

apart within the province of Gelderland in the Netherlands. Flower visiting bees

were surveyed using transect walks. Each orchard was surveyed twice per year

during blooming, once in the morning and once in the afternoon with at least

three and at most ͷ days separating surveys. In each orchard, bees were surveyed

using a single transect between two rowsof trees along the lengthof eachorchard

with the transect subdivided into Ͳ͵-m-long plots (mean number of plots per

orchard ±SE: ͸.͵ ±ͱ.Ͱ for apple in ͲͰͱͱ and ͲͰͱͲ; ͹.ͷ ±Ͱ.͵ for pear in ͲͰͱͱ and

ͲͰͱͲ; exactly ͱͲ for apple in ͲͰͱͳ). Each transect plot was surveyed during a

ͱͰ-minute period. All flower visitors were collected by net and hand trapping.

Easily recognizable species were generally identified in the field; all other species

were collected and identified in the laboratory.

Apple Orchards (sampling method: Pan Trap)

In ͲͰͱͳ, field surveys were performed at nine apple orchards throughout the

Netherlands. Field surveysof beediversitywereconductedusingpan traps (West-

phal et al. ͲͰͰ͸). Each farm was located within a ͱ km² square landscape sector

thatcorresponded to thescaleandpositioningof ourSDM. Pan trappingwascon-

ducted on three separateoccasions: before, during, and afterappleflowering. For
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each ͱ kmͲ site, eight pan traps were positioned, four within the Elstar cultivar

(one at each corner) and four located outside the orchard but within the ͱkmͲ

zone. Each pan trap set consisted of three pan traps (yellow, blue, and white)

and was left for a period of Ͳʹ-h. Bees present in the pan traps were separated

from other insect groups and identified to species level.

3.3.3 Testing the model with independent datasets

In this project, the performance of the SDM is assessed as the habitat suitability

(Ͱ–ͱ) provided by the SDM for theareaswhere individualwild beeswerecollected

during independent surveys. Suitability values can be considered as a percentage

of chance that a species will be present in the area (see the interpretation of Elith

et al. (ͲͰͱͱ) of the MAXENT logistic output). Therefore, we consider the SDMs

with higher habitat suitability values for collected occurrences to have superior

predictiveperformance. Furthermore, thehabitat suitabilityvaluecontainsmore

information than the usual binary (presence or absence) classifications based on

specificityand sensitivitycalculated statistics (Bahn&McGill ͲͰͱͳ). Weanalysed

the predictive performance of the SDMs only for species that were collected dur-

ing the independent field surveys. Wedid not analyse predictive performance for

species not found during the field surveys aswe cannot assume that that absence

during the survey is indicative of true absence from the site.

To test whether the predictive performance of SDMs depended on species

traits, we divided the ͵Ͷ noncleptoparasite species collected in our field studies

into trait groups (͵Ͳ species were included in the final analysis; we removed four

species, which were found only in forest edges near oil seed rape fields and not

in either orchards or arable fields [See Table Sͳ.Ͳ]). We considered six ecologi-

cal traits from the “European bee traits database” (established by ALARM, www.
alarm-project.ufz.de, and developed by STEP, www.STEP-project.net): ha-
bitat specialization, (continuous scale from ͱ to͸ related to thenumberof habitat

typesaspeciesoccurs in, specialist togeneralist), feeding specialization (oligolec-

tic, feeding on one plant species or polylectic, feeding onmultiple plant species),

body size (intertegular distance of females, where the wings join the thorax), so-

ciality (solitary or social; social species included eusocial as well as primitively

eusocial species, all others were classified as solitary), nesting habit (above or

www.alarm-project.ufz.de
www.alarm-project.ufz.de
www.STEP-project.net
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FĎČ. ͳ.ͱ: Results of Hill & Smith multivariate ap-
proach based on six biological traits across Ͳ axes,
(RSͱ and RSͲ). Four groups selected. Groups A-D (See
Table ͳ.ͱ). RSͱ is positivelydirected byoligolectic, solitary,
below ground bees. RSͱ is negatively directed by social,
habitat generalist aboveground beeswith long flight peri-
ods. RSͲ is positively directed by large, oligolectic, social
bees which nest aboveground. RSͲ is negatively directed
by polylectic below ground nesting bees (see Table Sͳ.ʹ).
Each number refers to a bee species listed in alphabetical

order (see Table Sͳ.Ͳ).

belowground, belowground species included any renters or excavators which

used nests in the ground all others were considered aboveground), and length

of flight period (period active during the year; from ͸ to ͳͶ weeks). We iden-

tified trait groups using the Redundant Hill & Smith dimensional scaling tech-

nique. This method was chosen as it allows for concurrent analysis of both cat-

egorical and continuous ecological trait data by defining the categorical vari-

ables by the means of the continuous variables (Hill & Smith ͱ͹ͷͶ; Barnagaud

et al. ͲͰͱʹ). The analysis was conducted using R package ade-ʹ, which first uses

principal component analysis to process the continuous variables and correspon-

denceanalysis for thecategorical variablesand then theHill and Smithanalysis to

compare the relationship between the two (Dray & Dufour ͲͰͰͷ). Four distinct

species groups were selected (groups A–D; see Table ͳ.ͱ; Fig ͳ.ͱ). The three most
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important variables involved in the analysis were nesting habit, feeding special-

ization, and sociality. Each group contained at least ͵ species (See Table Sͳ.Ͳ).

We can typify groupA as polylectic, habitat specialists; group B as small, polylec-

tic, habitat generalists; group C as oligolectic, habitat specialists; and group D

as large, polylectic, habitat generalists (consisting of Bombus species only). Two

species were not clearly allocated to one of the above four groups Megachile lig-

niseca (Kirby) andM. versicolor (Smith, F.). However, theywere classified as part

of group C, with whom they share the most traits (Fig ͳ.ͱ).

TĆćđĊ ͳ.ͱ: Trait summary of the four bee species groups selected using the Hill and
Smithmethodof multiplecorrespondenceanalysis (MCA), basedonsix biological

traits across Ͳ axis.

Group
Habitat
specialization

Diet
specialization

Body
size

Sociality
Nesting
habit

Flight
period

Dominant
genera

A (ͲͶ) Small intermediate
specialists

Specialists Polylectic Small Solitary Below Short Andrena

B (ͱͲ) Small generalists Generalists Polylectic Small Mixed Below Long Lasioglossum
C (ͱͱ) Highly specialized
bees

Specialists Oligolectic Intermediate Solitary Mixed Short N/A

D (ͷ) Large generalists Generalists Polylectic Large Social Mixed Long Bombus

Numbers in brackets refer to the number of species selected in each group. Habitat specialization, continuous
variable, representing the number of habitat types, from ͱ (specialist) to ͸ (generalist). Diet specialization, factor
oligolectic or polylectic (oligolectic, feeding on one plant species or polylectic, feeding on multiple plant species).
Body size, continuous, intertegular distance of females (mm), sociality, factor, solitary or social. Nesting habit,
factor, below, or aboveground. Flight period continuous, ʹ–ͳͶ weeks. Dominant genera, the genera that makes

≥ͷͰ% of the species diversity in that group.

We tested whether the habitat suitability predicted by our SDMs for these

͵Ͳ species varied between trait group (A–D) and habitat (orchard or arable field),

using linearmixed effectmodels (LMM), with R package lmeʹ (Bates et al. ͲͰͱͳ).

The sampling method (transect vs. pan traps) used in the field surveys was also

included as an explanatory variable in the LMM, to account for any possible

methodological bias. Due to the nested structure of the data, multiple collec-

tion siteswithin separate studies, we included sitewithin studyas a randomeffect

variable. Additionally, as the species collectedwereonly a subsetof all the species

modelled for the Netherlands, we included species as a random effect variable.

Detailed collectionsof multiple individuals in thesameareaare required to

predict thedistributionof speciesabundancealongsidehabitat suitabilitypredic-

tions (Van Couwenberghe et al. ͲͰͱͳ). Because of its scope and resolution, this
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was not feasible for our SDM. Nevertheless, we included the number of records

used to build SDMs in the analysis as a proxy for species rarity and probability of

detection.

We compared all possible combinations of the variables described above,

and their two-way interactions, and selected themostparsimoniousmodel based

on the lowestAkaike informationcriterion, corrected forfinitesamplesize (AICc).

We also compared the mixed effect models with the Bayesian information cri-

terion (BIC), which punishes extra terms more harshly than the AIC and AICc

(Burnham & Anderson ͲͰͰͲ).

3.4 Results

3.4.1 Testing the model with independent datasets

A total of ʹʹͶ individuals of ͵Ͳ species (excluding cleptoparasites)were collected

at ͱͳͳ sampling locations and were used to analyze the predictive performance

of our SDMs. The abundance and richness of wild bees varied between habitat

types, species trait groups, and sampling technique (see Figs. Sͳ.Ͳ and Sͳ.ͳ).

The habitat suitability values obtained from the SDMs, for each of the oc-

currences collected, varied between the different types of habitat where the col-

lection took place, and also among the different species trait groups (Table ͳ.Ͳ,

Fig ͳ.Ͳ). Although the number of records differed significantly between groups

(see Fig Sͳ.ʹ), the habitat suitability of the model was not significantly affected

by thisvariable (ANOVA, chi-square test, P = Ͱ.ͱͳ). The samplingmethodused to

collect the independent wild bee occurrences significantly affected the measure

of SDM habitat suitability overall. Moreover, significant interactions were found

between sampling and group and sampling and habitat type; the effect of habitat

type decreased for transect collections and the effect of species trait groups was

also lower for transect collections than pan trap collections (see Table ͳ.Ͳ).

Datawereavailable forall groups in eachof the habitat types and collection

techniques except group C. Species of this group were not collected in pan traps
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TĆćđĊ ͳ.Ͳ: Effect of species trait group (G), sampling technique (S), and landscape
type (L) on species distributionmodel predictive performance (habitat
suitability of species occurrences). Number of observations was ʹͳͶ of ͵Ͳ unique

species. P-values were obtained from likelihood ratio tests where deviance between

models with the term and without the term where compared. n.s = P > Ͱ.Ͱ͵. The symbol

“–” represents a variable not included in the model. All interactions where tested and

those which contributed significantly to any of the models remained. Random terms (all

models): “ͱ | Study/Site,” “ͱ | Species”

Response Variable G S L G:S G:L S:L DF AICc ∆AICc

Accuracy
Model ͱ (Best Model) Ͱ.ͰʹͲ <Ͱ.ͰͰͱ Ͱ.ͱ <Ͱ.ͰͰͱ – Ͱ.ͰͲ͵ ʹͲͲ ͵ͶͳͶ.ͱ Ͱ
Model Ͳ Ͱ.ͰʹͲ <Ͱ.ͰͰͱ Ͱ.ͱ <Ͱ.ͰͰͱ Ͱ.ͳ Ͱ.Ͱͳ͵ ʹͱ͹ ͵Ͷͳ͸.͹ Ͳ.ͷ͹
Model ͳ Ͱ.Ͱʹʹ <Ͱ.ͰͰͱ Ͱ.ͱ <Ͱ.ͰͰͱ – – ʹͲͳ ͵Ͷͳ͹ Ͳ.͹
Model ʹ Ͱ.Ͱ͵ Ͱ.ͰͰͱ – <Ͱ.ͰͰͱ – – ʹͲʹ ͵Ͷͳ͹.͵ ͳ.ͳ͹
Null Model – – – – – – ʹͳͱ ͵Ͷ͸͵.͸ ʹ͹.Ͷʹ

BIC ∆BIC

Model ͱ (Best Model) Ͱ.Ͱ͵ Ͱ.ͰͰͱ – <Ͱ.ͰͰͱ – – ʹͲʹ ͵Ͷ͸ͷ.ͷ Ͱ
Model Ͳ Ͱ.Ͱʹʹ <Ͱ.ͰͰͱ Ͱ.ͱ <Ͱ.ͰͰͱ – – ʹͲͳ ͵Ͷ͹ͱ.Ͳ ͳ.ʹͷ
Model ͳ Ͱ.ͰʹͲ <Ͱ.ͰͰͱ Ͱ.ͱ <Ͱ.ͰͰͱ – Ͱ.ͰͲ͵ ʹͲͲ ͵Ͷ͹Ͳ.Ͳ ʹ.͵ͱ
Model ʹ – Ͱ.ͰͰͱ – – – – ʹͳͰ ͵ͷͰͱ.ʹ ͱͳ.ͷͱ
Null Model – – – – – – ʹͳͱ ͵ͷͰͶ ͱ͸.ͳͱ

within orchards (Fig ͳ.ͲB). Overall, the occurrences of highly specialized bees

(group C) had higher average suitability values than the other three groups (Fig

ͳ.Ͳ); significantly more than group A and group B species (P < Ͱ.ͰͳͶ and Ͱ.Ͱͳͷ,

Fig ͳ.Ͳ, See Table Sͳ.ͳ). Furthermore, the modelled habitat suitability values

for species occurrences from group D were significantly lower when comparing

transects with pan traps (P < Ͱ.ͰͰͱ, See Table Sͳ.ͳ).

Overall the bee species collected in orchard habitats had higher predicted

habitat suitability than those collected in arable field habitats (Table Sͳ.ͳ). This

result was particularly accentuated for bees collected with pan traps (Fig. ͳ.ͲA

and B). Furthermore, within orchard sites, the pan trap collected beesweremore

accurately predicted than the transect-collected bees (Fig. ͳ.ͲB and D).



ͱͰͲ Chapter ͷ. Testing projected wild bee distributions

FĎČ. ͳ.Ͳ: Mean and standard error of habitat suitability for collection points of the four species
groups, in both landscape types (Orchard and Arable) and for both sampling techniques (Pan
Trap and Transect). Group A = small, intermediate specialists, group B = small generalists, group C =
highly specialized bees, group D = large generalist bees. See Table Sͳ for pairwise comparisons between

effects.

3.5 Discussion
Field surveys are rarely used to test species distribution models (SDM), partic-

ular those investigating spatial patterns of highly mobile animals such as bees

(Fielding & Bell ͱ͹͹ͷ; Jiménez-Valverde et al. ͲͰͰ͸). Weanalysed the SDM habi-

tat suitability scores of independent wild bee occurrences, and we show that the

performanceof SDMs topredictwild beeoccurrences in field surveysdependson
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species traits and on the characteristics of the target habitat and sampling tech-

nique. Belowwe discuss the implications of these findings and the limitations of

our study.

3.5.1 Variation of model predictive performance among dif-
ferent species trait groups

Wild bee species with different traits can have contrasting responses to environ-

mental conditions. Specialist bees have been shown to bemore strongly affected

by agricultural intensification, habitat loss, and fragmentation than generalists

(Bommarco et al. ͲͰͱͰ; Williams et al. ͲͰͱͰ). Habitat and feeding specialists are

generally more restricted in their range of suitable habitats, while large, gener-

alist bees such as bumblebees have greater mobility and can meet their resource

requirements in a wider range of habitats (Hanley et al. ͲͰͱͱ). This probably

explains the better model performance for highly specialized species, indicating

that SDMs are better able to discriminate their more restricted habitats. Similar

patterns have been demonstrated for other taxa (Evangelista et al. ͲͰͰ͸; Peltzer

et al. ͲͰͰͷ; Newbold et al. ͲͰͱͰ; Trumbo et al. ͲͰͱͱ). This finding suggests that

while the ͱ km² resolution used in this study is appropriate for predicting the

distribution of specialized bee species, a more detailed sampling data or differ-

ent set of predictor variables would likely be needed to obtain better predictions

formore generalist species. Furthermore, the differences betweenmodel predic-

tive performance for specialized and generalist bees suggest that the SDM may

be more useful for conservation purposes focused on more specialized species

which aremore likely to suffer declines (Biesmeijer et al. ͲͰͰͶ), than for predict-

ing crop pollinators which are commonly more generalist species (but see Polce

et al. ͲͰͱͳ).

Model performance varied between studies using different sampling tech-

niques which suggests that pan trap and transect collections sample different

parts of a bee community and that the SDMsdo not predict these subsets equally.

Indeed, Cane et al. (ͲͰͰͰ) found that transect walks sampled the bee commu-

nity better than pan trapping, where many abundant and specialized bee species

were absent. In contrast, Westphal et al. (ͲͰͰ͸) showed that pan trapping and
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transects sampled similar species composition, but that pan traps generally sam-

pled more of the wild bee community than transect surveys. However, these

results are strongly limited by the intensity of each method, the experience of

the transect surveyors, whether the pan traps are painted UV bright and whether

they were placed at vegetation height. Bumblebees (trait group D: large gener-

alists) showed distinct trends related to sampling technique. The occurrences

of bumblebees collected during transects had lower predicted habitat suitabil-

ity in the models than those from pan traps. This difference was particularly

marked in arable fields which were generally predicted in our SDM to be un-

suitable habitats, but where bumblebees were frequently detected. Bumblebees

can travel long distances and respond very rapidly to the presence of unexpected

mass-flowering events of attractive crops, such aswhen annual crops like oil seed

rape start blooming (Hanley et al. ͲͰͱͱ). However, bumblebees and other highly

social species have been shown to have higher flower and site constancy than

smaller, solitary bees (Osborne & Williams ͲͰͰͱ; Gegear & Laverty ͲͰͰʹ) and

therefore may be less likely to be caught in pan traps. The use of multiple col-

lection techniques for independently testing the performance SDMs is therefore

essential (see also Westphal et al. ͲͰͰ͸).

3.5.2 Variation of model predictive performance among dif-
ferent landscapes

Overall, the wild bees collected in orchards were predicted with significantly

higher suitability values than the species collected in arable fields, particularly

when using pan traps and for small, mainly solitary bees (groups A and B). In

this study, the category “arable fields” includes a variety of crops, some having

periods of intense flowering very attractive to bees (e.g., oil seed rape, Delaplane

&MayerͲͰͰͰ), whileothers are less attractive to bees (e.g., sugar beetandwheat,

Delaplane & Mayer ͲͰͰͰ). Additionally, in annual crop fields, the type of crop

is frequently rotated, and so continuously changes between years (Stoate et al.

ͲͰͰͱ), and several were subjected to recent changes as a result of agri-environ-

ment schemes (AES) that involved the establishment of field margins or annual

wildflower strips (Kleijn et al. ͲͰͰͶ). These characteristics make arable fields

far more temporally unstable than orchards. The species data used to build the
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SDMs spans ͲͰ years and during that time it is likely that the arable fields have

comprised a variety of crops and for the majority of this time AES had not been

implemented. AES that increase flowering species within farmland (e.g., imple-

mentation of wildflower strips, establishing field margins) also increase the time

window inwhichflower resources areavailable (e.g., Haaland etal. ͲͰͱͱ) and pro-

vide temporary connectivity between less desirable habitat types, for a number

of insects including bees (Carvalheiro et al. ͲͰͱͲ; Holzschuh et al. ͲͰͱͳ). The

results suggest that the variables used to construct the SDMs do not represent

the AES or the seasonal changes in crop flowering, which is reflected by the wild

bee occurrences in otherwise predicted unsuitable habitats.

The high heterogeneity of this landscape type combinedwith a lack of spa-

tial and temporal cover in the data used to build the SDMs is hence a likely expla-

nation for the poorer performance of SDMs in arable fields in comparison with

orchards. Again this reinforces the idea that SDMs of this type are less suitable

for predicting pollination service delivery to arable crops than for predicting the

occurrence of threatened species and their habitats.

3.5.3 Implications for future studies using species distribution
models

The analysis implies that the models with higher predictive performance have

correctly represented the ecological niche of a species. SDMs are often used to

make decisions regarding areas of conservation importance or also in the case

of pollinators, where crops and pollinators overlap (Franklin ͲͰͱͳ; Polce et al.

ͲͰͱͳ). Therefore, models with habitat suitability scores strongly correlated to

temporally independent presences will have a higher efficacy in decision mak-

ing. The results of our study suggest that studies using SDMs to predict bee

species occurrences would benefit from more specific information about land-

scape type, crop type, including fine-scale vegetation and AES data and informa-

tion on flower availability within the landscape during different seasons of the

year (sampling season) (Pearce et al. ͲͰͰͱ). Unfortunately, such detailed infor-

mation is rarely available, and the efficacy of long-term collection data are lim-

ited by the historically available land-use and climate information with which

to model it. However, increased thematic resolution in the future, specifically
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for agricultural land use should assist in increasing the performance for certain

species trait groupswhose distributions are not accurately predicted by the lower

thematic resolution of the current models. Temporally unstable habitats repre-

sent another difficulty for the development of valuable SDMs. Our results imply

that a particular habitat is only suitable under certain conditions, such as when

wildflower strips are blooming or when certain crops are flowering. As climatic

and land-use characteristics are subject to annual variation, and as pollinators

can be susceptible to small scale habitat changes (e.g., presence of flower strips

within farmland, Scheper et al. ͲͰͱͳ), the model data are likely to be too coarse

temporally to accurately predict the suitable habitat of a species at a specific mo-

ment in time. Species collection data, particularly those aggregated in museum

collections generally cover long time periods, whereas crop rotation and AES oc-

cur in the short-term. This suggests that temporal variation between habitat and

species will remain difficult to separate in distribution models, and habitat suit-

ability conclusions for fine-scale landscape features will be difficult to produce.

To overcome these caveats, SDMs need to be built with data specific to the year

and season that a species was sampled. For example, in the Netherlands, AES are

organized as regional collectives. Therefore, SDMs built and tested with detailed

information from before and after the introduction of AES landscape features

can be used to model the effectiveness and the changes resulting from AES and

ensure ongoing monitoring and help determine future policy decisions.

Information on biotic interactions (e.g., bumblebee cleptoparasites and

bumblebee hosts) can also increase the predictive performance of the wild bee

SDMs (Giannini et al. ͲͰͱͳ). This suggests that where clear ecological relation-

ships are present including biotic information should improve the SDMs, par-

ticularly for the more generalist species which were not adequately modelled by

climate and land use alone.

3.6 Conclusions
Species distribution models are an important tool in ecological studies that can

provide guidance for conservation management action and potentially also for
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management of ecosystem services. By comparing the predictions of SDMs de-

veloped formultiple bee specieswith independently collected field data, we show

the performance of such models is highly dependent on species traits and on the

spatial and temporal heterogeneity of the targeted habitat. While our analysis

has only considered wild bees the results are not restricted to wild bees and sug-

gest that other mobile and functionally varied species groups related to agricul-

tural crops (e.g., hoverflies) may show similar trends to what we have observed

here.
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3.8 Supporting Information

Tables

TĆćđĊ Sͳ.ͱ: List of environmental variables included in
MAXENT species distributionmodelling.

Type Variables

Climate Mean Diurnal Range of Monthly Temperature
Mean Temperature of Warmest Quarter

Precipitation of Driest Month
Precipitation of Warmest Quarter

Temperature Seasonality

Land Use Line Density of Simple Ditches
Line Density of Tree Alleys

Percentage Cover Agriculture
Percentage Cover Coniferous Forest

Percentage Cover Moors/Peats
Percentage Cover Sandy Soils

Percentage Cover Urban

Topography Elevation

TĆćđĊ Sͳ.Ͳ: List of species per species trait group.

Species Group ID Number Final Analysis

Andrena angustior A ͱ YES
Andrena barbilabris A Ͳ YES
Andrena chrysosceles A ʹ YES
Andrena cineraria A ͵ YES
Andrena fucata A ͸ YES
Andrena fulva A ͹ YES
Andrena gravida A ͱͰ YES
Andrena haemorrhoa A ͱͱ YES
Andrena helvola A ͱͲ YES
Andrena humilis A ͱͳ YES
Andrena labiata A ͱʹ YES
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Table Sͳ.Ͳ continued from previous page
Andrena nigroaenea A ͱͶ YES
Andrena praecox A ͱ͸ YES
Andrena semilaevis A ͱ͹ NO
Andrena subopaca A ͲͰ YES
Andrena tibialis A Ͳͱ YES
Andrena vaga A ͲͲ YES
Andrena varians A Ͳͳ YES
Colletes daviesanus A ͳͳ YES
Dasypoda hirtipes A ͳʹ YES
Lasioglossum sexstrigatum A ʹ͹ YES
Panurgus calcaratus A ͵Ͷ YES
Andrena carantonica B ͳ YES
Andrena dorsata B Ͷ YES
Andrena flavipes B ͷ YES
Andrena minutula B ͱ͵ YES
Andrena nitida B ͱͷ YES
Halictus tumulorum B ͳ͵ YES
Hylaeus communis B ͳͷ YES
Hylaeus confusus B ͳ͸ YES
Hylaeus gibbus B ͳ͹ NO
Lasioglossum calceatum B ʹͰ YES
Lasioglossum fratellum B ʹͱ NO
Lasioglossum leucopus B ʹͲ YES
Lasioglossum leucozonium B ʹͳ YES
Lasioglossum malachurum B ʹʹ YES
Lasioglossum minutissimum B ʹ͵ YES
Lasioglossum morio B ʹͶ YES
Lasioglossum pauxillum B ʹͷ YES
Lasioglossum sexnotatum B ʹ͸ YES
Lasioglossum villosulum B ͵Ͱ YES
Lasioglossum xanthopus B ͵ͱ YES
Lasioglossum zonulum B ͵Ͳ YES
Anthophora plumipes C Ͳʹ YES
Chelostoma florisomne C ͳͲ YES
Heriades truncorum C ͳͶ YES
Macropis europaea C ͵ͳ YES
Megachile ligniseca C ͵ʹ NO
Megachile versicolor C ͵͵ YES
Bombus hortorum D Ͳ͵ YES
Bombus hypnorum D ͲͶ YES
Bombus jonellus D Ͳͷ YES
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Table Sͳ.Ͳ continued from previous page
Bombus lapidarius D Ͳ͸ YES
Bombus pascuorum D Ͳ͹ YES
Bombus pratorum D ͳͰ YES
Bombus ruderarius D ͳͱ YES

TĆćđĊ Sͳ.ͳ: Post hocmultiple pair wise comparison of difference in
least squaremeans, table for all significant interactions as

selected in best model (AICc).

Species Trait Group Estimate Error p-value Sig.

A-B Ͱ.Ͱͱͷͳ Ͱ.Ͱʹͷͷͷ Ͱ.͹͸
A-C -Ͱ.ͱ͵ͳ͹ Ͱ.Ͱ͵͵͵ͳ Ͱ.Ͱͳ͵ *
A-D Ͱ.ͰͰͷ͸ Ͱ.Ͱ͵Ͳ͵ͷ Ͱ.͹͹
B-C -Ͱ.ͱͷͱͲ Ͱ.ͰͶͲͱͷ Ͱ.Ͱͳͷ *
B-D -Ͱ.ͰͰ͹͵ Ͱ.Ͱ͵͹ͳͷ Ͱ.͹͹
C-D Ͱ.ͱͶͱͷ Ͱ.ͰͶʹͶ Ͱ.ͰͶ͸ .
Habitat Type
Arable-Orchard -Ͱ.Ͱ͸ͱ͸ Ͱ.ͰͲʹͳͲ Ͱ.ͰͰͳ **
Sampling Technique
PanTraps-Transect Ͱ.Ͱ͹ͳͲ Ͱ.ͰͲͷͶͳ Ͱ.ͰͰͲ **
Group:Sampling
PanTraps A - Transect A Ͱ.Ͱͳͳʹ Ͱ.ͰͳͶͰͲ Ͱ.͹͸
PanTraps A - PanTraps B Ͱ.ͰʹͱͲ Ͱ.Ͱ͵ͷ͸ͷ ͱ
PanTraps A - Transect B Ͱ.ͰͲͶͷ Ͱ.Ͱ͵͵ͳʹ ͱ
PanTraps A - PanTraps C -Ͱ.ͱ͸Ͷ͸ Ͱ.Ͱ͸ͱͰ͵ Ͱ.Ͳͷ
PanTraps A - Transect C -Ͱ.Ͱ͸ͷͷ Ͱ.ͰͶͱʹͳ Ͱ.͸ͱ
PanTraps A - PanTraps D -Ͱ.ͱͰͳ Ͱ.ͰͶͰ͵ͳ Ͱ.Ͷʹ
PanTraps A - Transect D Ͱ.ͱ͵ͱ͹ Ͱ.Ͱ͵͹͵ͷ Ͱ.ͱͶ
Transect A - PanTraps B Ͱ.ͰͰͷ͹ Ͱ.Ͱ͵͵ͳ͵ ͱ
Transect A - Transect B -Ͱ.ͰͰͶͶ Ͱ.ͰʹͷͷͲ ͱ
Transect A - PanTraps C -Ͱ.ͲͲͰͱ Ͱ.Ͱͷ͸Ͳ͹ Ͱ.Ͱ͹ .
Transect A - Transect C -Ͱ.ͱͲͱ Ͱ.Ͱ͵ʹͶͲ Ͱ.ͳͱ
Transect A - PanTraps D -Ͱ.ͱͳͶͳ Ͱ.Ͱ͵ͶͶͷ Ͱ.ͲͲ
Transect A - Transect D Ͱ.ͱͱ͸͵ Ͱ.Ͱ͵Ͳͷʹ Ͱ.ͳ
PanTraps B - Transect B -Ͱ.Ͱͱʹ͵ Ͱ.ͰͳͶʹͳ Ͱ.͹͹
PanTraps B - PanTraps C -Ͱ.ͲͲ͸ Ͱ.Ͱ͸͵ͶͲ Ͱ.ͱͳ
PanTraps B - Transect C -Ͱ.ͱͲ͸͹ Ͱ.ͰͶͷʹ͸ Ͱ.͵
PanTraps B - PanTraps D -Ͱ.ͱʹʹͲ Ͱ.ͰͶͶͱͱ Ͱ.ͳͳ
PanTraps B - Transect D Ͱ.ͱͱͰͷ Ͱ.ͰͶ͵͸Ͳ Ͱ.ͶͶ
Transect B - PanTraps C -Ͱ.Ͳͱͳ͵ Ͱ.Ͱ͸ͳ͵Ͳ Ͱ.ͱͶ
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Table Sͳ.ͳ continued from previous page
Transect B - Transect C -Ͱ.ͱͱʹʹ Ͱ.ͰͶͱͲ͵ Ͱ.͵ͳ
Transect B - PanTraps D -Ͱ.ͱͲ͹ͷ Ͱ.ͰͶͳ͵ Ͱ.ʹͲ
Transect B - Transect D Ͱ.ͱͲ͵ͱ Ͱ.Ͱ͵͹͵ͱ Ͱ.ͳͷ
PanTraps C - Transect C Ͱ.Ͱ͹͹ͱ Ͱ.ͰͷͶͳͲ Ͱ.͸ͷ
PanTraps C - PanTraps D Ͱ.Ͱ͸ͳ͸ Ͱ.Ͱ͸ͳͶͷ Ͱ.͹Ͷ
PanTraps C - Transect D Ͱ.ͳͳ͸ͷ Ͱ.Ͱ͸ͶͰͳ Ͱ.ͰͰͳ **
Transect C - PanTraps D -Ͱ.Ͱͱ͵ͳ Ͱ.ͰͶ͸ͶͲ ͱ
Transect C - Transect D Ͱ.Ͳͳ͹Ͷ Ͱ.ͰͶ͵Ͳͷ Ͱ.ͰͰͷ **
PanTraps D - Transect D Ͱ.Ͳ͵ʹ͸ Ͱ.ͰͲ͹ͱ͸ <Ͱ.ͰͰͱ ***
Sampling:Habitat
Arable PanTraps - Orchard PanTraps -Ͱ.ͱʹͳ͹ Ͱ.Ͱʹͱͳͷ Ͱ.ͰͰͶ **
Arable PanTraps - Arable Transect Ͱ.Ͱͳͱͱ Ͱ.ͰͲ͹Ͷʹ Ͱ.ͷͱ
Arable PanTraps - Orchard Transect Ͱ.Ͱͱͱʹ Ͱ.ͰͳͰͳͳ Ͱ.͹͸
Orchard PanTraps - Arable Transect Ͱ.ͱͷ͵ Ͱ.ͰʹͲͳͱ <Ͱ.ͰͰͱ ***
Orchard PanTraps - Orchard Transect Ͱ.ͱ͵͵ͳ Ͱ.ͰʹͲͳ Ͱ.ͰͰͳ **
Arable Transect - Orchard Transect -Ͱ.Ͱͱ͹ͷ Ͱ.ͰͲʹͷʹ Ͱ.͸͵

TĆćđĊ Sͳ.ʹ: Column coordinates for species traits
used in group selection ordination analysis.

Species Trait RSͱ RSͲ

Habitat Specialisation -Ͱ.ͷͳͱ͵͹͵ʹ -Ͱ.Ͳʹ͹͵ͷͰͳ
Body size -Ͱ.ͳ͸ͳ͹ʹ͵ͷ Ͱ.ͷͰͲͰͰͷ͵

Lecty (Oligolectic) ͱ.ͳ͵ʹ͸͸ͱ Ͱ.͹Ͱ͹͹ͲͲͳ
Lecty (Polylectic) -Ͱ.Ͳ͵͹ʹ͵ -Ͱ.ͱͷʹͲʹͰʹ
Sociality (Social) -ͱ.Ͳ͹Ͱ͹͵ Ͱ.ͳ͸ͲͲ͵ͳͳ
Sociality (Solitary) Ͱ.ʹͳͰͳͱͶ -Ͱ.ͱͲͷʹͱͷ͸
Nesting (Above) -Ͱ.ʹ͹ͱ͹͹ ͱ.ͳͲ͵͹ʹ͹͹
Nesting(Below) Ͱ.ͱͲͰͲͶ͵ -Ͱ.ͳͲʹͱͲͱͱ

Length of flight period -Ͱ.͸ͶͶʹͶ -Ͱ.ͲͰͱͷͷͳͲ
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Figures

FĎČ. Sͳ.ͱ: Field-survey locations by landscape type
and collection technique.

FĎČ. Sͳ.Ͳ: Species richness (number of species) col-
lected at each site.
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FĎČ. Sͳ.ͳ: Abundance (number of individuals) col-
lected at each site.

FĎČ. Sͳ.ʹ: Average number of records per species
group, with standard deviation error bars.
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4.1 Abstract
Species assemblages form following interactions betweenvariousprocesses. One

of the key and most difficult processes to quantify is the influence of biotic inter-

actions and species co-occurrence. In this study, we explore how co-occurrence,

habitat filtering, species traits andphylogenetic relatedness influencespeciesdis-

tribution and affect assemblage formation, using wild bees in the Netherlands as

a test case. Our results show that habitat filtering explains themajority of the ge-

ographicdistinction between species, but positive co-occurrencepatterns of wild

bees improves our understanding of the relationship between habitat and spa-

tial distribution. We also observe a pattern of phylogenetic niche conservatism

among closely-related species not captured by traits. The results show that co-

occurrence is a necessary input to improve predictions of community assembly

patterns and that closely-related species share habitat requirements. These re-

sults imply that knowledge about species assemblages can be used as a basis for

landscape conservation strategies.



͸.Ͷ. Introduction ͱͱͷ

4.2 Introduction
Wild bees performan important role inmanaged and natural ecosystemsprovid-

ing pollination services for many crop species and wild plants (Kleijn et al. ͲͰͱ͵,

Potts et al. ͲͰͱͶa). Nevertheless, wild bees in Europe have declined in the last

ͱͰͰ years (Biesmeijer et al. ͲͰͰͶ; Carvalheiro et al. ͲͰͱͳ; Potts et al. ͲͰͱͶb). One

of the main drivers behind these declines is the loss of nesting and feeding re-

sources through land use/land cover changes such as agricultural intensification

and urbanization (Nieto et al. ͲͰͱʹ; Vanbergen et al. ͲͰͱͳ). Newnational and in-

ternational policies should therefore be developed to promote the conservation

of wild bees and strengthenmanagementefforts aiming toensure thepersistence

of their sheer biodiversity (Potts et al. ͲͰͱͰ). Despite global concern of wild bee

diversity losses many aspects of wild bee landscape ecology are still not well un-

derstood, particularly how different drivers of decline interact, what ecological

processes drive community assembly, and how different measurements of diver-

sity respond to these environmental changes.

The correlation between species and their traits, phylogeny and habitat fil-

tering have been used to understand, and predict species distribution patterns.

For example, traits and trait diversity are increasingly used in studies of wild bee

distribution because of their correlation to ecosystem functions, including polli-

nation (Fründ et al. ͲͰͱͳ; Martins et al. ͲͰͱ͵), but also to drivers of decline (De

Palma et al. ͲͰͱͷ). Phylogenetic diversity, while at least partly correlated to func-

tional trait diversity and species richness, may provide additional power in the

estimation of community structure, functioning and conservation (Flynn et al.

ͲͰͱͱ, Vereecken ͲͰͱͷ). Several recent studies have reported on habitat filtering,

linked to changes in phylogenetic diversity of wild bees (Hoiss et al. ͲͰͱͲ; Syden-

hamet al. ͲͰͱ͵). Alternative biodiversitymetrics, rather than solely species rich-

ness, are important for conservation, particularly in situations where commu-

nities with reported low species richness may actually represent a diverse func-

tional and phylogenetic community assemblage (Aguirre-Gutiérrez et al. ͲͰͱͷb;

Dorchin et al. ͲͰͱ͸).

To reach a more precise understanding of wild bee community assembly
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and their trends, one needs to study both the environmental conditions under

which each species thrives or declines and the influence of biotic factors, such as

co-occurring species. The Dutch wild bee fauna distribution patterns have been

modelled previously, butonly forsingle species separately, ignoring the roleof co-

occurrence and community assembly (Aguirre-Gutiérrez et al. ͲͰͱͷa; Marshall

et al. ͲͰͱ͵). Species community assembly is based on the assumption that co-

occurrence among species is non-random (Phillips ͱ͹ͳͱ). Community assembly

is driven ecologically by dispersal capabilities followed by habitat filtering and

biotic interactions. In essences, species persist at a location only if they arrive

there, find suitable habitat conditions and are not excluded by other species al-

ready present (Boulangeat et al. ͲͰͱͲ; Götzenberger et al. ͲͰͱͲ). Predicting the

distribution of species and therefore estimating community structure often con-

siders species individually and focuses on habitat filtering alone (Elith & Leath-

wick ͲͰͰ͹). A simple method to estimate community structure is with Species

Distribution Models (SDMs) and involves stacking all the individual species dis-

tribution projections (Calabrese et al. ͲͰͱʹ). However this method ignores the

interaction between species. Joint SDMs (JSDMs) represent a method to model

the community as a whole by incorporating habitat filtering at the community

level and utilizing statistical co-occurrence between all species in the commu-

nity (Ovaskainen et al. ͲͰͱ͵; Pollock et al. ͲͰͱʹ). JSDMs additionally provide

approaches to incorporate traits and phylogenetic relationships as explanatory

factors in community composition (Pollock et al. ͲͰͱͲ), allowing inference on

the functional and phylogenetic diversity of the communities, and not only at

the species level.

In this study, we use JSDMs, species traits, and phylogenetic relationships

to investigate the role of environmental and biotic factors in community level

structure of wild bees in the Netherlands. Firstly, explicitly ignoring the influ-

ence of habitat covariates, we describe patterns of co-occurrence, using a proba-

bilisticmodel of co-occurrence (Veech ͲͰͱͳ), and compare these patterns to phy-

logenetic and trait relationships. Secondly, we use a framework for modelling

multiple JSDMs referred to as Hierarchical modelling of Species Communities

(HMSC; Ovaskainen et al. ͲͰͱͷ). This framework predicts community composi-

tion and incorporates habitat filtering, together with the ”biotic niche”, namely
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the co-occurrence matrix. More specifically, we address the following five ques-

tions. (ͱ) Do certain wild bee species indicate the presence of others? (Ͳ) What

is the influence of habitat filtering on the patterns of wild bee occurrence? (ͳ)

Do species traits and phylogenetic relationships influence wild bee spatial co-

occurrence and assembly patterns? (ʹ) How are wild bee assemblages geograph-

ically distributed? (͵) What are the conservation implications of the resulting

wild bee assemblage patterns?

4.3 Materials and Methods

4.3.1 Species Data

The collection records for wild bees in the Netherlands were obtained from the

European Invertebrate Survey (EIS; Peeters et al. ͲͰͱͲ) . We used species oc-

currence records collected since ͲͰͰ͵ in order to analyse communities repre-

sentative of the contemporary fauna while ensuring a large number of collec-

tion records. The occurrence records in the EIS database are collated from many

sources and include museum collection data, verified and validated citizen sci-

ence data, and data systematically sampled as part of scientific research projects.

The objective of the study is to look at co-occurrence and assemblage patterns

among wild bees. Hence, we need to ensure that we use spatially explicit occur-

rence records from areas that have been repeatedlywell-sampled. Consequently,

we conducted detailed data mining on the occurrence database.

At 10 × 10 km, we selected occurrence records that represent repeated

sampling within each grid cell. We used select criteria which we applied to each

grid cell: (ͱ) at least two recorded occurrences, (Ͳ) records collected before and

after July within the same year, (ͳ) at least two unique years between ͲͰͰ͵ and

ͲͰͱͷ, (ʹ) at leastfivedifferent speciesmusthavebeencollected. Theselected sites

and species were then coerced into a site ×species matrix to use directly in the

analyses. Finally, for the HMSC analysis we limited the models to only species

with a least five records. This resulted in ͷͰ species being excluded from the

HMSC part of the analysis (see Table Sʹ.ͱ and Sʹ.Ͳ in Supporting Information).



ͱͲͰ Chapter ͸. Wild bee assembly patterns

4.3.2 Environmental Data

Climatedatawas calculated fromdaily values of minimum, maximum, andmean

temperature and rainfall from the Koninklijk Nederlands Meteorologisch Insti-

tuut (KNMI) using the API available from (https://data.knmi.nl/datasets).
These values were used to produce the ͱ͹ bioclimatic variables (Hijmans et al.

ͲͰͰ͵).

Two-dimensional land use data were collated from three separate sources;

(ͱ) nature, IndexNatuur en Landschap (Inter Provinciaal Overleg ͲͰͱͶ); (Ͳ) agri-

culture, Basisregistratie Gewaspercelen (EZK ͲͰͱ͵); (ͳ) urban, the Bestand Bod-

emgebruik Productbeschrijving (CBS ͲͰͱͲ) . After removing all agricultural and

landscape feature classes from the nature map, we created a hierarchy whereby

the nature map would take precedence over the agricultural map which would

in turn take precedence over the urban map. Therefore, areas which would be

disputed would automatically default to the class as defined by the map high-

est in the hierarchy. We made this decision because we believed that the nature

map would most accurately represent the distinctions between important land

use classes for bees. Furthermore, this hierarchyalso represented decreasing age,

with the urban map being the oldest and consequently least up-to-date. The po-

tential implications of this selection would be that areas of natural habitat may

be overestimated and urban areas underestimated.

To avoid collinearities between covariates, we compared the Pearson cor-

relation coefficients between all pairs of environmental variables and ensured

no pairs had values higher than Ͱ.ͷ (Dormann et al. ͲͰͱͳ). In the cases where

two climate variables were highly correlated, we selected the variable that we

assessed as having the greatest ecological relevance to wild bee species. The

final selection includes ten land use and five climate classes (Fig ʹ.Ͳ and see

Table Sʹ.ͳ): crops food source, crops non-food source, agri-grassland, urban,

heathland, semi-natural woodland, production woodland, marsh and swamp-

land, semi-natural grassland, dune, minimum temperature of coldest month,

mean temperature of driest quarter, mean temperature of warmest quarter, an-

nual precipitation, and precipitation of the driest month.

https://data.knmi.nl/datasets
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4.3.3 Traits Data

We considered seven ecological traits from the “European bee traits database”

(established by ALARM, www.alarm-project.ufz.de, and developed by STEP,

www.STEP-project.net); (ͱ) habitat specialization, (ͱ to ͸, number of habitat

types where a species occurs); (Ͳ) feeding specialization (oligolectic, polylec-

tic, no lectic status); (ͳ) body size (inter-tegular distance of females); (ʹ) so-

ciality (solitary, social or parasite); (͵) nesting habit (excavators or renters), and

(Ͷ) length of flight period (Ͳ to ͱͰ months); (ͷ) voltinism (univoltine or bivol-

tine/multivoltine). These same traits have been used in previous studies of wild

pollinators in the Netherlands showing relationshipswith historical habitat cha-

nges and present day prevalence (Aguirre-Gutiérrez et al. ͲͰͱͶ; Marshall et al.

ͲͰͱ͵). Trait data were incomplete for Ͳ͹ species (see Table Sʹ.Ͳ).

4.3.4 Phylogenetic Data

The bees molecular phylogeny was produced on the basis of different sequences

of the mitochondrial gene cytochrome oxidase ͱ (COͱ) available on GenBank

(Benson et al. ͲͰͱʹ). This phylogenetic tree was reconstructed based on nu-

cleotide character state (i.e. ATCG) with maximum likelihood (ML) optimality

criterion method. This ML tree was then converted into a distance matrix based

on the length of the branches separating species and a species by species corre-

lation matrix. Please see material and methods, section Ͳ.Ͳ.͵ for greater detail

on the methods, the underlying data and resulting phylogenetic tree and Table

Sʹ.ʹ. Phylogenetic data was absent for Ͳ͵ species (see Table Sʹ.Ͳ).

4.3.5 Pairwise Spatial co-occurrence

Using amatrix of sites and species (presence/absence), the pairwise probabilistic

model calculates the total probabilities for spatial co-occurrence for two species

across the total number of sites and compares them against the observed spatial

co-occurrence (Veech ͲͰͱʹ). A species-pair can be classified as positive (signifi-

cantly more sites), negative (significantly less sites) or random (non-significant

www.alarm-project.ufz.de
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difference). Unlike other methods the probabilistic model does not require ran-

domization, avoiding issues of type I and II errors found in other spatial co-

occurrence methods (Veech ͲͰͱͳ). We used a linear model to compare the re-

lationship between pairwise spatial co-occurrence probabilities against phylo-

genetic distance and traits based dissimilarity (ͱ- Gower similarity coefficient;

Gower, ͱ͹ͷͱ).

4.3.6 Hierarchical modelling of Species Communities

We used a framework with the purpose of Hierarchical modelling of Species

Communities (HMSC), utilizing Bayesian JSDMs toclassify species’ relationships

with their environmental conditions, whilst accounting for the possible influ-

ence of co-occurrence, traits and phylogeny on these patterns (Ovaskainen et al.,

ͲͰͱͷ). This method allows us to test specific hypotheses of community assembly

based on widespread, but erratic, spatially explicit occurrences.

Weconducted theanalysis ona 10 kmgrid (ͳͶͳ sites) of speciesoccurrence

(ͲͰʹ species) across the Netherlands. Each species was modelled with a general-

ized probit linearmodel of presence/absenceas a functionof environmental con-

ditions and random spatial effects. The pairwise association/co-occurrence ma-

trix was included in the model as a latent factor of random variation per species

per site; covariation between each species pair estimates if they occur together

moreoften than expected. The effect towhich variation in nichewas additionally

explained by traits was measured for each species response to each environmen-

tal covariate. Finally, the presence of phylogenetic niche conservatism (PNC)

among closely-related specieswas tested bymeasuringwhether the residual vari-

anceof themodel is independentof phylogeny. Non-independence, and byproxy

PNC, implies that closely-related species havemore similar niches thandistantly-

related species.

Each model is run as a Markov Chain Monte Carlo (MCMC) with ͲʹͰͰͰ

iterations where the first ʹͰͰͰ iterations are removed giving the Markov Chain

time to reach its equilibrium distribution. All explanatory factors are scaled be-

tween Ͱ and ͱ. Randomspatial autocorrelation is included as x and ycoordinates.



͸.ͷ. Materials and Methods ͱͲͳ

The models are examined using MCMC trace plots to ensure that adequate mix-

ing has occurred and that the latent variables are satisfactorily predicted. Predic-

tive powerof themodel is measured in twoways using Tjur RͲ which is described

as “the mean model prediction for those sampling units where the species occurs,

minus the mean model prediction for those sampling units where the species does

not occur” (Guillaume Blanchet et al. ͲͰͱͷ). Furthermore, we use the area under

the curve (AUC) of the receiver operating characteristic (ROC) valuewhichmea-

sures the degree of false positives and false negatives between the true values and

the predicted values (Bahn & McGill ͲͰͱͳ).

4.3.7 Assemblages

Using the final model of the HMSC we made predictions using all sites, to pro-

duce a site-by-site similarity index and classify the Netherlands into regions of

similar assemblages. We used K-means clustering, whereby the data are parti-

tioned into the selected numberof assemblageswith theexpress goal of minimiz-

ing the sum of squares between the points and the centre of the chosen clusters.

The Hartigan-Wong algorithm was used, set to ͱͰͰͰ iterations and ͱͰͰ random

samples (Hartigan & Wong ͱ͹ͷ͹). The run which most successfully minimizes

the sum of squares was chosen. We used the ‘elbow method’, selecting the num-

ber of clusters (communities) at the point after which the explained variation no

longer increases. We present the geographic distribution of community assem-

blages for all clustering quantities up to and including the cut-off value.

For each assemblage we calculated: a PCA of difference in land use, total

species richness, phylogenetic species variability (PSV), functional diversity and

percentage cover of NaturaͲͰͰͰ sites. Furthermore, using ANOVA and Tukey’s

HSD, we defined the most representative species for each community profile

as those whose abundance records in a particular assemblage are significantly

greater than their abundance in the other assemblages. Finally, for each site, we

tested how community similarity changes geographically. We tested this by plot-

ting per site community similarity against geographic distance. We do this for

similarity values obtained from spatial predictions only (all environmental vari-

ables set to their mean values) and with both spatial and environmental factors

included.
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4.4 Results

FĎČ. ʹ.ͱ: Scatterplot showing co-occurrence probability against phylogenetic distance and trait dissimilar-
ity at 10 × 10. (a) Average co-occurrence probability per genus pair vs. Average phylogenetic distance per genus
pair(COͱ gene. (b) Averageco-occurrenceprobabilitypergenuspairvs. AverageGower’s traitdissimilaritypergenus

pair.

4.4.1 Spatial co-occurrence patterns

We examined Ͳ͹ͷ potential species interactions, or ʹͳ͹͵Ͷ pairs of species. The

numberof analyzablepairs, ͲʹͲͳʹ, indicates that thedatabasehasamanyspecies

with few records and that many wild bee species are not expected to co-occur

at all. The majority of spatial co-occurrence patterns between wild bee species

werepositive (Ͷʹ.͵%) and very few interactions negative (Ͱ.Ͷ%). The species pair

with the most observed co-occurrences was Bombus lapidarius and B. pascuo-

rum, these two species are also the twomost abundant species in the collections.

The co-occurrence patterns per species pair were compared to the phylogenetic

distance and trait dissimilarity between each species pair. Overall at ͱͰ×ͱͰkm

we seeweak to no evidence for a relationship between phylogenetic distance and

trait dissimilarity and the co-occurrence of species pairs. There is a significant

positive relationshipwherebygenerawhicharemorephylogenetically-distantare

more likely to co-occur, however, the Pearson correlation coefficient (r) of Ͱ.Ͳ͸
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suggests this is weak (Fig ʹ.ͱa). When examined for all values this relationship is

muchweaker (r: Ͱ.Ͱ͵) suggesting that there is no clear relationship at the species

level (Fig Sʹ.ͱa). Gower’s trait dissimilarity index between genera shows a non-

significant relationshipwith co-occurrence probability between genera (r: Ͱ; Fig

ʹ.ͱa). At the species level there is a significant positive relationship, however the

r of Ͱ.ͱͲ suggest this relationship is also weak (Fig Sʹ.ͱb).

4.4.2 Habitat Filtering

Land use variables explain the majority of variation in habitat filtering for ͱ͵ͱ of

the ͲͰʹ species (ͷʹ%) and climate for the remaining ͵ͳ species (ͲͶ%). Land use

explainsonaverage ͵ͷ%of thevariation, ranging fromͲͶ% to͹Ͱ%,while climate

explains ͳ͵% of the variation on average (from Ͷ to ͷͰ%). Spatial autocorrelation

only accounted for a small percentage of the variation in species niche; ͸% with

a range of Ͱ.ͳ% to ͳͷ% (see Fig Sʹ.Ͳ). A number of land use variables were in-

cluded as important factors in the models, which varied by species (Fig ʹ.Ͳa).

Semi-natural grassland and urban areas were positive factor for a large majority

of species (Ͷ͵% and ͵͵% respectively). Heathland (positive, ͱ͵% and negative

Ͷ%) and dune (ͱͷ% and ʹ%) areas were both beneficial and restrictive for some

species. The balance of associations (negative vs. positive) was mostly negative

for agricultural land use types, including cropland, as food-source (͸%) and non-

food-source (ͱͷ%), and agricultural grassland (ͱʹ%; Fig ʹ.Ͳa).

The influence of the different land use variables is measured as the average

effect size across the ninemost species-rich genera (Fig ʹ.Ͳb). The effect of semi-

natural grassland is positive for all genera but higher for the species in the genera

Sphecodes, Nomada and Lasioglossum. Bombus species are the only species for

which cropspositively influence theirdistribution (Fig ʹ.Ͳb). Theeffectof heath-

land varies between genera and species within genera.

Only ͱͱ% of the variation in niches across all species could be appointed to

differences in traits. Additionally, mean PNC across the ͲͰ,ͰͰͰ model iterations

was Ͱ.͹ͱ ± Ͱ.ͰͲ provides strong evidence that closely-related species have more

similar responses to the habitat covariates.
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FĎČ. ʹ.Ͳ: Land use filtering of wild bee species. (a) Number of species (n=ͲͰʹ) with significant
influence (confidence interval outside zero) of land use covariates. (b) Mean and standard error of

effect size for land use variables per genera. Genera shown comprise at least five species.
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4.4.3 Biotic Interactions

Species with a higher positive correlation in their response to the models’ latent

variables are likely to increase in occurrence together. Indicating that the pres-

ence of wild bee species increases the likelihood of presence of other wild bee

species. Particularly there is a strong spatial association between species found

in the genera Sphecodes, Andrena, Hylaeus, Nomada, Lasioglossum and Colletes

(see Fig Sʹ.ͳ). To test the overall influence of including the species pairwise as-

sociation matrix in the model we examined the predictive power of the model

with and without the latent factors included. Latent effects refer to variables, in

this case three, which are calculated to account for the residual patterns across

the species association matrix not explained by the explanatory variables. The

models for all species improve with latent effects; overall the mean Tjur RͲ was

Ͱ.Ͳͱ vs. Ͱ.ͱͲ and theAUCͰ.͸͵ vs. Ͱ.͸ (Fig ʹ.ͳ). Somemodels asmeasured by the

Tjur RͲ are inaccurate particularly at the low and high prevalence. Thedifference

in performance is less pronounced for those species with high or low prevalence.

4.4.4 Assemblages

The majority of explained variance is between two and seven clusters (Fig ʹ.ʹ).

Each increase in the number of clusters delimits a new assemblage with species

and conditions different to those of other assemblages. Each assemblage is re-

ferred to by its number in Fig ʹ.ʹf. Assemblages ͱ (Aͱ), Ͳ (AͲ) and Ͷ (AͶ) are

found in similar habitats with varying gradients of urban and agricultural land

use (Fig ʹ.͵a,b). Except for Anthophora plumipes a common urban species in

Aͱ, none of these three assemblages have any representative species. These sites

have, on average, fewer species per site than other assemblages (Aͱ:ͳʹ, AͲ:ͳ͵,

and AͶ:ͳͷ species; Table ʹ.ͱ). In terms of habitat, Aͳ is strongly represented by

woodland and heathland areas and occurs in areas with the least agriculture (Fig

ʹ.͵a,b). Average species richness per site in Aͳ is high, ͵Ͷ species, but it contains

the lowest total species richness (ͱͲͱ) of all assemblages. Even though Aͳ only

includes seven ͱͰ×ͱͰkm sites, there are a large number of representative species

including four on the Dutch Red List. The majority of the area covered by Aͳ

is designated as NaturaͲͰͰͰ (ͷͶ%, Table ʹ.ͱ). Assemblage ʹ occurs in the most

heterogeneous and varied habitats in the South East (Fig ʹ.͵a,b). It also has the
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FĎČ. ʹ.ͳ: Model predictive performance. Models with (black, closed) and
without (grey, open) latent effects included. Two measures of predictive per-
formance are used: Tjur RͲ (circles) and Area under the Curve (AUC; triangles).
Latent effects refer to variables (ͳ) which are calculated to account for the unex-

plained residual patterns across the species association matrix.

largest average richness per site (Ͷʹ). Accordingly, it has the most representative

species including ͹ species on the Dutch Red List.

Dune habitats (Ͳ͵%) and NaturaͲͰͰͰ (ʹͱ%) along the western coastline

dominate the land use in the A͵ range (Fig ʹ.͵f and Fig ʹ.͵a,b; Table ʹ.ͱ). Sim-

ilar to Aͳ, A͵ occupies only a small area of the Netherlands but has a high aver-

age species richness per site (͵ͱ), a lower overall species richness (ͱʹͳ) and many

representative species, including seven red listed species, and a large percentage

of the Colletes and Megachile species present in the Netherlands (Table ʹ.ͱ). A

greater quantity of heathland and woodland habitat is occupied by Aͷ than the

other assemblages except for Aͳ (Fig ʹ.͵a,b). This is reflected by the fewer repre-

sentative species, including the red listed species Nomada rufipes, the specialist

cleptoparasite of Andrena fuscipes, an oligolege on Calluna (Ericaceae), which is
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FĎČ. ʹ.ʹ: Geographic distribution of wild bee assemblages. Showing number of selected clusters from (a)Ͳ –
(f) ͷ. Calculated using KMeans clustering ͱͰͰͰ iterations and ͱͰͰ random samples.

also significantly more likely to be found as part of Aͳ. There are no clear differ-

ences between the average phylogenetic and functional diversity per assemblage.

Finally, the similarity between assemblages does not decrease based on spatial

distance, indicating the observed patterns are not explained by latitude alone

but were driven by changes in environmental conditions (Fig ʹ.͵c).

4.5 Discussion
This research shows the importance of both environmental and biotic drivers

on the structure of wild bee assemblages. Habitat filtering explains the major-

ity of the distribution patterns. Including co-occurrence of bee species improves
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TĆćđĊ ʹ.ͱ: Summaryof the sevenwild beeassemblages as chosen byK-means cluster-
ing.

Assemblage
Phylogenetic

species
variability

Species
Richness
(n=ͲͰʹ)

Functional
Dispersion

Natura
ͲͰͰͰ
(%)

Representative Species

ͱ Ͱ.ͶͰ ±Ͱ.Ͱ͵
ͳʹ ±ͲͰ
(ͱͶʹ)

Ͱ.Ͳͱ ±Ͱ.ͰͰ ʹ% Anthophora plumipes

Ͳ Ͱ.ͶͰ ±Ͱ.Ͱ͵
ͳ͵ ±Ͳ͵
(ͱ͹͹)

Ͱ.Ͳͱ ±Ͱ.ͰͰ ͷ% NA

ͳ Ͱ.Ͷͱ ±Ͱ.Ͱͱ
͵Ͷ ±Ͳ͸
(ͱͲͱ)

Ͱ.ͲͲ ±Ͱ.Ͱͱ ͷͶ%

Andrena fuscipes, Andrena lapponica,
Andrena nigroaenea, Bombus humilis,
Colletes succinctus, Epeolus cruciger,
Lasioglossum lucidulum, Nomada
fuscicornis, Nomada rufipes,
Nomada succincta, Panurgus banksianus,
Panurgus calcaratus

ʹ Ͱ.ͶͲ ±Ͱ.Ͱͳ
Ͷʹ ±ʹͱ
(ͲͰͰ)

Ͱ.ͲͲ ±Ͱ.Ͱͱ ͱͱ%

Andrena dorsata, Andrena florea,
Andrena hattorfiana, Andrena
minutuloides, Andrena proxima,
Andrena semilaevis, Bombus rupestris,
Ceratina cyanea, Halictus scabiosae,
Hoplitis adunca, Hylaeus cornutus,
Hylaeus signatus, Lasioglossum
laticeps, Lasioglossum lativentre,
Lasioglossum malachurum,
Lasioglossum nitidulum, Lasioglossum
pauxillum, Melitta leporina,
Melitta tricincta, Nomada armata,
Nomada conjungens, Nomada fucata,
Nomada integra, Nomada zonata,
Sphecodes crassus, Sphecodes ferruginatus,
Sphecodes niger

͵ Ͱ.ͶͰ Ͱ.Ͱͱ
͵ͱ ±Ͳͳ
(ͱʹͳ)

Ͱ.Ͳͱ ±Ͱ.Ͱͱ ʹͱ%

Andrena argentata, Andrena barbilabris,
Andrena fulvago, Anthidium punctatum,
Coelioxys conoidea, Coelioxys mandibularis,
Colletes cunicularius, Colletes halophilus,
Colletes marginatus, Colletes succinctus,
Dasypoda hirtipes,Hoplitis claviventris,
Hylaeus confusus, Lasioglossum albipes,
Lasioglossum leucozonium, Lasioglossum
nitidiusculum, Lasioglossum punctatissimum,
Megachile circumcincta, Megachile leachella,
Megachile maritima, Megachile willughbiella,
Osmia aurulenta, Sphecodes albilabris,
Sphecodes puncticeps

Ͷ Ͱ.Ͷͱ ±Ͱ.Ͱͳ
ͳͷ ±Ͳ͹
(ͱ͸͸)

Ͱ.ͲͲ ±Ͱ.ͰͰ ͹% NA

ͷ Ͱ.Ͷͱ ±Ͱ.ͰͶ
͵ʹ ±ͳͲ
(ͱͷͲ)

Ͱ.ͲͲ ±Ͱ.Ͱͱ ͱͲ%
Andrena denticulata, Andrena fuscipes,
Lasioglossum fratellum, Nomada rufipes,
Nomada sheppardana

The assemblage numbers refer to the assemblages shown in figures ʹ.ʹ and ʹ.͵. Phylogenetic species variability
measures the decrease in variance of hypothetical traits shared by all species in the assemblage, Ͱ implies very
closely related species and ͱ distantly related species. ± refers to the standard deviation of the mean value
presented. Functional dispersion per site measure the differences between the occurrence of species and their
pairwise Gower’s trait dissimilarity. Representative species are species which are significantly more likely to be
present in the assemblage than at least five of the other six assemblages (ANOVA, TukeysHSD). The representative
species in Bold are those listed on the Dutch redlist of bees (Reemer, ͲͰͱ͸).
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FĎČ. ʹ.͵: Community assemblage patterns of wild bees in the Netherlands. (a) Ordination biplot of principal
component analysis of percentage cover land use in each assemblage. (b) barplot showing percentage cover of land
use classes in each assemblage. (c) Community similarity against geographical distance, black circles = full HMSC
model, open circles = habitat variables standardized to their mean, therefore only spatial factors included in the

model.

model quality and suggests that these patterns are at least partly non-random.

Our results also illustrate that wild bee community assembly patterns can be ex-

plained in part due to pairwise phylogenetic relationships between species. The

methods and results presented can be used to prioritize conservation planning

forwild bees, and most likely other species groups, by indicating where and how

community assembly patterns differ. In what follows, we explicitly answer our

five research questions.
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4.5.1 Do certain wild bee species indicate the presence of
others?

The presence of wild bee species is positively associated with the occurrence pat-

terns of otherwild bee species, bothwhenmeasured as spatial co-occurrence in a

probabilisticmodel, andwhenmeasured as spatial autocorrelation in theHierar-

chical modelling of Species Communities (HMSC) The positive associations be-

tween many species suggest the absence of direct competitive exclusion, due for

example to floral resource limitation. At the landscape level, direct competition

isunlikelyasmanyspecies specialize in theirnesting and feeding resources (Roul-

ston & Goodell ͲͰͱͱ). However, we do see evidence that phylogenetically similar

genera on average are less likely to co-occur. This is in line with Gause’s principle

of exclusion, stating that complete competitors cannot co-exist (Hardin ͱ͹ͶͰ).

We expect that this effect of competitive exclusion is likely to be much clearer

at the fine scale. It is difficult to ascertain from the results of the HMSC model

whether the relationship between species pairs denotes (ͱ) a true interaction or

(Ͳ) if species share a response to missing explanatory covariates, or (ͳ) if this is a

bias in sampling method and intensity across sites (Ovaskainen et al. ͲͰͱͷ). In

particular, the addition of floral resources as an extra explanatory variable could

explainpartof thecorrelation betweenspeciesand is necessary tounderstand the

complexity of wild bee community assembly (Papanikolaou et al. ͲͰͱͷ; Scheper

et al. ͲͰͱ͵). However, we can conclude that including the latent factors asso-

ciated with the co-occurrence network, in a JSDM approach (Ovaskainen et al.

ͲͰͱͷ), increases model explanatory power, and that, alongside habitat filtering,

thepatternsof co-occurrencecan beauseful input in understanding and predict-

ing thedistribution of wild bees species. This has previously only been shown for

the distributions of single species with the interaction known a priori (Giannini

et al. ͲͰͱͳ).

4.5.2 What is the influence of habitat filtering on the patterns
of wild bee occurrence?

Land use has a significant role in the distribution of wild bees in the Nether-

lands. Specifically, semi-natural grassland habitats, themost important areas for
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wildflowers, are positively influencing the distribution patterns of many species.

The decline in these habitats is linked to the long-term decline of wild bees in

European countries (Goulson et al. ͲͰͱ͵; Potts et al. ͲͰͱͰ). Cropland and agri-

cultural habitats form a large portion of the Netherlands and are negatively as-

sociated with wild bee occurrence apart from a few widespread generalist bum-

blebees. Generally, due to the fact that they are intensively managed and provide

few resources (Kremen et al. ͲͰͰͲ). Heathlands represent a conflicting habitat

for wild bees: it is a renowned suitable habitat for some specialized species (e.g.

Andrena fuscipes, Colletes succinctus and their cleptoparasites), but also limits

species not adapted to the specialized feeding resources (Moquet et al. ͲͰͱͶ).

Plant-pollinator networks in heathland habitats are also less complex than in

more heterogeneous systems, but they tend to be more specialized (Forup et al.

ͲͰͰ͸). Therefore, as we detected, heathlands represent a unique habitat and

assemblage vital for biodiversity. Dunes are also positively associated with a dis-

proportionately large number of species. Dune areas represent a unique floral

habitat with high bee diversity, despite their small area, and their maintenance

and restoration is vital to wild bee diversity (Grootjans et al. ͲͰͰͲ, Howe et al.

ͲͰͱͰ).

4.5.3 Do species traits and phylogenetic relationships influ-
ence wild bee spatial co-occurrence and assembly pat-
terns?

Phylogenetic and functional trait differences correlate with extinction risk, and

drivers of decline in wild bees (De Palma et al. ͲͰͱͷ; Vereecken ͲͰͱͷ). Com-

petitive exclusion would suggest that similar species, in traits or phylogeny, are

less likely to co-occur (Webb et al. ͲͰͰͲ). We observe a degree of phyloge-

netic niche conservatism (PNC) in the HMSC, suggesting that, at the landscape

scale, closely-related species share similar niches. However, when measured as

co-occurrence no specific patterns emerge. From the data available we cannot

conclude whether the evidence for PNC indicates an emergent property of the

wild bee community in the Netherlands, or whether it is a process by which the

community is structured (Losos ͲͰͰ͸). This suggests a shared ecological trait be-

tween closely-related species (Crisp & Cook ͲͰͱͲ). However, our results do not
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illustrate a clear relationship between traits and co-occurrence or niche require-

ments. This is unlike the patterns observed for plant species where trait-based

environmental filtering is common (Messier et al. ͲͰͱͰ). This indicates that a

fundamental trait, or suite of traits, shared by closely-related species were unac-

counted. The PNC presented is not a complete ‘niche’ and reflects conservatism

to a select set of habitat variables, a more detailed niche definition, including

feeding and nesting resources and the traits associated with them, is likely to

lower the PNC dramatically as considerable specialization occurs in both feed-

ing and nesting habits (Losos ͲͰͰ͸). Unfortunately, these traits and niche re-

quirements are poorly defined or missing entirely for many species and repre-

sent a significant gap in wild bee ecology. Increasing the available knowledge on

these aspects of wild bee ecology could help us better understand the processes

structuring wild bee assemblages. However, at least from a habitat perspective,

phylogenetically-informed conservation practices could prove appropriate.

4.5.4 How are wild bee assemblages geographically
distributed?

The observed variation in community assemblages is driven by changes in envi-

ronmental conditions (i.e., land use and climatic context), rather than by purely

geographic distance between sites and regions. Biotic homogenization is consid-

ered to be a response, alongside decline and loss, to anthropogenic disturbance,

including urbanization and agricultural intensification (McKinney ͲͰͰͶ). The

wild bee fauna of the Netherlands appears to have experienced biotic homog-

enization during the last century (Carvalheiro et al. ͲͰͱͳ), and the wild bee

community assembly patterns reported in this study also reflect a broad simi-

larity in wild bee assemblages across much of the country. However, at present,

the Netherlands does not harbour a single uniform community. The seven as-

semblages identified includegradients fromspecialized habitats, to semi-natural

habitats tomore anthropogenic, managed systems. Weobserve three distinct as-

semblages that, while limited in range, comprisemore specialized species groups

that do not readily occur elsewhere; heather bees nearwooded and protected ar-

eas, coastal dune bees and southern bees associated with a heterogeneous land-

scape and calcareous grasslands. These assemblages occur in areas likely to have
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high diversity of floral resources, which is strongly correlated with wild bee pop-

ulations (Roulston & Goodell ͲͰͱͱ).

The heathlands assemblage is comprised of known heathlands specialists,

for example B. humilis, Colletes succinctus, Andrena fuscipes, Epeolus cruciger

and Nomada rufipes, which are unlikely to be found in large populations else-

where (Falk ͱ͹͹ͱ, Peeters et al. ͲͰͱͲ). Furthermore, the coastal dune assemblage

includes species such as C. halophilus, which is associated with saltmarsh and

coastal habitat where they require bare sandy soils for nesting and the saltmarsh

specialist sea aster (Aster tripolium) as theirmain pollen host plant (Kuhlmannet

al. ͲͰͰͷ). Thepopulationsof these representative species are notonly important

atanational scale butalsoat theEuropeanscale, forexampleC. halophilus, E. cru-

ciger, C. succintus, Melitta tricincta and N. zonata are considered as ”least con-

cern” in theNetherlands, however they are red listed at the European level (Nieto

et al. ͲͰͱʹ; Reemer ͲͰͱ͸). This suggests that the assemblages in the Netherlands

represent important populations for the continued survival of these species.

4.5.5 What are the conservation implications of the resulting
wild bee assemblage patterns?

In a conservation context, the community profiles/assemblages can represent

management units (Ovaskainen et al. ͲͰͱͷ), i.e. notmanaging thewild bee com-

munity as a single homogenous unit, but still simplifying the complex interac-

tions between species and resources. The results presented could be of primary

interest to managers of nature reserves who are tasked with the conservation

of wild bees. At the national scale the ‘Netherlands National Pollinator Strat-

egy’ aims to increase the number of bees showing a stable or positive population

trends and increase theirdistribution throughout thecountry by increasing feed-

ing and nesting resources (Bijenstrategie ͲͰͱ͸); this is in line with other coun-

tries that have recognized thedecline of wild bees. Themethodology used in this

study identifies populations that would benefit from management at the habitat

level. For example dune and heathland habitats exemplify areas that should be

targeted to manage and protect important wild bee assemblages.



ͱͳͶ Chapter ͸. Wild bee assembly patterns

The results presented suggest that improving bee habitat in agricultural

areas could have a significant impact, however, evidence from the Netherlands

suggests that floral resources in agricultural habitats only benefits species already

occurring nearby (Bukovinszky et al. ͲͰͱͷ; Kleijn et al. ͲͰͰͶ). This implies that

natural heathland, dunes, and calcareous grasslands represent a last vestige for

many bees. A logical next step would be to include representative and specialist

bees as focal species in the descriptions and policy documents associated with

these sites. The representative species for each assemblage could be used as in-

dicator species and to measure if management is creating habitat for whole as-

semblages and not just common ubiquitous species. It is important to consider

though that theapriori selectionof specieswith at least ͵ records limits the num-

ber of rare and highly specialized species. With more comprehensive sampling

we could obtain a clearer picture of the processes behind assembly patterns and

therefore best conservation practices.

Thispaperpresentsevidence that includingpairwisespeciesco-occurrence

data into niche models improves the quality of prediction and therefore allows

betterestimationof species assemblages. Furthermore, we found preliminaryev-

idence that closely-related wild bees share similar niche requirements. In some

respects this paper represents statistical support for what many entomologists

and amateur naturalists are already acutely aware of: that areas of high quality

semi-natural habitat are of vital importance to the diversity of pollinators and

that processes of wild bees assemblages and therefore their conservation cannot

be examined in isolation.
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4.6 Supporting Information

Tables

TĆćđĊ Sʹ.ͱ: List of the ͲͰʹ wild bee species included in the HMSC protocol.

Andrena angustior Andrena apicata Andrena argentata Andrena barbilabris
Andrena bicolor Andrena bimaculata Andrena carantonica Andrena chrysosceles
Andrena cineraria Andrena clarkella Andrena denticulata Andrena dorsata
Andrena flavipes Andrena florea Andrena fucata Andrena fulva
Andrena fulvago Andrena fulvida Andrena fuscipes Andrena gravida

Andrena haemorrhoa Andrena hattorfiana Andrena helvola Andrena humilis
Andrena labialis Andrena labiata Andrena lapponica Andrena lathyri
Andrena minutula Andrena minutuloides Andrena nigroaenea Andrena nitida
Andrena ovatula Andrena pilipes Andrena praecox Andrena proxima
Andrena rosae Andrena ruficrus Andrena semilaevis Andrena strohmella

Andrena subopaca Andrena tibialis Andrena vaga Andrena ventralis
Andrena wilkella Anthidiellum strigatum Anthidium manicatum Anthidium punctatum

Anthophora furcata Anthophora plumipes Anthophora quadrimaculata Anthophora retusa
Bombus bohemicus Bombus campestris Bombus hortorum Bombus humilis
Bombus hypnorum Bombus jonellus Bombus lapidarius Bombus muscorum
Bombus pascuorum Bombus pratorum Bombus ruderarius Bombus rupestris
Bombus sylvestris Bombus terrestris Bombus vestalis Bombus veteranus
Ceratina cyanea Chelostoma campanularum Chelostoma florisomne Chelostoma rapunculi

Coelioxys conoidea Coelioxys elongata Coelioxys inermis Coelioxys mandibularis
Colletes cunicularius Colletes daviesanus Colletes fodiens Colletes halophilus
Colletes hederae Colletes marginatus Colletes similis Colletes succinctus
Dasypoda hirtipes Epeoloides coecutiens Epeolus cruciger Epeolus variegatus
Eucera nigrescens Halictus confusus Halictus maculatus Halictus rubicundus
Halictus scabiosae Halictus tumulorum Heriades truncorum Hoplitis adunca
Hoplitis claviventris Hoplitis leucomelana Hylaeus brevicornis Hylaeus communis
Hylaeus confusus Hylaeus cornutus Hylaeus hyalinatus Hylaeus pectoralis
Hylaeus pictipes Hylaeus punctulatissimus Hylaeus signatus Lasioglossum albipes

Lasioglossum brevicorne Lasioglossum calceatum Lasioglossum fratellum Lasioglossum fulvicorne
Lasioglossum laticeps Lasioglossum lativentre Lasioglossum leucopus Lasioglossum leucozonium
Lasioglossum lucidulum Lasioglossum malachurum Lasioglossum minutissimum Lasioglossum morio

Lasioglossum nitidiusculum Lasioglossum nitidulum Lasioglossum parvulum Lasioglossum pauxillum
Lasioglossum punctatissimum Lasioglossum quadrinotatulum Lasioglossum rufitarse Lasioglossum semilucens
Lasioglossum sexnotatum Lasioglossum sexstrigatum Lasioglossum villosulum Lasioglossum xanthopus
Lasioglossum zonulum Macropis europaea Macropis fulvipes Megachile centuncularis
Megachile circumcincta Megachile leachella Megachile ligniseca Megachile maritima
Megachile versicolor Megachile willughbiella Melecta albifrons Melitta haemorrhoidalis
Melitta leporina Melitta nigricans Melitta tricincta Nomada alboguttata
Nomada armata Nomada bifasciata Nomada conjungens Nomada fabriciana
Nomada femoralis Nomada flava Nomada flavoguttata Nomada flavopicta
Nomada fucata Nomada fulvicornis Nomada fuscicornis Nomada goodeniana

Nomada guttulata Nomada integra Nomada lathburiana Nomada marshamella
Nomada obscura Nomada panzeri Nomada ruficornis Nomada rufipes

Nomada sheppardana Nomada signata Nomada stigma Nomada striata
Nomada succincta Nomada zonata Osmia aurulenta Osmia bicornis
Osmia caerulescens Osmia cornuta Osmia leaiana Osmia spinulosa
Osmia uncinata Panurgus banksianus Panurgus calcaratus Sphecodes albilabris
Sphecodes crassus Sphecodes ephippius Sphecodes ferruginatus Sphecodes geoffrellus
Sphecodes gibbus Sphecodes longulus Sphecodes marginatus Sphecodes miniatus

Sphecodes monilicornis Sphecodes niger Sphecodes pellucidus Sphecodes puncticeps
Sphecodes reticulatus Sphecodes rubicundus Sphecodes scabricollis Stelis breviuscula

Stelis ornatula Stelis punctulatissima Stelis signata Xylocopa violacea
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TĆćđĊ Sʹ.Ͳ: Species collected in the Netherlands since ͲͰͰ͵ with
less than five record and/ormissing phylogenetic or trait data.

Highlighted cells indicate species excluded for multiple reasons.

<͵ Records Trait DataMissing Phylogenetic DataMissing

Andrena agilissima Andrena fulvata Andrena fulvata
Andrena coitana Andrena mitis Andrena gelriae
Andrena falsifica Andrena pusilla Andrena nigriceps
Andrena ferox Bombus norvegicus Andrena synadelpha
Andrena fulvata Chalicodoma ericetorum Andrena varians
Andrena gelriae Chelostoma distinctum Bombus cryptarum
Andrena intermedia Coelioxys conica Bombus lucorum
Andrena nitidiuscula Epeolus tarsalis Bombus magnus
Andrena niveata Halictus langobardicus Chalicodoma ericetorum
Andrena pandellei Hoplitis tridentata Coelioxys conica
Andrena polita Hylaeus incongruus Epeolus tarsalis
Andrena pusilla Hylaeus paulus Halictus langobardicus
Andrena tarsata Hylaeus rinki Hylaeus annularis
Andrena trimmerana Lasioglossum aeratum Hylaeus dilatatus
Andrena viridescens Lasioglossum intermedium Hylaeus gredleri
Anthophora aestivalis Lasioglossum sabulosum Hylaeus incongruus
Bombus barbutellus Lasioglossum tarsatum Hylaeus paulus
Bombus soroeensis Megachile dorsalis Lasioglossum aeratum
Bombus sylvarum Megachile genalis Lasioglossum prasinum
Chelostoma distinctum Megachile lagopoda Lasioglossum quadrinotatum
Coelioxys afra Megachile lapponica Lasioglossum tarsatum
Coelioxys alata Nomada ferruginata Megachile dorsalis
Coelioxys aurolimbata Nomada leucophthalma Nomada baccata
Coelioxys conica Nomada melathoracica Stelis phaeoptera
Coelioxys rufescens Nomada opaca
Colletes impunctatus Nomada pleurosticta
Eucera longicornis Nomada similis
Halictus langobardicus Nomada villosa
Halictus leucaheneus Osmia niveata
Halictus quadricinctus
Hoplitis ravouxi
Hoplitis tridentata
Hylaeus annularis
Hylaeus clypearis
Hylaeus difformis
Hylaeus gibbus
Hylaeus leptocephalus
Hylaeus paulus
Hylaeus styriacus
Lasioglossum aeratum
Lasioglossum intermedium
Lasioglossum lineare
Lasioglossum minutulum
Lasioglossum pallens
Lasioglossum pygmaeum
Megachile alpicola
Megachile analis
Megachile ericetorum
Megachile genalis
Megachile lagopoda
Megachile pilidens
Megachile rotundata
Melecta luctuosa
Nomada baccata
Nomada distinguenda
Nomada melathoracica
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Table Sʹ.Ͳ continued from previous page
Nomada mutica
Nomada opaca
Nomada pleurosticta
Nomada sexfasciata
Nomada villosa
Osmia parietina
Sphecodes hyalinatus
Sphecodes majalis
Sphecodes rufiventris
Stelis minima
Stelis minuta
Trachusa byssin

TĆćđĊ Sʹ.ͳ: Environmental covariates used in the Hierarchical modelling of Species
Communities (HMSC) protocol. All covariates have pairwise correlation coefficients

below Ͱ.ͷ.

Class Description Source
Higher

Classification

crops food source
crops deemed a food source for insect

pollinators, including fruit trees
BRP Agricultural

crops non-food source
crops not deemed a food source for insect

pollinators
BRP and BBG_CBS Agricultural

agri-grassland all grassland used for agricultural purposes BRP and BBG_CBS Agricultural

urban all areas in urban conglomeration BBG_CBS Urban

heathland
all nature areas with a significant heather

(Ericaceae) population
IMNAB Nature

semi-natural woodland woodland area without a production function IMNAB Nature

production woodland woodland area with a production function IMNAB Nature

marsh and swampland Marsh, peat, reed, salt-marsh and swamp area IMNAB Nature

semi-natural grassland
non-intensive agricultural grasslands and

grasslands managed for nature
IMNAB Nature

dune open dune areas IMNAB Nature

salt water* ocean related water bodies BRP and BBG_CBS Other

freshwater* rivers, stream, lake, canals etc. BRP and BBG_CBS Other

BioͶ min temperature of coldest month KNMI Temperature

Bio͹ mean temperature of driest quarter KNMI Temperature

BioͱͰ mean temperature of warmest quarter KNMI Temperature

BioͱͲ annual precipitation KNMI Rainfall

Bioͱʹ precipitation of the driest month KNMI Rainfall

*Saltwater and freshwater were not included in the final analyses because they have little to no influence on the
distribution patterns of wild bees.
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TĆćđĊ Sʹ.ʹ: Wild bees barcodes sequences retrieved from GenBankwith their
accession number, number of base pair (bp) and reference.

Bee Species GenBank bp Reference Bee Species GenBank bp Reference

Ammobates punctatus KJ͸ͳ͸͹͹Ͷ.ͱ ͶͳͰ Schmidt et al. ͲͰͱ͵ Hylaeus signatus KJ͸ͳͶ͸ͱ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena agilissima KJ͸ͳ͸ͰͶͱ.ͱ ʹͰͲ Schmidt et al. ͲͰͱ͵ Hylaeus sinuatus KJ͸ͳ͹ͱͶ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena alƨenella KJ͸ͳ͹ͷ͸ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Hylaeus styriacus KJ͸ͳͷͰͷ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena angustior JQ͹Ͱ͹ͶʹͰ.ͱ Ͷ͵ʹ Magnacca & Brown ͲͰͱͲ Hylaeus variegatus KJ͸ͳ͹Ͷͱ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena apicata JQ͹Ͱ͹ͶʹͲ.ͱ Ͷ͵ʹ Magnacca & Brown ͲͰͱͲ Lasioglossum albipes GUͷͰͶͰͳͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena argentata KJ͸ͳ͸ͱͷ͹.ͱ Ͳ͸ͷ Schmidt et al. ͲͰͱ͵ Lasioglossum bluethgeni HMʹͰͱͰ͹͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena barbilabris KTͶͰʹ͵Ͷͳ.ͱ ͵͵Ͳ Schmidt et al. ͲͰͱ͵ Lasioglossum brevicorne HQ͹ʹ͸Ͱ͵ͳ.ͱ ͶͲ͵ Schmidt et al. ͲͰͱ͵

Andrena bicolor KJ͸ͳ͹Ͷͳ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum breviventre KJ͸ͳͶͷͰͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena bimaculata KJ͸ͳ͹Ͷ͸͹.ͱ ʹͰͲ Schmidt et al. ͲͰͱ͵ Lasioglossum calceatum GUͷͰͶͰͳͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena carantonica KJ͸ͳ͹͸ͱͳ.ͱ ͳͱͱ Schmidt et al. ͲͰͱ͵ Lasioglossum costulatum KJ͸ͳ͹ͷͰ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena chrysopus KJ͸ͳͷ͵Ͷʹ.ͱ ͶͲʹ Schmidt et al. ͲͰͱ͵ Lasioglossum fratellum HQ͹͵ʹͷ͵ͱ.ͱ ͶͲͰ Schmidt et al. ͲͰͱ͵

Andrena chrysopyga HMͳͷͶͲͳͳ.ͱ Ͷͱͱ Schmidt et al. ͲͰͱ͵ Lasioglossum fulvicorne KJ͸ͳ͹ͷͳ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena chrysosceles JNͲͶͲͱͷͱ.ͱ ͵͹͹ Schmidt et al. ͲͰͱ͵ Lasioglossum glabriusculum KJ͸ͳ͹ͷ͵Ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena cineraria KJ͸ͳ͹͵ͳͳ.ͱ ʹͰͷ Schmidt et al. ͲͰͱ͵ Lasioglossum intermedium KJ͸ͳ͸ͲͱͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena clarkella HQ͹͵ʹͷ͵Ͱ.ͱ Ͷͱ͵ Schmidt et al. ͲͰͱ͵ Lasioglossum interruptum KJ͸ͳ͹ͶͰ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena coitana KJ͸ͳͶ͵͹͹.ͱ Ͷͳͳ Schmidt et al. ͲͰͱ͵ Lasioglossum laevigatum HQ͹͵ʹͷ͵Ͳ.ͱ ͶͰͲ Schmidt et al. ͲͰͱ͵

Andrena combinata KJ͸ͳ͸͹ͷͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum laticeps KJ͸ͳ͹ʹͶʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena curvungula KJ͸ͳ͹Ͳ͸ͷ.ͱ Ͳ͸ͷ Schmidt et al. ͲͰͱ͵ Lasioglossum lativentre HMʹͰͱͲʹ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena decipiens KJ͸ͳ͹Ͱͳʹ.ͱ Ͳ͸Ͷ Schmidt et al. ͲͰͱ͵ Lasioglossum leucopus KJ͸ͳ͹ͷͰͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena denticulata KJ͸ͳ͹ͱͱͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum leucozonium KJ͸ͳ͹ͷͳͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena distinguenda KJ͸ͳ͹ʹͷͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum lineare KJ͸ͳͷ͵ʹʹ.ͱ ʹͲͱ Schmidt et al. ͲͰͱ͵

Andrena dorsata KJ͸ͳ͹͸Ͱͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum lucidulum KJ͸ͳ͸ͱͰͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena falsifica KJ͸ͳ͹ͷͳ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum majus KJ͸ͳ͹͸Ͱͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena ferox KJ͸ͳ͹ͳͲͳ.ͱ Ͳ͸ͷ Schmidt et al. ͲͰͱ͵ Lasioglossum malachurum GUͷͰͶͰ͵͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena flavipes KJ͸ͳ͹Ͳͷ͵.ͱ Ͳ͹͸ Schmidt et al. ͲͰͱ͵ Lasioglossum marginellum KJ͸ͳ͸͸ͰͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena florea KJ͸ͳ͹͸Ͱʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum minutissimum KJ͸ͳͷͰʹ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena fucata KJ͸ͳ͹ͱͷͲ.ͱ ʹͰͷ Schmidt et al. ͲͰͱ͵ Lasioglossum minutulum KJ͸ͳ͸ͰͱͶ.ͱ ͶͰͷ Schmidt et al. ͲͰͱ͵

Andrena fulva KJ͸ͳ͹ͶͲ͵.ͱ ʹͰͷ Schmidt et al. ͲͰͱ͵ Lasioglossum morio GUͷͰͶͰ͵ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena fulvago KJ͸ͳ͹ͷͲͶ.ͱ Ͳ͸Ͷ Schmidt et al. ͲͰͱ͵ Lasioglossum nitidiusculum KJ͸ͳ͸ͱͶͰ.ͱ ͶͳͰ Schmidt et al. ͲͰͱ͵

Andrena fulvida KJ͸ͳ͹͵Ͱ͹.ͱ ͵ͱͶ Schmidt et al. ͲͰͱ͵ Lasioglossum nitidulum KJ͸ͳ͹ͶͰ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena fuscipes KJ͸ͳ͹ͷ͹ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum pallens KJ͸ͳ͹ͷͱ͹.ͱ ʹͲͱ Schmidt et al. ͲͰͱ͵

Andrena gravida KJ͸ͳ͹͸ͳͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum parvulum HMͳͷͶͲͳͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena haemorrhoa KJ͸ͳ͹͸Ͳ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum pauperatum HMʹͰͱͲ͵Ͳ.ͱ Ͷͱ͵ Schmidt et al. ͲͰͱ͵

Andrena hattorfiana KJ͸ͳ͹͸ͰͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum pauxillum KJ͸ͳ͹͵Ͱʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena helvola KJ͸ͳͷͳͶͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum politum KJ͸ͳ͹ͷͲ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena humilis KJ͸ͳ͸͹Ͱ͸.ͱ Ͷ͵ͷ Schmidt et al. ͲͰͱ͵ Lasioglossum punctatissimum HMͳͷͶͲͲ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena intermedia KJ͸ͳ͹͵Ͳ͹.ͱ Ͳ͹ͳ Schmidt et al. ͲͰͱ͵ Lasioglossum puncticolle KJ͸ͳ͸ʹͷͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena labialis KJ͸ͳ͹ͷͰͰ.ͱ Ͳ͸͵ Schmidt et al. ͲͰͱ͵ Lasioglossum pygmaeum KJ͸ͳ͹Ͷʹͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena labiata KJ͸ͳ͹ͳͶͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum quadrinotatulum KJ͸ͳ͹ͶͲͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena lapponica KJ͸ͳ͸ͷͳ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum rufitarse JNͲͷͲʹͶͰ.ͱ ͶͱͲ Schmidt et al. ͲͰͱ͵

Andrena lathyri KJ͸ͳ͹ͳͱͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum sabulosum KJ͸ͳ͸ͱͳͶ.ͱ ʹͰ͸ Schmidt et al. ͲͰͱ͵

Andrena limata KJ͸ͳ͹͵Ͳ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum semilucens KJ͸ͳͷ͹ʹͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena marginata KJ͸ͳͷ͸͹Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum sexmaculatum KJ͸ͳ͹ʹͶͳ.ͱ Ͳ͸Ͷ Schmidt et al. ͲͰͱ͵

Andrena minutula KJ͸ͳ͹ͱͲʹ.ͱ Ͳͷͷ Schmidt et al. ͲͰͱ͵ Lasioglossum sexnotatum KJ͸ͳ͹Ͳ͸ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena minutuloides KJ͸ͳ͹ʹͷͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum sexstrigatum KJ͸ͳͶ͸Ͱͷ.ͱ Ͷʹͳ Schmidt et al. ͲͰͱ͵

Andrena mitis KJ͸ͳ͹ͳͰͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum subfasciatum KJ͸ͳ͹͸Ͳʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena nana KJ͸ͳ͹Ͷͳͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum subfulvicorne HQ͹ʹ͸ͰͱͶ.ͱ ͶͲͳ Schmidt et al. ͲͰͱ͵

Andrena nigroaenea KJ͸ͳ͹Ͷͱͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum villosulum KJ͸ͳ͹Ͱͱ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena nitida KJ͸ͳ͹ͷʹʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum xanthopus KJ͸ͳͷ͹͸ʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena nitidiuscula KJ͸ͳ͹Ͷ͵͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Lasioglossum zonulum KJ͸ͳ͸Ͷʹ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena niveata KJ͸ͳͶͶ͵Ͱ.ͱ ͳͳͶ Schmidt et al. ͲͰͱ͵ Macropis europaea KJ͸ͳ͹Ͳ͹͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena nycthemera KJ͸ͳ͹Ͱͷͱ.ͱ ʹͰͷ Schmidt et al. ͲͰͱ͵ Macropis fulvipes KJ͸ͳ͸ͰͲͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena ovatula KJ͸ͳ͹Ͷ͸ʹ.ͱ ʹͰͷ Schmidt et al. ͲͰͱ͵ Megachile alpicola KJ͸ͳ͸͸͹͵.ͱ ͵ͷʹ Schmidt et al. ͲͰͱ͵

Andrena pandellei KJ͸ͳ͹͸Ͳͷ.ͱ ʹͰͲ Schmidt et al. ͲͰͱ͵ Megachile analis KJ͸ͳͷͲ͵͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena pilipes KJ͸ͳ͹ͶͶ͵.ͱ ʹͰͷ Schmidt et al. ͲͰͱ͵ Megachile apicalis KJ͸ͳ͹Ͱ͸Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena polita KJ͸ͳ͹Ͷ͹Ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Megachile centuncularis KJ͸ͳ͹ͷʹͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena potentillae KJ͸ͳ͹ͷʹͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Megachile circumcincta KJ͸ͳ͹Ͱͱʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena praecox KJ͸ͳ͹ͳͳͲ.ͱ ʹͰͷ Schmidt et al. ͲͰͱ͵ Megachile ericetorum KJ͸ͳ͹͵Ͷ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵
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Andrena proxima HMʹͰͱͰ͵ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Megachile genalis KJ͸ͳ͹Ͳ͵ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena pusilla KJ͸ͳ͹͵ͳͷ.ͱ Ͳ͸ͳ Schmidt et al. ͲͰͱ͵ Megachile lagopoda HMʹͰͱͱͱͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena rosae KJ͸ͳ͹Ͷͷ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Megachile lapponica HMʹͰͱͱͱͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena ruficrus KJ͸ͳͷͷͶ͸.ͱ ͳͶ͵ Schmidt et al. ͲͰͱ͵ Megachile leachella HMʹͰͱͱͱ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena semilaevis KJ͸ͳ͹ͶͶͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Megachile ligniseca KJ͸ͳ͸Ͳ͹ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena similis KJ͸ͳ͹ͷ͵ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Megachile maritima KJ͸ͳ͹ͷͶͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena strohmella KJ͸ͳ͹ʹͰͰ.ͱ ͲͷͰ Schmidt et al. ͲͰͱ͵ Megachile pilidens KJ͸ͳ͹ͶͲ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena subopaca KJ͸ͳ͹ͳͷʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Megachile pyrenaea KJ͸ͳ͹Ͱ͸ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena tarsata JQ͹Ͱ͹Ͷ͹ͷ.ͱ Ͷ͵ʹ Magnacca & Brown ͲͰͱͲ Megachile rotundata GUͷͰͶͰͰͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena thoracica KJ͸ͳ͹ͷ͸͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Megachile versicolor KJ͸ͳ͹Ͷ͵ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena tibialis KJ͸ͳ͹ʹʹ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Megachile willughbiella KJ͸ͳ͸͵ͷ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena trimmerana KJ͸ͳͷʹͳͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Melecta albifrons KJ͸ͳ͹Ͷͷͱ.ͱ Ͷͱ͸ Schmidt et al. ͲͰͱ͵

Andrena vaga HMʹͰͱͰʹ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Melecta luctuosa KJ͸ͳ͹͵Ͱͷ.ͱ Ͷͳʹ Schmidt et al. ͲͰͱ͵

Andrena ventralis KJ͸ͳ͹Ͷ͸Ͳ.ͱ ʹͰͷ Schmidt et al. ͲͰͱ͵ Melitta dimidiata KJ͸ͳͷͱͰͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena viridescens KJ͸ͳ͸ͷʹͳ.ͱ Ͷ͵ͷ Schmidt et al. ͲͰͱ͵ Melitta haemorrhoidalis KJ͸ͳ͹Ͷʹͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Andrena wilkella KJ͸ͳ͸ʹͰͰ.ͱ ͶͳͶ Schmidt et al. ͲͰͱ͵ Melitta leporina KJ͸ͳ͹͸ͱ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthidiellum strigatum KJ͸ͳ͹ͱʹͰ.ͱ ʹͰͷ Schmidt et al. ͲͰͱ͵ Melitta nigricans KJ͸ͳ͹ͶͰͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthidium manicatum KJ͸ͳ͹ͲͶͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Melitta tricincta KJ͸ͳ͸ͷʹ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthidium oblongatum KJ͸ͳ͹ͷͰ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada alboguttata KJ͸ͳ͹ʹͰ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthidium punctatum KJ͸ͳ͹͵Ͳ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada argentata KJ͸ͳͷͰͷͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthophora aestivalis KJ͸ͳ͹ͳͳ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada armata KJ͸ͳͶ͸͸Ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthophora bimaculata KJ͸ͳ͹͵͹Ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada bifasciata KJ͸ͳ͹Ͳʹ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthophora furcata KJ͸ͳͶͶͷͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada castellana KJ͸ͳͷͱͶͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthophora plagiata KJ͸ͳ͹ͷ͵ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada conjungens KJ͸ͳͷ͹ͱͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthophora plumipes KJ͸ͳ͹Ͳ͵ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada distinguenda KJ͸ͳ͹ͳ͸ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthophora quadrimaculata KJ͸ͳ͹ͷͷͳ.ͱ ͶͱͰ Schmidt et al. ͲͰͱ͵ Nomada emarginata KJ͸ͳͶ͵ͷ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Anthophora retusa KJ͸ͳ͹ͲͲͳ.ͱ ʹͰͲ Schmidt et al. ͲͰͱ͵ Nomada fabriciana KJ͸ͳ͸͹ʹͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Apis mellifera KJͰ͸ʹʹͷ͸.ͱ Ͷ͵͸ Unpublished Nomada femoralis KJ͸ͳͷͱ͹͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Biastes truncatus KJ͸ͳͷ͹ͶͲ.ͱ ʹͳʹ Schmidt et al. ͲͰͱ͵ Nomada ferruginata KJ͸ͳ͹ͷ͹͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus barbutellus KJ͸ͳ͹ʹͲͶ.ͱ ͵ͷͱ Schmidt et al. ͲͰͱ͵ Nomada flava GUͷͰͶͰʹͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus bohemicus KJ͸ͳ͹Ͷ͹ʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada flavoguttata KJ͸ͳ͹Ͷ͵ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus campestris GUͷͰ͵͸͹͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada flavopicta KJ͸ͳ͹ͳͰ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus distinguendus KJ͸ͳ͸Ͷͱͳ.ͱ ʹͲͶ Schmidt et al. ͲͰͱ͵ Nomada fucata KJ͸ͳ͸ͳͶʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus hortorum HMʹͰͱʹ͵͵.ͱ ͶͲͳ Schmidt et al. ͲͰͱ͵ Nomada fulvicornis KJ͸ͳ͹ʹ͵͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus humilis KJ͸ͳ͹ͳͳʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada furva KJ͸ͳͷ͸͵Ͳ.ͱ ͶͰͳ Schmidt et al. ͲͰͱ͵

Bombus hypnorum KJ͸ͳ͹ͳͷͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada fuscicornis KJ͸ͳ͸Ͳͳ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus jonellus KJ͸ͳ͹ͷͰͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada goodeniana KJ͸ͳ͹ͲͲͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus lapidarius GUͷͰ͵͹Ͱ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada guttulata KJ͸ͳ͸͹͸ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus muscorum KJ͸ͳ͸͵ͰͰ.ͱ ʹͲͶ Schmidt et al. ͲͰͱ͵ Nomada hirtipes GUͷͰͶͰͳ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus norvegicus KJ͸ͳ͸͸Ͱ͹.ͱ Ͷͳͱ Schmidt et al. ͲͰͱ͵ Nomada integra KJ͸ͳ͹͸ͱ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus pascuorum GUͷͰ͵͹Ͳ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada lathburiana KJ͸ͳ͹ͰͲʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus pratorum GUͷͰ͵͹Ͳʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada leucophthalma GUͷͰͶͰͲ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus ruderarius KJ͸ͳ͸ͷͱͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada marshamella KJ͸ͳ͸ͰͷͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus ruderatus KJͷʹͶͶͱͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada melathoracica KJ͸ͳ͹ͰͰͶ.ͱ ʹͱͳ Schmidt et al. ͲͰͱ͵

Bombus rupestris KJ͸ͳ͹͵ʹͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada mutabilis KJ͸ͳͷͶͱͰ.ͱ ͵Ͳͳ Schmidt et al. ͲͰͱ͵

Bombus soroeensis KJ͸ͳ͹ͷʹͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada mutica KJ͸ͳ͸ͷͱͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus subterraneus KJ͸ͳ͹ʹͲͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada obscura KJ͸ͳ͹͵ͱͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus sylvarum KJ͸ͳ͹ͳ͸͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada obtusifrons KJ͸ͳ͸Ͷ͸͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus sylvestris KJ͸ͳ͹Ͳͱͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada opaca KJ͸ͳͷͱͳͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus terrestris JQ͸ʹͳͶͷͰ.ͱ Ͷ͵͸ Williams et al. ͲͰͱͲ Nomada panzeri KJ͸ͳ͸͹ͳ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus vestalis KJ͸ͳ͹͵͹Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada pleurosticta KJ͸ͳͶ͵͸͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Bombus veteranus HQ͵Ͷͳ͸ͰͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada rhenana KJ͸ͳ͸͹ͲͰ.ͱ ʹͲͶ Schmidt et al. ͲͰͱ͵

Bombus wurflenii KJ͸ͳ͹ʹ͹ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada roberjeotiana KJ͸ͳ͹Ͳ͸ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Ceratina cyanea KJ͸ͳ͹ʹ͸ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada ruficornis HMʹͰͱͰ͸ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Chelostoma campanularum KJ͸ͳͷ͹ͳͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada rufipes KJ͸ͳ͹͸ͰͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Chelostoma distinctum KJ͸ͳ͹ͷͶͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada sexfasciata KJ͸ͳ͸ͰͲ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Chelostoma florisomne KJ͸ͳ͸ͷ͵͵.ͱ ʹͲ͵ Schmidt et al. ͲͰͱ͵ Nomada sheppardana KJ͸ͳ͹ͷͳͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Chelostoma rapunculi KJ͸ͳ͹͵͸ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada signata HMʹͰͱͰ͸͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Coelioxys afra KJ͸ͳ͹ʹͱ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada similis KJ͸ͳ͸͸͹͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Coelioxys alata KJ͸ͳ͹͵ͶͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada stigma KJ͸ͳ͹͸Ͱͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Coelioxys aurolimbata KJ͸ͳ͹ʹ͵Ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada striata KJ͸ͳͷʹʹͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Coelioxys conoidea KJ͸ͳ͹ͶʹͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada succincta KJ͸ͳ͸͹ʹͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵
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Table Sʹ.ʹ continued from previous page

Coelioxys echinata HMʹͰͱͱʹ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada villosa KJ͸ͳͶͶ͹Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Coelioxys elongata KJ͸ͳͷͳͶ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Nomada zonata KJ͸ͳ͸͹͵͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Coelioxys inermis KJ͸ͳ͹ͱʹͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Osmia andrenoides KJ͸ͳ͹Ͳͱͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Coelioxys mandibularis KJ͸ͳ͹ͶͶʹ.ͱ ʹ͵ͳ Schmidt et al. ͲͰͱ͵ Osmia aurulenta KJ͸ͳ͹ʹ͹͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Coelioxys rufescens KJ͸ͳͷʹ͹Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Osmia bicolor KJ͸ͳ͹͵ͷͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Colletes cunicularius KJ͸ͳ͸͵ͷͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Osmia bicornis GUͷͰ͵͹͸ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Colletes daviesanus KJ͸ͳ͹ͷͲʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Osmia brevicornis KJ͸ͳ͸͹ʹ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Colletes fodiens KJ͸ͳ͹ͷͶ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Osmia caerulescens KJ͸ͳͶͶͷ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Colletes halophilus DQͰ͸͵͵ʹͳ.ͱ Ͷ͵Ͱ Kuhlmann et al. ͲͰͰͷ Osmia cerinthidis KCͷͰ͹͸ͳͲ.ͱ ͱͲͳͱ Haider et al. ͲͰͱʹ

Colletes hederae KJ͸ͳ͹ͲͰ͵.ͱ ͶͳͰ Schmidt et al. ͲͰͱ͵ Osmia cornuta KJ͸ͳ͹ͷ͸ʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Colletes impunctatus KJ͸ͳ͸ͷͶ͵.ͱ ͵ͷͳ Schmidt et al. ͲͰͱ͵ Osmia inermis HMʹͰͱͲͰͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Colletes marginatus KJ͸ͳ͹ʹͳͰ.ͱ ͵͹Ͱ Schmidt et al. ͲͰͱ͵ Osmia leaiana KJ͸ͳ͸͹ͶͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Colletes similis KJ͸ͳ͹ͷͷͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Osmia melanogaster HMʹͰͱͲͱͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Colletes succinctus KJ͸ͳ͸ͱͶͶ.ͱ ͵ͶͲ Schmidt et al. ͲͰͱ͵ Osmia niveata KJ͸ͳ͹ͲͲͱ.ͱ Ͷ͵ͷ Schmidt et al. ͲͰͱ͵

Dasypoda hirtipes HMʹͰͱͱʹʹ.ͱ ͵ͷͲ Schmidt et al. ͲͰͱ͵ Osmia parietina HMʹͰͱͲͲͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Dufourea dentiventris KJ͸ͳ͹͵ͰͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Osmia pilicornis KJ͸ͳ͹ͲͳͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Dufourea halictula HMʹͰͱͱ͵Ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Osmia rufohirta KJ͸ͳ͹ʹͶ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Dufourea inermis KJ͸ͳͷʹʹʹ.ͱ ͵͹ͷ Schmidt et al. ͲͰͱ͵ Osmia spinulosa KJ͸ͳ͹Ͳͳ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Dufourea minuta KJ͸ͳͷ͹͵͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Osmia uncinata HMʹͰͱͲͳͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Epeoloides coecutiens KJ͸ͳ͸ʹ͹ͱ.ͱ ͶͰͶ Schmidt et al. ͲͰͱ͵ Osmia xanthomelana KJ͸ͳͷͲ͸Ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Epeolus cruciger KJ͸ͳ͹͵ͳͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Panurgus banksianus KJ͸ͳ͸͹Ͱ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Epeolus variegatus KJ͸ͳ͹ͱ͵Ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Panurgus calcaratus KJ͸ͳ͹ͲͳͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Eucera longicornis KJ͸ͳ͸Ͳ͸ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Panurgus dentipes KJ͸ͳ͹ͷͲͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Eucera nigrescens KJ͸ͳ͹͵Ͳʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Rophites quinquespinosus KJ͸ͳͷͶ͵ͱ.ͱ ʹͰ͸ Schmidt et al. ͲͰͱ͵

Halictus confusus KJ͸ͳ͹ͳͳͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes albilabris KJ͸ͳ͹ͷ͵͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Halictus eurygnathus KJ͸ͳ͸͸ͳ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes crassus KJ͸ͳ͹ͷͶ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Halictus leucaheneus KJ͸ͳ͹ͷͷͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes ephippius KJ͸ͳ͹ʹͶͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Halictus maculatus KJ͸ͳ͹ͳ͹ʹ.ͱ ͶͳͲ Schmidt et al. ͲͰͱ͵ Sphecodes ferruginatus KJ͸ͳ͹͸ͱ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Halictus quadricinctus KJ͸ͳ͹ͳʹͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes geoffrellus KJ͸ͳ͹ͶͰͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Halictus rubicundus JQ͹Ͱ͹ͷͳͰ.ͱ Ͷ͵ʹ Magnacca & Brown ͲͰͱͲ Sphecodes gibbus KJ͸ͳ͹Ͱ͹ʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Halictus scabiosae KJ͸ͳ͹Ͳͱ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes hyalinatus KJ͸ͳ͹ͷͶͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Halictus sexcinctus HMʹͰͱͰ͹ʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes longulus KJ͸ͳ͹ͱͲͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Halictus simplex KJ͸ͳ͸Ͷͳͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes majalis KJ͸ͳͷͰ͵ͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Halictus tumulorum JQ͹Ͱ͹ͷͳ͵.ͱ Ͷ͵ʹ Magnacca & Brown ͲͰͱͲ Sphecodes marginatus KJ͸ͳ͹͵ʹͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Heriades truncorum KJ͸ͳ͹ͷͶͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes miniatus KJ͸ͳ͹Ͷ͵Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hoplitis adunca HMʹͰͱͱ͹Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes monilicornis KJ͸ͳ͹͵Ͷͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hoplitis anthocopoides KJ͸ͳ͹Ͷͷʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes niger KJ͸ͳ͹ͶͳͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hoplitis claviventris KJ͸ͳ͸ͲͲ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes pellucidus KJ͸ͳ͹ͳͲ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hoplitis leucomelana KJ͸ͳ͹ͶͲͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes puncticeps KJ͸ͳ͹ͱͷͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hoplitis papaveris KJ͸ͳ͹ʹͲʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes reticulatus KJ͸ͳ͸ͱ͵Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hoplitis ravouxi KJ͸ͳ͹ͳͷ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes rubicundus HQ͵ͶͳͰ͹Ͷ.ͱ ͶͰʹ Schmidt et al. ͲͰͱ͵

Hoplitis tridentata GUͷͰ͵͹͸ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes rufiventris KJ͸ͳ͹Ͷ͹͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hoplitis villosa KJ͸ͳͷ͵ͶͲ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes scabricollis KJ͸ͳ͸͵͵Ͳ.ͱ ʹͲͱ Schmidt et al. ͲͰͱ͵

Hylaeus angustatus KJ͸ͳ͹ͷ͸͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecodes spinulosus KJ͸ͳ͹ͶͱͰ.ͱ Ͳ͸ͳ Schmidt et al. ͲͰͱ͵

Hylaeus brevicornis KJ͸ͳ͹Ͳͷ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Stelis breviuscula KJ͸ͳ͹ͳ͸ʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hylaeus clypearis KJ͸ͳ͹ʹͲ͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Stelis minima KJ͸ͳͷͰͶ͹.ͱ ʹͲͱ Schmidt et al. ͲͰͱ͵

Hylaeus communis KJ͸ͳ͹Ͷ͹Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Stelis minuta KJ͸ͳͶ͸͹Ͷ.ͱ Ͷʹͷ Schmidt et al. ͲͰͱ͵

Hylaeus confusus HMʹͰͱͰͶͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Stelis odontopyga HMʹͰͱͲʹͰ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hylaeus cornutus KJ͸ͳ͹ʹͷͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Stelis ornatula KJ͸ͳ͹ͷͲͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hylaeus difformis KJ͸ͳ͹Ͱʹͱ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Stelis punctulatissima KJ͸ͳ͹ͷͳͲ.ͱ ͶͰͳ Schmidt et al. ͲͰͱ͵

Hylaeus gibbus KJ͸ͳ͸ͷͳʹ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Stelis signata KJ͸ͳ͹ͲͶͳ.ͱ ͵Ͱͷ Schmidt et al. ͲͰͱ͵

Hylaeus hyalinatus KJ͸ͳ͹ͳ͸Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Tetralonia malvae KJ͸ͳ͹͵͹͸.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hylaeus leptocephalus KJ͸ͳ͸ͱͱͳ.ͱ Ͷͳͱ Schmidt et al. ͲͰͱ͵ Thyreus orbatus HQ͹ʹ͸Ͱ͹͸.ͱ ͶͲͰ Schmidt et al. ͲͰͱ͵

Hylaeus nigritus KJ͸ͳ͸ͳͲͶ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Trachusa byssina KJ͸ͳ͹Ͳͳͳ.ͱ Ͷͱͱ Schmidt et al. ͲͰͱ͵

Hylaeus pectoralis KJ͸ͳ͹ͲʹͲ.ͱ ͶͲ͹ Schmidt et al. ͲͰͱ͵ Xylocopa violacea KJ͸ͳͶ͹Ͷ͹.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵

Hylaeus pictipes KJ͸ͳ͸ͶͰͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ OUTGROUP species

Hylaeus pilosulus HQ͹ʹ͸ͰͶͳ.ͱ ͵͸Ͱ Unpublished Philantus triangulum JQͰʹͰͲ͸͸.ͱ ͸ͳ͹ Unpublished

Hylaeus punctatus KJ͸ͳ͹Ͳ͹ͳ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Sphecius speciosus EFͲͰͳͷ͵Ͱ.ͱ Ͷʹ͸ Hastings et al. ͲͰͰ͸

Hylaeus punctulatissimus KJ͸ͳ͹Ͱͳ͵.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Bembix troglodytes EFͲͰͳͷͶͷ.ͱ Ͷʹ͸ Hastings et al. ͲͰͰ͸

Hylaeus rinki KJ͸ͳͷʹ͸Ͷ.ͱ Ͷ͵͸ Schmidt et al. ͲͰͱ͵ Pison chilense GQͳͷʹͶͲ͹.ͱ ͷ͸Ͷ Heraty et al. ͲͰͱͱ
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Figures

FĎČ. Sʹ.ͱ: Hexagonal density plot showing co-occurrence probability against phylogenetic dis-
tanceand traitdissimilarityat 10× 10.(a) Co-occurrenceprobability per species pairvs. Phylogenetic
distance per species pair (COͱ gene). pair. (b) Co-occurrence probability per species pair vs. Gower’s

trait dissimilarity per species pair

FĎČ. Sʹ.Ͳ: Violin and boxplots showing the distri-
bution of variance explained by climate, land use
and random spatial autocorrelation for all wild bee

species (n=ͲͰʹ).
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FĎČ. Sʹ.ͳ: Mean spatial association correlation measured as a response to latent model factors
between species of the ninemost specious genera at 10 × 10 km.
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5.1 Abstract
Bumblebees in Europe have been in steady decline since the ͱ͹ͰͰs. This de-

cline is expected to continue with climate change as the main driver. However,

at the local scale, land use and land cover (LULC) change strongly affects the oc-

currence of bumblebees. At present, LULC change is rarely included in models

of future distributions of species. This study’s objective is to compare the roles

of dynamic LULC change and climate change on the projected distribution pat-

terns of ʹ͸ European bumblebee species for three change scenarios until ͲͱͰͰ at

the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX).

We compared three types of models: (ͱ) only climate covariates, (Ͳ) climate and

static LULC covariates and (ͳ) climate and dynamic LULC covariates. The cli-

mate and LULC change scenarios used in the models include, extreme growth

applied strategy (GRAS), business as might be usual and sustainable European

development goals. We analysed model performance, range gain/loss and the

shift in range limits for all bumblebees. Overall, model performance improved

with the introduction of LULC covariates. Dynamic models projected less range

loss and gain than climate-only projections, and greater range loss and gain than

static models. Overall, there is considerable variation in species responses and

effects were most pronounced at the BENELUX scale. The majority of species

were predicted to lose considerable range, particularly under the extreme growth

scenario (GRAS; overall mean: Ͷʹ% ± ͳʹ). Model simulations project a number

of local extinctions and considerable range loss at the BENELUX scale (overall

mean: ͵Ͷ% ± ͳ͹). Therefore, we recommend species-specific modelling to un-

derstand how LULC and climate interact in future modelling. The efficacy of

dynamic LULC change should improve with higher thematic and spatial resolu-

tion. Nevertheless, current broad scale representations of change in major land

use classes impact modelled future distribution patterns.
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5.2 Introduction
Recent scientific consensus suggests that we are facing a sixth mass extinction

event, correlated strongly to anthropogenic factors (Ceballos et al. ͲͰͱ͵). To

avoid the dramatic loss of biodiversity and associated ecosystem services, im-

mediate and thorough conservation efforts are required (Barnosky et al. ͲͰͱͱ).

An important role of biodiversity conservation research is to understand and es-

timate potential changes in biodiversity alongside changing abiotic and biotic

conditions (Elith et al. ͲͰͱͰ; Porfirio et al. ͲͰͱʹ).

In an effort to understand these effects experts have produced scenarios of

climate, and land use and land cover (LULC) change. Land use and land cover

change scenarios use potential climate change, policy decisions and strategies

to represent socio-economic developments which will inevitably shift land use

and management (Rounsevell et al. ͲͰͰ͵; van Vuuren et al. ͲͰͱͱ; Verburg et

al. ͲͰͰͶ). Scientists have developed scenarios with the goal to evaluate the im-

pact of environmental changes on biodiversity (Spangenberg et al. ͲͰͱͲ). Their

role in biodiversity analyses is to allow the production of dynamic land use vari-

ableswhich better reflect future habitat suitability for a species andmay beuseful

to explain additional drivers of distributional changes alongside climate change.

There is strong consensus that both climate and LULC change are important in

driving theobserved patterns of biodiversitydeclines (Luotoet al. ͲͰͰͷ; Ostberg

et al. ͲͰͱ͵). Historically, LULC change has been the dominant cause of observed

biodiversity changes and researchers expect that it will remain an ongoing threat

toworldwide biodiversity (Millennium EcosystemAssessment, ͲͰͰ͵; Ostberg et

al. ͲͰͱ͵). Climate and land use change underlie a multitude of environmental

pressures that may have a greater joint impact on biodiversity than when oper-

ating in isolation (Clavero et al. ͲͰͱͱ; Mantyka-pringle et al. ͲͰͱͲ). Therefore,

modelswhichexcludeLULCchange frommodelling biodiversity in the futurene-

glect a significant factor in potential drivers of species distribution change, even

if these projections are coarse and at broad spatial scales.



ͱʹ͸ Chapter ͹. Climate and land use change affects EU bumblebees

Speciesdistributionmodels (SDMs) representapowerful tool forunderstand-

ing patterns in biodiversity. They combine species occurrence datawith environ-

mental conditions to estimate the distribution of species in space and time (Elith

& Leathwick ͲͰͰ͹). Often used to project species distributions into unsampled

areas, orareasof possible invasion, theyalsoproject speciesdistributions into the

future (Franklin ͲͰͱͰ). The majority of future distribution models include only

climate change variables and do not include LULC variables or use only LULC

variables based on current conditions (static; Bellard et al. ͲͰͱͲ; Titeux et al.

ͲͰͱͶ). At broad spatial scales, climate is expected to be the main constraint to

species distributions, but at finer resolutions, the effect of LULC covariates in-

crease; landscape-specific features that provide nesting and feeding resources

occur at this finer scale (Luoto et al. ͲͰͰͷ; Rahbek et al. ͲͰͰͷ; Thuiller et al.

ͲͰͰʹ; Araújo & Lavorel ͲͰͰʹ). Therefore, improved estimations of biodiversity

change require detailed land use change scenarios (Titeux et al. ͲͰͱͶ).

Even though studies recommend the inclusionof LULCvariables toavoid pro-

ducing unrealistic projections, few studies have used dynamic LULC covariates

to model biodiversity patterns in the future. Reasons for this is that projections

of LULC change are rarely available or only at coarse resolution andwith few land

use classes (Titeux et al. ͲͰͱͶ). However, climate predictions offer similar limi-

tations with resolution and parameters often not directly relevant to the habitat

suitability of species. Interestingly, the studies that explicitly include dynamic

LULC variables in the SDM process show considerable variation in the effect this

has on species distribution patterns, specifically range change (Barbet-Massin et

al. ͲͰͱͲb; Chytrý et al. ͲͰͱͲ; Ficetola et al. ͲͰͱͰ; Martin et al. ͲͰͱͳ; Riordan &

Rundel ͲͰͱʹ; Sohl ͲͰͱʹ; Wisz et al. ͲͰͰ͸). The variation is most likely due to

differences in species, spatial scale and explanatory variables included in these

studies. Likewise, the performance of SDMs usually depends strongly on the

modelling framework used, the species modelled, the distribution, quality and

quantity of collection data, and the resolution of the species occurrence data and

covariates (Aguirre-Gutierrez et al. ͲͰͱͳ; Bellard et al. ͲͰͱͲ; Harris et al. ͲͰͱͳ;

Warren & Seifert ͲͰͱͱ). Testing the effect of dynamic LULC covariates with mul-

tiple species, different resolutions and covariates is essential to understand their

role in SDMs (Martin et al. ͲͰͱͳ).



͹.ͷ. Materials and Methods ͱʹ͹

In this study,weevaluate theeffectsof LULCchangescenariosavailable forEu-

rope, on the distributional changes projected by SDMs for ʹ͸ European bumble-

bee species projected onto Belgium, the Netherlands, and Luxembourg (BENE-

LUX), and at the European scale. We use three land use change scenarios (busi-

ness as might be usual [BAMBU], growth applied strategy [GRAS], sustainable

European development goals [SEDG]) representing alternative socio-economic

futures, which have been specifically developed to evaluate the impacts of envi-

ronmental changes on biodiversity (Assessing LArge-scale environmental Risks

with tested Methods (ALARM) Scenarios; Spangenberg et al. ͲͰͱͲ). We expect

to observe differences in the projected distributions produced by climate-only

models vs. models which include LULC. We expect that the differences between

static and dynamic LULC models will be less pronounced and species-specific,

and will likely depend on the spatial scale and resolution at which the LULC co-

variates are projected (Luoto et al. ͲͰͰͷ; Martin et al. ͲͰͱͳ). Overall, we aim

to illustrate the bias associated with using climate change-only scenarios when

modelling bumblebees that land usechangewill undoubtedlyaffect. Wealsoaim

to show how presently available dynamic LULC projections affect the modelled

distributions for multiple species. Following this important step, we discuss the

extent to which our results provide improvements to land use change scenarios

in development and the conservation implications of using such SDMs.

5.3 Materials and Methods

5.3.1 Target species

Our study group is the genus Bombus, for which we have detailed, long-term,

biogeographical records for most of Europe, and which has shown significant

decline in the last one hundred years (Biesmeijer et al. ͲͰͰͶ; Carvalheiro et al.

ͲͰͱͳ; Kerr et al. ͲͰͱ͵; Rasmont et al. ͲͰͰ͵). Forty-eight European bumble-

bee species were included in the analysis (see Table S͵.ͱ). The species modelled

share similar life histories, but exhibit vastly different ranges and distributions in

Europe (Rasmont et al. ͲͰͱ͵a). According to the IUCN Red List of threatened

species, Bombus in Europe includes species of all threat levels (Nieto et al. ͲͰͱʹ).
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Climate change impacts have been modelled for the genus Bombus at the Euro-

pean scale, projecting severe declines and northerly shifts for the majority of the

species (Rasmont et al. ͲͰͱ͵a). However, loss of habitat for feeding and nesting

resources has been cited as a major driver of past Bombus decline (Biesmeijer

et al. ͲͰͰͶ; Carvalheiro et al. ͲͰͱͳ; Goulson et al. ͲͰͱͰ; Williams & Osborne

ͲͰͰ͹). Therefore, climate might not necessarily be the only significant driver of

change for this group over the next one hundred years. Furthermore, the distri-

bution patterns of wild bee species are reported to be affected by change inmajor

land use classes, particularly the presence of arable land (Aguirre-Gutiérrez et al.

ͲͰͱ͵; Senapathi et al. ͲͰͱ͵).

5.3.2 Species presence data

This study includes bumblebee collection records from ͲͲ European countries

andmultiple sources including professional and amateur scientists (see Fig S͵.ͱ).

The data were collated as part of the EU FPͷ project STEP (Potts et al. ͲͰͱͱ), and

is aggregated and available to viewon theAtlas Hymenopterawebpage (Rasmont

& Iserbyt ͲͰͱͳ). We used records from ͱ͹ͷͰ until ͲͰͰͰ, as these represent the

‘current’ period of climate data, which we used to train the species distribution

models. We had ʹͶͲ,ͶͳͶ records available to use.

5.3.3 Spatial extent and resolution

The spatial extent was limited to the extent of the ALARM projections of Eu-

ropean land use, which in turn limited the species collection records available

to use (see Fig S͵.ͱ). Europe in the context of this study is defined as the Eu-

ropean Union without Ireland, Romania, Bulgaria, Canary Islands and Cyprus,

and including Norway and Switzerland. We created 5 × 5 km, 10 × 10 km and

20 × 20 km European grids for training the SDMs to project onto the BENELUX

(Belgium, Netherlands and Luxembourg) region. We also created a 50 × 50 km

European grid for training the SDMs to project onto the original spatial extent of

Europe. All map projections use the European terrestrial references system ͱ͹͸͹

(ETRS͸͹).
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5.3.4 Climate and Land Use/Land Cover Data

Variables of current climatic conditions were produced from monthly interpo-

lated rainfall and temperaturedata from ͱ͹ͷͱ to ͲͰͰͰ, at a ͱͰ resolution (Fronzek

et al. ͲͰͱͲ, Mitchell et al. ͲͰͰʹ). We considered ͱʹ climate variables for the

modelling process (see Table S͵.Ͳ). However, because climate variables are of-

ten strongly correlated. Including all climate variables in the models would have

added redundant information. Therefore, to avoid collinearities, we conducted

a selection according to Pearson correlation coefficients (<Ͱ.ͷ; Dormann et al.

ͲͰͱͳ). When two variables were highly correlated, we selected the variable that

we estimated to have the greatest ecological relevance to Bombus species. We se-

lected total annual growing degree-days (>͵°C), which was correlated with other

temperature variables, because it is linked to the presence of wildflowers and

flowering crops, both important food sources for bumblebees. Furthermore, we

chose water balance, which was correlated with the majority of other precipita-

tion variables because it is representative not only of total precipitation, but has

a direct link with temperature, making it an important influence for terrestrial

vegetation (Gerten et al. ͲͰͰʹ). Five climate variables were used as explana-

tory covariates in the model: average precipitation of the wettest month; total

annual number of growing degree-days above ͵°C; mean diurnal range (mean of

monthly difference between daily maximum and minimum temperatures); an-

nual temperature range (maximum temperature of warmest month–minimum

temperature of coldest month); and annual water balance (mean monthly pre-

cipitation minus the monthly potential evapotranspiration; Gerten et al. ͲͰͰʹ).

Eachof thefiveclimatevariableswasaggregated to the 50× 50 kmand 20× 20
km grids, and downscaled to the 10 × 10 km and 5 × 5 km grids using bilinear

interpolation (Randin et al. ͲͰͰ͹). All spatial analyses were conducted using

Rstatistics ͳ.ͳ.Ͳ (R Core Team ͲͰͱͷ), the Raster package (version Ͳ.͵-Ͳ; Hijmans

ͲͰͱ͵) and ARCGIS ͱͰ.Ͳ (ESRI ͲͰͱͶ).

The future land use projections were built in congruence with a set of global

change scenarios and associated climate change as part of the European ALARM

project (Spangenberg et al. ͲͰͱͲ). These climate scenarios were derived from

a coupled Atmosphere-Ocean General Circulation Model (HadCMͳ; New et al.
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ͱ͹͹͹) and include the scenarios as outlined in the IPCC Special Report on Emis-

sion Scenarios (IPCC ͲͰͰͱ). We produced the same five climate variables in the

current period for each of three scenarios of climate change (BAMBU, GRAS,

SEDG) in ͲͰ͵Ͱ and ͲͱͰͰ for the four grid resolutions.

• ‘Business as Might Be Usual’ (BAMBU)—IPCC AͲ scenario (see Span-

genberg et al. ͲͰͱͲ, for more information); mean projected temperature

rise in Europe at ͲͱͰͰ is ʹ.ͷ°C; an intermediate change scenario based on

extrapolated current socioeconomic and policy decisions.

• ‘GrowthApplied Strategy’ (GRAS)—IPCC AͱFI; mean projected temper-

ature rise in Europe at ͲͱͰͰ is ͵.Ͷ°C; amaximumchange scenario driven by

policies of deregulation and economic growth.

• ‘Sustainable EuropeanDevelopmentGoal’ (SEDG)—IPCC Bͱ scenario;

mean projected temperature rise in Europe at ͲͱͰͰ is ͳ.Ͱ°C; a moderate

change scenariodriven by economic, social and environmental policies, re-

lated to stabilizing atmospheric greenhouse gases emissions and stopping

the loss of biodiversity.

Current land use was obtained from the Coordination of Information on the

Environment (CORINE) Land Cover at 250 × 250 m resolution (Bossard et al.

ͲͰͰͰ). The CORINE classes were reclassified as six classes to match the future

projections. Weremoved theclass ‘others’ fromouranalysis because it represents

diverse land use types andwas inexplicable in an ecologically relevant context for

bumblebee species. Future land use was obtained from the ALARM EU project

downscaled to 250 × 250 m for each of the three scenarios for ͲͰ͵Ͱ and ͲͱͰͰ

(Dendoncker et al. ͲͰͰͶ; Spangenberg et al. ͲͰͱͲ). At each grid resolution, we

determined the percentage cover for each land use covariate. The final five land

use layerswere: percentagecoverarable land; percentagecover forest; percentage

cover grassland; percentage cover permanent crops; and percentage cover urban.

The role of the covariates will be tested in three ways using three variable sets

in the models: (ͱ) Dynamic climate-only models, suggesting that only climate

variables matter in the future distribution of bumblebee species. (Ͳ) Static land

use and dynamic climate, suggesting that land use variables are important in

delimiting species habitat suitability, but that their future change will be driven
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only by climate change and changes in land use are redundant. (ͳ) Dynamic

climate and dynamic land use, suggesting that future distribution patterns will

be dependent on the interaction between changing climate and changing land

use.

5.3.5 Species distribution modelling

We used a SDM approach to compare the role of dynamic land use data in the

future distribution patterns of bumblebees. We modelled the distribution of ʹ͸

species using R (R Core Team ͲͰͱͷ) with the biomodͶ package (version ͳ.ͳ-ͳ;

Thuiller et al. ͲͰͱͳ). We chose an ensemble modelling approach, which cre-

ates a consensus of the predictions of multiple algorithms and is an established

method to account for projection variability (Thuiller ͲͰͱʹa). Even small differ-

ences between algorithms can lead to different projections of future distribution

change. Ensemble modelling aims to limit the many uncertainties of forecast

modelling and has become increasingly used in studies of biodiversity change

(Thuiller ͲͰͱʹa).

We chose three algorithms to include in the ensemble model based on their

previous performanceswith analogous collection data for a similar insect species

group (Aguirre-Gutierrez et al. ͲͰͱͳ). The three algorithms chosenwere a gener-

alized linearmodel, GLM (Nelder&Wedderburn ͱ͹ͷͲ), with linearandquadratic

effects, and stepwise selection based on the Akaike Information Criteria (AIC);

a generalized boosted model, GBM (Friedman ͲͰͰͱ), with ͳ,ͰͰͰ trees and five

cross-validation folds; and Maximum Entropy Modelling (MAXENT; Phillips &

Dudík ͲͰͰ͸), with linear and quadratic features. We decided to choose simplic-

ity and ecological clarity over model complexity by dropping detailed features,

such as product, threshold, hinge and polynomial.

Models for each species were trained at multiple resolutions at the European

scale; 5× 5 km, 10× 10 km, 20× 20 kmand 50× 50 km. Wehad ʹͶͲ,ͶͳͶ records

available touse; thesewereaggregatedasuniquespeciesoccurrences foreachgrid

cell resolution. The number of occurrences per resolution is as follows: ͶͷͰͳͰ at

5 × 5 km, ʹ͹ͱʹͶ at 10 × 10 km, ͳͰͱͰʹ at 20 × 20 km and Ͳͱ,ͱͶͲ at 50 × 50 km.

We modelled ʹ͸ species (see Table S͵.ͱ) with at least ͵Ͱ unique records, and for
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which there are no ongoing taxonomic debates surrounding their species defini-

tion (see Rasmont et al. ͲͰͱ͵a). A number of occurrences in the database were

not point level GPS coordinates, butwere recorded as UTMgrids of varying sizes.

To be confident in the spatial accuracy of collection records we removed occur-

rences that were recorded as UTM grids larger than 1 × 1, km. As the sampling

methodswerediverse and non-systematic, there are likely spatial biases amongst

the records. To deal with this potential spatial autocorrelation between closely

sampled locations we selected a subset of points per species. A random starting

observation was selected and all points in adjacent grid cells removed; this was

then repeated for all remaining points. This produced a more even spread of ob-

servations and minimized the effects of heavy sampling at particular locations.

As true absences were not available (it is not possible to accurately say that a

bee species is not present during sampling) we generated randomly distributed

pseudo-absences forGBMand GLMand selected a background sample forMAX-

ENT (Elith et al. ͲͰͱͱ; Phillips et al. ͲͰͰ͹). Weused target-group sampling to se-

lect our background points (Mateo et al. ͲͰͱͰ; Phillips et al. ͲͰͰ͹). We specified

that the background samples and pseudo-absences could only be selected from

areas where other bumblebees have been recorded since ͱ͹ͷͰ. This approach is

more objective than taking the background and pseudo-absence samples from

sites that have not been sampled, accounting for potential sampling bias (Elith

et al. ͲͰͱͱ; Phillips et al. ͲͰͰ͹) and providing more accurate results (Mateo et al.

ͲͰͱͰ). To account for within algorithm variation we trained the models ͱͰ times

for each of the ʹ͸ species, the three algorithms, the three model hypotheses,

and the four grid resolutions. This resulted in ͳͶͰ models per species. We used

a bootstrap approach where random subsets of ͸Ͱ% of the data were used for

model training and the remaining ͲͰ% to produce Area Under the Curve (AUC)

values to testmodel performance (Bahn & Mcgill ͲͰͱͳ; Jiménez-Valverde & Lobo

ͲͰͰͷ). For each covariate included in the model, we calculated variable contri-

bution as the change in correlation between the covariates and the responsewith

and without the selected variable (Thuiller et al. ͲͰͱ͵). We then produced an

ensemble model for each of the three model hypotheses, creating a median rep-

resentation of the predictions of the ͱͰ runs and three algorithms together. We

chose the median value as it is less sensitive to extreme values than the mean.
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We projected the models trained at 5 × 5 km, 10 × 10 km and 20 × 20 km,

onto BENELUX. BENELUX comprises no novel conditions under the scenarios

(i.e., therearenoconditions inBENELUX inͲͱͰͰ thatdonotalreadyoccurwithin

Europe). Therefore, no forecasting into unknown ecological space occurred (Fig

S͵.Ͳ). We also projected the data trained at 50 × 50 km onto the entire Euro-

pean study area. For each species we produced habitat suitability maps of the

median ensemble predicted distribution. Onemapwas produced for each of the

three model types at ͲͰ͵Ͱ, and ͲͱͰͰ under the three change scenarios at the ʹ

grid resolutions. Habitat suitability maps were converted to binary presence ab-

sence maps using the values under which specificity and sensitivity is optimized

(Thuiller et al. ͲͰͱ͵).

5.3.6 Statistical analysis

Analyseswere conducted on the ensemblemodel mapprojections of binary pres-

ence/absence. To compare the projected distributions of the three model hy-

potheses we measured the change in three distribution metrics. We calculated

range change by looking at changes per species in areas of occupancy between

the current and future periods. Specifically, we analysed the percentage of grid

cells lost (present in the current period and absent in the future) by each species

under the different scenarios and the percentage of grid cells gained (percentage

of absent cells in the current period occupied in the future). To examine spatial

shifts we took the centroid of the species range from the present (ͲͰͰͰ) and the

future (ͲͰ͵Ͱ and ͲͱͰͰ). A positive value indicates northerly shift and negative,

a southerly shift.

Todetermine theroleof thedifferentmodels, (i.e. climate-onlymodel [COM],

dynamic LULCmodel [DLM] and static LULCmodel [SLM]), wecreated separate

mixed effectsmodels foreachof the threemetrics for both Europeand BENELUX

projections. We included species as a random effect, as we were interested in

how changes in distribution of the species vary across the different model types,

periods and scenarios, and not in the inherent variation between species. Fur-

thermore, to determine if our results are related to the structure of the data we

also included the current range of the species as a covariate. Due to large num-

bers of zeros both range loss and range gain at the BENELUX scale were analysed
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with two separate mixed models: Bernouli distributed models of the probability

of gain or loss and a linear mixed effects model of values given range loss/gain

were projected.

Finally, in addition to presenting results for bumblebees as a group, we chose

two species, Bombus argillaceus (Scopoli ͱͷͶͳ; increasing in range) and B. vet-

eranus (Fabricius ͱͷ͹ͳ; decreasing in range), to look more closely at the differ-

ence between model projections with and without LULC covariates. We chose

these two species as they are at opposite end of the spectrum of climate risk,

both had highmodel performance values, both have a large number of collection

records within Europe and we believe them to be representative of two futures,

i.e. considerable range gain and considerable range loss, respectively (Rasmont

et al. ͲͰͱ͵a). The current distribution of B. argillaceus is in Southern and South

Eastern Europe aswell asWesternAsia (Rasmont & Iserbyt ͲͰͱͳ). In previous cli-

mate-onlymodels of future conditions B. argillaceuswas projected to increase its

range considerably inWestern Europe (Rasmont et al. ͲͰͱ͵a). Bombus veteranus

exhibits an already patchy distribution in the plains of Northern Europe and has

already declined in Belgium, shifting from an abundant species to one which is

barely present (Rasmont & Iserbyt ͲͰͱͳ). Under future climate-only projections

B. veteranus is expected todecrease in range considerably (Rasmont et al. ͲͰͱ͵a).

5.4 Results

5.4.1 Model training fit and variable contribution

Formodels trainedon thecurrentperiod,weassessedmodel fitusingAUCscores.

An AUC value below Ͱ.͵ indicates a model fit that is not better than random,

values above indicate enhanced model fit. We used AUC values to compare the

change in model fit per species with LULC vs. a COM (Fig ͵.ͱ). The mean AUC

values for all species are above Ͱ.ͷ, indicating better than random model fit. For

all ʹ͸ species, model fit improves by the addition of LULC covariates. A paired

Wilcoxon rank sum test indicates that the mean difference between the AUC

values of the models with LULC and the COMs is Ͱ.Ͱͱͳ ±Ͱ.ͰͰʹ (p value <.ͰͰͱ).
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FĎČ. ͵.ͱ: Area under the curve (AUC) statistics for median-ensemble-model performance visualized per
species. Black squares represent models with only climate covariates and grey triangles models with land use land
cover (LULC) covariates and climate covariates. Groupings represent Climatic risk as calculated by the Climate Risk
Atlas for Bumblebees (Rasmont et al. ͲͰͱ͵a). Potential risk (PR), low risk (LR), Risk (R), high risk (HR), very high

risk (HHR), extreme risk (HHHR).

We also compared the variable contributions of the different explanatory co-

variates included in the models (Fig ͵.Ͳ). Climatic variables are the most impor-

tant inexplaining thecurrentdistributionof all species. The total annual number

of growing degree-dayswas included amongst the fourmost important variables

for ʹʹ of the species modelled. The most important LULC covariate is the per-

centage cover of arable land but the percentage cover of forest is also important
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for a number of species (Fig ͵.Ͳ). Overall LULC variables contribute ͱ͵% of total

variable importance.

FĎČ. ͵.Ͳ: Average variable importance values and standard er-
rors of all covariates included in the training models. Black
squares represent models with only climate covariates and grey tri-
angles models with land use land cover (LULC) covariates and cli-
mate covariates. The numbers in the brackets represent the number
of species for which this variable was one of the four most important

variables.

5.4.2 The future of bumblebees projected at the BENELUX
scale

Of thedistributionchangemetrics analysed, the largestdiscrepancieswere found

in the projected range loss (Fig ͵.ͳa,b). There is considerable variability between

species and between scenarios but model type has a significant effect on the pro-

jections of whether specieswill lose rangeand howmuch rangewill be lost (Table
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͵.ͱ). Overall species are more likely to lose range under DLMs than both COMs

and SLMs (p < .ͰͰͱ and .ͰͰͲ; Table ͵.Ͳ). However, given range loss occurs (i.e.

excluding species that showed no range loss) then greater loss is projected by

COMs than both SLMs and DLMs (ͱ.ͳ%; p < .ͰͰͱ; Table ͵.Ͳ). However, this re-

lationship is highly variable and species specific. Under COMs ͱͱ species show

greater mean range loss averaged across scenario and resolution, however, five

species showgreater range loss underDLMs (Fig ͵.ͳa). The relationship between

projected range loss of SLMs and DLMs, while not significant at the BENELUX

scale, (Table ͵.Ͳ) also appears to be species specific, with some species below the

equal projection line, indicating greater range loss underDLMs (Fig ͵.ͳb). There

are no significant interactions between model type and other explanatory vari-

ables, suggesting a consistent effect of model type across scenarios, periods and

resolutions (Table ͵.ͱ).

FĎČ. ͵.ͳ: Comparison of percentage loss projections between model types for BENELUX ͲͰͰͰ–ͲͰ͵Ͱ. (a)
Climate-only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and
DLM. (a) N = ͳͶ, (b) N = ͳ͸. Results are averaged across resolution 5 × 5, 10 × 10 and 20 × 20 km) and scenario
(BAMBU, SEDG, GRAS), represented by standard error bars (dashed lines). The equal projection line (dashed line
Ͱ,Ͱ to ͱͰͰ,ͱͰͰ) represents the point atwhich the twomodel projections are equal. Red = above the equal projection

line, Blue = below the equal projection line, Grey = overlapping the equal projection line.

Model type, period, scenario and resolution at which the modelling occurred

significantly influence the probability of range gain (Table ͵.ͱ). Only ͵Ͱ% of

species were projected to gain any range at all within BENELUX by ͲͱͰͰ (Fig

͵.ʹa,b). The odds of range gain are significantly higher for DLM projections than

for COM and SLM (p < .ͰͰͰͱ; Table ͵.Ͳ). When range gain occurs there is no
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TĆćđĊ ͵.ͱ: Effects of SDM variability on the distributional change of bumblebees.

BENELUX (20 × 20, 10 × 10 and 5 × 5 km) Europe (50 × 50 km)

Explanatory variables
Probability
of Loss

Percentage
Loss

Probability
of Gain

Percentage
Gain

Centroid
Shift (km)

Percentage
Loss

Percentage
Gain

Centroid
Shift (km)

Single Terms
Range Size Present Europe - ** - - - *** *** ***
Model Type (COM, DLM, SLM) *** *** *** ** - *** *** ***
Period (ͲͰͰͰ-͵Ͱ, ͲͰ͵Ͱ-͸Ͱ) - *** *** *** *** *** *** ***
Scenario (BAMBU, GRAS,
SEDG)

*** *** *** *** *** *** - ***

Resolution (ͲͰ × ͲͰ, ͱͰ × ͱͰ,
͵ × ͵ km)

- *** *** – -

Two-way Interactions
Range Size Present × Model
Type

- - - - - - - -

Range Size Present ×
Period

- - - - - - *** ***

Range Size Present ×
Scenario

- - - - - - - -

Range Size Present ×
Resolution

- - - - -

Model Type × Period - - *** - - - - -
Model Type × Scenario - - - - - - - -
Model Type × Resolution - - - - -
Period × Scenario - *** *** - - *** - ***
Period × Resolution - - - - -
Scenario × Resolution - - - - -
Degrees of Freedom ͱͷͰͶ ͱ͵ͱͱ ͱͶͱͷ ͷͲͶ ͱͳͶͱ ͸͵ͳ ͸͵Ͷ ͸ʹͷ

p-values: .Ͱͱ ≤ p ≤ .Ͱ͵ = *, .ͰͰͱ ≤ p ≤ Ͱ.Ͱͱ = ** and <.ͰͰͱ = *** Themost parsimoniousmodels as chosen by Bayesian
information criteria (BIC) for the percentage range loss, percentage range gain, and shift in the distributional cen-
troid for ʹ͸ bumblebee species at European and BENELUX scales. The significance of each term included in the
model is shown. The symbol “–” represents a variable not included in the best model. The random term for all

models was ‘ͱ | species.’ For a detailed version of the table see Supporting Table S͵.ͳ.

significantdifference between COMsandDLMs, however, both projected signifi-

cantlyhigher loss than SLMs (ͱ.ʹ and ͱ.Ͳ%, p < .ͰͰͰͱ & .Ͱͳ; Table ͵.Ͳ). Thiscanbe

visualized in Fig ͵.ʹa, where variation between species is evenly distributed and

clustered at zero and Fig ͵.ʹb, where seven species have a considerably greater

range gain under DLMs.

Period and scenario at which the modelling occurred significantly influence

the directional shift of the distribution centroid (p < .ͰͰͱ; Table ͵.ͱ). Model type

did not significantly affect the projected shift.

5.4.3 The future of bumblebees projected at the European
scale

At the European scale with lower spatial resolution (50 × 50 km), SLMs project

significantly less range loss than both COMsandDLMs (Ͳ.͹% and ͱ.ͷ%; p = <.ͰͰͱ

and .ͰͲ, Table ͵.Ͳ). Overall, all ʹ͸ species are projected to lose at least some
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TĆćđĊ ͵.Ͳ: Pairwise comparisons betweenmodel types.

BENELUX (20 × 20, 10 × 10 and 5 × 5 km) Europe (50 × 50 km)

Contrasts
Probability of Loss
(Odds Ratio)

Percentage
Loss

Probability of Gain
(Odds Ratio)

Percentage
Gain

Centroid
Shift (km)

Percentage
Loss

Percentage
Gain

Centroid
Shift (km)

COM –
DLM

Ͱ.ͱͳ*** ͱ.ͳͲ*** Ͱ.ͳͰ*** ͱ.ͱͷ NA ͱ.ͱͷ ͱ.ͶͲ*** ͵ͱ.ͷ***

COM –
SLM

Ͱ.ͳʹ*** ͱ.ͳͲ*** Ͱ.͵͸* ͱ.ʹ͵** NA Ͳ.͹ͱ*** ͱ.͹ͷ*** ʹ͸.Ͳ***

DLM –
SLM

Ͳ.͵ͷ** ͱ ͱ.͹ͳ*** ͱ.Ͳʹ* NA ͱ.ͷʹ* ͱ.Ͳͱ** -ͳ.͵

p-values: .Ͱͱ ≤ p ≤ .Ͱ͵ = *, .ͰͰͱ ≤ p ≤ .Ͱͱ = ** and <.ͰͰͱ = *** Showing the fixed effect and the significance of the
best models as chosen by Bayesian information criteria BIC. Null hypothesis tested: that the difference between
contrasts is equal to Ͱ. Values are averaged over other explanatory variables included in the model (see Table S͵.ͳ.)

FĎČ. ͵.ʹ: Comparison of percentage gain projections between model types for BENELUX ͲͰͰͰ–ͲͰ͵Ͱ. (a)
Climate-only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and
DLM. (a) N = Ͳ͵, (b) N = ͳ͵ bumblebee species in BENELUX for ͲͰͰͰ–ͲͰ͵Ͱ. Results are averaged across resolution
(5 × 5, 10 × 10 and 20 × 20 km) and scenario (BAMBU, SEDG, GRAS), represented by standard error bars (dashed
lines). The equal projection line (dashed line Ͱ,Ͱ to ͷͰ,ͷͰ) represents the point atwhich the twomodel projections
are equal. Red = above the equal projection line. Blue = below the equal projection line. Grey = overlapping the

equal projection line.

range and the relationships between the different model types shows a strong

linear correlation, but with considerable deviation from the assumption of the

projectionsbeingequal (Fig ͵.͵a,b). Eighteenspeciesareprojected to losegreater

range under COMs whilst fourteen species are projected to lose greater range

underDLMs (Fig ͵.͵a). The relationship betweenDLMsand SLMs is clearerwith

a higher number of species below the equal protection line than above, which

supports the significant effect found in themixed models (ͱ.Ͳͱ%, p < .Ͱͱ; Fig ͵.͵b

and Table ͵.ͱ).
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FĎČ. ͵.͵: Comparison of percentage loss projections between model types at European Scale ͲͰͰͰ–ͲͰ͵Ͱ.
(a) Climate-onlyModels (COM) and Dynamic Land UseModels (DLM) and (b) Static Land UseModels (SLM) and
DLM. N = ʹ͸. 50 × 50 km resolution. Results are averaged across scenario (BAMBU, SEDG, GRAS), represented by
standard error bars (dashed lines). The equal projection line (dashed line Ͱ,Ͱ to ͱͰͰ,ͱͰͰ) represents the point at
which the twomodel projections are equal. Red = above the equal projection line. Blue = below the equal projection

line. Grey = overlapping the equal projection line.

At the European scale greater range gain is projected by COMs than SLMs

and DLMs (Ͳ% and ͱ.Ͷ%; p < .ͰͰͱ; Table ͵.Ͳ). DLMs project greater range gain

than SLMs (ͱ.Ͳ%, p value = .Ͱͱ; Table ͵.Ͳ). This relationship is visible in Fig ͵.Ͷa

with the majority of species considerably above the equal projection line. The

same pattern is observed for SLMs and DLMs, with ͱͲ species below the equal

projection line. The majority of species only illustrate modest range gain, and

the differences between model types are emphasized when range gain is high

(Fig ͵.Ͷa,b).

Centroid distributional shifts are greater under COMs than SLMs and DLMs

(ʹ͸.Ͳ and ͵ͱ.ͷ km; p < .ͰͰͱ). There is no significant difference in centroid distri-

butional shift between SLMs and DLMs (Fig ͵.ͷ).

5.4.4 The role of other explanatory variables in the mixed
models

Scenario, period, and resolution are included in themajority of bestmodels. The

effect of these explanatory variables is consistent across thedifferent distribution

changemeasures and scales. Themore extreme change scenario (GRAS) projects
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FĎČ. ͵.Ͷ: Comparison of percentage gain projections between model types at European Scale ͲͰͰͰ–ͲͰ͵Ͱ.
(a) Climate-onlyModels (COM) and Dynamic Land UseModels (DLM) and (b) Static Land UseModels (SLM) and
DLM. N = ʹ͸. 50 × 50 km resolution. Results are averaged across scenario (BAMBU, SEDG, GRAS), represented by
standard error bars (dashed lines). The equal projection line (dashed line Ͱ,Ͱ to ͱ͵,ͱ͵) represents the point atwhich
the two model projections are equal. Red = above the equal projection line. Blue = below the equal projection line.

Grey = overlapping the equal projection line.

greater loss and northern shift of the centroid than business as usual (BAMBU)

and sustainable scenarios (SEDG). The probability of range gain is lowest under

the GRAS scenario and the largest range gain occurs under SEDG. In the period

ͲͰͰͰ–ͲͰ͵Ͱ lower percentage range loss, and lower centroid shiftwere projected.

The SEDG scenario showed a significant interaction with period with range loss

and centroid shiftmuch lower for the period ͲͰ͵Ͱ–ͲͱͰͰ. The effect of resolution

at the BENELUX scale did not interact significantly with model type, however,

overall lower range loss and greater gain occurs at the finer resolutions. Finally,

the current size of the distribution was also included in some best models, at the

European scale more widespread species lose less and gain more range (for full

details of all models see Table S͵.ͳ and Figs. S͵.ͳ–S͵.ͱͰ).

5.4.5 Focus on one atypical and one representative species

Bombus argillaceus is atypical compared to the majority of European bumble-

bees. It is one of only two species projected to increase in range under climate

change. At the 5 × 5 km resolution B. argillaceus increases in range and lati-

tude under all model types and scenarios. The projected range gain percentage is
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FĎČ. ͵.ͷ: Mean and standard error of directional shift of species
distribution centroid. For Climate-only Models (COM), Dynamic
LandUseModels (DLM)and Static LandUseModels (SLM)atEurope
at ͲͰ͵Ͱ (a) and ͲͱͰͰ (b) and BENELUX at ͲͰ͵Ͱ (c) and ͲͱͰͰ (d) for

three change scenarios (BAMBU, GRAS, SEDG).

larger for COMs (BAMBU: ͱͶ%, GRAS: ʹͲ%, SEDG: ͱʹ%; Fig ͵.͸a–c) than DLMs

(͹%, ͳʹ%, ͷ%; Fig ͵.͸d–f) or SLMs (ͱͰ%, ͳͶ%, ͱͰ%; Fig ͵.͸g–i). At the BENELUX

scale only new areas of habitat suitability are projected. At the European scale

we observe that B. argillaceus is one of the few species to significantly increase in

range. This range gain is much less under SLMs and DLMs than COMs. Under

COMs B. argillaceus is projected to gain considerable range in theWest and East

of Europe (Fig ͵.͹). A large amount of the projected range loss is in areas with

novel climatic conditions, making the predictions unreliable.
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FĎČ. ͵.͸: BENELUX maps showing 5 × 5 km resolution of change in habitat suitability between ͲͰͰͰ and
ͲͱͰͰ fortwospecies,Bombusargillaceus (a–i; atypical)andBombusveteranus (j–r; representativeofmany
species). Habitat suitability change is shown for three future change scenarios (BAMBU, GRAS, and SEDG) and
for three model types (Climate-only [a–c, j–l], Dynamic LULC [d–f, m–o], and Static LULC [g–i, p–r]). Yellow: cells
that have remained as suitable habitat; Red: cells that were suitable in ͲͰͰͰ but unsuitable in ͲͱͰͰ; Green: cells

that were unsuitable in ͲͰͰͰ but suitable in ͲͱͰͰ; Grey: cells that were never projected as suitable habitat.

Bombus veteranus is one of the numerous European bumblebee species pro-

jected to lose a large part of its suitable habitat under climate change; it is there-

fore representative of the majority of bumblebees in Europe. Bombus veteranus

under BAMBU and GRAS is expected to lose almost its entire suitable habitat in

BENELUX. The species is not projected to go extinct at 5 × 5 km resolution, but

projections of the GRAS scenario show only a tiny pocket of remaining suitable

habitat in South-east Belgium (Fig ͵.͸k,n,q). Significant gain is only projected

under SEDG for COMs (Ͳ͵%; Fig ͵.͸l). At the European scale B. veteranus loses

more range under COMs (͵ʹ%, Ͷͷ%, ͳ͸%; Fig ͵.͹j–l) than SLMs (ͳͲ%, ͵Ͱ%,

ͱ͹%; Figure ͵.͹p–r) and DLMs (ʹͰ%, ͵͵%, ͲͶ%; Fig ͵.͹m–o). Bombus veter-

anus is projected to expand into Northern Europe, further under COMs. Overall

SLMs project more persistence in the landscape but less Northern shift. Finally,

the centroid of the distribution of B. veteranus is projected to shift further North

overall under DLMs than SLMs (BAMBU: +͹͵ km, GRAS: +Ͷ͸ km SEDG: +͹͸
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FĎČ. ͵.͹: European maps showing 50 × 50 km resolution of change in habitat suitability between ͲͰͰͰ
and ͲͱͰͰ for two species, Bombus argillaceus (a–i; atypical) and Bombus veteranus (j–r; representative of
many species). Habitat suitability change is shown for three future change scenarios (BAMBU, GRAS, and SEDG)
and for three model types (Climate-only [a–c, j–l], Dynamic LULC [d–f, m–o], and Static LULC [g–i, p–r]). Yellow:
cells that have remained as suitable habitat; Red: cells that were suitable in ͲͰͰͰ but unsuitable in ͲͱͰͰ; Green:
cells that were unsuitable in ͲͰͰͰ but suitable in ͲͱͰͰ; Grey: cells that were never projected as suitable habitat.

km, Fig ͵.͹m–r).

5.5 Discussion
This study shows that incorporating dynamic LULC change scenarios, even those

with low precision and few classes, can have significant effects on the projected

distributions of bumblebee species. Species can only occur in a location at any

timewhen a series of critical conditions are met, including both suitable climate

and land use and land cover types that allow them to feed, grow, survive and re-

produce. Therefore, it is surprising that the use of climate change projections is

commonplace, whereas LULC change projections are rarely used in species fore-

casting (Titeux et al. ͲͰͱͶ). We tested the effect of dynamic LULC variables on

projecting future distribution changes for ʹ͸ European Bombus species in ͲͰ͵Ͱ
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and ͲͱͰͰ. Bombus being a genus for which change in major land use classes has

affected historical distributionpatterns (Aguirre-Gutiérrez et al. ͲͰͱ͵; Senapathi

et al. ͲͰͱ͵).

5.5.1 Models including LULC compared to climate‐only
models

All models improved in fit (AUC) when adding LULC covariates. However, this

refers to goodness-of-fit and does not necessarily mean greater predictive ability

(Thuiller et al. ͲͰͰʹ). A number of species are influenced by LULC covariates,

in particular the percentage cover of arable land and forest. The results sup-

port research showing that using only climate covariates may over-represent the

species range in the present (Luoto et al. ͲͰͰͷ; Sohl ͲͰͱʹ; Stanton et al. ͲͰͱͲ).

This is likely to misrepresent species range change as well as the shift of species

range limits. The importance of LULC change is dependent on whether habi-

tat requirements, namely nesting and feeding resources (Busch, ͲͰͰͶ), can be

adequately captured by the relationship between these six land use covariates

and the climate change covariates. Therefore, we saw variation for bumblebees

as they differ significantly in their landscape requirements (Goulson et al. ͲͰͱͰ;

Persson et al. ͲͰͱ͵). A result unique to our study is that COMs (at the European

scale) projected greater range loss and lower range gain than when land use co-

variates were included. This is in part due to greater range size in the present

under COMs. However, there were also examples of areas that became suitable

for certain bumblebees with the introduction of LULC covariates. These results

suggest that for some species including LULC covariates, projects, on average, a

wider bioclimatic envelope and is more likely to project persistence in the land-

scape. In other words LULC covariates, provide a habitat filter over the climate

prediction. However, we did not observe the same pattern for all species, and

there were species, which showed greater loss and gain with dynamic land use

covariates. Overall, the relationship was highly variable (see Figs. S͵.ͷ–S͵.ͱͰ).

This inconsistent relationship indicates that dynamic LULC model predictions

are not simply a level up or down from climate-only models. Additionally, the

introduction of LULC covariates projected an inability of most bumblebees to
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completely track Northern climate shifts, particularly into Scandinavia, support-

ing historical patterns (Kerr et al. ͲͰͱ͵).

5.5.2 Models including dynamic LULC compared to static
LULC models

Including static LULC change in SDMs is based on the incorrect assumption that

LULCwill not change in the future or that this change is negligible in comparison

to climate change (Stanton et al. ͲͰͱͲ). In this study, loss and gain of suitable

habitatwasmore likelywith dynamic LULC covariates. Thedistribution patterns

of DLMs represent more variable suitable habitat conditions in time than SLMs

under equivalent climate change, resulting in greater projected range loss and

gain. However, this pattern varied between species and was more discernible

for some over others. This variability is supported by other studies; including

dynamic LULC covariates previously led to more accurate model predictions for

invasive bullfrogs (Ficetola et al. ͲͰͱͰ) and central European plants (Chytrý et

al. ͲͰͱͲ), but not so for a European butterfly species (Martin et al. ͲͰͱͳ). Our

multi-species study indicates that a number species show projected distribution

changes under different model types, however, some do not show any. This, in

and of itself, is not surprising as species differ in their dependency on specific

characteristics of climate and land use. Therefore, including dynamic LULC co-

variates, even at coarse thematic resolution, can significantly alter the projected

distributional changes of certain species.

5.5.3 Inclusion of LULC in models for individual species dis-
tribution projections

We focused on the projections of two species, B. argillaceus was atypical com-

pared to the majority of species, demonstrating range. The results suggest that

dynamic LULC limits the availability of suitable habitat in the North. Overall,

this illustrates the necessity of dynamic LULC in prospective SDMs, and that

change in major land use classes such as grassland and urban affect observed

species range change under climate change. Bombus veteranus is representative

of the patterns observed for many species. Climate drove the distribution but
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LULC models projected extra areas of suitable habitat, which were rarely contin-

uous and perhaps indicative of real world patterns. Fragmented suitable habitat

increases theprobabilityof losing local populationsanddecreases theprobability

of establishing new populations, both of which severely affect a species’ tracking

of global change.

5.5.4 LULC‐inclusive models for forecasting and guiding con-
servation efforts

The importance of including LULC projections depends on the goals and desired

outcomes of the modelling process. As a tool, SDMs explore unknown areas and

periodswhere conditionsmay be suitable for species occurrence, observe the role

of environmental covariates and influence conservation management (Franklin

ͲͰͱͰ). However, due to limitations in data availability and modelling methods

their value to conservation and ability to predict occurrence should not be over-

estimated (Lobo ͲͰͱͶ), particularly in the case of undersampled and geograph-

ically and taxonomically restricted insect data (De Palma et al. ͲͰͱͶ). Regard-

ing covariate influence, we observe that for at least some species dynamic LULC

covariates significantly affect projected distributions. Regarding conservation

management, variation betweenmodel types, model performance and projected

distributions suggests that using DLMs to inform conservation practices would

be suitable at the broad scale. The absence of dynamic LULC covariates could

lead to significantly underfitted potential distributions for specific landscapes or

species with implications for management. (Franklin ͲͰͱͳ; Porfirio et al. ͲͰͱʹ;

Wrightetal. ͲͰͱ͵). Overall, speciesandpurpose-specificapproaches tocovariate

selection should be preferred.

5.5.5 The generation of dynamic LULC scenarios deserves
more attention

The observed patterns strongly support the case for more detailed LULC change

scenarios. This supports the conclusions of similar studies (Barbet-Massin et al.

ͲͰͱͲb; Martin et al. ͲͰͱͳ). The scenarios presented here intend to provide a

platform on which to relate species conservation to socio-economic factors and
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policy decisions, they also aim to make it possible to assess which improvements

at landscape level are needed to improve species persistence (Van Vuuren et al.

ͲͰͱͱ). However, it is likely that the LULC changemaps produced by these scenar-

ios will become superseded by updated, more detailed LULC change scenarios,

linked to new climate changemodels. Finer resolution and more detailed classes

would greatly improve LULC projections (Busch, ͲͰͰͶ; Verburg et al. ͲͰͰ͹).

In the case of bumblebees, we know that to model wild bee species adequately

we need ecologically relevant LULC covariates that represent local management

(Aguirre-Gutiérrezetal. ͲͰͱ͵; Marshall etal. ͲͰͱ͵; Scheperetal. ͲͰͱ͵). Newsce-

narios should emphasize a relevance to biodiversity and land use management,

for example, separating between natural-grassland and agricultural-grassland,

and intensive and less intensive farming systems. While the incidence of and

change in forest and arable land cover correlates with habitat suitability, this is

an indirect effect. The coarseness of these classifications does not provide an

adequate foundation to extract causal information or infer on the importance of

land use management (Thuiller et al. ͲͰͰʹ). Moreover, national and interna-

tional policies, such as the CAP in Europe, tend not to change land cover per se

(grassland remains grassland), but the management level and thus biodiversity

value. For example, arable land cover is the most important LULC covariate for

themajority of bumblebees as defined by the correlative variable importance val-

ues (seeTable S͵.ͱ). However, theecological significanceof this importancecould

relate to agricultural intensification, pesticide use, availability of floral resources,

or most likely, a combination of these factors.

5.5.6 Differences between the data sources

Among the ʹ͸ bumblebeesmodelled there are examples of polytypic species rep-

resenting significant intraspecific variation (Rasmont ͱ͹͸ͳ). For example, SDMs

at subspecies level forB. terrestris performed differently fromaggregated models

with all subspecies as a single unit (Lecocq et al. ͲͰͱͶ). We did not utilize this

variation; we modelled the habitat requirements of each species using all avail-

able records. Occurrencepointswere selected to represent the highest resolution

possible to model at 5 × 5 km resolution, and many points were removed. How-

ever, due to the natureof thedata and themultitudeof sources it is still likely that
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some point records were not accurately recorded, though we expect this number

to be minimal (Duputié et al. ͲͰͱʹ).

There were distinctions between the resolution of the climate and land use

sources in thepastand in the future. Due to thecoarsenatureof Atmosphere-Oc-

ean General CirculationModels (AOGCMs) used to calculate the climate-change

covariates theydo not represent accurately fine scale effects (Fronzek et al. ͲͰͱͲ).

This means at the 10 × 10 and 5 × 5 km resolutions that fine-scale topographic

effects of climate may be lost. This may result in a more homogeneous repre-

sentation of climate at these resolutions, which may over-represent range size

and connectivity. However, this is representative of climate data often used in

studies of this type to model in the future, and in general climate is more ho-

mogeneous than land use, particularly at the BENELUX scale. To understand in

detail the climate effects on biodiversity, fine scale climate changeprojections are

required. The land-use change maps were downscaled to match the availability

of current LULC data at European scale. However, the downscaling algorithm is

likely to produce some clustering for the future LULC covariates (Dendoncker et

al. ͲͰͰͶ). Therefore, we focused on percentage cover covariates and it was not

possible to include covariates of connectivity and edge effects, as they would not

be comparable to present conditions. Furthermore, the land-use change models

were created in congruence with climate variables; this means that present and

future comparisons are valid at the different modelled resolutions (Rounsevell et

al. ͲͰͰͶ).

Finally, there are many methods for SDM and changes to the modelling al-

gorithms, covariates and resolutions can affect the results (Aguirre-Gutierrez et

al. ͲͰͱͳ; Warren & Seifert ͲͰͱͱ). We chose to use simplified algorithms in an

ensemble modelling approach to account for this variation (Thuiller ͲͰͱʹa).

5.6 Concluding Remarks
This work represents a detailed analysis of the effect of dynamic LULC scenarios

at different scales on the projected distributions of multiple species. We show

species dependent responses to the effect of dynamic LULC, which demonstrates
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that these types of scenarios can play a significant role in projecting species dis-

tributions under climate change. Climate variables alone, whilst driving habitat

suitability, are unlikely to project accurately the detailed distribution patterns of

all species. Therefore, weadvocate repeateduseand testingof theseavailable sce-

narios with multiple species. However, new scenarios and projections of LULC

change at finer spatial and thematic resolutions that indicate management prac-

tices will be necessary to better assess biodiversity change in an uncertain future.
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5.8 Supporting Information
Tables

TĆćđĊ S͵.ͱ: Average variable importance values across all resolutions for forty-eight
bumblebee species. Focus species highlighted gray.

Species Arable
Rainfall
Wettest
Month

Forest
Growing
Degree
Days

Grassland
Diurnal
Range

Permanent
Crops

Annual
Temp
Range

Urban
Water
Balance

Bombus alpinus Ͱ.Ͱͷ Ͱ.ͰͲ Ͱ.Ͱ͵ Ͱ.͹ͱ Ͱ.Ͱͳ Ͱ.Ͱͱ Ͱ Ͱ.Ͱͱ Ͱ.ͰͲ Ͱ.Ͱͷ
Bombus argillaceus Ͱ.ͰͶ Ͱ.Ͷ͸ Ͱ.Ͱͷ Ͱ.ͰͶ Ͱ.ͱͷ Ͱ.ͰͶ Ͱ.Ͱ͵ Ͱ.ͳʹ Ͱ.ͰͶ Ͱ.Ͳͳ
Bombus balteatus Ͱ.ͰͶ Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.͸ʹ Ͱ.Ͱͱ Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.Ͱͷ Ͱ.Ͱͱ Ͱ.Ͱͱ
Bombus barbutellus Ͱ.Ͱ͵ Ͱ.ͳͲ Ͱ.Ͱͷ Ͱ.ͳͷ Ͱ.ͰͲ Ͱ.Ͱ͵ Ͱ Ͱ.ʹͳ Ͱ.Ͱ͵ Ͱ.ͷ
Bombus bohemicus Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.Ͱʹ Ͱ.ͷͳ Ͱ.ͰͲ Ͱ.ͰͶ Ͱ Ͱ.Ͳͳ Ͱ.Ͱʹ Ͱ.Ͱ͵
Bombus campestris Ͱ.Ͱͷ Ͱ.ͱ Ͱ.Ͱʹ Ͱ.ʹͳ Ͱ.Ͱʹ Ͱ.ͰͲ Ͱ Ͱ.ͱͱ Ͱ.Ͱͷ Ͱ.ͲͲ
Bombus cingulatus Ͱ.ͱ Ͱ.ͱͱ Ͱ.ͰͲ Ͱ.͵ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ.ʹͶ Ͱ Ͱ.ͰͶ
Bombus confusus Ͱ.Ͱ͵ Ͱ.ͲͲ Ͱ.Ͱ͵ Ͱ.Ͳͳ Ͱ.Ͱ͵ Ͱ.ͱͶ Ͱ.Ͱͱ Ͱ.Ͳͷ Ͱ.Ͱʹ Ͱ.Ͳ͵
Bombus consobrinus Ͱ.ͱ Ͱ.ͱͳ Ͱ.ͱ Ͱ.͸ͳ Ͱ.ͰͲ Ͱ.ͱ͵ Ͱ.ͰͲ Ͱ.Ͳͳ Ͱ.ͰͲ Ͱ.ͱ͵
Bombus cryptarum Ͱ.Ͱ͵ Ͱ.ͱ͹ Ͱ.ͱ͵ Ͱ.ͳͷ Ͱ.ͲͲ Ͱ.ͱ͵ Ͱ.Ͱʹ Ͱ.ͲͲ Ͱ.ͰͲ Ͱ.Ͱͷ
Bombus cullumanus Ͱ.Ͱͳ Ͱ.ͱ͵ Ͱ.Ͱʹ Ͱ.ͱʹ Ͱ.Ͱʹ Ͱ.ͳ͸ Ͱ.ͱʹ Ͱ.͵͵ Ͱ.ͰͲ Ͱ.ͷͷ
Bombus distinguendus Ͱ.Ͱ͵ Ͱ.Ͱͳ Ͱ.Ͱ͵ Ͱ.ͷʹ Ͱ.Ͱʹ Ͱ.Ͱͷ Ͱ.ͰͲ Ͱ.Ͱͳ Ͱ.Ͱͳ Ͱ.Ͱͷ
Bombus flavidus Ͱ.ͱͲ Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.Ͷ͹ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ Ͱ.ͱ͹ Ͱ.Ͱͱ Ͱ.Ͱͳ
Bombus gerstaeckeri Ͱ.Ͳͱ Ͱ.ͷ͸ Ͱ.Ͱ͵ Ͱ.ͱ͸ Ͱ.ͱͲ Ͱ.Ͱͳ Ͱ.Ͱͱ Ͱ.Ͱ͹ Ͱ.ͰͲ Ͱ.ͲͲ
Bombus hortorum Ͱ.ͰͲ Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.Ͳʹ Ͱ.Ͱͳ Ͱ.Ͱ͸ Ͱ Ͱ.͵͹ Ͱ.Ͱʹ Ͱ.Ͱ͵
Bombus humilis Ͱ.Ͱͱ Ͱ.ͳ͹ Ͱ.Ͱʹ Ͱ.ͳ Ͱ.Ͱͱ Ͱ.ͰͲ Ͱ Ͱ.ͱͲ Ͱ.ͰͲ Ͱ.ͷ͹
Bombus hyperboreus Ͱ.Ͱ͹ Ͱ.Ͳͳ Ͱ.Ͱͱ Ͱ.͹ͷ Ͱ.Ͱͳ Ͱ.ͰͲ Ͱ Ͱ.ͰͲ Ͱ.ͱ Ͱ.Ͱʹ
Bombus hypnorum Ͱ.ͱ Ͱ.Ͱͱ Ͱ.Ͳ Ͱ.ͲͲ Ͱ.Ͱͱ Ͱ.ͰͶ Ͱ.Ͱͱ Ͱ.͵ͱ Ͱ.ͱͷ Ͱ.ͱ͸
Bombus jonellus Ͱ.Ͱ͸ Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.ʹͳ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ.ͱͶ Ͱ Ͱ.Ͱ͵
Bombus lapidarius Ͱ.ͰͲ Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.ͳͶ Ͱ.Ͱͱ Ͱ.Ͱͳ Ͱ Ͱ.ͱͷ Ͱ.Ͱ͵ Ͱ.ͱ͹
Bombus lapponicus Ͱ.ͰͲ Ͱ.Ͱ͵ Ͱ.Ͱʹ Ͱ.͸ͷ Ͱ.Ͱʹ Ͱ.Ͱ͵ Ͱ.Ͱͱ Ͱ.Ͱͷ Ͱ.Ͱͳ Ͱ.Ͱ͹
Bombus lucorum Ͱ.ͰͲ Ͱ.Ͱ͹ Ͱ.Ͱͳ Ͱ.ʹ͸ Ͱ.Ͱͱ Ͱ.ͱͲ Ͱ Ͱ.ʹʹ Ͱ.ͰͶ Ͱ.Ͱ͵
Bombus magnus Ͱ.ͱͲ Ͱ.Ͱͷ Ͱ.Ͱͳ Ͱ.Ͳͳ Ͱ.Ͱʹ Ͱ.ͱ Ͱ.Ͱͳ Ͱ.Ͷ͸ Ͱ.ͰͲ Ͱ.ʹʹ
Bombus mendax Ͱ.Ͳͱ Ͱ.ͷͶ Ͱ.ͱʹ Ͱ.Ͳͱ Ͱ.ͱ Ͱ.ͰͲ Ͱ.ͰͲ Ͱ.ͱͶ Ͱ.Ͱ͵ Ͱ.ͱ͹
Bombus mesomelas Ͱ.Ͱ͸ Ͱ.ͶͶ Ͱ.ͱͱ Ͱ.ͱ͹ Ͱ.ͱͳ Ͱ.Ͱͱ Ͱ.ͰͲ Ͱ.ͲͶ Ͱ.ͰͲ Ͱ.Ͳ͵
Bombus monticola Ͱ.Ͱ͹ Ͱ.͵ͷ Ͱ.ͱ Ͱ.ͳ͸ Ͱ.Ͱͳ Ͱ.Ͳ Ͱ.Ͱͱ Ͱ.ͳʹ Ͱ.Ͱͱ Ͱ.ͱ͹
Bombus mucidus Ͱ.ͱ͸ Ͱ.ͷ͸ Ͱ.Ͱͷ Ͱ.ͱͳ Ͱ.Ͱ͹ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ.ͱ͹ Ͱ.ͰͲ Ͱ.Ͳͳ
Bombus muscorum Ͱ.ͰͶ Ͱ.Ͱͳ Ͱ.Ͳͷ Ͱ.ʹ Ͱ.ͰͲ Ͱ.ͰͶ Ͱ Ͱ.Ͳ͵ Ͱ.Ͱͱ Ͱ.ͱ͵
Bombus norvegicus Ͱ.ͰͲ Ͱ.ͰͲ Ͱ.Ͱ͹ Ͱ.ͳ͹ Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.ͰͲ Ͱ.ʹ͵ Ͱ.ͱͳ Ͱ.ͰͲ
Bombus pascuorum Ͱ.Ͱʹ Ͱ.Ͱͱ Ͱ.Ͱ͸ Ͱ.ͲͲ Ͱ.Ͱʹ Ͱ.ͱͷ Ͱ Ͱ.ʹ͹ Ͱ.ͱͱ Ͱ.ͱͱ
Bombus polaris Ͱ.Ͱ͵ Ͱ.Ͳ Ͱ.Ͱͱ Ͱ.͸Ͷ Ͱ.Ͱͳ Ͱ.Ͱͱ Ͱ Ͱ.Ͱ͵ Ͱ.Ͱͱ Ͱ.ͱͱ
Bombus pomorum Ͱ.Ͱ͹ Ͱ.ͳͶ Ͱ.ͱͳ Ͱ.ͳͲ Ͱ.ͰͲ Ͱ.Ͱͳ Ͱ.Ͱͱ Ͱ.ͱ͸ Ͱ.ͰͲ Ͱ.Ͷ͸
Bombus pratorum Ͱ.ͱʹ Ͱ.Ͱͳ Ͱ.ͱͷ Ͱ.ͳ Ͱ.ͱͲ Ͱ.ͱ͵ Ͱ.Ͱͱ Ͱ.ʹͶ Ͱ.ͱ͸ Ͱ.ͱ͹
Bombus pyrenaeus Ͱ.ͱ͹ Ͱ.͸ͷ Ͱ.ͰͶ Ͱ.ͳͲ Ͱ.Ͱ͵ Ͱ.Ͱ͸ Ͱ.ͰͲ Ͱ.ͱͲ Ͱ.ͰͲ Ͱ.Ͳ͹
Bombus quadricolor Ͱ.ͱʹ Ͱ.ͲͶ Ͱ.Ͱʹ Ͱ.Ͷ͵ Ͱ.ͰͶ Ͱ.ͰͲ Ͱ Ͱ.ʹ͹ Ͱ.Ͱͱ Ͱ.ͱ͹
Bombus ruderarius Ͱ.Ͱʹ Ͱ.Ͳʹ Ͱ.Ͱʹ Ͱ.ʹ͵ Ͱ.Ͱͳ Ͱ.Ͱʹ Ͱ Ͱ.ͱͱ Ͱ.ͰͲ Ͱ.͵͹
Bombus ruderatus Ͱ.Ͱʹ Ͱ.Ͳͱ Ͱ.ͰͲ Ͱ.ͱͲ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ Ͱ.ͱͱ Ͱ.Ͱͱ Ͱ.͸͹
Bombus rupestris Ͱ.Ͱ͵ Ͱ.Ͳ͵ Ͱ.ͰͲ Ͱ.ʹͱ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ.Ͳ Ͱ.Ͱʹ Ͱ.ͷʹ
Bombus sichelii Ͱ.Ͱͷ Ͱ.ͷͶ Ͱ.ͱ Ͱ.ͳ͵ Ͱ.Ͱ͹ Ͱ.Ͱͷ Ͱ.Ͱͳ Ͱ.ͱͶ Ͱ.ͰͲ Ͱ.Ͳͷ
Bombus soroeensis Ͱ.ͱͱ Ͱ.ͳͳ Ͱ.Ͱͳ Ͱ.͵ͱ Ͱ.ͱ Ͱ.Ͱͱ Ͱ Ͱ.Ͳ͵ Ͱ Ͱ.ͱ
Bombus sporadicus Ͱ.Ͱʹ Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.ʹͳ Ͱ.ͰͲ Ͱ.Ͱʹ Ͱ.Ͱͱ Ͱ.͵ͳ Ͱ Ͱ.Ͱͱ
Bombus subterraneus Ͱ.ͰͲ Ͱ.ͲͶ Ͱ.Ͱͳ Ͱ.ͳʹ Ͱ.ͰͲ Ͱ.Ͱ͹ Ͱ.Ͱͱ Ͱ.ͳͱ Ͱ.Ͱͱ Ͱ.͸
Bombus sylvarum Ͱ.ͱ Ͱ.Ͳͱ Ͱ.Ͱͳ Ͱ.Ͳ͵ Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ Ͱ.ͱ Ͱ.ͰͲ Ͱ.ͶͶ
Bombus sylvestris Ͱ.ͰͲ Ͱ.Ͱͱ Ͱ.Ͱͷ Ͱ.ʹ Ͱ.Ͱͱ Ͱ.Ͱʹ Ͱ Ͱ.Ͳ͵ Ͱ.ͱ Ͱ.ͱ͹
Bombus terrestris Ͱ Ͱ.ͰͲ Ͱ.Ͱʹ Ͱ.ͲͶ Ͱ.Ͱͱ Ͱ.Ͱ͵ Ͱ Ͱ.Ͳʹ Ͱ.Ͱʹ Ͱ.Ͱ͹
Bombus vestalis Ͱ.Ͱʹ Ͱ.Ͱͱ Ͱ.Ͱͱ Ͱ.ʹͳ Ͱ.Ͱͳ Ͱ.Ͱͱ Ͱ Ͱ.ͱʹ Ͱ.Ͱʹ Ͱ.Ͱ͹
Bombus veteranus Ͱ.Ͱʹ Ͱ.ͱͱ Ͱ.ͰͲ Ͱ.͵ʹ Ͱ.Ͱͷ Ͱ.ͱͲ Ͱ.Ͱ͵ Ͱ.ʹͲ Ͱ.Ͱͱ Ͱ.ͱ͸
Bombus wurflenii Ͱ Ͱ.Ͷ͹ Ͱ.Ͱʹ Ͱ.͵͸ Ͱ.Ͱͱ Ͱ.ͰͲ Ͱ Ͱ.ͲͶ Ͱ.Ͱͱ Ͱ.ͱͷ
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TĆćđĊ S͵.Ͳ: Climate covariate selection All available

climate variables and those selected for themodelling

process.

Climate Variable Final Model

Annual Mean Temperature No
Average Annual Precipitation No
Max Temperature Coldest Month No
Max Temperature Warmest Month No
Mean Diurnal Range Yes
Mean Precipitation Driest Month No
Mean Precipitation Wettest Month Yes
Mean Temperature Coldest Month No
Mean Temperature Warmest Month No
Min Temperature Coldest Month No
Min Temperature Warmest Month No
Temperature Annual Range Yes
Total Annual Growing Degree Days (>͵°c) Yes
Water Balance - Year Sum (Mean monthly
precipitation - monthly PET)

Yes

TĆćđĊ S͵.ͳ: Detailed Effects of SDM variability on the Distributional Change
of Bumblebees.Themost parsimoniousmodels as chosen by Bayesian informa-

tion criteria (BIC) for the percentage range loss, percentage range gain, and shift

in the distributional centroid for forty-eight bumblebee species at European and

BENELUX scales. The random term for all models was ‘ͱ | species.’ p-values: .Ͱͱ

≤ p ≤ .Ͱ͵ = *, .ͰͰͱ ≤ p ≤ .Ͱͱ = ** and <.ͰͰͱ = ***.

Percentage Loss EUROPE

Estimate Std. Error DF t value P(>|t|)

Intercept ͵Ͱ Ͳ.͵͹ ͱʹʹ ͱ͹.Ͳ͹ <Ͱ.ͰͰͱ ***

Current Range Size EU -Ͱ.ʹͷ Ͱ.ͰͶ ʹͱͲ -ͷ.͹͸ <Ͱ.ͰͰͱ ***

Model Type (DLM) -ͱ.ͱͷ Ͱ.Ͷ͸ ͸Ͳͳ -ͱ.ͷͱ Ͱ.Ͱ͸ͷ

Model Type (SLM) -Ͳ.͹ͱ Ͱ.Ͷ͸ ͸Ͳʹ -ʹ.ͲͶ <Ͱ.ͰͰͱ ***

Scenario (GRAS) Ͷ.Ͱͷ Ͱ.͹Ͷ ͸ͱ͵ Ͷ.ͳʹ <Ͱ.ͰͰͱ ***

Scenario (SEDG) Ͱ.ͱ Ͱ.͹Ͷ ͸ͱ͵ Ͱ.ͱ Ͱ.͹Ͳͱ

Period (ͲͰ͵Ͱ-ͲͱͰͰ) ͳ.ʹ͸ ͱ.ͰͶ ͸Ͷͳ ͳ.Ͳ͹ Ͱ.ͰͰͱ **

GRAS:ͲͰ͵Ͱ-ͲͱͰͰ ͵.ʹʹ ͱ.ͳͶ ͸ͱ͸ ʹ <Ͱ.ͰͰͱ ***

SEDG:ͲͰ͵Ͱ-ͲͱͰͰ -ͱͶ.Ͷ͸ ͱ.ͳͶ ͸ͱ͵ -ͱͲ.ͳͱ <Ͱ.ͰͰͱ ***

Percentage Gain EUROPE (log)

Estimate Std. Error DF t value P(>|t|)
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Table S͵.ͳ continued from previous page

Intercept -Ͳ.͸ Ͱ.ʹͲ ͱͲͶ -Ͷ.Ͷ͹ <Ͱ.ͰͰͱ ***

Current Range Size EU Ͱ.Ͱ͹ Ͱ.Ͱͱ ͵ͶͶ ͹.͸ <Ͱ.ͰͰͱ ***

Model Type (DLM) -Ͱ.͵ͷ Ͱ.ͱ ͸ͲͲ -͵.͵ͱ <Ͱ.ͰͰͱ ***

Model Type (SLM) -Ͱ.͸Ͳ Ͱ.ͱ ͸Ͳͳ -ͷ.͹ʹ <Ͱ.ͰͰͱ ***

Period (ͲͰ͵Ͱ-ͲͱͰͰ) Ͱ.ͷ͸ Ͱ.ͱͷ ͸ʹͳ ʹ.ͶͶ <Ͱ.ͰͰͱ ***

Range Size: ͲͰ͵Ͱ-ͲͱͰͰ -Ͱ.ͰͲ Ͱ.Ͱͱ ͸ͳͰ -ʹ.ͱ͵ <Ͱ.ͰͰͱ ***

Centroid Distributional Shift EUROPE

Estimate Std. Error df t value Pr(>|t|)

Intercept ͹Ͳ.ʹͲ Ͳ͵.Ͷͳ ͱ͵ͱ ͳ.Ͷͱ <Ͱ.ͰͰͱ ***

Current Range Size EU ͳ.͵Ͳ Ͱ.ͶͲ Ͳͷ͵ ͵.Ͷ͸ <Ͱ.ͰͰͱ ***

Model Type (DLM) -͵ͱ.͵ͱ ͷ.ͷ͹ ͸ͲͰ -Ͷ.Ͷͱ <Ͱ.ͰͰͱ ***

Model Type (SLM) -ʹ͸.Ͳ͵ ͷ.͸ ͸Ͳͱ -Ͷ.ͱ͹ <Ͱ.ͰͰͱ ***

Scenario (GRAS) ͵Ͱ.ͷͳ ͱͰ.͹ͱ ͸ͱͰ ʹ.Ͷ͵ <Ͱ.ͰͰͱ ***

Scenario (SEDG) ͹.͵͹ ͱͰ.͹ͱ ͸ͱͰ Ͱ.͸͸ Ͱ.ͳͷ͹

Period (ͲͰ͵Ͱ-ͲͱͰͰ) ͳͷ.͵͹ ͱ͵.ʹͲ ͸ͳͲ Ͳ.ʹʹ Ͱ.Ͱͱ͵*

Range Size: ͲͰ͵Ͱ-ͲͱͰͰ -Ͱ.ͳͳ Ͱ.ʹͱ ͸ͳͱ -Ͱ.͸ Ͱ.ʹͲʹ

GRAS:ͲͰ͵Ͱ-ͲͱͰͰ ʹͱ.ͳ͹ ͱ͵.͵Ͷ ͸ͱ͵ Ͳ.ͶͶ Ͱ.ͰͰ͸**

SEDG:ͲͰ͵Ͱ-ͲͱͰͰ -ͷ͹.͵ ͱ͵.ʹͲ ͸ͱͰ -͵.ͱͶ <Ͱ.ͰͰͱ ***

Probability of Loss BENELUX (Bernouli)

Estimate Std. Error z value Pr(>|z|)

Intercept Ͷ.ͳʹ ͱ.͹ͷ ͳ.ͲͲ Ͱ.ͰͰͱͲ͹**

Model Type (DLM) Ͳ.Ͱʹ Ͱ.ͳ Ͷ.ͷͲ <Ͱ.ͰͰͱ ***

Model Type (SLM) ͱ.ͱ Ͱ.ͲͶ ʹ.ͱͳ <Ͱ.ͰͰͱ ***

Scenario (GRAS) Ͱ.ͷͲ Ͱ.Ͳ͹ Ͳ.ʹͶ Ͱ.Ͱͱͳ͹*

Scenario (SEDG) -Ͱ.͵ʹ Ͱ.ͲͶ -Ͳ.ͰͶ Ͱ.Ͱͳ͹Ͱ*

Percentage Loss BENELUX (log)

Estimate Std. Error DF t value Pr(>|t|)

Intercept ʹ.Ͳ͵ Ͱ.Ͳͷ ͱͰʹ ͱ͵.Ͷ <Ͱ.ͰͰͱ ***

Current Range Size EU -Ͱ.ͰͲ Ͱ.Ͱͱ ͱͰ͸͸ -ͳ.Ͳ͵ Ͱ.ͰͰͱ**

Model Type (DLM) -Ͱ.Ͳ͸ Ͱ.Ͱ͵ ͱʹ͸͸ -͵.ʹͱ <Ͱ.ͰͰͱ ***

Model Type (SLM) -Ͱ.Ͳ͸ Ͱ.Ͱ͵ ͱʹ͸͸ -͵.ͳͳ <Ͱ.ͰͰͱ ***

Scenario (GRAS) Ͱ.ͳʹ Ͱ.Ͱͷ ͱʹ͸ʹ ͵.Ͱͱ <Ͱ.ͰͰͱ ***

Scenario (SEDG) -Ͱ.ͱͲ Ͱ.Ͱ͸ ͱ͵ͱ͵ -ͱ.ʹ͵ Ͱ.ͱʹͷ

Period (ͲͰ͵Ͱ-ͲͱͰͰ) Ͱ.ʹ͹ Ͱ.Ͱͷ ͱʹ͸͵ Ͷ.͹Ͳ <Ͱ.ͰͰͱ ***

Resolution (ͱͰkm) -Ͱ.ͳͳ Ͱ.Ͱ͵ ͱʹ͸Ͷ -Ͷ.Ͷͳ <Ͱ.ͰͰͱ ***

Resolution (͵km) -Ͱ.ʹ͸ Ͱ.Ͱ͵ ͱʹ͸Ͷ -͹.Ͷ <Ͱ.ͰͰͱ ***

GRAS:ͲͰ͵Ͱ-ͲͱͰͰ Ͱ.Ͳʹ Ͱ.ͱ ͱʹ͸ʹ Ͳ.ʹʹ Ͱ.Ͱͱ͵*

SEDG:ͲͰ͵Ͱ-ͲͱͰͰ -Ͱ.Ͷͷ Ͱ.ͱ ͱʹ͸͵ -Ͷ.͸ͱ <Ͱ.ͰͰͱ ***

Probability of Gain BENELUX (Bernouli)
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Table S͵.ͳ continued from previous page

Estimate Std. Error z value Pr(>|z|)

Intercept -Ͳ.ͳͳ Ͱ.Ͷ͵ -ͳ.Ͷͱ Ͱ.͵ͳ͸

Model Type (DLM) ͱ.Ͷͱ Ͱ.Ͳ͹ ͵.͵ <Ͱ.ͰͰͱ ***

Model Type (SLM) Ͱ.Ͳʹ Ͱ.Ͳ͸ Ͱ.͸Ͷ Ͱ.ͳ͸Ͷ

Scenario (GRAS) -Ͱ.͸ͳ Ͱ.Ͳͷ -ͳ.Ͱ͸ Ͱ.ͰͰͲ**

Scenario (SEDG) Ͱ.ͱ͸ Ͱ.Ͳͷ Ͱ.Ͷ͹ Ͱ.ʹͷ͸

Period (ͲͰ͵Ͱ-ͲͱͰͰ) -Ͳ.ͱ͹ Ͱ.ʹ -͵.͵ͳ <Ͱ.ͰͰͱ ***

Resolution (ͱͰkm) ͱ.͹͵ Ͱ.ͲͲ ͸.͹Ͷ <Ͱ.ͰͰͱ ***

Resolution (͵km) ͳ.ͱ͵ Ͱ.Ͳʹ ͱͳ.ͱͳ <Ͱ.ͰͰͱ ***

DLM: ͲͰ͵Ͱ-ͲͱͰͰ -Ͱ.͸Ͳ Ͱ.ʹͲ -ͱ.͹Ͷ Ͱ.Ͱʹ͸*

SLM: ͲͰ͵Ͱ-ͲͱͰͰ Ͱ.ͶͲ Ͱ.ʹͱ ͱ.͵ͱ Ͱ.ͱͳͲ

GRAS:ͲͰ͵Ͱ-ͲͱͰͰ -Ͱ.͵Ͳ Ͱ.ʹͱ -ͱ.ͲͶ Ͱ.ͲͰ͵

SEDG:ͲͰ͵Ͱ-ͲͱͰͰ ͱ.͵Ͳ Ͱ.ͳ͸ ͳ.͹ͷ <Ͱ.ͰͰͱ ***

Percentage Gain BENELUX (log)

Estimate Std. Error DF t value Pr(>|t|)

Intercept ͱ Ͱ.ͳ ʹͲ ͳ.ͳͳ Ͱ.ͰͰͲ

Model Type (DLM) -Ͱ.ͱͶ Ͱ.ͱͱ ͷͰͶ -ͱ.ʹ͸ Ͱ.ͱͳ͹

Model Type (SLM) -Ͱ.ͳͷ Ͱ.ͱͱ ͷͰʹ -ͳ.ʹ͵ <Ͱ.ͰͰͱ ***

Scenario (GRAS) Ͱ.Ͱ͹ Ͱ.ͱͱ ͷͰͲ Ͱ.͸ͱ Ͱ.ʹͲͱ

Scenario (SEDG) Ͱ.ͳ͵ Ͱ.Ͱ͹ ͷͰʹ ͳ.ͶͶ <Ͱ.ͰͰͱ ***

Period (ͲͰ͵Ͱ-ͲͱͰͰ) -Ͱ.͸ʹ Ͱ.Ͱ͹ ͷͰ͵ -͹.͸ʹ <Ͱ.ͰͰͱ ***

Centroid Distributional Shift BENELUX

Estimate Std. Error DF t value Pr(>|t|)

Intercept Ͳ.Ͳʹ ʹ.͹ ʹͰ Ͱ.ʹͶ Ͱ.Ͷ͵

Scenario (GRAS) ͱ͹.ͱͶ Ͳ.͵ʹ ͱͳͳͳ ͷ.͵ʹ <Ͱ.ͰͰͱ ***

Scenario (SEDG) -Ͷ.ͷ͹ Ͳ.ͳ͸ ͱͳͳʹ -Ͳ.͸͵ Ͱ.ͰͰʹ**

Period (ͲͰ͵Ͱ-ͲͱͰͰ) ͱͲ.͵ͱ Ͳ.Ͱͳ ͱͳʹͰ Ͷ.ͱ͵ <Ͱ.ͰͰͱ ***
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Figures

FĎČ. S͵.ͱ: Extent of study area and Bumblebee collections (ͱ͹ͷͰ-ͲͰͰͰ).
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FĎČ. S͵.Ͳ: Novel climatic conditions present in ͲͱͰͰ that did not occur in Europe in ͲͰͰͰ for the ͳ change
scenarios (GRAS, BAMBU, SEDG).
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FĎČ. S͵.ͳ: Comparison of percentage loss projections between model types for BENELUX ͲͰ͵Ͱ-ͲͱͰͰ. (a)
Climate Only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and
DLM. Results are averaged across resolution (5 × 5, 10 × 10 and 20 × 20 km) and scenario (BAMBU, SEDG, GRAS)
and represented by standard error bars (dashed lines). Red = above the no difference line, Blue = below the no

difference line, Grey = overlapping the no difference line.

FĎČ. S͵.ʹ: Comparison of percentage gain projections between model types for BENELUX ͲͰ͵Ͱ-ͲͱͰͰ. (a)
Climate Only Models (COM) and Dynamic Land Use Models (DLM) and (b) Static Land Use Models (SLM) and
DLM. Results are averaged across resolution (5 × 5, 10 × 10 and 20 × 20 km) and scenario (BAMBU, SEDG, GRAS)
and represented by standard error bars (dashed lines). Red = above the no difference line, Blue = below the no

difference line, Grey = overlapping the no difference line.
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FĎČ. S͵.͵: Comparison of percentage loss projections between model types for Europe ͲͰ͵Ͱ-ͲͱͰͰ. (a) Cli-
mate OnlyModels (COM) and Dynamic Land UseModels (DLM) and (b) Static Land UseModels (SLM) and DLM.
Results are averaged across scenario (BAMBU, SEDG, GRAS) and represented by standard error bars (dashed lines).
Red = above the no difference line, Blue = below the no difference line, Grey = overlapping the no difference line.

FĎČ. S͵.Ͷ: Comparison of percentage gain projections between model types for Europe ͲͰ͵Ͱ-ͲͱͰͰ. (a) Cli-
mate OnlyModels (COM) and Dynamic Land UseModels (DLM) and (b) Static Land UseModels (SLM) and DLM.
Results are averaged across scenario (BAMBU, SEDG, GRAS) and represented by standard error bars (dashed lines).
Red = above the no difference line, Blue = below the no difference line, Grey = overlapping the no difference line.
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FĎČ. S͵.ͷ: Comparison of percentage loss projections between model types for BENELUX. Climate Only
Models (COM) vs. Dynamic Land Use Models (DLM) for ͲͰͰͰ-ͲͰ͵Ͱ (a) and ͲͰ͵Ͱ-ͲͱͰͰ (b). Static Land Use
Models (SLM) vs. DLM for ͲͰͰͰ-͵Ͱ (c) and ͲͰ͵Ͱ-ͲͱͰͰ (d). Colours represent change scenarios (BAMBU, SEDG,

GRAS) and shapes represent resolution (5 × 5, 10 × 10 and 20 × 20 km).
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FĎČ. S͵.͸: Comparison of percentage gain projections between model types for BENELUX. Climate Only
Models (COM) vs. Dynamic Land Use Models (DLM) for ͲͰͰͰ-ͲͰ͵Ͱ (a) and ͲͰ͵Ͱ-ͲͱͰͰ (b). Static Land Use
Models (SLM) vs. DLM for ͲͰͰͰ-͵Ͱ (c) and ͲͰ͵Ͱ-ͲͱͰͰ (d). Colours represent change scenarios (BAMBU, SEDG,

GRAS) and shapes represent resolution (5 × 5, 10 × 10 and 20 × 20 km).
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FĎČ. S͵.͹: Comparisonof percentage lossprojectionsbetweenmodel types forEurope. ClimateOnlyModels
(COM) vs. Dynamic Land UseModels (DLM) for ͲͰͰͰ-ͲͰ͵Ͱ (a) and ͲͰ͵Ͱ-ͲͱͰͰ (b). Static Land UseModels (SLM)

vs. DLM for ͲͰͰͰ-͵Ͱ (c) and ͲͰ͵Ͱ-ͲͱͰͰ(d). Colours represent change scenarios (BAMBU, SEDG, GRAS).
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FĎČ. S͵.ͱͰ: Comparisonof percentagegainprojections betweenmodel types for Europe. ClimateOnlyMod-
els (COM) vs. Dynamic Land Use Models (DLM) for ͲͰͰͰ-ͲͰ͵Ͱ (a) and ͲͰ͵Ͱ-ͲͱͰͰ (b). Static Land Use Models
(SLM) vs. DLM for ͲͰͰͰ-͵Ͱ (c) and ͲͰ͵Ͱ-ͲͱͰͰ(d). Colours represent change scenarios (BAMBU, SEDG, GRAS).



ͱ͸͵

6 Pyrenees’ bumblebees and butterflies
shift in elevation over 115 years of climate
and land use changes

L. Marshall

F. Perdijk

S. P. M. Roberts

N. Dendoncker

W. E. Kunin

J. C. Biesmeijer

This chapter is currently in preparation to be submitted: Marshall,
L., Perdijk, F., Roberts, S.P.M., Dendoncker, N., Kunin, W.E., & Biesmeijer, J.C.
(ͲͰͱ͸). Pyrenees’ bumblebees and butterflies shift in elevation over ͱͱ͵ years of
climate and land use changes. In preparation



ͱ͸Ͷ Chapter ͺ. Bumblebees and butterflies shift in elevation over ͵͵͹ years

6.1 Abstract
Under climate change species are expected shift their geographic ranges pole-

wards and to higher elevations. To quantify ongoing climate change effects long-

termsurveysof biodiversityarenecessary. Fewstudies have lookedathowspecies

distribution within a community have shifted periods over a hundred years. In

this studywe compare the distribution of a plant-pollinator community ͱͱ͵ years

apart. In ͱ͸͸͹ Professor Julius MacLeod recorded the plant and plant visitors

of Gavarnie-Gèdre, a commune in the Hautes-Pyrénées in the South France. In

ͲͰͰ͵-ͰͶ the same areas and plant communitieswere resampled, this timewith a

focuson thevisitor community. Herewepresent theoverall patterns and changes

observed for thedistributionof the bumblebee, day-flying Lepidoptera and plant

community sampled in ͱ͸͸͹ and in ͲͰͰ͵-ͰͶ. The composition of the commu-

nity shows relative stability in species richness and many of the pollinator’s and

plants observed in both periods were found within the same interactions in both

ͱ͸͸͹ (ʹͰ%) and ͲͰͰ͵-ͰͶ (ͳͰ%). We also observed clear shifts to higher eleva-

tions for the bumblebee and butterfly visitors and their visited plants. Bumble-

bees have shifted on average ͱͶ͸m, day-flying Lepidoptera ͲͳͶm and the visited

plants ͲͲͷm further uphill. The region also shows significant warming in the

past ͱͱ͵ years and the modelled historical land use maps suggests a shift in the

tree linewith an increase in forest at higher elevations. The results allowus to hy-

pothesize that these observed increases in elevation are being driven by these en-

vironmental changes. Increases in temperature and loss of habitat may decrease

the survival and size of pollinator populations at their range edges. Overall, ob-

served and expected trends suggest that certain rareand/or specialist speciesmay

be forced to move even further uphill and potentially face extinction in the near

future.
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6.2 Introduction
Climate change is expected to increase temperatures globally particularly at high

latitudes and elevations (IPCC ͲͰͱʹ). Climate change can strongly impact the

spatial distribution of biodiversity (Bellard et al. ͲͰͱͲ; Pecl et al. ͲͰͱͷ); species

move polewards increasing in latitude (Bebber et al. ͲͰͱͳ; Root et al. ͲͰͰͳ;

Sagarin et al. ͱ͹͹͹), and at the same time species also track climate change by in-

creasing in elevationwhere possible (Parmesan & Yohe ͲͰͰͳ; Pounds et al. ͱ͹͹͹;

Walther et al. ͲͰͰͲ). This leads to an increase in species richness at cooler lati-

tudes and elevations and may result in species which dominate in warmer areas

out-competing species from these cooler areas (Warren et al. ͲͰͰͱ). Alongside

thesespatial shifts, speciesalsoshowtemporal shifts toclimatechangewithmany

species altering their phenology and following the climate by being active earlier

in the year (Menzel et al. ͲͰͰͶ). The changing climate also interacts with land

use/land cover (LULC) changes increasing the impact on biodiversity patterns.

Shifts in elevation, in particular, are expected to be more apparent and quicker

than shifts in latitude (Parmesan & Yohe ͲͰͰͳ). Areas of high elevation often

contain rapidly changing climate conditions across small stretches and therefore

are easier for species to follow (Chen et al. ͲͰͱͱ). Overall expected patterns of

range change in high elevation include the extinction of populations at lower

elevation and more species colonizing higher elevations. However, in practice,

species from lower elevations may not adequately conceal the loss of high ele-

vation species going extinct or shifting even higher, and this may result in the

dominance of widespread species at all elevations (Wilson et al. ͲͰͰͷ).

Bumblebees, butterflies and day-flying moths (day-flying Lepidoptera) are

ideal representative groups to show how species distributions patterns in high-

elevation areas have shifted over long time periods of climate and LULC change.

Elevation gradients in alpine habitat provide in-situ opportunities to see how

species adapt tochanging environments (KörnerͲͰͰͷ). Insects are likely to show

physiological and behavioural responses to the conditions as elevation increases

(Hodkinson ͲͰͰ͵). Morphologically and physiologically, bumblebees are well

adapted to alpine conditions (Dillon & Dudley ͲͰͱʹ; Goulson ͲͰͱͰ; Peat et al.

ͲͰͰ͵). Foraging behaviour of bumblebees also varies by elevation; species when
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foraging in the productive subalpine habitats were found to be more specialized

than when foraging in more disturbed montane habitats or in less productive

alpine habitats (Miller-Struttmann and Galen ͲͰͱʹ). Bumblebees and butter-

flies, in high elevation habitats, are both known to increase developmental times

and maximizing heat retention (Sømme ͱ͹͸͹). Certain species of butterfly have

dark wings which can be angled towards to the sun to improve heat absorption

and are able to initiate flight at lower temperatures (MacLean et al. ͲͰͱͶ). These

adaptations allow these species to deal with colder temperatures; as tempera-

tures in high-elevation areas increase these adaptations will be less essential to

these species and may lead to lower survival rates at previously suitable eleva-

tions (Hodkinson ͲͰͰ͵). Bumblebees and butterflies are also two groups that

show considerable range loss and extinctions when modelled under future sce-

narios of climate and LULC change (Marshall et al. ͲͰͱ͸; Rasmont et al. ͲͰͱ͵a;

Settele et al. ͲͰͰ͸).

Previous studies have compared historical and modern surveys of species

distributions in high elevation areas. Themajority of studies show an increase in

elevation over decades. For example in a ʹͲ-year time period moths on Mount

Kinabalu, Borneo, shifted in elevation by an average Ͷͷm (Chen et al. ͲͰͰ͹).

Over a ͳ͵ year period in the Sierra Nevada Mountains, the majority of butterfly

species shifted significantly higher inmeanelevation, consistentwith theclimate

warming in the area (Forister et al. ͲͰͱͰ). Bird species in Peru shifted ʹ͹m in

average elevation over a ʹͱ year time period (Forero-Medina et al. ͲͰͱͱ). Far

greater elevation range change was observed over ͳ͵ years in butterflies of the

Guadarrama mountains in central Spain, where on average species shifted Ͳ͹ͳm

further up the elevation gradient (Wilson et al. ͲͰͰͷ). In contrast in northern

Sweden two surveys ͶͰ years apart did not show a clear trend of insect species

moving to higher elevations (Franzén and Öckinger ͲͰͱͲ).

Many bumblebees, butterflies and moths cannot freely track climate, as

they rely on plant species as a food source. Plant species have also shown sig-

nificant increase in elevation in a number of areas; in Southern California plant

species shifted in elevation on average by Ͷ͵m over a ͳͰ year period (Kelly and

Goulden ͲͰͰ͸); in western Europe comparing plant species mean elevation over

the last ͱͰͰ years shows an shifted on average by Ͳ͹m per decade (Lenoir et al.
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ͲͰͰ͸), and in southern Québec, vegetation has moved an average of ͹m per

decade (Savage and Vellend ͲͰͱʹ). Due to the reliance of these insect species on

plants you would expect that this interaction will also shift with climate change

and that the pollinators will follow their preferred plants uphill. However, loss of

spatial occurrence as well as phenological shifts may lead to mismatches in co-

occurrence of bees and plants, as observed over ͱͲͰ years of difference in Illinois

(Burkle et al. ͲͰͱͳ).

In this study we have the unique opportunity to compare an alpine com-

munity of bumblebees, day-flying Lepidoptera and the plants they visit in the

Pyrenees, ͱͱ͵ years apart. Not only does this allow for the comparison of distinct

groups but also to measure change over a far longer time period than equivalent

studies. Specificallywewill useobservationsof plantandplant–visitorcommuni-

ties documented in “De pyreneeënbloemen” made in ͱ͸͸͹ (MacLeod ͱ͸͹ͱ), and

compare them to surveys conducted in the same areas in ͲͰͰ͵-ͰͶ. Specifically

we aim to test three hypotheses: (ͱ) that significant climate and land use changes

occurred in the Pyrenees National Park in the last ͱͱ͵ years; (Ͳ) that the compo-

sition of the bumblebee, butterfly and plant community altered and/or shifted

in mean elevation over ͱͱ͵ years; and (ͳ) that bumblebee traits explain their ob-

served elevation patterns and shifts.

6.3 Materials and Methods

6.3.1 Study area

We studied the long-term temporal changes of bumblebees and the plants they

visit in the area of the commune Gavarnie-Gèdre in the Hautes-Pyrénées depart-

ment of France, next to the border with Spain (Fig Ͷ.ͱ). The surveyed area is

part of the Pyrenees National Park (est. ͱ͹Ͷͷ) located in the western part of the

Pyrenees. The elevation in the national park ranges from approximately ͱͰͰͰm

a.s.l to its maximum of ͳͲ͹͸m a.s.l, the Vignemale Peak. The region straddles

the borders of the Atlantic and Mediterranean biogeographic zones and there-

fore is home to broad and diverse biodiversity with a large quantity of endemic
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species (Feuillet and SourpͲͰͱͱ). Whilst protected, the region is still home to set-

tlements and agricultural land, with settlements usually at lower elevations and

agricultural areas higherup themountainside, up to ͲͰͰͰm (Mottet et al. ͲͰͰͶ).

Broadly, the vegetation of the region can be described as hay meadows and pine

forest, with the tree line around ͲͲͰͰm (Crampe et al. ͲͰͰͷ). Climatically the

areas receives both oceanic and mountain climates with an average annual tem-

perature of approximately Ͷ.͵°C and average annual rainfall of ͱͰʹ͹mm.

FĎČ. Ͷ.ͱ: Locations of survey sites in ͱ͸͸͹ and ͲͰͰ͵-ͰͶ in the Pyrenees national park. Grey circles represent
the expected sampling locations in ͱ͸͸͹. Black triangles represent exact sampling locations in ͲͰͰ͵-ͰͶ.



ͺ.ͷ. Materials and Methods ͱ͹ͱ

6.3.2 Bumblebee, Lepidoptera and plant surveys

We focused the study on wild bumblebees and large day-active Lepidoptera, as

they are abundant in the historical surveys arewell adapted to the high elevation

region, well known, and relatively easy to survey and identify. In the ͲͰͰ͵-ͰͶ

survey, bumblebee species that were not identifiable in the field were collected

and identified later by Stuart Roberts. Two separate surveys in the region, both

conducted in August, were compared. Between the ͵th and ͳͱst of August ͱ͸͸͹

biologist and naturalist Professor Julius Macleod sampled the plant and plant

visitor communities. In ͲͰͰ͵ (͸th to Ͳ͵th August) and ͲͰͰͶ (ͱʹth to ͳͱst August)

efforts were made to resample the same areas as MacLeod had visited, this time

limiting the survey to the plant specieswith insect visitors recorded in ͱ͸͸͹, with

an increased focus on the visitors themselves and not the plants. Other plant

species that were abundantly visited were also recorded.

6.3.3 1889 Collections

Between the ͵th and ͳͱst of August ͱ͸͸͹ and the ͸th of June to ͳrd of July ͱ͸͹Ͱ

biologist and naturalist Professor Julius Macleod sampled the plant and plant

visitor communities in the Luz Valley in the Pyrenees mountains in Southern

France. Only the records collected in August were used in this study. Specifi-

cally he sampled plant communities in the areas of Gèdre (ͱͰͰͰm), Cascade de

Gavarnie (ͱ͵ͰͰm), port de Gavarnie (ͲͳͰͰm), cirque de Troumouse (ͲͰͰͰm),

the brêche de Roland (Ͳ͸ͰͰm), Saugué (ͱ͵ͰͰm - ͱͶ͵Ͱm) and Héas (ͱʹ͵Ͱm).

These areas encompass elevations ranging from ͱͰͰͰm until Ͳ͸ͰͰm above sea

level (asl), plant visitors were found from ͱͰͰͰm to ͲͱͰͰm. He published an

account of the plants and plant visitors he observed in ͱ͸͹ͱ in “De pyreneeën-

bloemen” (MacLeod ͱ͸͹ͱ). The goal of MacLeod’s surveywas tomake a compari-

son of the floral community along habitat and elevation gradients in the Pyre-

nees specifically to compare to a similar study conducted in the Alps (Müller

ͱ͸͸ͱ). The collection of insect visitors to these plants was deliberate but inci-

dental to the overall aim. Nonetheless, MacLeod collected and identified all

insects visitors observed when surveying the plant community. MacLeod sur-

veyed ͲͶͳ separate plant species with ͵Ͷ͹ separate insect visitors. The bumble-

bees collected by MacLeod were identified by Professor Otto Schmiedeknecht.
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A number of species names did not correspond with present day terminology

and we used Schmiedeknecht’s publication, Die Hymenopteren Mitteleuropas,

to compare to the checklist of bumblebees from the Natural History Museum

(Williams ͲͰͱͶ), to determine the correct taxonomic names which would corre-

spond with present day bumblebees (Schmiedeknecht ͱ͹Ͱͷ). The Lepidoptera

collected byMacLeodwhere identified byDr. Otto Staudinger. Aswith the bum-

blebees a number of the names attributed to occurrences do not coincide with

modern day systematics and a comparison of historical name changes was made

using the original publications of Staudinger (Staudinger ͱ͸ͷͱ) and Butterflies

and Moths of the World from the Natural History Museum (http://www.nhm.
ac.uk/our-science/data/butmoth/search/). The plant species which were

identified by MacLeod himself were compared using the “The Plant List”, an on-

line resource with historical synonyms of the majority of global plants (http:
//www.theplantlist.org/).

6.3.4 2005/06 Collections

In ͲͰͰ͵ (͸th to Ͳ͵th August) and ͲͰͰͶ (ͱʹth to ͳͱst August), twosurveyswerecon-

ducted to analyse the plant visitor community of the most visited plant species

in the same areas that MacLeod sampled in ͱ͸͸͹. The fundamental difference

between the two surveys is the target organism. In ͱ͸͸͹ the plant species were

targeted for the survey and the visitors collected as seen. In ͲͰͰ͵-ͰͶ the target

was the plant visitors and a selection of plants was made, based on MacLeod’s

findings, to maximize sampling of the pollinator community. Therefore, direct

comparisons of whole networks are not possible. At each location surrounding

the area mentioned by Macleod for each of the plant species chosen a plot was

made and observed for ͱ͵ minutes. During the ͱ͵ minutes observation window

all flower visitors were either identified by sight but not caught, or caught and

later identified by experts. The surface area of each plot was measured and its

flower density was recorded. Other plant species with abundant visitors not ob-

served in ͱ͸͸͹ were also included. The altitude and GPS coordinates (WGSͱ͹͸ʹ)

for each plot were also recorded.

http://www.nhm.ac.uk/our-science/data/butmoth/search/
http://www.nhm.ac.uk/our-science/data/butmoth/search/
http://www.theplantlist.org/
http://www.theplantlist.org/
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6.3.5 Climate Change

Climate datawas generated using the software package ClimateEU (vʹ.Ͷͳ; Ham-

ann et al. ͲͰͱͳ). Climate provides minimum, maximum and mean temperature

records and precipitation for sample locations with known elevation. We ex-

tracted these metrics at a 1 × 1km grid resolution for a ͱͰkm buffer surrounding

thecentroidof all collection records. Weaggregated thevalues fordecadesby tak-

ing the mean value across all ͱͰ years. Since the climate records available in the

ClimateEU software start at ͱ͹ͰͰ we took the decade ͱ͹ͰͰ to ͱ͹ͱͰ as a proxy for

the period ͱ͸͸͵ to ͱ͸͹͵. For the modern day records we also aggregated the data

between ͲͰͰͰ and ͲͰͱͰ to the mean value of each metric across all ͱͰ years. We

then compared each of the temperature metrics using paired two sample t-tests

to examine whether temperature and rainfall values were significantly different

between the two periods, both annually and for August. We also calculated the

annual mean temperature and the mean temperature of August for all years be-

tween ͱ͹ͰͰ and ͲͰͰͶ to test whether there was a significant trend in changing

temperature. Due to the nature of the collection records, specifically that we do

not have exact coordinates for the collection records in ͱ͸͸͹ it is infeasible to di-

rectly test whether climate changes at specific sites have resulted in community

changes, we therefore focus on climate changes at the regional scale.

6.3.6 Land Use/Land Cover Change

Land use/land cover (LULC) maps for the Pyrenees in ͱ͸͸͹ were not available.

To estimate LULC change in the area we used historic reconstruction maps for

Europe (Fuchs et al. ͲͰͱ͵). These maps represent modelled reconstructions of

LULC in Europe from ͱ͹ͰͰ until ͲͰͱͰ using a combination of historical LULC

data sources and a modelling approach called Historic Land Dynamics Assess-

ment or HILDA (Fuchs et al. ͲͰͱͳ). This resource provides a rough estimate of

how the LULC in the study area has shifted in the past ͱͱͰ years at a 1× 1km grid

resolution. We used LULC maps from two decades to show changes in the time

periods of the surveys (ͱ͹ͰͰ and ͲͰͱͰ). Due the coarseness of the LULC data

therewere not enough grid cells to analyse the change in elevation in each ͲͰͰm

elevation zone. Therefore, we split the mountain into two regions of different

elevation, ͱͰͰͰ-ͱͷ͹͹m (Montane) and ͱ͸ͰͰ-ͲͲ͹͹m (Sub-alpine) (Gómez et al.
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ͲͰͱͷ). Chi-square tests were used to assess differences in the proportions of each

LULC class at montane and subalpine elevations between the two time-periods.

We also included a trend analysis of all decades to show how LULC changed over

ͱͱͰ years in our study area. The LULC classes available in the historic LULC maps

include forests, grasslands, cultivated land, human settlements, water and other.

The “other” category comprises the areas of ruderal vegetation, beaches, bare

floors, rocks, and other parts of the landscape difficult to classify.

6.3.7 Community Change

For the bumblebee and day-flying Lepidoptera assemblages, we examine the cha-

nge in proportion of the different species between the two time periods as well

as describe the species that were not found in either of the two periods. We

examine the changes in proportion at , ͱͰͰͰ-ͱͷ͹͹m (Montane) and ͱ͸ͰͰ-ͲͲ͹͹m

(Sub-alpine) elevations. Due to differences in sampling intensity, protocol and

target species between the two periods, we had to limit our community analysis

to species of bumblebee, day-flying Lepidoptera and plants whichwere observed

during both surveys.

6.3.8 Elevation Change

MacLeod’s descriptions of his sampling locations are not clear enough to pro-

vide exact areas to attribute to the collection records. Therefore, as we do not

know exactly where MacLeod sampled and potentially the location areas from

both periods do not overlap exactly, we grouped the occurrences into elevation

ranges rather than sites (elevation is provided byMacLeod for each observation).

We split the occurrences into elevation ranges of ͲͰͰm, i.e. from ͱͰͰͰ-ͱͲͰͰm

to ͲͰͰͰ-ͲͲͰͰm. The number of occurrences collected at each elevation range

are not uniform between the two time periods. Therefore to avoid any bias of

oversampling at certain elevations we used the approach of Chen et al. (ͲͰͰ͹)

to determine the average elevation of individuals in ͱ͸͸͹ and in ͲͰͰ͵-ͰͶ. This

entailed measuring the mean elevation of each species in each time period us-

ing three methods. The first method (mͱ) simply implies using all available oc-

currences in each time period to calculate the average elevations. The second
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method (mͲ) deals with the fact that certain species may make up a greater pro-

portion of the species at one elevation range over another, therefore we took the

weightedmeanof each species basedon itsproportion in thesixelevationclasses.

The final method (mͳ) recognizes that the sampling intensity in each elevation

range is not equal in the two time periods. Therefore, at each elevation range

the time period with the greater number of records was re-sampled to coincide

with the time period with lower sampling intensity and then the mean elevation

of each species was calculated. This was repeated ͱͰͰͰ times and the average

of all mean values per species was used at the final value. For all three methods

for each of the three groups we compared the elevation ranges in both periods

to assess whether there was an increase or decrease in elevation overall and per

species using t-tests or aWilcoxon rank sum test when the sample means are not

normally distributed.

6.3.9 Trait Responses

The traits of the bumblebees recorded in both periods were extracted from the

“European bee traits database” (established by ALARM, www.alarm-project.
ufz.de, and developed by STEP, www.STEP-project.net). We extracted traits

relating to (ͱ) habitat specialization, (ͱ to ͸, number of habitat types where a

species occurs); (Ͳ) feeding specialization (oligolectic, polylectic, no lectic sta-

tus); (ͳ) length of flight period (Ͳ to ͹ months); and (ʹ) tongue length as mea-

sured by Obeso (ͱ͹͹Ͳ) for bumblebee populations in the northern part of the

Iberian Peninsula. We chose this resource for tongue lengths as it included all

non-parasitic species from our study, comes from a geographically close region,

and was measured as an average of individuals across an elevation gradient. We

tested whether different trait had different relationships to elevation and eleva-

tion change between periods.

www.alarm-project.ufz.de
www.alarm-project.ufz.de
www.STEP-project.net
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FĎČ. Ͷ.Ͳ: Difference in minimum, mean and maximum temperature
changes in Luz Valley in August at different elevations between ͱ͸͸͹ and

ͲͰͰ͵-ͰͶ.

6.4 Results

6.4.1 Climate Change

At the landscape level we observe considerable climate change between the two

time periods. The mean annual temperature significantly increased by Ͱ.ͰͲ°C

peryear ( f=ͲͶͶͷ, df=ͳ͸͸ͰͲ, p=<Ͱ.ͰͰͱ; Fig SͶ.ͱ). Furthermore, theaveragemean,

minimum and maximum temperatures of August between the ͱ͹Ͱͱ-ͱ͹ͱͰ and

ͲͰͰͱ-ͲͰͱͰ show significant differences. The mean temperature increased on

average by Ͳ.ͱ°C (t=ͱͳ͵ͱ.ͷ, df=ͳ͵͵, p=<Ͱ.ͰͰͱ). The minimum temperature in-

creased on average by Ͳ.ͳ°C (t=ͱͲͱͰ.ͱ, df=ͳ͵͵, p=<Ͱ.ͰͰͱ) and themaximum tem-

perature by ͱ.͹°C (t=͹͹Ͱ.͹, df=ͳ͵͵, p=<Ͱ.ͰͰͱ). The temperature also increased
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consistently at all elevations in the surrounding area. The increase is consistent

from lower to higher elevations. Equivalent temperatures are all found higher

in elevation in ͲͰͰ͵-ͰͶ. The equivalent average temperature in August is now

on average ʹͲ͵m ±ʹʹm higher, the minimum ͵ͱͳm ±Ͳʹm and the maximum

Ͳ͹͹m ±͸Ͱm (Fig Ͷ.Ͳ). Overall less change has occurred for the extreme maxi-

mum temperatures of August.

6.4.2 Land Use/Land Cover Change

FĎČ. Ͷ.ͳ: Land use change in Luz Valley between ͱ͹ͰͰ and ͲͰͱͰ. Reconstructed as part of the His-
toric Land Dynamics Assessment (HILDA; Fuchs et al. ͲͰͱͳ; Fuchs et al. ͲͰͱ͵).

Land use/land cover (LULC) data from ͱ͸͸͹ in the regionwas not available

soweused coarse LULCestimates from theyear ͱ͹ͱͰ as aproxy. Wecalculated per

elevation zone changes in themain LULC types for the surrounding study region.

There are only three LULC classes at the broad thematic resolution of the LULC

maps available for both timeperiods; (i) forest, (ii) grassland, and (iii) other land.
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When split into montane (ͱͰͰͰ-ͱ͸ͰͰm) and sub-alpine (ͱ͸ͰͰ-ͲͳͰͰm) areas we

observe a significant change in land use composition between the three classifi-

cations. In ͱ͹ͱͰ inmontaneelevations ͱͶ%of the LULCwas forest, ͷͲ%grassland

and ͱͱ% other, this changes to ͳ͸% forest, ʹͲ% grassland ͱ͹% other in ͲͰͱͰ (chi

square: χ2=ͱͳ.͹, df=Ͳ, p=<Ͱ.ͰͰͱ; Fig Ͷ.ͳ). Sub-alpine LULC shows the same pat-

terns with forest increasing from ͱ% to ͸% and grassland increasing from ͵Ͱ%

to ʹ͹%, other land changed slightly from ʹ͸% to ʹͳ% (χ2=Ͷ.Ͷ, df=Ͳ, p=Ͱ.Ͱͳ, Fig
Ͷ.ͳ).

6.4.3 Community Composition

The total number of bumblebee species found in ͱ͸͸͹ was ͱͶ and increased to

ͱͷ in ͲͰͰ͵-ͰͶ. Twelve species were found in both surveys (Fig Ͷ.ʹ). Unique

to ͱ͸͸͹ were B. mendax, B. monticola, B. mucidus, and B. pratorum. Bombus

mendax and B.mucidus are singletons. On theotherhand, B.monticola (Ͳ%)was

found more abundantly. Singletons found in ͲͰͰ͵-ͰͶ but not in ͱ͸͸͹ include B.

rupestris, B. sylvarum, and B. sylvestris. Bombus bohemicus (͵%), B. pyrenaeus

(Ͳ%) on the other hand were absent in ͱ͸͸͹ and found with a moderately high

abundance in ͲͰͰ͵-ͰͶ. In ͱ͸͸͹, ʹͷ species of butterfly or day flying moth were

found, ͱͶ of which were singletons. In ͲͰͰ͵-ͰͶ, Ͳͷ species were found, of which

ͷ were singletons. Nineteen species were found in both surveys, ͱͱ of which had

more than a single record in both periods (Fig Ͷ.ʹ). Species which were found

abundantly in a single period include Boloria pales (Ͷ%), Erebia tyndarus (͵%),

Parnassius apollo (ʹ%) in ͱ͸͸͹, and Issoria lathonia (ʹ%), Thymelicus sylvestris

(ʹ%) in ͲͰͰ͵-ͰͶ.

6.4.4 Elevation Shifts

Wemeasured thechange inelevationof the ͱͲ bumblebee species present in both

time periods using three different methods as explained above (Fig Ͷ.͵a). Over-

all using mͱ, bumblebee species shifted ͲͰͶm up the mountain (paired t-test:

t=ʹ.͵͹, df=ͱͱ, p=<Ͱ.ͰͰͱ, ͹͵%CI = ͱͰͷ.ͳ, ͳͰʹ.͹). Of the ͱͲ species ͱͰ showed an

shift in mean elevation. Using mͲwe observed an overall mean shift of ͱʹͷm up-

wards (t=Ͳ.͵Ͷ, df=ͱͱ, p=Ͱ.ͰͲͶ, ͹͵%CI = ͲͰ.͵, Ͳͷͳ.Ͳ). Of the ͱͲ species ͹ showed a

shift in elevation. Usingmͳweobserved anoverall shift upwards of ͱ͵ͱm (t=Ͳ.Ͷʹ,
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FĎČ. Ͷ.ʹ: Relative abundance of bumblebee species in different elevation zones in
ͱ͸͸͹ and ͲͰͰ͵-ͰͶ.Black: ͱ͸͸͹, Grey: ͲͰͰ͵-ͰͶ, Red: unique to ͱ͸͸͹ and Green: unique to

ͲͰͰ͵-ͰͶ.

df=ͱͱ, p=Ͱ.ͰͲͳ, ͹͵%CI = Ͳʹ.͹, Ͳͷͷ). Of the ͱͲ species ͸ showed an shift in mean

elevation under all threemethods. The species that shifted themost in elevation

were B. wurflenii, B. gerstaeckeri and B. lapidarius. Regardless of the method,
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all three species showed large shift in mean elevation. Depending on the three

calculation methods B. wurflenii had an average elevation shift of between ͳͳͳm

and ʹʹͶm with a minimum of ͱͰͰͰm and maximum of ͱͷͰͰm in ͱ͸͸͹ and a

minimum of ͱʹ͹ͱm and maximum of ͲͲͰͰm in ͲͰͰ͵-ͰͶ (Fig Ͷ.͵a). Bombus

gerstaeckeri had an average elevation shift of between ͳͲ͸m and ʹͰͰm with a

minimum of ͱͶͰͰm and maximum of ͱ͹ͰͰm in ͱ͸͸͹ and a minimum of ͲͱͰͰm

and maximum of ͲͲͰͰm in ͲͰͰ͵-ͰͶ. Bombus lapidarius shifted between ͳʹʹ

and ʹͶͷm. The only species that shows a downhill trajectory between the time

periods isB. soroeensis, whichhadanaverageelevationdecreaseof between -͵ͳm

and -Ͳͱͷm.

The change in elevation of the day-flying Lepidoptera found in both ͱ͸͸͹

(n=ͱͶʹ) and ͲͰͰ͵-ͰͶ (n=ͱͳ͸) surveys (Fig Ͷ.͵b) using mͱ shows an overall shift

in elevation of ͲͶͲm (W=ͱͳ, df=ͱͰ, p=Ͱ.ͰͰͲ, ͹͵%CI=ͱͲͷ.ͱ, ͳ͹͸.Ͳ). Using mͲ the

the day-flying Lepidoptera show an overall a shift in elevation of Ͳʹ͹m (W=ͲͶ,

df=ͱͰ, p=Ͱ.Ͱͳ, ͹͵%CI=͵ͷ.͸, ʹʹͰ.Ͷ). Finally, using mͳ there was an overall shift

of ͱ͹͸m (t=ͳ.ʹͱ, df=ͱͰ, p=Ͱ.ͰͰͷ, ͹͵%CI = Ͷ͸.Ͳ, ͳͲͷ). Of the ͱͱ species ͸ showed

an shift in elevation under all three methods. The greatest shift of elevation was

observed forColias croceus Leiden (between ʹͲͱm and ͷʹͲm) and Aglais urticae

(between ʹʹʹmand ʹ͵͹m). Theonly species to showaconsistentdownhill trend

in average elevation differencewasMacroglossa stellatarumwhich decreased be-

tween ͲͶm and Ͳͱͷm.

As mentioned before, we limited our analysis to the plants where bum-

blebee, butterfly and day flying moth species were found to be visiting in both

time-periods (Fig Ͷ.͵c). Twenty-six plant species were observed for visitors in

both time periods and ͱͶ of these were recorded with bumblebee, butterfly and

day moth visits more than once. Again, the majority of species showed an uphill

trend comparing ͱ͸͸͹ to ͲͰͰ͵-ͰͶ, mͱ shows and overall shift of Ͳʹͳm (W=Ͷͷ.͵,

df=ͱ͵, p=Ͱ.ͰͲ, ͹͵%CI= ͱ͵ͱ.͹, ͳͳͳ.ͳ). Using mͲ the visited plants show an average

of ͲͲ͵m movement uphill (W=ͷʹ, df=ͱ͵, p=Ͱ.Ͱʹ, ͹͵%CI=ͱͲͰ.͵, ͳͲ͸.Ͷ). Finally,

mͳ shows an shift of Ͳͱʹm (W=Ͷʹ.͵, df=ͱ͵, p=Ͱ.ͰͲ, ͹͵%CI=ͱͲ͸.ͷ, ͳͰͱ.Ͳ). Thir-

teen of the ͱͶ species displayed an uphill trend under all three methodologies.

Cirsium arvense (between ʹ͹ͷm and ͵Ͳͱm), Allium lusitanicum (between ʹ͵Ͷm

andʹ͸Ͳm)and speciesof theAconitumgenus (betweenͳ͸ͶmandʹͷͶm) showed
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the greatest average shift in mean elevation. Not a single plant species measured

show an overall downhill trend in mean elevation.

FĎČ. Ͷ.͵: Elevation change between ͱ͸͸͹ and ͲͰͰ͵-ͰͶ For (a) bumblebees, (b) day-flying Lepidoptera and (c)
their visited plants. Dashed line: ͱ͸͸͹. Solid line: ͲͰͰ͵-ͰͶ. Shapes refer to different methods to calculate mean
elevation shift: Circle: (mͱ) uses using all available occurrences in each time period to calculate the average eleva-
tions. Cross: (mͲ) weighted mean of each species based on its proportion in the six elevation classes (ͱͰͰͰ-ͱͲͰͰ,
ͱͲͰͰ-ͱʹͰͰ, ͱʹͰͰ-ͱͶͰͰ, ͱͶͰͰ-ͱ͸ͰͰ, ͱ͸ͰͰ-ͲͰͰͰ, ͲͰͰͰ-ͲͲͰͰm). Triangles: (mͳ) in each elevation class the time
period with the greater number of records was resampled to coincide with the time period with lower sampling

intensity and then the mean elevation of each species was calculated.
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6.4.5 Bumblebee Specialization

Habitat-specialist bumblebees were found much higher up the mountain than

generalists and this relationship has a strong correlation in both time periods.

We compared the re-sample means, as these represent the most conservative es-

timations of elevation shift. Pearson correlation coefficients were -Ͱ.͵ͳ in ͱ͸͸͹

and -Ͱ.͵͸ in ͲͰͰ͵-ͰͶ (Fig Ͷ.Ͷ). We also observe that specialists occur in higher

elevations in ͲͰͰ͵-ͰͶ than in ͱ͸͸͹, but that the same comparison between gen-

eralists does not show a difference in elevation (Fig Ͷ.Ͷ). There is also a weak

relationship (Pearson r= -Ͱ.Ͳ) between elevation change and habitat specializa-

tion (Fig SͶ.Ͳa). Overall, we do not see generalists higher up the mountain as

hypothesized (Fig Ͷ.Ͷ). Additionally, there is a high correlation between habitat

specialization and number of flying months (Pearson r=Ͱ.ͷ͹; Fig SͶ.Ͳb) so we

treat the two traits as similar, and therefore choose to show habitat specializa-

tion. We do not observe any clear patterns for tongue-length other than that B.

gerstaeckeri, one of the species with the greatest shift in mean elevation, has a

far longer tongue than all other species (see Obeso ͱ͹͹Ͳ; Fig SͶ.Ͳc). Bombus ger-

staeckeri also represents the only oligolectic bumblebee found in both periods. It

is therefore found higher up the mountain (mean=ͱ͹͵Ͱm) in both periods than

both the polylectic (ͱʹͷͱm) and parasitic species (ͱͲͲʹm; Fig SͶ.Ͳd).

6.5 Discussion
In this study we compared two plant pollinator communities ͱͱ͵ years apart. We

specifically tested three hypotheses; (ͱ) that significant climate and land use

changes occurred in the Pyrenees National Park in the last ͱͱ͵ years; (Ͳ) that the

composition of the bumblebee, butterfly and plant community altered and/or

shifted in mean elevation over ͱͱ͵ years; and (ͳ) that bumblebee traits explain

their observed elevation patterns and shifts.

Over ͱͱ͵ years of changes in the Gavarnie/Gedre region of the Hautes Pyre-

nees the community of bumblebees, day-flying Lepidoptera and the plants they

visitedwere found to significantly increase theirmean elevation. The bumblebee

communities showed a stable trend in species richness over ͱͱ͵ years, with only
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FĎČ. Ͷ.Ͷ: Mean elevation against species habitat specialization. Elevation calculated
using (mͳ), in each elevation class the time period with the greater number of records was
re-sampled tocoincidewith the timeperiodwith lowersampling intensityand then themean
elevation of each species was calculated. Green:ͱ͸͸͹, Red:ͲͰͰ͵-ͰͶ. Habitat specialization
from ͱ-͸ based on the number of different European biomes where the species has been

found previously.

slight changes in species composition and proportions. The sampled butterfly

and day flying moth community showed more significant differences between

the two time periods but this is most likely explained by a different sampling in-

tensity and focus on the smaller less conspicuous species in ͱ͸͸͹. The upward

shifts for all three groups suggest and average shift of approximately ͲͰͰm and

this is in line with similar studies of long-term elevation change of butterflies

in other locations (Chen et al. ͲͰͰ͹; Wilson et al. ͲͰͰ͵; Wilson et al. ͲͰͰͷ).

For bumblebees on the other hand this study is one of the few studies to show
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a long-term elevation shifts for a bumblebee assemblage at one site. Franzen &

Ockinger (ͲͰͱͲ) measured changed in bumblebee elevation in Sweden but ob-

served no significant increase across ͶͰ years. At the larger spatial scale Kerr et

al. (ͲͰͱ͵) observed that in the US and Europe Southern species showed an over-

all increase in elevation of approximately ͳͰͰm since ͱ͹ͷʹ. This effect varied

by species but the geographical effect of North versus South was stronger, with

Northern species decreasing in elevation (Kerr et al. ͲͰͱ͵). This supports the

observed differences between this study and that by Franzen & Ockinger (ͲͰͱͲ)

as the Pyrenees are far further south in Europe than the Swedish mountains of

their study. In the Rocky Mountains in Colorado Pyke et al. (ͲͰͱͶ) find similar

results when measuring the elevation increase of bumblebees between ͱ͹ͷʹ and

ͲͰͰͷ. Aswith our study they find that the elevation increase is not consistent for

all species, with some species moving more than ʹͰͰm and others showing no

change at all. The shorter time period of the other studies on butterflies and the

continental study of bumblebees show similar values in mean elevation increase

for species which suggests that the majority of these changes may have occurred

in the last ͵Ͱ years and that the trend in elevation increase is not steadyover time

but has been triggered by particular changes later in the ͲͰth century. For exam-

ple climate changes since ͱ͹͵Ͱ have occurred at a faster rate than those observed

before the ͱ͹͵Ͱs (IPCC ͲͰͱʹ).

Themajorityof bumblebees speciescan forageover largedistanceandwhile

they can occur at very high altitudes, they are generally not restricted to particu-

lar elevations across the whole range of species (Goulson ͲͰͱͰ; Walther-Hellwig

& Frankl ͲͰͰͳ). However, in lower latitudes of the Northern hemisphere bum-

blebees can often be found to be restricted to high elevation mountain habitats

(Vereecken ͲͰͱͷ; Williams et al. ͲͰͰ͹a). Therefore the decrease of a species at

lower elevation and increase at higher elevations in areas such as the Pyrenees

indicates that climate and/or land use/land cover (LULC) changes at lower ele-

vations have restricted the availability of feeding and nesting resources and are

driving species uphill (Parmesan & Yohe ͲͰͰͳ; Pyke et al. ͲͰͱͶ). The observed

changes in the environment support the indication that the elevation increases

aredrivenbychanges inclimate, LULCandfloral resourceavailability. Equivalent

minimum, mean and maximum temperatures have shifted between ͳͰͰm and
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͵ͰͰm uphill, the montane LULC of ͱ͸͸͹ is closer to the LULC at the sub-alpine

elevations in ͲͰͰ͵-ͰͶ and the plants that were observed with bumblebee and

day-flying Lepidoptera visitors in ͱ͸͸͹ shifted in similar magnitudes uphill. It is

therefore difficult to separate the drivers, and the results observed aremost likely

due to the interaction between all three changes. Climate changes provide more

suitable agricultural areas higher up the mountain and both climate and LULC

change shift the climatic niche of flowering plants uphill (Dale ͱ͹͹ͷ; Lenoir et al.

ͲͰͰ͸). The variation observed between species would suggest that it is not only

one consistent changing factor causing these changes in elevation.

Interestingly, the minimum and mean temperatures have changed more

than the maximum temperature of August over the last ͱͱ͵ years, suggesting the

absence of extreme heat wave conditions. Extreme temperatures during the fly-

ing period of the species can lead to significant decreases in abundance and po-

tentially local extinctions of butterfly and bumblebee species (Parmesan et al.

ͲͰͰͰ; Rasmont & Iserbyt ͲͰͱͲ; WallisDeVries et al. ͲͰͱͱ). Our results suggest

that thedistributional shifts aredriven byconsistent changes in temperatureover

time rather than extreme conditions. However, this could change in the near fu-

ture according to climate change predictions. However, as Pyke et al. (ͲͰͱͶ),

we do not see an overall shift of bumblebee elevation that matches the upward

shift in climate which we would be around ʹͲ͵m. The modelled climate change

data shows that equivalent maximum temperatures in August have shifted less

in elevation than the minimum and mean. This could lead to the hypothesis

that bumblebees are more affected by extreme temperatures and therefore their

distribution patterns aremore likely to be affected by shift in themaximum tem-

perature. This is in line with the hypothesis that heat waves are causing local

extinctions in bumblebees (Rasmont & Iserbyt ͲͰͱͲ). Climate change is pre-

dicted to have a significant influence on the distribution of bumblebees across

Europe, with the majority of species expected to decline considerably in range

(Rasmont et al. ͲͰͱ͵a). High-elevation habitats are predicted to become in-

creasingly important for maintaining the biodiversity of bumblebees and day-

flying Lepidoptera, as they are likely to become refuges of colder temperatures

that may no longer exist at lower elevations under different scenarios of climate

change (Penado et al. ͲͰͱͶ; Rasmont et al. ͲͰͱ͵a; Settele et al. ͲͰͰ͸). At a finer



ͲͰͶ Chapter ͺ. Bumblebees and butterflies shift in elevation over ͵͵͹ years

scale in the Swiss Alps the bumblebee community was predicted to not only lose

range and increase in elevation but also to become more homogenized under

climate change (Pradervand et al. ͲͰͱʹ). We do not observe any clear indica-

tion of homogenization of the bumblebee community but if elevation increases

continue, then the more generalist bumblebees will likely begin to occupy the

same space as the more specialist species, which often results in the decline in

abundance of specialist species (MacLean & Beissinger ͲͰͱͷ). Fine scale species

distribution models for plants in the Alps suggest that plant species will persist

in high elevation areas under climate change and are unlikely to go extinct even

under extreme scenarios (Randin et al. ͲͰͰ͹). This suggests that bumblebees

and the day-flying Lepidoptera in this region are unlikely to go extinct from a

lack of feeding resources.

Furthermore, potential land use changes alongside climate change scenar-

ios are likely to make these refuges even smaller and more important in a land-

scape context (Marshall et al. ͲͰͱ͸). The results presented here suggest that

this interaction between climate and LULC change has already caused distribu-

tional changes in pollinator communities. Due to climate warming, the tree line

in woodland areas of the alps has shifted uphill (Gehrig-Fasel et al. ͲͰͰͷ). This

presented by an overall increase in forested area. In the Pyrenees this movement

is less pronounced and the tree line movement seems to generally be driven by

past anthropogenic disturbances (Ameztegui et al. ͲͰͱͶ). Eitherway, movement

of the tree line shifts important forage and nesting resources for wild pollina-

tors further uphill. In the nearby commune of Villelongue, also in the Hautes-

Pyrenees and the Pyrenees national park, pastures have increased from ʹ.͹% to

Ͳ͵.͸% of total surface area between ͱ͹͵Ͱ and ͲͰͰͳ of which themajoritywas the

conversion of meadows (Mottet et al. ͲͰͰͶ). Thedatawe have available from the

late ͱ͹th and early parts of the ͲͰth century do not allow us to analyse the quality

of the grassland present at different time periods. However, the conversion of

meadows to pasture removes necessary resources and will result in the decrease

in populations of wild pollinators and is one of the main drivers of decline of

wild pollinator populations worldwide (Potts et al. ͲͰͱͶb). In addition to this

information in ͲͰͰ͵ and ͲͰͰͶ there was significant grazing at lower elevations,

which may explain the smaller number of species found at these elevations.
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Climate and LULC change can both potentially explain the shifts observed

and one of the key mechanism by which this occurs is the loss or movement of

floral resources (Kennedy et al. ͲͰͱͳ). Non-parasitic bumblebees provide polli-

nation services to manywildflowers and range from generalist to specialist inter-

actionswithplant species; due to their temperament forcold conditionsand large

flowering range, bumblebees are vital pollinators for plants which exist in cold,

unpredictable climates, and in fragmented habitats (Goulson ͲͰͱͰ). A good ex-

ample of this is the pollination services bumblebees provide in European moun-

tain habitats including the Pyrenees (Iserbyt et al. ͲͰͰ͸). Spatial mismatches

and phenological shifts caused by climate change between plants and their pol-

linators will decrease the effectiveness of this service and in specialist cases will

result in significant populationdeclines (Burkle et al. ͲͰͱͳ). Aswell as being spe-

cialized in feeding, species may be more or less specialized in the types of land-

scape they can survive in aswell. This is likely to influence the responseof species

to environmental changes, habitat specialist butterflies in the UK showed that

whilst half of generalist species increased their distributions, ͸͹% of specialists

decreased (Warren et al. ͲͰͰͱ). We observe in general that specialist species are

found higher up the mountain than generalists. The change in elevation is also

greater for specialist species and very small for generalists. The plant-pollinator

interactions of the consistent species suggest that there is considerable variation;

particularly in the generalist pollinators in terms of what plants they visit. How-

ever, we do observe potential evidence that at least the persistent interactions

may be shifting in unison, suggesting that the observed changes in pollinators is

due to an interaction between climate, land use and plant distribution changes.

Apotential exhibitof thesedifferentdrivers in actioncan beobserved in the

species B. gerstaeckeri, a red listed vulnerable species and also the only feeding

specialist of the observed assemblage (Nieto et al. ͲͰͱʹ; Ponchau et al. ͲͰͰͶ).

The genus of species on which B. gerstaeckeri collects pollen is Aconitum. In the

surveys Aconitum also showed an increase in elevation of approximately ʹͰͰm.

This suggests that B. gerstaeckeri has been driven to higher elevations to main-

tain access to its solitary food source. This narrow diet is likely to significantly

increase the vulnerability of bumblebees to drivers of decline (Rasmont & Mer-

sch ͱ͹͸͸; Williams et al. ͲͰͰ͹b). Additionally, B. gerstaeckari prefers sub-alpine
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woody habitats, and thereforemovements in the tree linewill shift suitable habi-

tat (Rasmont et al. ͲͰͱ͵b). Species specialized in high-elevation areas are likely

to suffer greater from climate change than others (Dirnböck et al. ͲͰͱͱ). Aconi-

tumspp. are deep flowers and B. gerstaeckeri has a far longer tongue than any of

the other bumblebee species (Obeso ͱ͹͹Ͳ). Previous studies with B. gerstaeckeri

have implicated the lower ratio of queens to workers compared to other bum-

blebees which feed on Aconitum spp. as a potential example of its vulnerability

(Ponchau et al. ͲͰͰͶ). These factors combined explainwhywe see a large change

for this species. The other species to show a large increase is B. wurflenii, which is

classified on the red list as least concern but does show a decreasing trend (Nieto

et al. ͲͰͱʹ; Rasmont et al. ͲͰͱ͵c). Bombus wurflenii is also known to feed on

Aconitum spp. (Ponchau et al. ͲͰͰͶ), and was found visiting it in high numbers

in both time periods. It has also been observed in other studies to show a ten-

dency towards feeding specialization (Kämper et al. ͲͰͱͶ). Continued monitor-

ing in the region and other areas is therefore amust. Theonly bumblebee species

to show a decrease in elevation is B. soroeensis, which is defined as high altitude

species in southern Europe (Williams et al. ͲͰͰͷ). This is an unexpected result,

and should be explored in more detail. Surveys of B. sorooensis from other high

elevation areas should be examined to see if the species is decreasing in mean

elevation across its extent.

Repeated surveys offer the unique opportunity to quantify how communi-

ties have changed over time. However, comparing a study from the ͱ͹th century

brings with it its own exceptional challenges when comparing to studies using

modern day research techniques. From the published account of the surveys in

ͱ͸͸͹ and ͱ͸͹Ͱ it is difficult to know the intensity of the insect visitor sampling

when we know that the focus of the study was on plant diversity in the region.

Furthermore, the age of the work provides a number of taxonomical difficulties

and many names used in ͱ͸͸͹ were later changed (see Table SͶ.ͱ). We would

hesitate to draw any conclusion related to declines or extinction of the butterfly

and particularly the day flying moth species because of this taxonomic differ-

ence and the less targeted sampling in ͲͰͰ͵-ͰͶ. There is also a discrepancy in

the sampling intensity at different elevations, we have used statistical methods

to account for this, but any comparison with ͱ͸͸͹ will be limited by MacLeod’s
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sampling intensity. Overall to draw more conclusions for what is happening in

this region there is a necessity of repeated sampling, these snapshots can only

reveal limited information (Dawson et al. ͲͰͱͱ). A future sampling of the entire

plant and insect community would allow for a more robust comparison, show-

ing both long-term change in multiple groups and being able to compare short

and long-term changes for groups such as the bumblebees. A particular focus of

different months would also be useful, for example B. pratorum has been found

regularly in the region in recent times suggesting that its presence inAugust ͱ͸͸͹

and absence inAugust ͲͰͰ͵-ͰͶ is potentially due to phenological shifts, as rarely

would B. pratorum still be flying so late in the season. The current datasets from

ͲͰͰ͵-ͰͶ are focused on August and do not allow an estimate of phenological

shifts, future surveys should therefore encompass June and July as well.

Significant climate and land use changes haveoccurred in the Pyrenees Na-

tional Park in the last ͱͱ͵ years. This has not caused significant species losses

but has altered the distribution patterns of the bumblebee and day-flying Lep-

idoptera community. Many species show an increase in elevation that corre-

sponds to these changes as well as shifts in the elevation of their preferred plant

species. We also see that specialist species are found higher up themountain and

may be more vulnerable to change. Overall, this indicates that there are likely

complex interactions between climate, land use and plant distribution changes,

however the results clearly indicate that specialist species in these habitat are at

risk of significantly declining in range if these changes persist.



ͲͱͰ Chapter ͺ. Bumblebees and butterflies shift in elevation over ͵͵͹ years

6.6 Supporting Information

Tables

TĆćđĊ SͶ.ͱ: Name changes of bumblebees, day-flying Lepidoptera and plants. From the original ͱ͸͸͹ and/or
ͲͰͰ͵-ͰͶ classification to the accepted classification in the present day.

Bumblebees Day-flying Lepidoptera

Original Final Original Final

Bombus agrorum Bombus mesomelas Agrotis decora Euxoa decora
Bombus agrorum var. pascuarum Bombus pascuorum Agrotis ocellina Chersotis ocellina

Bombus alticola Bombus sichelii Argynnis euphrosine Boloria euphrosyne
Bombus mastrucatus Bombus wurflenii Argynnis pales Boloria pales

Bombus pomorum var. elegans Bombus pomorum Botys nigrata Pyrausta nigrata
Bombus rajellus Bombus ruderarius Botys purpuralis var. ostrinalis Pyrausta purpuralis

Bombus soroënsis var. laetus Bombus soroeensis Callimorpha hera Euplagia quadripunctaria
Bombus variabilis Bombus humilis Choreutis pretiosana Tebenna pretiosana
Bombus lapponicus Bombus monticola Colias edusa Colias croceus

Epinephele janira Maniola jurtina
Plants Erebia lappona Erebia pandrose

Original Final Erebia stygne Erebia meolans
Allium fallax Allium lusitanicum Hercyna phrygialis Metaxmeste phrygialis

Allium montana Allium lusitanicum Ino statices var. Adscita statices
Carduus carlinifolius Carduus defloratus Leucophasia sinapsis Leptidea sinapis
Carduus medius Carduus defloratus Lycaena aegon Plebejus argus

Cirsium lanceolatum Cirsium vulgare Lycaena astrarche Aricia cramera
Galeopsis pyrenaica Galeopsis ladanum Lycaena bellargus Polyommatus bellargus
Galeopsis angustifolia Galeopsis ladanum Lycaena corydon Polyommatus coridon
Mentha sylvestris Mentha longifolia Lycaena hylas Polyommatus dorylas

Parnassia rotundifolia Parnassia palustris Lycaena icarus Polyommatus icarus
Melanargia galathea Melanargia lachesis
Melitaea dictymna Melitaea diamina
Nemeobius lucina Hamearis lucina
Nisoniades tages Erynnis tages

Pararge maera var. adrasta Lasiommata maera
Plusia gamma Autographa gamma

Polyomnatus virgaureae Lycaena virgaureae
Rhodecera rhamni Gonepteryx rhamni
Satyrus alcyone Hipparchia alcyone

Simaethis oxyacanthella Anthophila fabriciana
Sphinx convolvuli Agrius convolvuli
Syrichthus alveus Pyrgus alveus
Syrichthus malvae Pyrgus malvae
Syrichthus sao Spialia sertorius

Syrichthus serratulae Pyrgus serratulae
Tancalia leeuwenhoeckella Pancalia leuwenhoekella

Thecla rubi Callophrys rubi
Vanessa antiopa Nymphalis antiopa

Vanessa Io Aglais io
Vanessa urticae Aglais urticae
Venilia macularia Pseudopanthera macularia
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Figures

FĎČ. SͶ.ͱ: Mean annual temperature trends between ͱ͹ͰͰ-ͲͰͱͰ. Line repre-
sents linear relationship with ͹͵% confidence interval.
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FĎČ. SͶ.Ͳ: Mean elevation and elevation changes versus species traits. (a) Change in elavation against habitat
specialisation. Habitat specialization from ͱ-͸ based on the numberof different European biomeswhere the species
has been found previously. Dotted line represents ͹͵% confidence interval of linear fit.(b) Mean elevation against
number of flying months. (c) Mean elevation against tongue length. Tongue length measurements taken from
Obeso, (ͱ͹͹Ͳ). (d) [Mean elevation against lectic status. No lectic status represents the parasitic species. Bombus
gerstaeckeri is the only oligolectic species. Change in elevation and mean elevation calculated using (mͳ), in each
elevation class the time period with the greater number of records was re-sampled to coincide with the time period
with lower sampling intensity and then the mean elevation of each species was calculated. Green:ͱ͸͸͹, Red:ͲͰͰ͵-

ͰͶ.
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FĎČ. SͶ.ͳ: Land use/land cover (LULC) maps Gedre/Gavarnie Pyre-
neesNationalPark, ͱ͹ͱͰ, ͲͰͰͶ, ͲͰͱͰ (a)HILDAmodelled LULC for ͱ͹ͱͰ;
(b) Hilda modelled LULC for ͲͰͱͰ; (c) actual LULC from ͲͰͰͶ, CORINE
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L. Marshall



ͲͱͶ Chapter ͻ. General Discussion

7.1 Overview
The study of the distribution of biodiversity in space and time is a fundamen-

tal aspect of ecology, evolutionary biology and conservation. Understanding

these patterns can provide information on where species are distributed glob-

ally, population trends (increasing or decreasing), threat of extinction, the role

of these species in the ecosystem, and the best ways to protect these species

(Patterson ͱ͹͹ʹ; Shaffer et al. ͱ͹͹͸; Rodrigues et al. ͲͰͰʹ; Pimm et al. ͲͰͱʹ).

The studyof biodiversity distributions and conservation increases in significance

when coupled with large-scale, rapid global change. Anthropogenic climate and

land use/land cover (LULC) change has already fundamentally affected global

biodiversity and is expected to continue to do so in the future (Thomas et al.

ͲͰͰʹ; Millennium Ecosystem Assessment ͲͰͰ͵; Barnosky et al. ͲͰͱͱ; Bellard et

al. ͲͰͱͲ; Newbold et al. ͲͰͱ͵; Newbold et al. ͲͰͱͶ). This creates an urgency

to comprehend where species are distributed, what factors affect this distribu-

tion, how is this distribution likely to change and what can we do to ensure the

continued existence of these species. These themes form the backbone of this

thesis and have been explored for wild bee species at different spatial and tem-

poral scales in Europe. Due to the impacts of climate and LULC changes in the

past and future, we have focused on these two factors as drivers of wild bee dis-

tribution patterns The general objective of this thesis was to examine how

LULC and climate conditions impact the diversity and distribution pat-

terns of wild bee species at different spatial and temporal scales. In this

discussion we will explore the results of the four separate scientific chapters to-

gether in terms of how they explore and test the three aims we proposed in the

introduction. Specifically, to (ͱ) test the efficacy of using statistical modelling

tools to understand wild bee distributions in the present and future and suggest

how to improve these methods; (Ͳ) provide novel understanding of how wild

bee community assemblages are structured at large geographical scales and what

drives this structure; and (ͳ) quantify and compare howpast, present, and future

changes to wild bee and specifically, bumblebee distributions are expected to be

influenced by LULC and climate changes.

In summary, related to the first aim, we show that based on the restricted
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extent and unequal species coverage of available wild bee collection data, robust

methods to predict distribution patters are required. We used species distribu-

tion models (SDM) for this purpose. We show that, when applied to wild bees,

SDM performance varies depending on the agricultural landscape where species

are collected and on the traits of the modelled species (chapter ͳ). We show that

incorporating co-occurrence between wild bee species improves model perfor-

mance (chapter ʹ) and that incorporating LULC change variables also improves

model performance in the present and results in significant differences in pro-

jected distributions for bumblebees in the future (chapter ͵).

We focused on the second aim in chapter ʹ, and show clearly that habitat

filtering explains the majority of wild bee assemblage patterns but that there is

unexplained variation shared between species. Furthermore, we show that habi-

tat filtering patterns show a clear phylogenetic signal, but that it is not explained

by traits.

Finally, for the third aimwe show that the interaction between climate and

LULC projections for future do not affect all bumblebee species equally (chapter

͵); and that changes in LULC and climate have occurred simultaneously in the

Pyrenees forcing certain species to move towards higher elevations (chapter Ͷ).

The general discussion is structured into three sections; firstly we explore

the relevance of the results of the four chapters concerning the current literature

and state of the art in ecology, biodiversity and conservation fields. Secondly, we

expand upon the relevance and describe the implications of this thesis from a

scientific point of view but also its implications to society in general. Finally we

take the aforementioned relevance and implications, and formulate proposals

and recommendations for future research.
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7.2 Relevance

7.2.1 Modelling distribution patterns

The approaches available to estimate and predict how and where species are dis-

tributed have proliferated since the beginning of the century. Species distribu-

tionmodels (SDMs) are an excellent example of these approaches as they specifi-

cally provide the opportunity for researchers to combine occurrence records and,

environmental and biotic variables to produce estimate of distribution patterns

(Guisan&ThuillerͲͰͰ͵; Elith&Leathwick ͲͰͰ͹). Thesemethodsareconstantly

being improved and applied todifferent problems. Manyquestions surround the

use of SDMs at all stages of themodel building and interpretation stages. A com-

mon question with SDMs is, what are the appropriate environmental covariates

to use when constructing SDMs? Early SDMs and the majority of prospective

SDMs used climate variables to delimit species distributions (Araújo & Guisan

ͲͰͰͶ; Elith & Leathwick ͲͰͰ͹; Titeux et al. ͲͰͱͶ). We support a long-term

consensus of studies that indicate the importance of including LULC variables

alongside climate variables to better capture the environmental niche of species,

especially in areas with few climate extremes such as the Netherlands (Pearson

et al. ͲͰͰʹ; Araújo & Pearson ͲͰͰ͵; Del Barrio et al. ͲͰͰͶ; Luoto et al. ͲͰͰͷ;

Titeux et al. ͲͰͰ͹; Clavero et al. ͲͰͱͱ). However, this is not only shown at the

smaller scale of the Netherlands, where LULC variables explain the majority of

the variation in wild bee habitats (chapter ʹ), but also at the larger European

scale, where model performance increases with the addition of LULC variables

and significantly affects projected outcomes (chapter ͵). The improvements to

satellite technology and algorithms for classifying LULC, and its changes, has

increased the availability of high resolution LULC maps for many parts of the

globe (Kuemmerle et al. ͲͰͱͳ; Congalton et al. ͲͰͱʹ; He et al. ͲͰͱ͵; Almeida et

al. ͲͰͱͶ; Gómez et al. ͲͰͱͶ). Furthermore, this data is increasingly more acces-

sible. Investments into ‘big data’ create online platforms for geodata and there

has been progress in encouraging researchers to publish data sources (Costello

ͲͰͰ͹; Hampton et al. ͲͰͱͳ). Satellite data and social mapping data is also in-

creasingly more accessible (Hu et al. ͲͰͱͶ; Reiche et al. ͲͰͱͶ). Consequently,
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combined with open access software, the analysis of this data is more stream-

lined (Reichman et al. ͲͰͱͱ). Therefore, there is little reason to focus purely on

climate envelopemodelling when trying to predict species distribution patterns.

Another issue around SDM construction concerns the importance of eco-

logical/biotic factors in SDMs and the methods available to include them. The

consensus states that SDMswithonlyenvironmental covariatesaremissing inter-

specific interactions, a fundamental aspect of ecology (Kissling et al. ͲͰͱͱ; Wisz

et al. ͲͰͱͲ). We show that even over a relatively large geographic extent co-

occurrence between species are a small but significant part of the niche variation

observed in wild bee species in the Netherlands (chapter ʹ). Together with the

results fromAraújo et al. (ͲͰͱͳ) our results provide evidence against the Eltonian

noise hypothesisͱ, we show that biotic interactionsmight have a noticeable effect

at large resolutions and across large extents. Furthermore, our study uses state-

of-the-art methods which can provide estimates of biotic interactions based on

co-occurrence patterns and does not rely on a priori knowledge of how species

interact (Wisz et al. ͲͰͱͲ; Ovaskainen et al. ͲͰͱ͵; Ovaskainen et al. ͲͰͱͷ). The

results presented are summarized at the national scale but it would be possible

to look deeper into the data and begin to extract specific species pairs that show

strong positive or negative correlations. The logical next step is then to begin to

hypothesize on the mechanisms behind these positive interactions and poten-

tially incorporate these mechanisms in models accounting for these ecological

interactions. For example, the mechanism behind the interaction between bee

hosts and bee parasites is clear (Giannini et al. ͲͰͱͳ). However, the mechanism

behindwhy two species outcompete each other for resources (Godsoe & Harmon

ͲͰͱͲ; Meineri et al. ͲͰͱͲ) ormechanisms of potential facilitative interactions are

likely more complex (Gutiérrez et al. ͲͰͰ͵; Heikkinen et al. ͲͰͰͷ). However

complicated these interactions may be, trying to understand the mechanisms of

why SDMs improve when species are modelled together is a necessary step to

improve the efficacy of SDMs. Another way of potentially incorporating the in-

teractions between species is to model functional groups rather than individual

species (Kissling et al. ͲͰͱͱ). However, as we observe in chapter ͳ there is still

ͱThe ‘Eltonian noise hypothesis’ is the hypothesis that large spatial extents and low resolutions,
found in many geographic sources, are too coarse grained for biotic interactions between species to
influence a species distribution (Soberón & Nakamura ͲͰͰ͹).
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considerable variation in model performance not explained when species are ag-

gregated to functional trait groups and the results of chapter ʹ show that the

traits presently available for wild bees may not be suitable for modelling func-

tional groups at this stage.

As SDMs have proliferated as a tool in ecology, the validation and inter-

pretation of models has become increasingly important. It is therefore neces-

sary to ask how effective are SDMs when applied to different species in different

locations? In chapter ͳ we show clearly that using a simple measure of model

performance - habitat suitability in areas where independent collections were

conducted - that the ability to predict habitat suitability can vary considerably

depending on the location and the species functional group modelled. Further-

more, we even show that the method used to collect species can influence the

performance of species distribution models, indicating that certain techniques

may increase the likelihoodof a speciesoccurrence ina trainingor testingdataset.

This shows clearly the inherent uncertainty in SDMs, an aspect which can never

be removedand should beclear in themethodologyusedandanyresultingmodel

interpretation (Araújo et al. ͲͰͰ͵; Buisson et al. ͲͰͱͰ). How the species model

is interpreted should relate directly to the original goal of the model (Guillera-

Arroita et al. ͲͰͱ͵). For example, in chapter ͵ we create projected futures for

bumblebees underdifferent scenarios using different selections of covariates, the

specific purpose of these models was not to predict the exact locations of bum-

blebees in ͲͰ͵Ͱ and ͲͱͰͰ, the aimwas to observe how covariate selection altered

projections of distribution patterns in the future. Therefore, we would hesitate

to use the predictions to draw conclusions on actual distributions of bumblebees

in Europe in ͲͰ͵Ͱ or ͲͱͰͰ, i.e. if the resulting maps were to be used to influ-

ence conservation practices either by selecting high risk areas, areas of future

refuges, or predicting species extinctions (Sinclair et al. ͲͰͱͰ; Ochoa-Ochoa et

al. ͲͰͱͶ), then they should be re-modelled with this specific goal and using the

information obtained from the results of chapter ͵ to limit the amount of uncer-

tainty. (Sinclair et al. ͲͰͱͰ; Ochoa-Ochoa et al. ͲͰͱͶ). In chapter ʹ on the other

hand we have far less uncertainties in the hierarchical modelling of species com-

munities (HMSC) model. As expected when modelling an entire community of

species, performance varies according to the species. However, we include high
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resolution variables, species co-occurrence and we are not using the model to

predict into unknown space but only to find patterns within the model training

boundaries, thereforewe feel more confident on the relevance of the conclusions

reached regardingassemblagedistributionsandconservation recommendations.

Prospective modelling in the age of rapid global change is an important

tool but one which comes with a number of caveats. As mentioned prospective

modelling has widespread uncertainties in all aspects of the modelling process

(Bellard et al. ͲͰͱͲ), including the collection of species records in the present

(particularly for insects; Lobo ͲͰͱͶ), the models used to predict climate or LULC

change (Dendoncker et al. ͲͰͰ͸; IPCC ͲͰͱʹ; Alexander et al. ͲͰͱͷ), the algo-

rithms used to train themodels (Aguirre-Gutierrez et al. ͲͰͱͳ), and themethods

used to simplify and visualize the projections (Jiménez-Valverde & Lobo ͲͰͰͷ;

Calabrese et al. ͲͰͱʹ). All these uncertainties could imply that these methods

should not be used at all and only introduce noise to an already complicated and

discordant conservation biology field. We believe that this is not the case and,

that evenwith theseuncertainties, prospectivemodelling showsanupward trend

in use and quality, and has become a useful addition to conservation during the

last decades, given that uncertainties are clearly discussed (Porfirio et al. ͲͰͱʹ).

This correlates strongly with the improvements to occurrence data quality, vari-

able selection (Austin & Van Niel ͲͰͱͱ), increases in the availability and number

of approaches (Pacifici et al. ͲͰͱ͵), improved climate change projections (Kay et

al. ͲͰͱ͵; Fick & Hijmans ͲͰͱͷ) and more recently LULC models (De Rosa et al.

ͲͰͱͶ; Alexander et al. ͲͰͱͷ), and an overall more robust and critical SDM field.

Our study in chapter ͵ is therefore an important stepping stone in this trend, as

we show clearly that the inclusion of even coarse LULC change projections will

result in significant differences when modelling the distribution patters of some

bumblebees at the European and BENELUX scales. However, in all the aspects

mentioned and including our study many improvements are still possible to in-

crease the usefulness of prospective models of biodiversity patterns.

Land use/land cover change projections must improve. We clearly show

that greater thematic resolution of LULC classes influences themodelled predic-

tions of wild bees distributions. In chapter ʹ we show that specific LULC classes

such as sandy areas, natural grasslands and heathland appear from the models
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as fundamental LULC types, which support a specific diversity of wild bees. In

comparison to the LULC covariates in the present for the Netherlands, the LULC

change covariates used in chapter ͵ are more thematically coarse. Aggregated

classes such as grassland and arable eliminate the nuance of the interaction be-

tween wild bees and LULC. However we show that these classes do influence

bumblebee distributions even without this nuance. Therefore, the next step re-

quires high resolution LULC change models built using scenarios that include

these important LULC classes. We show that while these coarse LULC classes

may influence bumblebees, solitary bees are often more specialized and forage

in a smaller range and therefore these coarse classes are likely to be inappropri-

ate to model their distributions. These improvements to LULC change models

are expected and different methods that will maintain high thematic resolution

have been proposed (Rickebusch et al. ͲͰͱͱ; Verburg et al. ͲͰͱͱ). Thismeans that

the work shown in chapter ͵ can and should be repeated. As improvements are

made to the quality of occurrence, and climate and LULC change models then

the same questions proposed here should be revisited with the long-term aim to

obtain useful predictions of distribution patterns to influence the conservation

of wild bees.

Prospective modelling of biodiversity with SDMs suffers from the same

criticism as all SDMs, namely that several elements of the species biology are not

taken into account. In particular the dispersal ability of a species and its phe-

notypic plasticity are important factors for prospective modelling. Whether or

not a species will establish in an area depends on the environmental conditions

of that area, i.e. if the climate conditions are suitable for the physiology of the

species and the LULC offers necessary resources. This aspect is captured by a

SDM. However, regardless of whether a habitat is suitable, a species is limited to

areas that it can successfully reach based upon its dispersal capabilities. This is a

difficult aspect tomeasure formany species. In chapter ͵ we partially account for

it by treating bumblebee species with two extremes, either complete dispersal or

no dispersal. Our results also tentatively suggest that maybe LULC can act as a

proxy for dispersal showing increased limitations for the Northern movement of

bumblebees. However, the absence of dispersal in our models is a strong limita-

tion especially as we know that bumblebees are not equivalent in their dispersal
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capabilities (Darvill et al. ͲͰͱͰ; Lepais et al. ͲͰͱͰ). This is a fundamental as-

pect of prospective modelling that needs to be accounted for (Dormann ͲͰͰͷ).

Including dispersal ability has been shown to improve plant abundance models,

especially alongside co-occurrence (Boulangeat et al. ͲͰͱͲ) but this requires a

priori knowledge of both inter and intra-specific variation in dispersal ability or

at least an accurate method to estimate it. Furthermore, the dispersal capabili-

ties of the populations at the leading edge of the range are more important than

those across the whole range (Fordham et al. ͲͰͱͲ). There are no clear estimates

of short-term dispersal capability for the majority of bumblebees, only across

evolutionary time periods (Williams et al. ͲͰͱͷ).

Alongside dispersal capabilities, a significant assumption of prospective

SDMs is that species ecology and behaviour are static and that their relationship

to the environment is in equilibrium and will not change in the future (Araújo &

Pearson ͲͰͰ͵). This is inherently incorrect as we know that species can exhibit

significant intraspecific variation and are capable of adapting to changing con-

ditions (Bellard et al. ͲͰͱͲ). Therefore, the plasticity and evolution of species is

a vital aspect to prospective modelling. For example preliminary work into heat

tolerances of bumblebees would provide amoremechanistic view towhether fu-

ture climate conditionswould be suitable for a species (Martinet et al. ͲͰͱ͵), and

would not rely entirely on the current climate distribution of the species to esti-

mate this tolerance. Early results suggest significant differences between species

with awidespread common species such as B. lucorum tolerating consistent high

temperatures for a long period of time and an alpine species, B. alpinus, showing

much lower tolerance (Martinet et al. ͲͰͱ͵). Other insect species have shown the

potential to increase their upper thermal limits (Hoffmann et al. ͲͰͱͳ). As with

dispersal, knowing the phenotypic plasticity of populations at the leading edges

of the range is most important. The plasticity of these populations is likely to

strongly influence the persistence of the species under changing conditions (Val-

ladares et al. ͲͰͱʹ). However, the speed atwhich climate change is occurringmay

negatively impact even themost adaptable species (Gunderson & Stillman ͲͰͱ͵).

Wepropose that the trueeffectiveness of prospective biodiversity scenariosmade

using SDMswill not be realized until actual knowledge of species behaviour and

ecology is consistently incorporated into prospective modelling frameworks.



ͲͲʹ Chapter ͻ. General Discussion

7.2.2 Community Assembly

Assembly Patterns

Species demonstrate a large amount of intraspecific variation and this may influ-

ence their responses to changing conditions. However, species do not exist in iso-

lation and form interacting assemblages, communities and ecosystems. There-

fore, to fully appreciate how changing conditions will affect species we need to

analyse how and where groups of species form and specifically what factors drive

these assemblages. A long-term and ongoing debate in community ecology and

biogeography centers around whether a species range is defined by its environ-

ment and its physiological and ecological requirements orwhether it responds to

its interactions with other species representing assembly rules, including com-

petition and facilitation (Cody et al. ͱ͹ͷ͵; Connor & Simberloff ͱ͹ͷ͹). In chapter

ʹ we quantified and described the factors that influence the assemblages of wild

bees in theNetherlands. The results show that the relationshipwith the environ-

ment drives themajority of the patterns observed but that species co-occurrence

explains additional variation in the observed distributions of wild bees. The rela-

tionship between different wild bee species was estimated during the modelling

process and no prior knowledge of competitive or facilitative interactions was

included.

Biotic interactions in species assembly has been shown to be an impor-

tant factor in separating the realized niche, actual space an organism inhabits,

from the fundamental niche, environmental conditions in which the species can

survive (Hutchinson ͱ͹͵ͷ). The single species SDMs used in chapters ͳ and ͵

use only covariates which estimate the fundamental niche of the wild bees, i.e.

climate and LULC conditions, while in chapter ʹ we explored the co-occurrence

structure of wild bee assemblages, a closer estimate of the realized niche. The

results from chapter ʹ indicate that there are aspects of the community assem-

blagesof wild bees thatwedonotcapturewhen looking at the fundamental niche

alone. Due to limitations on data quality and availability themodels run in chap-

ter ʹwere limited toa resolutionof 10× 10 km. Theeffects of species interaction,

particularly competition, on community assembly are likely to be more visible at
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finer resolutions (Araújo & Rozenfeld ͲͰͱʹ; Thuiller et al. ͲͰͱ͵). This might in-

dicatewhyweobserve only positive interactions betweenwild bee species, which

could be a landscape resources shared by the species but not captured exactly at

the resolution modelled and with the covariates selected. Furthermore, we see a

similarity inniche forclosely related species butco-occurrence is not significantly

more likely. At finer resolutions both geographically and in thematic resolution

of LULC covariates we might expect to see a more clear representation of the

community including competitive interactions betweenwild bee species around

nesting or floral resources. We would also need to test the role of phylogenetic

relatedness at finer resolution, to see if the correlation between habitat filter-

ing and phylogenetic relatedness persists and whether we can see more clearly

if closely related species actually co-occur more or less than expected by chance.

We would hypothesize that competitive interactions, at the fine scale, are likely

to be greater for closely related species than distantly related species.

Chapter Ͷ also includes community patterns and tentatively exploreswhe-

ther mutualistic interactions between species (plants and pollinators) lead to

similar responses to environmental changes. There is also a large body of lit-

erature which suggests that facilitative interactions between species are more

apparent in community assembly in stressful conditions, such as high elevation

habitats where extreme environmental conditions may be responsible for delim-

iting species (Bertness & Callaway ͱ͹͹ʹ; Michalet ͲͰͰ͵; Cavieres et al. ͲͰͱͶ;

D’Amen et al. ͲͰͱͷ). There is also evidence that as these extreme conditions

increase the likelihood of facilitative interactions then the likelihood of compet-

itive interactions may decrease (Callaway et al. ͲͰͰͲ; He et al. ͲͰͱͳ). While

we do not specifically test this hypothesis we see evidence that the community

from ͱ͸͸͹ has not shifted in unison over ͱͱ͵ years but specific species of bumble-

bees, day-flying Lepidoptera and wild flowers have shifted. However, the results

do suggest that plants and pollinators may have shifted together. The facilitative

interaction between plants and pollinators may also explain the influence of the

positive co-occurrence between wild bee species observed in chapter ʹ.
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Role of traits in distribution patterns

Another way to group and define communities is based on the traits found in

different assemblages. Trait based ecology has been a steadily growing field in

response to the limitations of purely taxonomic approaches. The application of

trait-based ecology to terrestrial arthropods is often a necessity because of ex-

treme diversity found in the phylum (Wong et al. ͲͰͱ͸). In the case of globally

diverse groups like wild bees the results presented in this thesis could be appli-

cable in other areas of the globe. Specifically, the hope is that well-studied areas

with a less diverse fauna, i.e. the Netherlands, could produce results and pat-

terns that at the trait level could be transferred and applicable to areas with a

more diverse and less well-studied wild bee fauna. However, we would hesitate

to say that the results of our studies that include traits are sufficient to allow us to

predict wild bee responses to the environment in the Netherlands, let alone for

other locations. This hesitation stems from the fact that it is difficult to deter-

mine whether observed patterns in the relationship between traits and distribu-

tion modelling or habitat filtering are processes that are inherent to the group of

wild bees or if they are a response to the factors driving the patterns of distribu-

tion. A potential cause of this is thatwedo not define, a priori, the traits thatmay

present a greater response to the different, for example we could have hypothe-

sised that nesting traits and feeding traits may show a clearer relationship with

environmental drivers than traits related to demography. The incompletely sup-

ported assumptions associated with trait-based plant ecology are transferable to

trait-based insect or bee ecology as well. Namely, we do not have a clear picture

of whether wild bee functional traits link to actual measurements of fitness. We

also do not take into account intra-specific variation in traits and the degree to

which functional traits showa general measurable relationship to environmental

conditions is not always supported (Shipley et al. ͲͰͱͶ).

In chapter ͳ, we see that wild bee species can be grouped together based

on their traits and that highly specialized bees are likely to be better captured by

SDMs in agricultural locations and large generalists less so. However the distinc-

tion we made when grouping species could always be extended. In the case of

chapter ͳ we see clearly that bumblebees are separated into their own functional

trait group but even within the bumblebees distinctions can be made based on,
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for example, their degree of habitat and feeding specialization. In chapter Ͷ we

see thatelevationdistributionsare linked to thehabitat specializationof bumble-

bees. This is reinforced by the results of chapter ʹ, where we see that species are

structured taxonomically in their responses to LULC and climate defined habi-

tats/‘niches’ but that the included traits do not capture this adequately. This

implies that our selection of traits is not an efficient proxy for the patterns shared

by taxonomically similar species. In other words, these traits are not sufficiently

phylogenetically conservedͲ (Freckleton et al. ͲͰͰͲ). One explanation as towhy

we do not see a strong pattern from shared functional traits is that maybe these

traits do not actually have a high degree of functionality and consequently do not

influence evolutionary history of the species enough to have an observable effect

(Shipley et al. ͲͰͱͶ). Trait responses can differ significantly to phylogenetic re-

sponses if the trait shows a weak phylogenetic signal. This has been observed

for diversity losses and its relationship to body size in mammals (Fritz & Purvis

ͲͰͱͰ). This is supported by results of wild bee diversity losses in Europe, which

were more or less extreme depending on whether phylogenetic, functional or

species diversity was measured (De Palma et al. ͲͰͱͷ). Furthermore the sensi-

tivity of wild bee species to LULC was explained in part by species traits but this

was not consistent across LULC types (De Palma et al. ͲͰͱ͵). Therefore, our at-

tempt to relate niche characteristics to sets of similar traits may be somewhat too

complex for the traits we had available to us.

Wehypothesize that traitsmoreclosely related toactual feeding behaviour

and flower choice would result in clearer relationships with habitat suitability

and distribution patterns. One such example would be actual tongue length of

wild bees which is highly related to the flowers visited (Obeso ͱ͹͹Ͳ; Michener

ͲͰͰͰ). In chapter Ͷ we use tongue-length of the different bumblebee species

and the species with the longest tongue and most specialized feeding habit was

one of the species to most shift in elevation. Furthermore, wild bees differ in

their methods to collect and store pollen, for example bumblebees use a corbic-

ula, a basket like structure on the tibia to store pollen while many solitary bees

ͲPhylogenetically conserved indicates how far back in time a trait is found among all organisms
in a clade. A highly phylogenetically conserved trait is shared by organisms in larger, older clades,
whereas a trait which is less phylogenetically conserved is shared among organism in smaller clades
(Martiny et al. ͲͰͱͲ).
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use a set of dense hairs called scopa (Michener ͲͰͰͰ). The location and com-

plexities of these structures can differ a lot between species and can help species

avoid competition, for both plants and bees (Michener ͲͰͰͰ; Ruchisansakun et

al. ͲͰͱͶ). Nesting habit could also be expanded from the modest classifications

used in this thesis. Greater information on the actual substrate used would more

closely resemble landscape requirements (Cane ͱ͹͹ͱ). These traits may better

capture the difference and similarity between species that separate them at the

finest scale.

7.2.3 Land Use/Land Cover and Climate Effects

The availability of nesting and feeding resources is what defines the suitability of

a landscape for wild bees. These necessary conditions can occur at an incredibly

fine scale and be highly species specific (Michener ͲͰͰͰ). This degree of accu-

racywhen estimating and predicting LULC from aerial photographs and satellite

images is not yet feasible. Therefore, we have to use more broadly defined LULC

as proxies forwild bee suitable habitat. The limitation of the thematic resolution

of LULC increaseswhenweanalyse the past and the future instead of the present.

In chapters ͳ and ʹ we had access to present day LULC maps which allow for a

number of specific LULC classes. We show that specific natural habitats are of

extreme importance for distinct wild bee species and assemblages. Natural and

semi-natural habitats act as a source of wild bees for crop pollination services

(Öckinger & Smith ͲͰͰͶ; Garibaldi et al. ͲͰͱͱ; Klein et al. ͲͰͱͲ; Le Féon et al.

ͲͰͱͳ; Kleijn et al. ͲͰͱ͵), however the inherent value of these areas for maintain-

ing a high or distinctive biodiversity are less well studied. We show in chapter ʹ

that, by looking atoccurrence recordscollectedwithin these semi-natural habitat

types, they can account for distinct assemblages of wild bees. The results illus-

trate the relevance of using a nationwide database of wild bee occurrences and

not being limited to surveys from particular habitat types. Additionally, conser-

vation of wild bees often focuses on the improvement to already intensivelyman-

aged landscapes (Goulson ͲͰͰͳa; Winfree ͲͰͱͰ; Kleijn et al. ͲͰͱ͸). Whereas we

show that the diversity of wild bees in the Netherlands would only be conserved

adequately if the unique semi-natural habitat types are maintained. The species
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whichcontribute to thisuniquenessareoftennot includedamong themostabun-

dant crop pollinators (Kleijn et al. ͲͰͱ͵), however, these species may influence

the behaviour and effectiveness of the more abundant pollinators and their role

in crop pollination may change across temporal and geographic scales (Garbialdi

et al. ͲͰͱͳ; Winfree et al. ͲͰͱ͸). Often these rarer species have highly special-

ized interactionswith their habitat, which results in them being more accurately

modelled by SDMs in chapter ͳ.

For the past and future the available thematic resolution of the LULC co-

variates is significantly lower than for the present. This is because the scenarios

were developed to examine the principle LULC classes of Europe, resulting in

Ͷ classes (See section Ͳ.Ͳ.Ͳ; Rounsevell et al. ͲͰͰͶ). This means we are less

able to focus on particular habitat use and instead examine how climate and

LULC changes over time may influence wild bee distribution patterns. Potts et

al. (ͲͰͱͶb) in their assessment report of the current state of pollinator and polli-

nations conclude that “there remain relatively few published assessments of the

combined effect of land use and climate change on pollinators and pollination”.

With this thesis we make a contribution to fill this gap. Specifically, regarding

the interaction and connectedness between the two drivers we show clearly that,

even at low thematic and spatial resolution, the inclusion of LULC change along-

side climate change results in significantly different future projections for certain

bumblebee species. We observe that incorporating LULC change does not only

influence the distribution patterns within the climate envelope already defined

by themodel, but also that forcertain bumblebee species LULCchangecaneither

enhance or mask the effects of climate change. Clavero et al. (ͲͰͱͱ) find similar

results; they show that the present climate range occupied by Catalan breed-

ing birds significantly differs depending on the LULC occupied, therefore any

changes to the LULC would also directly affect the climate range of the commu-

nity. The results presented in this thesis reinforce the importance of LULC as an

indicator of habitat suitability forwild bees butmore importantly emphasize the

necessity to include LULC changes in future biodiversity scenarios because not

only does LULC change alter the distribution patterns within a climate range, it

may also result in a shift of the full projected range. In general the interaction be-

tween climate and LULC changes suggests smaller ranges for bumblebees in the
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future. Therefore, the results can be added to the list of studies showing that bio-

diversity loss is greater when the interaction between LULC and climate change

is included in future scenarios (Jetz et al. ͲͰͰͷ; Barbet-Massin et al. ͲͰͱͲb; Ri-

ordan & Rundel ͲͰͱʹ; Sohl ͲͰͱʹ; Visconti et al. ͲͰͱͶ). The dialogue around this

subject should therefore shift from whether or not to include LULC change co-

variates, to how to produce better LULC change projectionswith a clear temporal

dimension foruse in biodiversity scenarios (deChazal & Rounsevell ͲͰͰ͹; Titeux

et al. ͲͰͱͶ).

Wealsoobserve in chapter Ͷ that in a ͱͱ͵-yearperiod both significant LULC

and climate changes can occur. Therefore, when looking at a snapshot of two

single years it becomes difficult to separate the drivers of the observed shift in

wild pollinators. Ongoing climate changes and LULC changes are difficult to

separate and are likely to be interactive. Climate changes are likely to influence

LULC changes and vice versa. However, in chapter Ͷ we see evidence that climate

change and elevation shifts are occurring together. This matches a number of

other studies which suggest climate changemay be driving the observed shifts in

elevation in mountainous areas (Chen et al. ͲͰͰ͹; Franzén & Öckinger ͲͰͱͲ).

However, aspects such as deforestation or land abandonment in mountains may

result in precipitation or temperature increases (Fairman et al. ͲͰͱͱ; Payne et al.

ͲͰͱͷ), therefore, as we observed for the future, the changes affecting wild bees

are unlikely to be occurring in isolation. For an area like the Netherlands which

does not have climate extremes but does have a long history of LULC changes

we see that the majority of the variation in wild bee niches is explained by LULC

rather than climate, this is unlikely to be consistent in areas where the climate

varies to a greater degree across smaller geographic areas, such as mountainous

areas. Our results show, based on the responses of wild bees, that the influence

of LULC and climate will not be consistent at different geographic and temporal

scales, however we can confidently state that climate is unlikely to be the only

important driver of biodiversity change.
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7.3 Implications
The results presented in this thesis can be expanded upon to provide implica-

tions for research and society in general. We separate the implications of this

thesis into three main areas (ͱ) methodological, (Ͳ) wild bee research and (ͳ)

wild bee conservation. We outline here how our understanding of these areas

has increased or changed based on the results presented in the thesis.

7.3.1 Methodological

Chapters ͳ, ʹ and ͵ reinforce the idea that the realized nicheof species is unlikely

to be accounted for by the climatic envelope alone. This implies that when mod-

elling species distributions researchers should take into account more aspects

of the habitat requirements and the ecology of the species they are modelling.

Therefore, whenavailable LULCcovariates should be included alongwith species

interactions. The main implication of chapter ͵ is that LULC variables, even

when of low thematic resolution, will be important when defining the present

day ‘niche’ of species and changes to those LULC classes will result in different

projected futures for the bees. We hope therefore that the results presented will

encourage researchers looking at biodiversity scenarios in the future to include

LULC change projections.

However, the resultsalso imply that fromamodelling perspectiveaonesize

fits all approach is likely not suitable and researchers should implement species-

specificmodelling where applicable. Adapting amodelling approach per species

is timeconsuming but fittingmultiplemodels and including apriori information

of the species ecologywill improvemodelling performance. For example, moun-

tainous bumblebees may be adequately modelled with climate covariates but a

widespread parasitic bumblebee will be better modelled taking into account the

range of its host (Suhonen et al. ͲͰͱ͵, ͲͰͱͶ). Unfortunately, as we show in chap-

ter ʹ if we want to estimate co-occurrence importance for many species it is not

possible to have a species by speciesmodelling process, and therefore somemod-

els may be of low performance. An ideal situation formodelling wild bees would
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involve having a clear understanding of the mechanisms driving their distribu-

tions. Specifically, that would involve knowing a priori the relationship between

the fine scale environmental conditions, the interactionswith other species (bees

and other organisms) and the direction of these interactions, facilitative or re-

strictive. Overall, this represents a technical and analytical barrier to modelling

a group of species. The best model for a species will always include all the pa-

rameters relevant to its specific niche, however, to model a group of species it is

necessary touse a subset of important, shared parameters. Thismeans thatwhen

modelling multiple species we increase the ability to compare between species

but at the same time are likely to decrease in model accuracy per species.

The results from chapter ͳ additionally imply that whilst using indepen-

dent collections to test model performance is the ideal situation (Elith & Leath-

wick ͲͰͰ͹), this is not easily accomplished with wild bees. Model performance

differs depending on themethods used to collect specieswith pan traps and tran-

sect netting resulting in different collections. It is well known that different col-

lections methods result in different estimates of a wild bee community (West-

phal et al. ͲͰͰ͸) and therefore our research implies that to ensure sampling of

the rarest andmost specialized species, for a testing or training dataset, sampling

intensity should be high and expertise is required.

7.3.2 Wild bee research

Wild bee communities are difficult to sample in their entirety, small, specialized

bees which are active for only a short part of the year can easily be missed when

sampling (Westphal et al. ͲͰͰ͸). Therefore, an implication of this thesis and

potential limitation is the indication that more wild bee occurrence records are

required to obtain a detailed overview of all wild bee diversity. Models are made

to deal with incomplete databases of occurrences but generally the conclusions

and resultswill be improved if themodels are trainedwithmore detailed surveys

(Braunisch& Suchant ͲͰͱͰ). Even inwell-sampled areas such as theNetherlands

and other part of Western Europe there remain many wild bee species for which

we do not have a clear enough picture of their distribution and habitat require-

ments. In chapters ͳ and ʹ when we select species based on a certain number

of records in recent years we are limited to a Dutch wild bee fauna of ͱ͹ͳ or ͲͰʹ
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species of an expected approximately ͳͰͰ-ͳ͵Ͱ species (Peeters et al. ͲͰͱͲ). This

implies that the methods and conclusions presented in this thesis may be irrel-

evant for the rarest and possibly most endangered species. There is no simple

solution to this issue as the rarest species are difficult to observe regularly and

cannot be sampled in large numbers. This indicates why there are few long-term

studies of wild bee decline and the majority are from North America or Europe

(Potts et al. ͲͰͱͶb). Oneway to improve this is to find and repeatmore historical

studies. Our results fromchapterͶ imply thatwecanobserve interesting changes

in communities when repeating historical studies and that more effort should

be made to find and digitize old collections, particularly in countries outside of

North America and Europe. However, there is certainly a positive trend associ-

ated with the number of collection records, and technological advancements are

improving their quantity and accuracy. This thesis illustrates the importance of

long-term records of species distribution patterns. The results presented would

not be possible without having the presence of large databases of species records

(Shaffer et al. ͱ͹͹͸).

However, even with an imperfect database of wild bee collection records

the results presented have clear implications regarding wild bee research. The

results of chapter ͵ imply that bumblebee species in Europe are likely to have

smaller ranges and more fragmented habitats in the future if LULC change pro-

jections are included alongside climate changes. This more pessimistic projec-

tion of the future also indicates that the assumption that bumblebee species will

disperse further north at their northern boundaries, as presented in climate only

projections (Rasmont et al. ͲͰͱ͵a), may be unrealistic. Combined with the re-

sults of chapter Ͷ, that support the conclusion that some southern European

bumblebees are increasing in elevation (Kerr et al. ͲͰͱ͵), we can conclude that

distribution patterns of bumblebees are not easily grouped together and that to

be able to adequately conserve them we must account for greater gradation in

their relationships with the environment and each other. This is supported by

chapter ʹ’s conclusion, that for all wild bees multiple factors affect the commu-

nity assemblage structure and conservation groupings. In otherwords the results

of this thesis illustrate clearly the complexities of wild bee distribution patterns

and indicate that future research should focus on these complexities.
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7.3.3 Conservation of wild bees

The results presented in this thesis provide some clear implication related to the

conservation of wild bee species. Wild bee conservation is a topic that has been

brought into focus in recent years as more information of honeybee declines and

wild bee declines and their potential causes permeates everyday news. This ev-

idence is often distorted in the mainstream media; honey bees and pesticides

are often given the majority of focus when they represent only a single species

and a single driver (Vanbergen & The Insect Pollinators Initiative ͲͰͱͳ; Geld-

mann & González-Varo ͲͰͱ͸). We hope that the results in this thesis illustrate

the subtleties of wild bee distribution patterns and their conservation require-

ments. However, it is clear that it is an unrealistic goal to collect and monitor all

populations in a certain area. Therefore, we need to findways togroup species to-

gether and simplify the complexity whilst still maintaining precise directed con-

servation initiatives. The models in chapter ʹ provide assemblages which can be

considered as conservation units at the Dutch scale. These assemblages corre-

spond to particular habitat types that can be, and in many cases are already, con-

served. These areas are rarely conserved with the direct goal of conserving wild

bees, but forother aspects of biodiversity and ecosystem services. The results im-

ply that they are home to uniquewild bee assemblages and therefore monitoring

wild bee populations and making this information accessible could provide ad-

ditional support to the efficacy of these conservation measures. In chapter ͵ this

is reinforced aswe see thatwhen accounting for LULC change, areas of particular

importance for wild bees become smaller, demonstrating that these models may

indicate refuges for bumblebees in the futurewhenusing the correct information

at the appropriate scale.

The clearest conclusions concerning distribution patterns at a species level

are found for more specialized species. In chapter ͳ the distributions of habitat

and feeding specialists are better accounted for using SDMs than more general-

ist groups. We also see that in chapter ʹ the species that define assemblages are

often specialized in certain habitats and in chapter Ͷ we see that elevation pat-

terns in bumblebeesarecorrelatedwitha speciesdegreeof habitat specialization.

These results imply that specialized species could be useful as indicator taxa for

conservation. In other words these species should be monitored, and increases
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and decreases in their ranges and abundances may indicate overall well-being of

the wild bee community (Carignan & Villard ͲͰͰͲ). Lõhmus and Runnel (ͲͰͱ͸)

however advise against putting too much value in indicator taxa, they show the

value of an indicator can vary depending on survey effort and that covariation

between species may not be a sufficient factor to justify an indicator species. Ad-

ditionally, chapter ʹ results imply that phylogenetic relationships may also be

used to conserve species. For example species of the same genera may have simi-

larenvironmental requirements and protecting these requirements could benefit

the entire genera of wild bees.

7.4 Future Research
The results presented in the thesis indicate a number of research avenues that

warrant exploration in the future. These avenues concern both methodological

and applied research. We show clearly in this thesis that including LULC within

SDMs improves our ability to predict wild bee distributions. However, the coarse

LULC included in chapters ͵, and Ͷ and even the higher thematic resolution

LULC in chapters ͳ and ʹ still only act as a substitute for the actual mechanisms

which cause a wild bee to be present in one location and not another. Therefore,

using remotely sensed and mapped LULC and LULC change models, which are

both continually improving in accuracy and resolution (Congalton et al. ͲͰͱʹ),

we should be constantly testing and comparing our predictions of species distri-

bution with LULC maps of different thematic resolution. The current detail of

LULCmaps for thepresentand futurearenotequivalent in numberof classes. For

the future we should be using LULC change models which incorporate variables

similar to those used in chapter ʹ, we know that more specific LULC classes such

as heathland, dunes, and the separation of agricultural and semi-natural grass-

lands are important, therefore we should use models which project how these

habitat types may change in the future. Direct future research that we hope to

engage in will build on the results of chapter ͵ and use LULC change projections

with higher thematic resolution to model bumblebee distribution patterns until

ͲͰ͵Ͱ for Belgium. This includes using maps of how agricultural land use at the
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parcel level is likely to shift (Beckers et al. ͲͰͱ͸) as well as how fine scale natu-

ral land cover elements may change in the future in Belgium (Vanderhaegen et

al. ͲͰͱ͵). Furthermore, we aim to explore not only the effect of higher thematic

resolution on Bumblebees but also sweat bees (family: Halictidae). Sweat bees

include a number of solitary wild bee and are often smaller and more specialized

(Michener ͲͰͰͰ). Therefore, they are likely to havea finer scale relationshipwith

LULC covariates and we aim to test if they respond differently from bumblebees

in the future when modelled with higher thematic resolution.

The current need is for clearer separation not only in LULC categories but

also accounting for variation in quality and management of certain LULC classes.

For example, organic farms often support a higherwild bee diversity (Holzschuh

et al. ͲͰͰ͸; Happe et al. ͲͰͱ͸), and oil seed rape is an important food source for

wild bee as it is a late-season, mass-flowering crop (Westphal et al. ͲͰͰͳ). Being

able to include and compare organic fields to conventional fields, or late season

and early season crops, may provide a greater accuracy when predicting wild bee

distributions. Therefore, next research steps should look at comparing SDMs

that include land use management against models which only include LULC.

The methodology used in this thesis is focussed around statistical mod-

elling techniques where we have examined the relationships and response of

many species to differences and changes in explanatory factors. However, there

is a clear role for process based models to deal with the research needs identi-

fied in this thesis. Specifically, we identify that a greater understanding of mor-

phological, physiological, and behavioural knowledge of wild bee species would

provide key information to concentrate the statistical/correlative models within

a predefined range of possibilities. Statistical models would clearly benefit from

greaterunderstandingof the traits, fitnesscomponentsand habitat requirements

of wild bees (Kearney & Porter ͲͰͰ͹). For example, standard operative envi-

ronmental temperature models ͳ.can be used to estimate the thermal biology

of insects and allows for the comparison of thermal stress in different environ-

ments (Dzialowski ͲͰͰ͵; Kearney& Porter ͲͰͰ͹). Thesemodels havepreviously

been used to test activity levels diurnally for Euglossine bees (Armbruster & Berg

ͳ“Standard operative temperature relates heat loss from an animal in a complex thermal environ-
ment to a reference laboratory environment” (Dzialowski ͲͰͰ͵)
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ͱ͹͹ʹ). However, these models also require realistic ranges of species environ-

mental conditions for calibration, in this case more correlative models can be

useful in providing these limits (Dzialowski ͲͰͰ͵). Additionally, the knowledge

of clear biotic interactions, for example wild bees which feed exclusively on one

plant species or parasite bees with a single host could lead tomore process based

correlative models, where the species dependent on the other is modelled only

with the known range of its food source or host.

Agent-based models which examine behavioural and physiological respo-

nses at the individual level can provide Agent-based models have only very re-

cently been applied to wild bee species. Becher et al. (ͲͰͱ͸) has produced a

model for six bumblebee species which can simulate colony dynamics and forag-

ingwithin a spatially explicit landscape. Theoutputs from thesemodels for these

six species could provide additional information regarding the carrying capacity

of certain habitats and fine scale dispersal. This information can either support

or contradict habitat suitability maps from SDMs by indicating the type of habi-

tats which can support a greater number of colonies. Furthermore, when high-

resolution pesticide maps are available for correlative modelling these models

could provide a priori estimates on pesticide exposure allow the statistical model

to limit the response of species to within their known ranges. In the future how-

ever, a key requirement to be able to use more process based models would be

to move away from the focus on model bee species, such as A. mellifera and B.

terrestris and conduct more physiological and behavioural experiments on non-

managed wild bees.

There is also the possibility of the results presented here providing use-

ful information for process based models. For example the results presented in

chapter ʹ provide estimates of species pairs that share a response to an unknown

latent factor, these correlations could be used to estimate and assume a priori

interactions between species. Furthermore, where we observe a strong relation-

ship between a particular habitat and species this information could provide ad-

ditional support to process based models of habitat use among wild bees.

Furthermore, new technologies such as LiDAR provide three-dimensional

representations of the landscape in the formof vegetation structure (Bergen et al.
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ͲͰͰ͹; Heet al. ͲͰͱ͵). In the future itwould be interesting toexplore theabilityof

vegetation structure, as a covariate, to accuratelymodel wild bee abundance. We

would hypothesis that, when correctly calculated, covariates of vegetation struc-

ture may be able to distinguish between similar LULC classes of differing quality.

The effectiveness of vegetation structure covariates, to model diversity, has been

shown for butterflies in the Netherlands (Aguirre-Gutiérrez et al. ͲͰͱͷb).

Higher resolution of land use classes that capture the fine scale differences

at the landscape level relates directly to anotherarea that needs to beexplored for

wild bee distribution modelling. Specifically, that all bee species visit flowering

plants as a food resource. High-resolution informationof wildfloweroccurrences

exists for many locations. A simple first examination of the importance of wild

flowers for wild bees would involve SDMs using plant distributions at the family

or genera level to predictwild bees patterns, as has been shown for specialistwild

bees in Brazil (Giannini et al. ͲͰͱͳ). A more complex analysis would build upon

the results of chapter ʹ. It would be possible to use the HMSC framework to ex-

amine the role of co-occurrence and predict not only wild bee assemblages, but

alsowholecommunitiesof plants andpollinators. This could even beextended to

include below ground co-occurrence with arbuscular mycorrhizal fungi species;

which have been shown to minimize disruptions in plan-pollinator communi-

ties (Bennett & Cahill Jr ͲͰͱ͸). Modelling whole communities increases the link

to ecosystem functioning and potentially estimating services in unknown areas.

The next step would be to model the distributions of co-occurring species con-

currently, and project these models on to future conditions to improve accuracy

and usefulness of biodiversity scenarios.

The results from chapter ʹ also demonstrate the importance of accounting

forwild bee interactions when trying to interpret community assembly patterns.

Our results imply that there is still a large amountof work necessary todetermine

what is driving these positive interactions. Are the positive interactions driven by

a shared resource at coarser spatial resolutions? Are there competitive interac-

tions at finer scales? Therefore, research intowild bees needs to take interactions

between wild bee species into account. A first step would be to see if we are ca-

pable of modelling the interactions between hosts and parasites accurately. This

has been shown somewhat for bumblebees but remains a significantgap forother
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wild bees (Giannini et al. ͲͰͱͳ; Suhonen et al. ͲͰͱ͵, ͲͰͱͶ). Host parasite rela-

tionships often demonstrate significant chemical similarities (Michener ͲͰͰͰ),

and therefore are likely to be a more essential factor for the distribution of the

two species than shared environmental conditions. The knowledge about wild

bees and their parasites is often imprecise and parasites may have multiple hosts

and vice versa. Therefore, a first stepwould be to focus on highly specialized host

parasite relationships, testing if the latent effects in the HMSC framework cap-

ture these relationships and thenmodelling the species in conjunction. Finally, a

number of papers have observed that biotic interactions, and in particular facili-

tation, between species is likely to be stronger in severe environments (Bertness

& Callaway ͱ͹͹ʹ; Callaway et al. ͲͰͰͲ; Michalet ͲͰͰ͵; He et al. ͲͰͱͳ; Cavieres

et al. ͲͰͱͶ; D’Amen et al. ͲͰͱͷ), therefore we propose to repeat the analysis in

chapter ʹ for species communities (including flowering plants) across a more

extreme abiotic gradient for example a habitat similar to that explored in chap-

ter Ͷ. The majority of the studies that show these patterns are focused on plants

andevidence frompollinatorassemblagesoraplant-pollinatorcommunitywould

represent novel research.

In this thesiswe focuson the interactionbetweenLULCandclimatechange

as drivers of wild bee decline. We know that there are a number of other drivers,

including pesticide use, pathogens and invasive species (Potts et al. ͲͰͱͰ; Van-

bergen & The Insect Pollinators Initiative ͲͰͱͳ). Future research should address

the multiple effects of all drivers in combination including their impacts on wild

bee declines but also there interactions and additive effects (Potts et al. ͲͰͱͰ).

These goals are limited by the quality of the data, and whilst there is widespread

collection data as well as LULC and climate maps, we do not have access to long-

term data regarding genetic diversity of bees, pesticide use or disease preva-

lence and the data available is often geographically restricted (Maebe et al. ͲͰͱͶ;

Schoonvaere et al. ͲͰͱ͸). Detailed data mining and analysis is required to find

sufficient data to look at the interaction between multiple drivers at sufficiently

large spatial and temporal scales.

Finally, a fundamental research step in the future involves collecting more

data onwild bee occurrence, particularly from under-sampled areas. Oneway to

improve occurrence data is by using high quality citizen science data. The work
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presented in this thesis depends on large quantities of high quality occurrence

data and utilized databases with a number of citizen science records. The cryp-

tic morphology of many wild bee species means that citizen science effort will

never be ͱͰͰ% accurate (Williams ͲͰͰͷ; Carolan et al. ͲͰͱͲ). However, along-

side high quality photos and experts to verify collections there is the potential to

produce far more records than are currently available. Citizen scientists are also

a vital resource for digitizing historical collections (Beaman & Cellinese ͲͰͱͲ).

Historic collections are necessary for examining diversity and distribution trends

over time, including pollinators (Bartomeus et al. ͲͰͱ͸). Future studies search

the literature for historical wild bee collections from areas that have not been

sampled in recent times, such as the study conducted by MacLeod presented

in chapter Ͷ (MacLeod ͱ͸͹ͱ). There are many historical records in museums or

even recorded in old publications that are yet to bedigitized (Scoble ͲͰͱͰ). Com-

bining these records with modern wild bee monitoring schemes could provide

datasets they will be incredibly useful in answering question regarding changes

to the diversity and distribution of wild bees throughout history.

7.5 Final Conclusion
Theoverall objectiveof this thesiswas toexaminehow landuse/landcover (LULC)

and climate conditions affect the diversity and distribution patterns of wild bee

species at different spatial and temporal scales. In this thesis we explored the

impact of LULC and climate alongside other factors using historical records and

statistical techniques to show how present day distributions of wild bees in the

Netherlands can be modelled and how bumblebees may show changes in diver-

sity and distribution due to climate and LULC changes. Our results indicate that

species distributionmodels (SDMs) vary in their accuracy depending on thewild

bee species and locations being predicted. However, wild bees do not occur in

isolation from each other and we observed that combining wild bee species to-

gether in a joint SDM (JSDM) approach shows significant positive patterns of

co-occurrence that explain additional variation of wild bee distributions to that

explained by environmental conditions alone, and in turn that there are phy-

logenetic groupings that influence the distribution of wild bees. This indicates
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a complex system, which rejects the idea that wild bees can be conserved as a

single homogeneous group. The influence of LULC on present day wild bee dis-

tributions in the Netherlands, imply that LULC covariates are of importance in

explaining changes indiversityanddistributionof wild beesover timeaswell. We

tested this for the future at broad temporal and geographic scales showing that

dynamic LULC covariates significantly affect the projected distribution patterns

of European bumblebees under different scenarios modelled until ͲͱͰͰ, often

resulting in even more restricted distributions. At a finer geographical scale but

also over a long time period (ͱ͸͸͹ -ͲͰͰ͵-ͰͶ) we see that high elevation popula-

tions of bumblebees and their host plants exhibit an overall shift uphill that is as-

sociated with measured climate changes and directional LULC changes, but that

some species have shifted dramatically while others did not shift at all. Through-

out all four studies we see that specialized species often respond differently than

more generalist wild bee species, frequently showing clearer statistical trends.

Furthermore, there are species-specific differences that can be difficult to cap-

ture using traits or phylogenetic relatedness.

Considering these studies collectively we are able to show the importance

of historical collections for measuring trends in biodiversity, as well as providing

advice forconservingwild bees. In conclusion this thesis has explored a setof dis-

tinct questions united by the common theme of modelling wild bees and their

interactionswith the environment through space and time. These results are not

exhaustive but provide evidence to fill gaps in the knowledgeof wild beedistribu-

tions. The results also provide clear opportunities for future research including

more detailed information on wild bee dispersal, preferences, and interactions

and to examine thedrivers of decline together and not in isolation. Wild bees are

declining and face a number of threats, we hope that the results presented here

can in a small way influence the conservation of wild bee species and ensure the

persistence of high diversitywild bee communitieswhich have an intrinsicworth

as well as provide important benefits to society.
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A – Appendix

A.1 Nederland Zoemt
Nederland Zoemt is a project from LandschappenNL, Naturalis Biodiversity Center, IVN

andNatuur&Milieuwith theaimof ”structurally increasing the food and nesting resources

for wild bees in the Netherlands”. A specific objective of the project was to create region-

specific advise for monitoring and protecting wild bees. These advises should be usable

across the country by local governments, educational facilities, contractors, green work-

ers and gardeners. Furthermore, these plans should be used in conjuction with citizen

sciencemonitoring programs and an application outlining the suitable bee plants present

in the Netherlands. The best way to implement these advises was to create them at the

municipality level.

During my PhD we produced a wild bee advise document for each of the ͳ͸͸ mu-

nicipalities in the Netherlands. Thewild bee occurrence data from Chapters ͳ and ʹ were

used to create a list of all species which have been found in a municipality since ͲͰͰͰ.

This list was then extended using species distribution models (SDMs) to show which ’ex-

tra’ species have suitable habitat within the municipality. Each SDM is projected onto

current conditions and each projection produces a map of suitable habitat at the scale of

the Netherlands. These habitat suitabilitymaps are then simplified into presence absence

maps by creating a threshold which converts areas of high suitability to a one and areas

of low suitability to a zero. We then published a map showing areas of high and low wild

bee habitat suitability for the whole municipality. Furthermore, for each municipality we

made a list of ’special’ species (rare species with a clear ecological role) which have been

found previously, and give clear guidelines for their management. Finally, the document

contains general management advise for wild bees applicable across the country.

Anexampledocument for themunicipalityof Leiden ispresented below. Allmunci-

pality documents are avaiable to download at www.nederlandzoemt.nl.

www.nederlandzoemt.nl


Advies voor Leiden

Suggesties voor het verbeteren van de leefomgeving voor wilde bijen in jouw gemeente
Dit advies is specifiek voor jouw gemeente opgesteld binnen het project Nederland Zoemt. Hierin geven we een
beeld van de bijen die in jouw gemeente gevonden zijn of zouden kunnen voorkomen en van de bijenhotspots
in de gemeente. Daarnaast geven we suggesties voor het verbeteren van de leefomgeving voor wilde bijen.
Om dit advies op te stellen is gebruik gemaakt van waarnemingen die tussen 2000 en 2017 zijn gedaan door
heel Nederland. Dit advies is een mooi begin om bijvriendelijke gemeente te worden. Als je nog aanvullend
advies of monitoring uit wil voeren, vind je hier de partijen om bij aan te kloppen.

De wilde bijen in Leiden

Kennis over bijen in Nederland komt van verschillende databronnen, waarbij niet elke gemeente even goed
onderzocht is. In jouw gemeente zijn 613 waarnemingen gedaan1 van in totaal 68 verschillende soorten
(achteraan dit document vind je daar een lijst van). Bij goed beheer voorspellen wij dat de leefomgeving
potentieel voor 87 soorten geschikt is. Hieronder staat een overzicht van wilde bijen groepen die gevonden
zijn, en het totaal aantal wilde bijen groepen die bij goed beheer voor zouden kunnen komen (potentieel).

Soortgroep Gevonden Potentieel

Behangersbijen 3 3
Bloedbijen 3 5
Bonte viltbijen 0 0
Dikpootbijen 1 1
Ertsbijen 0 0
Groefbijen 10 11
Hommels 8 11
Houtbijen 1 1
Kegelbijen 0 0
Klokjesbijen 1 1
Langhoornbijen 0 0
Maskerbijen 3 5
Metselbijen 2 5
Mortelbijen 1 1
Pluimvoetbij 1 1
Roetbijen 0 0
Rouwbijen 1 1
Sachembijen 1 2
Slobkousbijen 1 1
Tronkenbijen 1 1
Tubebijen 1 1
Viltbijen 0 0
Wespbijen 9 11
Wol en Harsbijen 1 1
Zandbijen 17 22
Zijdebijen 2 2
Totaal 68 87

1Er zijn niet in elke gemeente evenveel waarnemingen gedaan. Als hier weinig waarnemingen staan, wil dit zeker niet zeggen
dat er in jouw gemeente weinig soorten voorkomen, het kan ook zijn dat er weinig waarnemers actief zijn.
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Bijenhotspots in Leiden

Onderstaande kaart voorspelt voor jouw gemeente hoe geschikt de omgeving is voor wilde bijen. De
voorspelling is gedaan op basis van het landschapstype en klimaatdata. De groene stukken hebben de hoogste
potentie voor bijen, terwijl de witte stukken volgens onze modellen minder geschikt zijn. Het instandhouden
en uitbreiden van de groene stukken is van groot belang voor de wilde bijen. Daarnaast liggen er op de witte
plekken dus kansen voor verbetering, bijvoorbeeld door bijvriendelijke planten te plaatsen, het beheer aan te
passen en de agrarische sector te betrekken.

Mogelijk onderneemt jouw gemeente al veel actie in bepaalde gebieden, maar zie je dit niet terug op de kaart.
Dat komt omdat wij in onze landschapsanalyses deze lokale initiatieven niet mee hebben kunnen nemen.
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Speciale soorten in Leiden

Voor de wilde bijensoorten hieronder heeft jouw gemeente een speciale verantwoordelijkheid, omdat deze
relatief vaak gevonden zijn en een relatief groot deel van het geschikte gebied voor deze soort in deze gemeente
valt. Door rekening te houden met de wensen van deze soorten kan de gemeente sterk bijdragen aan het
behoud van deze soorten voor Nederland.

1. Lichte wilgenzandbij (Andrena mitis): Nestelt op open, zandige plekken. Is afhankelijk van wilgen als
voedselbron met name Grauwe wilg en Schietwilg, De soort kan gevonden worden tussen mrt-jun.

2. Fluitenkruidbij (Andrena proxima): Afhankelijk van dolle kervel, fluitenkruid en zevenblad. Te vinden
op heide en ruderale, voedselrijke graslanden. Ze nestelen op begroeide plekken. De soort kan gevonden
worden tussen apr-aug.

3. Roodbuikje (Andrena ventralis): Leeft van wilgen en maakt haar nest in zanderige, lichtbegroeide grond.
Nest en wilgen moeten in een straal van maximaal 210m van elkaar zijn. De soort kan gevonden worden
tussen mrt-mei.

4. Grote klokjesbij (Chelostoma rapunculi): Nestelt in bestaande gaatjes, bijvoorbeeld gemaakt door
keverlarven. Is volledig afhankelijk van bloemen uit de klokjes familie. De soort kan gevonden worden
tussen mei-aug.

5. Wormkruidbij (Colletes daviesanus): Is afhankelijk van bloemen uit de composietenfamilie, met name
boerenwormkruid en jacobskruiskruid. Ze kunnen zelf nestelplaatsen maken in de grond, maar kunnen
ook in bijenhotels met gaatjes van 6mm nestelen. De soort kan gevonden worden tussen jun-sep.

6. Resedamaskerbij (Hylaeus signatus): Is afhankelijk van reseda en nestelt in holle stengels. De soort kan
gevonden worden tussen mei-sep.

7. Klokjesdikpoot (Melitta haemorrhoidalis): Is afhankelijk van de klokjesfamilie en nestelt in de grond.
De soort kan gevonden worden tussen jun-sep.

Aan de slag met bijvriendelijk beheer

Wil je je gemeente bijvriendelijker maken? Dat kan door te zorgen dat er altijd voedsel en nestgelegenheid
voor wilde bijen aanwezig is, het liefst op korte afstand van elkaar (max. 200m). We beschrijven hieronder
beknopt hoe de gemeente daarvoor kan zorgen.

Voedsel

Bijen zie je vaak druk van bloem naar bloem vliegen. Dat doen ze voor de nectar die dient als brandstof
en voor het stuifmeel (pollen) dat essentieel is als voedsel voor de larven. De mate waarin bloemen waarde
hebben voor bijen verschilt per soort. Sommige bijen zijn gespecialiseerd op één of enkele planten terwijl
andere soorten minder kritisch zijn. Over het algemeen geldt: hoe groter de diversiteit hoe meer soorten
bijen. Bloeiende bomen, heesters en struiken zijn goede opties om aan te planten in perken, denk daarbij aan
bramen, mei- of sleedoorn, inheemse wilgen en lindes, maar bijvoorbeeld ook Spaanse aak. Andere vaste
planten zijn rozen, klokjes, salie, lupine, et cetera. Vermijd bij gekweekte planten de cultivars met gevulde
bloemen (zoals bij rozen vaak het geval is), die leveren nauwelijks stuifmeel en nectar. Bij het zaaien van
kruidachtige planten heeft het gebruik van lokale soorten de voorkeur. Dat kan bijvoorbeeld door maaisel
afkomstig van een kruidenrijke plek in de buurt op een nieuwe plek neer te leggen. Sommige planten zoals
wilde peen, pastinaak, rode klaver, duizendblad, paardenbloem en akkerdistel kunnen in heel Nederland
gebruikt worden. In het voorjaar kunnen bloeiende bolgewassen van belang zijn voor hommels. Kijk hier voor
nog meer voorbeelden van geschikte planten voor wilde bijen. Bijen kunnen niet alleen geholpen worden met
het aanplanten van bijvriendelijke planten maar ook door het niet weghalen van spontaan opgekomen planten.
Zo kunnen hondsdraf en dovenetel die spontaan onder een heg zijn opgekomen belangrijk zijn voor hommels.
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Nestgelegenheid

De eisen die worden gesteld aan nestgelegenheid verschillen per soort (kijk hier voor meer informatie). Een
deel van de soorten nestelt in de grond en graaft daar gangetjes. Andere soorten nestelen bovengronds in
door kevers gemaakte gaten in hout of holle stengels van bijvoorbeeld braam, riet of afgestorven kruiden. Op
veel plekken is een groot deel van de grond bedekt met tegels, grind of houtsnippers en worden afgestorven
stengels in het najaar verwijderd. Het achterwege laten van bodembedekking en het laten staan van kruiden
in de winter zijn eenvoudige manieren om nestgelegenheid voor bijen te vergroten. Veel soorten maken hun
nest bij voorkeur op plaatsen waar niet al te dichte vegetatie wordt afgewisseld met stukjes onbedekte bodem.
Over het algemeen geldt: hoe meer variatie, hoe meer bijen. Het is ook mogelijk om actief nestgelegenheid
aan te bieden in de vorm van bijenhotels. Kijk hier voor instructies voor het maken van een bijenhotel. Dat
is goed voor de bijen maar ook leuk voor iedereen die bijen graag een keer van dichtbij aan het werk wil
zien. Een groot, professioneel bijenhotel plaatsen kan natuurlijk ook. Bij www.bijenhotelkopen.nl hebben ze
verschillende typen die veel nestgelegenheid bieden. Met een informatiebord kun je bewoners bewust maken
van het belang van bijen en wat er in de stad voor bijen gedaan kan worden. Een andere mogelijkheid om
actief nestgelegenheid aan te bieden is het maken van een bijenheuvel, een grotendeels onbegroeide heuvel
van klei of zand op een zonnige plek. Door de bult weer vrij te maken en de zijkanten af te steken als deze
eenmaal begroeid is geraakt, kan de heuvel elk jaar weer ruimte bieden aan bijen. Hommels maken wat
grotere nesten, bijvoorbeeld in oude muizenholen. Rommelige en ruige vegetatie langs randen van heggen
biedt goede nestplek voor hommels.

Beheer

Na het aanplanten of zaaien is goed beheer van groot belang. Bijen hebben doorlopend bloeiende planten
nodig en maaien moet daarom gefaseerd gebeuren. Probeer daarbij minimaal 15% van het oppervlak te laten
staan. Maai het liefst na de bloei en maximaal 2 keer per jaar. Verder is het belangrijk dat maaisel afgevoerd
wordt om te zorgen dat de grond schraler wordt en grassen niet te dominant worden. Probeer klepelen te
vermijden, dit is niet goed voor alle dieren en planten. Ook is het van belang niet te zware machines te
gebruiken om zo de bodemstructuur te behouden en de nesten in de bodem niet teveel te beschadigen. Kijk
hier voor nog meer tips voor goed maaibeheer.

Lijst met gevonden soorten in Leiden

Witbaardzandbij Andrena barbilabris Tronkenbij Heriades truncorum
Tweekleurige zandbij Andrena bicolor Gewone maskerbij Hylaeus communis
Goudstaartzandbij Andrena carantonica Tuinmaskerbij Hylaeus hyalinatus
Goudpootzandbij Andrena chrysosceles Resedamaskerbij Hylaeus signatus
Wimperflankzandbij Andrena dorsata Gewone geurgroefbij Lasioglossum calceatum
Grasbij Andrena flavipes Breedkaakgroefbij Lasioglossum laticeps
Vosje Andrena fulva Gewone smaragdgroefbij Lasioglossum leucopus
Roodgatje Andrena haemorrhoa Matte bandgroefbij Lasioglossum leucozonium
Gewone dwergzandbij Andrena minutula Ingesnoerde groefbij Lasioglossum minutissimum
Lichte wilgenzandbij Andrena mitis Langkopsmaragdgroefbij Lasioglossum morio
Viltvlekzandbij Andrena nitida Gewone franjegroefbij Lasioglossum sexstrigatum
Vroege zandbij Andrena praecox Biggenkruidgroefbij Lasioglossum villosulum
Fluitenkruidbij Andrena proxima Gewone slobkousbij Macropis europaea
Witkopdwergzandbij Andrena subopaca Tuinbladsnijder Megachile centuncularis
Grijze rimpelrug Andrena tibialis Gewone behangersbij Megachile versicolor
Doornkaakzandbij Andrena trimmerana Grote bladsnijder Megachile willughbiella
Roodbuikje Andrena ventralis Bruine rouwbij Melecta albifrons
Grote wolbij Anthidium manicatum Klokjesdikpoot Melitta haemorrhoidalis
Gewone sachembij Anthophora plumipes Roodzwarte dubbeltand Nomada fabriciana
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Tuinhommel Bombus hortorum Gewone wespbij Nomada flava
Boomhommel Bombus hypnorum Gewone kleine wespbij Nomada flavoguttata
Steenhommel Bombus lapidarius Kortsprietwespbij Nomada fucata
Veldhommel Bombus lucorum Roodsprietwespbij Nomada fulvicornis
Akkerhommel Bombus pascuorum Smalbandwespbij Nomada goodeniana
Weidehommel Bombus pratorum Donkere wespbij Nomada marshamella
Vierkleurige koekoekshommel Bombus sylvestris Signaalwespbij Nomada signata
Grote koekoekshommel Bombus vestalis Geelzwarte wespbij Nomada succincta
Lathyrusbij Chalicodoma ericetorum Rosse metselbij Osmia bicornis
Grote klokjesbij Chelostoma rapunculi Gedoornde slakkenhuisbij Osmia spinulosa
Wormkruidbij Colletes daviesanus Pantserbloedbij Sphecodes gibbus
Duinzijdebij Colletes fodiens Gewone dwergbloedbij Sphecodes miniatus
Pluimvoetbij Dasypoda hirtipes Dikkopbloedbij Sphecodes monilicornis
Roodpotige groefbij Halictus rubicundus Geelgerande tubebij Stelis punctulatissima
Parkbronsgroefbij Halictus tumulorum Blauw zwarte houtbij Xylocopa violacea
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