Myrtaceae, a cache of fungal biodiversity

R. Cheewangkoon¹, J.Z. Groenewald², B.A. Summerell³, K.D. Hyde⁴, C. To-anun¹, P.W. Crous²

Abstract Twenty-six species of microfungi are treated, the majority of which are associated with leaf spots of *Corymbia, Eucalyptus and Syzygium* spp. (*Myrtaceae*). The treated species include three new genera, *Bagadilla, Foliocryphia* and *Pseudoramichloridium*, 20 new species and one new combination. Novelties on *Eucalyptus* include: *Antennariella placatae, Bagadilla lunata, Cladoniaella rubrigena, C. paleospora, Cyphellophora eucalypti, Elsinòe eucaulycipta, Foliocryphia eucalypti, Leptomyxidium madagascariense, Neofabraea eucalypti, Polyscytalum algarvense, Quambalaria simpsonii, Selenophoma australiensis, Sphaceloma tectifae, Strelitziana australiensis* and *Zelosperisporon eucalyptorum*. Stylaspergillus synanamorphs are reported for two species of *Parasymподiella, P. eucalypti* sp. nov. and *P.elongata*, while Blastacervulus eucalypti, *Minimedusa obconorata* and *Sydowia eucalypti* are described from culture. Furthermore, *Peridiella corymbia* and *Pseudoramichloridium henryi* are newly described on *Corymbia, Pseudocerospora pallecbrunnia* on *Syzygium* and *Rachidioladosporum americanum* on leaf litter. To facilitate species identification, as well as determine phylogenetic relationships, DNA sequence data were generated from the internal transcribed spacers (ITS1, 5.8S nrDNA, ITS2) and the 28S nrDNA (LSU) regions of all taxa studied.

Article info Received: 20 June 2009; Accepted: 1 July 2009; Published: 10 September 2009.

INTRODUCTION

The family *Myrtaceae* represents close to 150 genera of evergreen, dicotyledon, woody plants known to produce a range of essential oils (Wilson et al. 2001). Within the *Myrtaceae*, species belonging to the genera *Corymbia, Eucalyptus and Syzygium* are widespread in tropical and temperate regions of the Southern Hemisphere (Wilson et al. 2001). *Eucalyptus* spp. are particularly abundant and have a wider range of distribution than other myrtaceous genera, as they are frequently grown as exotics in commercial plantations (Ball 1995). Many members of the *Myrtaceae* contain a range of substrates and oils that support a highly diverse fungal community, making them favourable hosts to numerous plant pathogenic and saprobic fungi (Sankaran et al. 1995, Crous 1999, Crous et al. 1995b, 2001a, 2006e, 2007c–e, Sivanesan & Shivas 2002, van Niekerk et al. 2004, van Wyk et al. 2004, Pavlic et al. 2004, 2007, de Beer et al. 2006, McKenzie et al. 2006, Summerell et al. 2006, Carnegie et al. 2007).

Extending the distribution of *Myrtaceae* species (particularly by means of exotic plantations) will consequently increase the opportunity for these fungi to enter new habitats and explore new hosts, also accelerating their evolution. Furthermore, because the *Myrtaceae* represents such a large family, the majority of the fungi that occur on these hosts remain unstudied and undescribed, or have not yet been properly documented (Crous et al. 2006c, Hyde et al. 2007). Many cryptic fungal species were named (and even grouped) based on only wide and/or unspecific morphological characteristics. Recent developments in molecular techniques such as DNA sequence analysis allow mycologists to accurately distinguish these fungi and the various morphs in their lifecycles, thereby allowing a more precise classification (Hawksworth 2004, Crous & Groenewald 2005, Damm et al. 2007, Phillips et al. 2007, Shenoy et al. 2007, Seifert 2009), even though they may be similar in morphology (Crous et al. 2001b, 2004c, Alves et al. 2008). While the implementation of molecular techniques has led to a re-classification and integration of anamorph and teleomorph states, it also led to the recognition of numerous cryptic species (Crous et al. 2006d).

Many fungi exhibit host specificity, indicating their dependency on a particular host species or group of related species from which they derive nutrients (Wong & Hyde 2001, Zhou & Hyde 2001). Within the host-specific fungi, many are able to switch their nutritional modes from being endophytic or pathogenic on living plants, to being saprobic on detached/dead plant tissues during host senescence (Zhou & Hyde 2001, Hyde et al. 2007, Promputtha et al. 2007, Hyde & Soytong 2008). Fungal pathogens may even grow as saprobes on non-host tissues that have been infected by other primary pathogenic species (Roy 2001, Crous et al. 2008). This contrasts with the suggestion by Ehrlich & Raven (1964) that pathogens generally colonise closely related hosts only. In order to distinguish fungi with different life styles, Roy (2001) proposed the use of two terms: ‘host shift’ for fungi shifting to closely related hosts, and ‘host jump’ for fungi that can colonise taxonomically unrelated hosts. The host-changing ability can influence their genetic behaviour and makeup, such as recombination (*Ophiostoma novo-ulmi*, Brasier 2001) or hybridisation (*Phytophthora* sp., Brasier et al. 1999, Brasier 2000).

Thus far, fungi occurring on *Myrtaceae* have proven to be largely host family specific, and only a few examples are known to occur on different species or genera of *Myrtaceae*, or unrelated hosts. Presently these examples include species of *Harknessia* (Sutton & Pascoe 1989, Crous et al. 1993, 2007c, Crous & Rogers...
<table>
<thead>
<tr>
<th>Species</th>
<th>Strain number</th>
<th>Substrate</th>
<th>Country</th>
<th>Collector</th>
<th>GenBank Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antennariella placitae</td>
<td>CPC 13706; CBS 124765</td>
<td>Eucalyptus placita</td>
<td>Cessnock, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303268; GQ303299</td>
</tr>
<tr>
<td>Bagadiella lunata</td>
<td>CPC 13655; CBS 124762</td>
<td>Eucalyptus delegatensis</td>
<td>Tasmania, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303269; GQ303300</td>
</tr>
<tr>
<td>Bagadiella sp.</td>
<td>CPC 16622; CBS 124763</td>
<td>Eucalyptus dives</td>
<td>New South Wales, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303270; GQ303301</td>
</tr>
<tr>
<td>Blastacervulus eucalypti</td>
<td>CPC 13956; CBS 124759</td>
<td>Eucalyptus robertsonii subsp. hemisphaerica</td>
<td>Mullion Creek, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303271; GQ303302</td>
</tr>
<tr>
<td>Cladoriella paleospora</td>
<td>CPC 14646; CBS 124761</td>
<td>Eucalyptus oblonga</td>
<td>Menai, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303272; GQ303303</td>
</tr>
<tr>
<td>Cladoriella rubrigena</td>
<td>CPC 13751; CBS 124760</td>
<td>Eucalyptus globulus</td>
<td>Tasmania, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303273; GQ303304</td>
</tr>
<tr>
<td>Cyphellophora eucalypti</td>
<td>CPC 13412; CBS 124764</td>
<td>Eucalyptus sp.</td>
<td>Queensland, Australia</td>
<td>P.W. Crous</td>
<td>GQ303274; GQ303305</td>
</tr>
<tr>
<td>Elsinoë eucalypticola</td>
<td>CPC 13318; CBS 124765</td>
<td>Eucalyptus sp.</td>
<td>Cairns, Australia</td>
<td>P.W. Crous</td>
<td>GQ303275; GQ303306</td>
</tr>
<tr>
<td>Foliocryphia eucalypti</td>
<td>CPC 12494; CBS 124779</td>
<td>Eucalyptus coccifera</td>
<td>Tasmania, Australia</td>
<td>C. Mohammed</td>
<td>GQ303276; GQ303307</td>
</tr>
<tr>
<td>Leptoxyphium madagascariense</td>
<td>CPC 14623; CBS 124766</td>
<td>Eucalyptus camaldulensis</td>
<td>Morondavo, Madagascar</td>
<td>M.J. Wingfield</td>
<td>GQ303277; GQ303308</td>
</tr>
<tr>
<td>Minimedusa obcoronata</td>
<td>CPC 13495; CBS 124767</td>
<td>Eucalyptus camaldulensis</td>
<td>Chachoengsao, Thailand</td>
<td>W. Himaman</td>
<td>GQ303278; GQ303309</td>
</tr>
<tr>
<td>Neofabraea eucalypti</td>
<td>CPC 13755; CBS 124810</td>
<td>Eucalyptus globulus</td>
<td>Otway, Australia</td>
<td>I. Smith</td>
<td>GQ303279; GQ303310</td>
</tr>
<tr>
<td>Parasympodiella elongata</td>
<td>CPC 13285; CBS 124780</td>
<td>Eucalyptus sp.</td>
<td>Queensland, Australia</td>
<td>P.W. Crous</td>
<td>GQ303280; GQ303311</td>
</tr>
<tr>
<td>Parasympodiella laxa</td>
<td>CPC 13397; CBS 124768</td>
<td>Eucalyptus camaldulensis</td>
<td>Venezuela</td>
<td>M.J. Wingfield</td>
<td>GQ303281; GQ303312</td>
</tr>
<tr>
<td>Penidiella corymbia</td>
<td>CPC 14640; CBS 124769</td>
<td>Corymbia foelscheana</td>
<td>Emerald Springs, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303282; GQ303313</td>
</tr>
<tr>
<td>Polyscytalum algarvense</td>
<td>CPC 14936; CBS 124770</td>
<td>Eucalyptus sp.</td>
<td>Algarve, Portugal</td>
<td>P.W. Crous</td>
<td>GQ303283; GQ303314</td>
</tr>
<tr>
<td>Pseudocercospora palleobrunnea</td>
<td>CPC 13387; CBS 124771</td>
<td>Syzygium sp.</td>
<td>Moubray Park, Australia</td>
<td>P.W. Crous</td>
<td>GQ303284; GQ303315</td>
</tr>
<tr>
<td>Pseudoramichloridium henryi</td>
<td>CPC 13121; CBS 124775</td>
<td>Corymbia henryi</td>
<td>New South Wales, Australia</td>
<td>A.J. Carnegie</td>
<td>GQ303285; GQ303316</td>
</tr>
<tr>
<td>Quambalaria simpsonii</td>
<td>CPC 14499; CBS 124772</td>
<td>Eucalyptus tintinnans</td>
<td>Edith Falls, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303286; GQ303317</td>
</tr>
<tr>
<td>Rachicladosporium americanum</td>
<td>CPC 14045; CBS 124774</td>
<td>Leaf litter of unknown host</td>
<td>Fort Royal, USA</td>
<td>P.W. Crous</td>
<td>GQ303287; GQ303318</td>
</tr>
<tr>
<td>Selenophoma australiensis</td>
<td>CPC 14582; CBS 124776</td>
<td>Eucalyptus mineata</td>
<td>Edith Falls, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303288; GQ303319</td>
</tr>
<tr>
<td>Sphaceloma tectificae</td>
<td>CPC 14594; CBS 124777</td>
<td>Eucalyptus tectifica</td>
<td>Northern Territory, Australia</td>
<td>B.A. Summerell</td>
<td>GQ303289; GQ303320</td>
</tr>
<tr>
<td>Strelitziana australiensis</td>
<td>CPC 13421; CBS 124778</td>
<td>Eucalyptus sp.</td>
<td>Queensland, Australia</td>
<td>P.W. Crous</td>
<td>GQ303290; GQ303321</td>
</tr>
<tr>
<td>Sydowia eucalypti</td>
<td>CPC 14028; CBS 124779</td>
<td>Eucalyptus sp.</td>
<td>New South Wales, Australia</td>
<td>B. Wiecek</td>
<td>GQ303291; GQ303322</td>
</tr>
<tr>
<td>Zeloasperisporium eucalyptorum</td>
<td>CPC 14603; CBS 124809</td>
<td>Eucalyptus tectifica</td>
<td>New South Wales, Australia</td>
<td>B. Wiecek</td>
<td>GQ303292; GQ303323</td>
</tr>
</tbody>
</table>

Table 1 Isolates of microfungi used for DNA analysis and morphological studies.

1 CBS: CBS Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: Culture collection of Pedro Crous, housed at CBS.
2 ITS: Internal transcribed spacers 1 and 2 together with 5.8S nrDNA; LSU: 28S nrDNA.

The present study examines and describes the morphology of several novel species of microfungi occurring on Myrtaceae, and also comments on their host range and distribution where several collections of these fungi are known from literature.

MATERIAL AND METHODS

Isolates
Symptomatic Myrtaceae leaves were chosen for study. Leaf pieces bearing ascomata were soaked in water for approximately 2 h, after which they were placed in the bottom of Petri dish lids, with the top half of the dish containing 2 % malt extract agar (MEA; Oxoid, Hampshire, England) (Crous et al. 2009b). Ascospore germination patterns were examined after 24 h, and single ascospore and conidial cultures established as described earlier (Crous et al. 1991, Crous 1998). Leaves were incubated in moist chambers for up to 2 wk, and inspected daily for microfungi, and single conidial colonies of hypomyces and coelomycetes established on MEA (Crous 2002). Colonies were sub-cultured onto 2 % potato-dextrose agar (PDA), synthetic nutrient-poor agar (SNA), MEA, oatmeal agar (OA), carnation-leaf agar (CLA) (Crous et al. 2006a, 2009c), and pine needle agar (PNA) (2 % tap water agar, with sterile pine needles) (Crous et al. 2006d), and incubated under continuous near-ultraviolet light at 25 °C to promote sporulation. Nomenclatural novelties and descriptions were deposited in MycoBank (www.MycoBank.org; Crous et al. 2004a). All cultures obtained in this study are maintained in the culture collection of the Centraalbureau voor Schimmelcultures (CBS) in Utrecht, the Netherlands, and the working collection (CPC) of P.W. Crous (Table 1).

DNA isolation, amplification and analyses
Genomic DNA was isolated from fungal mycelium grown on MEA, using the UltraClean® Microbial DNA Isolation Kit (MoBio Laboratories, Inc., Solana Beach, CA, USA) according to the manufacturer’s protocols. The primers V9G (de Hoog & Gerrits van den Ende 1998) and LR5 (Vilgalys & Hester 1990) were used to amplify part of the nuclear rDNA operon spanning the 3’ end of the 18S rRNA gene (SSU), the first internal transcribed spacer (ITS1), the 5.8S rRNA gene, the second ITS region (ITS2) and the first 900 bases at the 5’ end of the 28S rRNA gene (LSU). The primers ITS4 (White et al. 1990) and LR0R (Rehner & Samuels 1994) were used as internal sequence primers to ensure good quality sequences over the entire length of the amplicon. The PCR conditions, sequence alignment and subsequent phylogenetic analysis followed the methods of Crous et al. (2006a). Sequences were compared with the sequences available in NCBI’s GenBank nucleotide (nt) database using a megablast search and results are discussed in the relevant species notes where applicable. Alignment gaps were treated as new character states. Sequence data were deposited in GenBank (Table 1) and alignments in TreeBASE (www.treebase.org).

Morphology
Preparations from cultured fungal colonies were mounted on glass slides with clear lactic acid for microscopic examination. Sections of ascomata were made by hand for examination purposes. Measurements of all taxonomically relevant parameters were made at ×1 000 magnification by Nikon NIS-Elements D3.0 imaging software, with 30 measurements per structure where possible. Colony colours on MEA (surface and reverse) were determined using the colour charts of Rayner (1970) after 2 wk at 25 °C in the dark.

RESULTS AND DISCUSSION

Phylogenetic analysis
Approximately 1 700 bases, spanning the ITS and LSU regions, were obtained for isolates listed in Table 1. The LSU region was used in the phylogenetic analysis for the generic placement and ITS to determine species-level relationships. Due to the inclusion of shorter GenBank sequences such as Pseudoramichloridium brasiliense EU041854, Pringisperma smirnoffii FJ150970, Endothia eugeniae AF277142, Endothia gyrosa Y194115 and Cryphonectria parasitica AF277132, it was not possible to use the complete length of the determined LSU sequences in the analysis.

The manually adjusted LSU alignment contained 98 taxa (including the outgroup sequence) and, of the 479 characters used in the phylogenetic analysis, 294 were parsimony-informative, 33 were variable and parsimony-uninformative and 152 were constant. Twenty-seven equally most parsimonious trees were obtained from the heuristic search, the first of which is shown in Fig. 1 (TL = 1831, CI = 0.356, RI = 835, RC = 297). The phylogenetic tree of the LSU region (Fig. 1) showed the isolates obtained in this study to cluster in several classes, including Agaricomycetes, Exobasidiomycetes, Eurotiomycetes, Sordariomycetes and Dothideomycetes. Further results are discussed under the species notes below where applicable.

Taxonomy
Several taxonomic novelties were found that do not match any species presently described, or linked to the sequences available in GenBank. These genera and species are described as new below.

Antennariella placita Cheewangkoon & Crous, sp. nov. — MycoBank MB513839; Fig. 2

Teleomorph. Unknown.

Pycnidia globosa vel subovoidea, ex ramulis erectis hypharum oriundis, intercalaria, lateralia vel terminalia, (30–)40–60(–120)×(22–)30–40(–65) μm. Cellulae conidiogenae phialidicae, subcylindraceae vel lageniformes, hyalinae, (5–)8–10(–13)×4–5.5 μm. Conidia hyalina, aseptata, globosa vel subglobosa, (2.3–)2.5–3(–3.8)×(2–)2.5–2.8(–3.2) μm.

Etymology: Named after the host species on which it occurs, Eucalyptus placta.

Mycelium superficial or immersed, pale to medium brown, septate, branched; hyphae mostly smooth, thin-walled, 3.5–5 μm wide, darker and wider when around conidiomata, 3.5–8.5 μm wide, hyphal cells regular in width, constricted at septa, wall 0.9–1.3 μm thick, with a mucilaginous outer wall layer, up to 3.5 μm thick. Conidiomata pycnidial, superficial or immersed, globose to subovoid, medium to dark grey-brown, intercalary, lateral or terminal on erect hyphal branches, meristogen in development, pseudoparenchymatous, thin-walled, 1–2 cell layers of textura angularis, (30–)40–60(–120)×(22–)30–40(–65) μm. Ostiole absent, or not well-developed, mostly releasing conidia by means of irregular rupture. Conidio phores absent. Conidigenous cells phialidic, subcylindrical to

Phylogenetic analysis

P. Cheewangkoon et al.: Myrtaceae, a cache of fungal biodiversity

R. 57
Fig. 1 One of 27 equally most parsimonious trees obtained from a heuristic search with 100 random taxon additions of the LSU sequence alignment using PAUP v4.0b10. The scale bar shows 10 changes, and bootstrap support values higher than 70 % from 1000 replicates are shown at the nodes. Thickened lines indicate the strict consensus branches and novel sequences are printed in bold. The tree was rooted to Saccharomyces cerevisiae (GenBank accession Z73326). AGA = Agaricomycetes, EXO = Exobasidiomycetes, EUR = Eurotiomycetes, LEO = Leotiomycetes, SOR = Sordariomycetes, DOT = Dothideomycetes, all others are incertae sedis.
largeniform, hyaline, invested among mucilage, formed from the inner cells of the pycnidial wall, (5–)8–10(–13) × 4–5.5 μm. Conidia hyaline, aseptate, globose to subglobose, base subtruncate, with 1–3 minute guttules, smooth, thin-walled, (2.3–)2.5–3(–3.8) × (2–)2.5–2.8(–3.2) μm.

Culture characteristics — Colonies reaching 2 cm diam after 2 wk at 25 °C on MEA, flat, folded in the middle, with ovary-white conidial masses on the surface, and entire edge with medium to dark brownish grey woolly aerial mycelium; greyish fucous-black (reverse).

Notes — The genus Antennulariella is a teleomorph genus of sooty molds which has Capnodendron and Antennariella synanamorphs (Hughes 1976). Antennariella placitae resembles other Antennariella spp. which produce meristogeneous pycnidia, that are intercalary or terminal on the hyphae, and give rise to aseptate conidia. Antennariella placitae also has a characteristic hyaline mucilaginous outer hyphal wall layer, which is a typical characteristic of sooty molds (Hughes 1976). Conidia of A. placitae are globose, while those of other Antennariella spp. are more or less ellipsoidal (Hughes 1976). Phylogenetically A. placitae is closely related to the sooty molds Capnodium coffeae (DQ247800; 97 % identical), Microxyphium citri (AY004337; 96 % identical) and Fumagospora capnodioides (EU019269; 95 % identical) based on its LSU sequence data. All four taxa grow superficially on the cuticle of their plant hosts.

Bagadiella Cheewangkoon & Crous, gen. nov. — MycoBank MB513840.

Cladorrhino simile, sed conidiis lunaribus, monophialibidus et conidiophoris in rosulis suprastomatalibus.

Type species. Bagadiella lunata Cheewangkoon & Crous, sp. nov.

Etymology. Named after the standard diet enjoyed at CBS over weekends from the automated dispenser, an apple cake (B1 = Ba) and a packet of winegums (A7 = Ag).

Mycelium immersed, becoming superficial when incubated in moist chambers, pale to medium brown, consisting of septate, branched, smooth hyphae. Chlamydospores absent. Caespitiul suprastomatol, pale brown, compact, arising from pseudoparenchymatal tissue in the substomatal cavity, forming a rosette with...
a central, basal point of attachment, giving rise to conidiophores with a slimy conidial mass, up to 110 μm high and 130 μm diam. Conidiophores micronematous, arranged in a rosette, cylindrical, mostly dichotomously branched, slightly thick-walled, medium to pale grey-brown, straight or slightly flexuous. Conidiogenous cells terminal, monopodial, branched, subcylindrical to lageniform, at times constricted at base of conidiogenous cell, tapering toward the apex, pale brown, paler toward the apex, with a terminal, narrow, pale olivaceous, vase-shaped, flaring collarette, constricted beneath the collarette, thickened and slightly darkened at the conidiogenous regions. Conidia borne in slimy heads, lunate, curved, apex rounded, with slight taper towards the truncate base, hyaline.

Bagadiella lunata Cheewangkoon & Crous, sp. nov. — MycoBank MB513841; Fig. 3

Teleomorph. Unknown.

Conidiophora in rosulis compactis suprastomatalibus, ad 110 μm alta, 80–130 μm diam. Cellulae conidiogenae plerumque terminales, monophialidicae, ramoseae, subcylindraceae vel lageniformes, (8.5–)11–13(–15) × 2.5–3.3 μm. Conidia in capitulis mucosis, curvata, apice rotundato, basi obconice truncata, hyalina, (15–)16–18(–22) × (1.3–)1.5(–1.7) μm.

Etymology. Named after the characteristic lunate shape of its conidia.

Mycelium immersed, becoming superficial upon incubation in moist chambers, pale to medium brown, consisting of septate, branched, smooth, 2–4 μm wide hyphae. Chlamydospores absent. Caespituli pale brown (appearing whitish under the stereo microscope when young), suprastomatal, pseudoparenchymal cells in substomatal cavity giving rise to a compact rosette of conidiophores, attached via a central, basal point, with a slimy conidial mass on top, up to 110 μm high, 80–130 μm diam. Conidiophores micronematous, cylindrical, mostly dichotomously branched in apical region, slightly thick-walled, pale to medium grey-brown, straight or slightly flexuous, up to 115 μm long, 2.5–4 μm wide. Conidiogenous cells predominantly terminal, monopodial, branched, subcylindrical to lageniform, (8.5–)11–13(–15) × 2.5–3.3 μm, at times constricted at the base, pale brown, paler toward the apex, with a hyaline, vase-shaped, flaring collarette that is constricted at the base, 1.5–2.5(–5) × 1.5–2 μm, thickened and slightly darkened at the conidiogenous region. Conidia borne in slimy heads, lunate, curved, with a rounded apex, tapering toward a truncate base, hyaline, (15–)16–18(–22) × (1.3–)1.5(–1.7) μm. Conidia mostly fail to germinate, but when they do, it happens via an appressorium-like structure forming in the centre of the conidium.

Culture characteristics — Colonies reaching 5 cm diam on MEA after 1 wk at 25 °C, flat, irregular, greenish grey, with sparse aerial mycelium, slightly folded at the centre, olivaceous-grey to buff (surface), with white margin, yellow-brown (reverse).

Specimens examined. **AUSTRALIA**, Tasmania, Mount Wellington Park S 42°55’0”, E 147°15’0” on Eucalyptus delegatensis, 10 Oct. 2006, coll. B.A. Summerell, isol. P.W. Crous, CBS H-20281 holotype, culture ex-type CPC 13655, CPC 13656 = CBS 124762; New South Wales, Paddy’s River, S 34°37’47.2”, E 150°10’06.2”, on E. dives, 23 Mar. 2009, coll. B.A. Sum-

![Fig. 3 Bagadiella lunata. a. Caespituli on leaf; b. pseudoparenchymal tissue in substomatal cavity; c, d. rosette of conidiophores; e. conidia; f–i. conidia, conidiophores and conidiogenous cells, showing collarettes. — Scale bars: a = 300 μm; b–d = 30 μm; e–i = 10 μm.](image-url)
Notes — The genus *Bagadiella* is similar to the genus *Cladorrhinum* in having pigmented hyphae and a pustular-like aggregation of conidiophores (Mouchacca & Gams 1993). *Bagadiella* can be distinguished from *Cladorrhinum* species by its lunate conidia, those of *Cladorrhinum* species being dactyloidal to ellipsoid (Mouchacca & Gams 1993), its monophasial cells, and conidiophores which form in suprastomatal rosettes. The genus *Cladorrhinum* has teleomorphs in *Apiosordaria*, which is related to, but not congeneric with, *Bagadiella*. Based on several bp differences observed the ITS DNA sequence data of CPC 16622 and 13655, these collections appear to represent a different taxon to that typified by the ex-type strain.

Blastacervulus eucalypti H.J. Swart, Trans. Brit. Mycol. Soc. 90: 289. 1988 — Fig. 4

Teleomorph. Unknown.

Leaf lesions prominent on leaf tips, amphigenous, subcircular to irregular, discrete to confluent, up to 2 mm diam, medium brown at the middle, darker at the border, with a red-purple margin, with amphigenous, dark conidiomata at the margin, surrounded by indistinct border, not vein-limited. Mycelium immersed, rarely superficial, visible below the cuticular layer, septate, branched, medium brown, thick-walled, ≤ 0.8 μm wide, somewhat constricted at septa, 2.5–5 μm wide. Conidiomata acervular, single, 5–15 per lesion, developing subcuticular or between the epidermal cells, becoming erumpent with age, often surrounded by remnants of the epidermis, circular to slightly oblong, containing 1–2 cell layers of *textura angularis*, up to 80 μm high and 280 μm diam, producing masses of medium to dark brown conidia. Conidiophores absent. Conidiogenous cells formed from the upper stromatic cells, determinate, short-subcylindrical to ampulliform or subglobose, pale brown to hyaline, slightly verruculose, thin-walled, mostly monoblastic, 3.5–5.5 × 4.5–8.5 μm. Conidia pale to medium brown, aseptate, 5–7 × 5–8 μm, mostly subglobose to broadly ovoid, slightly obtuse to truncate at the base, thick-walled, 1–1.5 μm, forming branched chains of acropetal conidia; ramoconidia with up to three hila, ≤ 1 μm wide.

Culture characteristics — Colonies reaching 1 cm diam after 3 wk at 25 °C; erumpent with moderate reddish brown aerial mycelium and paler in the outer region; margins smooth, regular; reverse olivaceous-black; colonies fertile.

Notes — The present collection closely matches *Blastacervulus eucalypti*, which is the only member of the genus known

Fig. 4 *Blastacervulus eucalypti*. a. Leaf spot; b. cross section of sporodochium; c–f. conidiogenous cells and conidia; g–i. conidia in chains, developing on leaves incubated in moist chambers. — Scale bars: a = 150 μm; b = 100 μm; c–i = 10 μm.
Fig. 5 *Cladoriella paleospora*. a. Caespituli on leaf; b. colony on SNA; c–g. conidial chain, conidiogenous cells and conidiophores; h. conidia. — Scale bars: a = 120 μm; c–h = 10 μm.

Fig. 6 *Cladoriella rubrigena*. a, b. Colony on MEA; c, d. conidial chains; e. conidiophores and conidiogenous cells. — Scale bars: a = 20 mm; c–e = 10 μm.
to date (Swart 1988). Based on its DNA phylogeny, it appears closely related to Alsidiella parasitica and some 'Heterococci' species with catenulate, multisepitate conidia (Crous et al. 2006b, 2007c, Summerell et al. 2006).

Cladoriella paleospora Cheewangkoon & Crous, sp. nov. — Mycobank MB513842; Fig. 5

Teleomorph. Unknown.

Cladoriellae eucalypti similis, sed conidii minoribus, 6–10 × 3.5–4 μm, in cultura sine pigmento.

Etymology. Named after its pale brown conidia.

Mycelium pale to medium brown, smooth to finely verruculose, branched, septate, (1.5–)2–3(–3.5) μm wide, thin-walled to somewhat thickened, sterile hyphae usually paler and narrower. *Conidiophores* micro- to macronematous, arising from creeping mycelium, solitary, erect, cylindrical, sometimes reduced to conidiogenous cells, straight to slightly curved, medium to dark brown, somewhat thick-walled, smooth, finely verruculose, at times produced on swollen hyphal cells, (10–)18–25(–87) × 3–3.5(–4) μm. *Conidiogenous cells* terminal, cylindrical, tapering to a truncate apex, not denticulate, dark to medium brown, paler towards the apex, (15–)20–25(–35) × 3.3–4 μm, with 1–3 conspicuous loci, with thickened, slightly darkened scars, 1.5–2 μm wide. *Conidia* catenulate, in simple to loosely branched chains that frequently remain attached; *ramoconidia* cylindrical to sub fusoid, 12–15(–18) × 3.5–4.2 μm, tapering to both truncate ends, 0–1-septate, unconstriicted at septa, smooth to finely verruculose, pale brown; *intercalary conidia* cylindrical, ellipsoid to fusoid, 11–15 × 3.3–4 μm, paler brown, 0–1-septate, tapering towards both truncate ends; *terminal conidia* obvoid, pale brown, paler towards the apex, asseptate, with truncate ends, 6–10 × 3.5–4 μm; scars thickened along the rim, reflective, somewhat darkened, not protruding, 1.5–2 μm wide.

Culture characteristics — Colonies on MEA reaching 15 mm diam after 3 wk, irregular, erumpent in the centre, folded, with sparse aerial mycelium, and irregular margins; brown to greenish grey (surface); dark greenish olive (reverse).

Notes — *Cladoriella paleospora* is morphologically similar to *C. eucalypti* and *C. rubrigena*, having brown conidiophores with relatively few conidial loci that are thickened, darkened and reflective, giving rise to long conidial chains that frequently remain attached (Crous et al. 2006e). *Cladoriella paleospora* is distinct from *C. eucalypti* and *C. rubrigena* in having smaller conidia, and by not producing any pigment in culture. Phylogenetically the three species form a well supported clade (Fig. 1).

Cladoriella rubrigena Cheewangkoon & Crous, sp. nov. — Mycobank MB513843; Fig. 6

Teleomorph. Unknown.

Cladoriellae eucalypti similis, sed conidii brevioribus, saepe in cellulis conidiogenis reductis.

Etymology. Named after its pale brown conidia.

Mycelium pale to medium brown, smooth, thick-walled, smooth to finely verruculose, branched, septate, (1.5–)2–3(–3.5) μm wide, sterile hyphae usually paler and narrower. *Conidiophores* mononematous, separate, erect, subcylindrical, straight, medium to dark brown, smooth to finely verruculose, thick-walled, 0–1-sep-
Cyphellophora eucalypti has dark colonies and forms large, flared collarettes on well-developed phialides, which are characteristic of the genus Cyphellophora (Decock et al. 2003, Crous et al. 2007d, 2009a). Using the key of Crous et al. (2009a), C. eucalypti is most similar to C. indica and C. pluri-septata, but is distinct in having 1–3-septate conidia, with an average length of 15–20 μm. Phylogenetically it is also closely related to C. laciniata (EU035416 (ITS), 91 % identical and (LSU), 97 % identical) (Fig. 1).

Elsinoë eucalypticola Cheewangkoon & Crous, sp. nov. — MycoBank MB513845; Fig. 8

Anamorph. Sphaceloma sp.

Elsinoes eucalytorum et E. eucalypti similis, sed amplitudine conidiorum intermedia, 20–28 × 7–8 μm.

Etymology. Named after the host genus on which it occurs, Eucalyptus.

Leaf spot amphigenous, separate, subcircular to ellipsoidal, white-grey, with raised dark definite border, occasionally surrounded by an irregular red-purple margin, ≤1.5 mm diam, becoming long-irregular when confluent with 2–4 spots; with 1–3 minute, black ascomata erupting through host tissue in the middle of the lesion. Ascomata scattered, separate, pulvinate, subcircular; wall composed of dark brown to black pseudoparenchymatic textura angularis, 150–200 × 55–65 μm. Asci distributed irregularly throughout the ascomata, subglobose to broadly obovoid, thick-walled, 8-spored, sessile, hyaline, 30–47 × 24–30 μm. Ascospores hyaline to pale brown, broadly ellipsoid with rounded ends, with more prominent taper towards the base, with 4-transverse septa, and 0–3 vertical septa, and sometimes with oblique septa; mostly slightly constricted at the median septum, (16–)17–18(–20) × (6.5–)7–8 μm. Sphaceloma state not observed.

Culture characteristics — Colonies reaching up to 1.5 cm diam on MEA after 1 mo at 25 °C in the dark, almost circular, high convex, becoming 3–4 mm high in the middle, with raised, concave edge, and slightly lobate edge, frequently folded, with ruptures on the colony surface, yellow-brown, with sparse pale grey aerial mycelium.

Notes — Presently there are two species of Elsinoë that have been recorded on Eucalyptus, namely E. eucalypti and E. eucalytorum. Ascospores of E. eucalypticola (16–20 × 6.5–8 μm) are intermediate in size between those of E. eucalytorum (11–15 × 4–6 μm) (Summerell et al. 2006) and E. eucalypti (20–28 × 7–8 μm) (Park et al. 2000). Both E. eucalypti and E. eucalytorum form larger leaf spots than those associated with E. eucalypticola. Phylogenetically E. eucalypticola is closely related to E. centrolobi (Fig. 1), which has smaller ascospores (12–15 × 4–6 μm) (Bitancourt & Jenkins 1949).
Foliocryphia Cheewangkoon & Crous, gen. nov. — MycoBank MB513846

Differt a generibus diversis familiae (Cryphonectriaceae) stromatibus purpurascensibus in 3 % KOH vel acido lacticì nullis et phylogenetice manifeste divergenti.

Type species. *Foliocryphia eucalypti* Cheewangkoon & Crous, sp. nov.

Etymology. *Folium* (L.) = leaf, *crypho* (Greek) = hidden; referring to its foliicolous habit and inconspicuous or hidden nature.

Conidiomata eustromatic, amphigenous, separate, subsuperficial, pulvinate, subglobose, with or without ostiole; stromatic tissue of *textura angularis*, pale to medium brown, with convoluted inner surface, uni- to multilocular. Conidiophores consisting of basal subglobular to angular cells, that branch irregularly, becoming cylindrical, transversely septate. Conidiogenous cells enteroblastic, determinate, integrated or decretae, phialidic, cylindric, tapering to a thinner apical part, with visible collarette and periclinal thickening. Conidia hyaline, aseptate, smooth, elliptoid, straight to irregularly curved.

Foliocryphia eucalypti Cheewangkoon & Crous, sp. nov. — MycoBank MB513847; Fig. 9

Teleomorph. Unknown.

Conidiomata foliicola, eustromatica, amphigena, subglobose vel horizontaliter late ellipsoida, 300–370 × 320–590 μm, interdum multilocularia. Cellulæ conidiogenæ enteroblasticae, determinatae, integratae vel decretae, phialidicae, cylindricæ, (7.5–)12–15.5(–20) × 2.8–3.8 μm. Conidia hyalina, aseptata, ellipsidica, recta vel irregulariter curvata, apice obtusa, basi abrupte attenuata in hilis protrusis, cicatricibus, laevia, tenuitunicata, (8.5–)9–10(–11.5) × 3.3–4.2 μm.

Etymology. Named after the host genus on which it was collected, *Eucalyptus*.

Colonies on OA effuse, yellowish brown, with dark grey-brown margin, producing numerous umber to dark brown orfuscous-black conidiomata. *Mycelium* mostly immersed, aerial mycelium sparse, whitish, 1.5–2.3 μm wide. Conidiomata eustromatic, amphigenous on leaf, separate, subsuperficial, pulvinate, subglobose to horizontally broadly ellipsoid, 300–370 × 320–590 μm, with or without ostiole; stromatic tissue of *textura angularis*, pale to medium brown, somewhat darker and thicker-walled at the outer region; covered with pale brown mycelium as outer layer; conidiomata with convoluted inner surface, occasionally multilocular. Conidiophores consisting of basal subglobular to angular cells, formed from the inner cells of the locular walls, hyaline to medium brown, slightly thick-walled, irregularly branched, transversely septate, forming cylindrical cells, 7–16(–22) × 3–4.5 μm. Conidiogenous cells enteroblastic, determinate, integrated or decretae, phialidic, cylindrical, tapering to a narrowly cylindrical part in the apical region, (7.5–)12–15.5(–20) × 2.8–3.8 μm; collarette tubular, with visible periclinal thickening. *Conidia* hyaline, aseptate, ellipsoid, straight to irregularly curved, apex obtuse, base...
abruptly tapered to a flat protruding scar, which can be basal or somewhat off-centre, smooth, thin-walled, (8.5–)9–10(–11.5) × 3.3–4.2 μm.

Culture characteristics — Colonies on OA reaching 5 cm after 2 wk at 25 °C in the dark, subcircular, effuse, yellowish brown, with dark grey-brown, even margin; aerial mycelium sparse, producing numerous umber to dark brown or fuscous-black semi-immersed conidiomata.

Notes — Phylogenetically Foliocryphia resides within the Cryphonectriaceae clade, but appears to not fit into any presently circumscribed genus of this family. Foliocryphia produces aseptate conidia in eustromatic conidiomata as do other Cryphonectriaceae members. However, Foliocryphia lacks the main characteristics of the Cryphonectriaceae, namely that its stromata do not turn purple in 3 % KOH, or yellow in lactic acid (Gryzenhout et al. 2006). Based on its distinct morphological characteristics and DNA phylogeny, Foliocryphia is described here as a new foliicolous genus within the Cryphonectriaceae.

Fig. 9 Foliocryphia eucalypti. a. Pycnidia on OA; b. cross section of conidioma; c–e. conidiophores and conidiogenous cells; f. conidia. — Scale bars: a = 450 μm; b = 100 μm; c–f = 10 μm.

Fig. 10 Leptoxyphium madagascariense. a. Colony on MEA; b–d. synemata; e, f. conidiogenous cells; g. conidia; h–j. hyphae and chlamydospores in culture. — Scale bars: a = 500 μm; b–d = 50 μm; e–j = 10 μm.
Leptophyllum madagascariense Cheewangkoon & Crous, sp. nov. — MycoBank MB513848; Fig. 10

Teleomorph. Unknown.

Differs a species diversis Leptophyllum conidiis 4.5–5 × 3–3.5 μm.

Etymology. Named after Madagascar, the island from which it was collected.

Myelium in vitro superficial and immersed, dark grey-brown, septate, constricted at septa, loosely branched, smooth to slightly verrucose, thick-walled, ≤ 1 μm wide, frequent septate and wider in hyphae around conidiomata, irregular in width, 3–6 μm wide, with prominent mucilaginous outer hyphal layer, 2–4.5 μm wide. Conidiomata determinate synnematal, superficial, arising from hyphal raphes; stipe composed of unbranched, parallel synnematal hyphae, sometimes with a helical twist, or not enclosed in mucilage, or occasionally producing 2–3 synnemata on a single hyphal rope; cylindrical part (200–250–300) μm high, (6–)10–12–15 μm wide, expanding to a funnel-shaped hyphal apex, 35–50 μm high, 35–60 μm wide. Conidiotheca cylindrical, subulate, septate, slightly thick-walled, consisting of several aggregated, synnematal hyphae that diverge close to the apex; hyphae 3–4.5 μm wide, flaring in apical part, appearing like a terminal hyphal fringe, terminating in rounded apices. Conidigenous cells integrated, formed from the inner cell surface, intercalary, never terminal, monophialidic, denticellate, with a truncate apex, ≤ 1 μm high and up to 2.8 μm wide. Chlamydospores subglobose to subsphehedral, multisepolate, dark grey-brown, thick-walled, formed on the lateral side of hyphae, not enclosed in a mucilaginous layer, or in a very thin layer if present; 25–30 × 25–35 μm. Conidia rod-shape, with rounded ends, 1-celled, 1–3 guttules, 4.5–5 × 3–3.5 μm, gathered in a slimy mass at the apex of synnema; conidia not becoming pigmented, anastomosed or septate at maturation.

Culture characteristics — Colonies becoming up to 2.5 cm diam at 25 °C on MEA after 5 d in the dark; colonies flat, with entire edge, and sparse, medium to dark brownish grey aerial mycelium; producing numerous, superficial, dark synnemata with ovary-white apical conidial masses.

Notes — Leptophyllum madagascariense has elongated synnemata with a stout base, a long, narrow neck and a terminal conidigenous zone. It produces conidia from phialidic openings on the inner surface of its conidigenous hyphae. These characteristics are typical of the genus Leptophyllum (Hughes 1976). Leptophyllum madagascariense can be distinguished with other known Leptophyllum species by its conidial dimensions (Batista & Ciferri 1963). It does not produce any conidial pigment or septation during conidial maturation, unlike many other Leptophyllum species (Batista & Ciferri 1963, Hughes 1976). Phylogenetically it is also clusters in the Capnodiales (Schoch et al. 2006) with other sooty mould species such as Microxypium citri (AY004337, 98 % identical), Leptophyllum fungo (AB441707; 98 % identical), Capnodium coffeae (DQ247800; 96 % identical) and Fumago capnodioides (EU019269; 93 % identical) (Fig. 1).

Minimedusa obcoronata (B. Sutton, Kuthub. & Muid) Diederich, Lawrey & Heylen, Mycol. Progr. 6: 76. 2007 — Fig. 11

Teleomorph. Unknown.

Notes — Pneumatospora and Tricellulortus were transferred to the genus Minimedusa based on the conical bulb-like structures observed on their conidia (Diederich & Lawrey 2007). DNA sequence data of the LSU region support this decision, confirming the close relationship to Minimedusa obcoronata (Lawrey et al. 2007), and placing the genus in the Cantharellales.

Neofabraea eucalypti Cheewangkoon & Crous, sp. nov. — MycoBank MB513849; Fig. 12

Anamorph. Unknown.

Differs a species diversis Neofabraea asci brevioribus, (35–)40–45–52 × 0.1–0.2 μm, et ascopori brevioribus, (35–)40–45–52 × 10–12 μm, et ascosporis brevioribus, (10–14 × 4–6 μm.

Etymology. Named after the host genus it was collected from, Eucalyptus.

Ascomata apothecial, sessile to sub sessile, short-stalked, gregarious, sometimes confluent, clustering on a basidial stroma, partly immersed, with 3–12 apothecia per group, merged into irregular complexes, up to 0.3 mm high and 0.5 mm diam, medium to dark brown, with soft flesh, lacking a pseudoparenchymatous ectal excipulum; disc becoming turbinate, bearing filamentous, sparse white aerial mycelium at the base of apothecia, 2–3 μm wide, up to 200 μm long; producing pale brown; rigid pale brown setae-like structures surrounding the apothecia, cylindrical, up to 6 μm wide, 45–60 μm long, 2–3-septate, straight or very slightly curved, slightly enlarged at the truncate apex. Basal stroma sub superficial, up to 50 μm thick, partly immersed in host tissue, composed of irregular, pale to medium brown cells. Asci clavate to cylindrical-clavate, apex rounded, short pedicellate, base truncate, hyaline to very pale brown, 8-spored, ascospores discharging through apical pore, (35–)40–45–52 × 10–12 μm. Paraphyses mostly 2.5 μm wide, up to 65 μm high, cylindrical, slender, wider at the base, 2–3(–5)-septate, apex round, hyaline to pale brown, flexuous, numerous. Ascospores fusoid to ellipsoid, asceptate, hyaline, ends rounded, unequal, straight or slightly curved, thin-walled, guttulate, 10–14 × 6–6 μm.

Culture characteristics — Colonies on OA reaching 3 cm after 2 wk at 25 °C in the dark, sub circular, raised, with even margin and slightly folded surface, with dense, white aerial mycelium, partly submerged, buff to white. Apothecia formed after about 4 wk, mostly on the agar surface, black, asci and ascospores mostly similar in shape and size to those formed on PNA (Crous et al. 2006d).
Fig. 11 Minimedusa obcornata. a. Sporodochia on leaf; b–d. conidia, conidiogenous cells and conidiophores; e, f, h, i. conidia (underneath); g, j. conidia (surface). — Scale bars: a = 100 μm; b–j = 10 μm.

Fig. 12 Neofabraea eucalypti. a, b. Ascomata on pine needle agar; c. pycnidia on OA; d–f. paraphyses, asci and setae-like structures (arrows); f. basal stroma; g. asci; h. ascospores. — Scale bars: a–c = 100 μm; d–h = 10 μm.

Notes — Neofabraea eucalypti is morphologically similar to species of Neofabraea and Pezicula. Both genera have apothecia that develop from an immersed stroma, and a similar ascal shape, and 1-celled ascospores (Verkley 1999). However, Neofabraea eucalypti is better accommodated in Neofabraea as revealed by its characteristic fused apothecial discs (Verkley 1999). This species is different from other known species based on its shorter asci and distinct ascospore dimensions. Phylogenetically it is also well supported as a species of Neofabraea, but does not match any presently described species.

Parasympodiella elongata Crous, M.J. Wingf. & W.B. Kendr., Canad. J. Bot. 73: 228. 1995 — Fig. 13

Synanamorph. Stylaspergillus sp.
Teleomorph. Unknown.

Colonies on OA effuse, brownish grey. Mycelium superficial or submerged, consisting of branched, septate, smooth, pale to dark brown, (2.5–14–6 μm wide hyphae. Conidiophores solitary, micro- to macronematous, cylindrical, unbranched; sterile part with semi-thickened walls, medium to dark grey-brown, 7–10 μm wide, up to 700 μm long, with up to 17 septa; fertile part with thinner walls, pale brown, becoming paler toward the apex, up to 500 μm long, comprising up to 9 conidiogenous cells. Conidiogenous cells holoblastic, terminal and intercalary, integrated, indeterminate, proliferating sympodially, smooth, pale grey-brown, becoming hyaline toward the apex, 35–50 × 6–10 μm. Conidia thallic-arthric, hyaline to pale brown, dry, smooth, guttulate, thin-walled, cylindrical, (35–)40–50(–65) × 6–8 μm, (0–)1(–2)-septate, apex and base of intercalary conidia truncate, with a punctiform septal plug at each end, apical conidia with obtuse or rounded apex, occurring in unbranched conidial chains. Chlamydospores formed in vegetative hyphae, terminal or intercalary, solitary or in chains, dark brown, sphaerical, limoniform or fusiform, thin-walled, smooth, guttulate, (25–)30–40(–45) × (15–)20–35(–45) μm. Stylaspergillus state. Conidiophores micro- or macronematous, formed directly from submersed mycelium, or as lateral branch from the same conidiophore giving rise to the Parasympodiella state, medium to dark

Fig. 13 Parasympodiella elongata. a. Colony on OA; b. conidiogenous cells and conidia; c. conidia; d. Stylaspergillus sp. synanamorph on Parasympodiella conidiophores; e–h. conidiophores, conidiogenous cells and conidia of Stylaspergillus sp.; i, j. chlamydospores. — Scale bars: a = 400 μm; b–j = 10 μm.
brown, thin-walled, 70–100 (–180) μm tall, 9–10 μm diam, with a clavate to subglobose versicle-like apical cell, 14–17 × 15–20 μm, occasionally giving rise to secondary conidiophores from these apical cells. Conidiogenous cells 6–9 × 5–7 μm, formed terminally on the vesicle-like apical cell, supported by one short metula-like structure, rarely branched, ampulliform, lageniform or subcylindrical, uniseriate, with tubular collarettes. Conidia subulate, aseptate, hyaline, curved, tapening towards the apex, with a slightly truncate base, thickened, (9–)12–17 (–22) × 1–1.7 μm; produced in mucoid masses.

Notes — The Australian collections had conidia similar to P. elongata, though slightly longer than those originally reported for this species (20–40 × 6–12 μm) (Crous et al. 1995b), and with punctiform septal plugs at each end. Furthermore, isolates produced a previously unreported Stylaspergillus state in culture. The Stylaspergillus state of P. elongata differs from S. laxus by having branched conidiophores, metula-like structures, shorter conidia, and less dense conidiogenous cells on its apical vesicle. However, only isolate CPC 13285 and CPC 13288 produced the Stylaspergillus synanamorph in culture. Phylogenetically these collections are identical to P. elongata, and closely related to P. laxa and P. eucalypti (Fig. 1).

Parasympodiella eucalypti Cheewangkoon & Crous, sp. nov. — MycoBank MB513850; Fig. 14

Teleomorph. Unknown.

Parasympodiellae elongatae similis, sed conidiis longioribus, (25–)40–50 (–65) × 8–11 μm, et conidiophoris brevioribus, ad 700 μm longis.

Etymology. Named after the host genus it was collected from, Eucalyptus.

Fig. 14 Parasympodiella eucalypti. a, b. Conidiogenous cells; c. conidial chain; d. conidia; e. Stylaspergillus sp. synanamorph on Parasympodiella conidiophore; f–i. conidiophores, conidiogenous cells and conidia of Stylaspergillus sp. — Scale bars = 10 μm.
Colonies on OA effuse, medium to dark grey, chlamydospores absent. *Myrtaceae* immersed and superficial, consisting of branched, septate, smooth, hyaline to pale brown, (3–)5–7 μm wide hyphae. Conidiophores solitary, micro- to macrocon-}
mematous, cylindrical, unbranched; sterile part thicker walled, medium to dark grey-brown, 5–8 μm wide, up to 700 μm long, with up to 20 septa; fertile part thinner walled, pale grey-brown at basal region, paler toward the apex, up to 500 μm long, comprising up to 6 conidiogenous cells. Conidiogenous cells holoblastic, terminal and intercalary, integrated, indeterminate, proliferating sympodially, with one conidiogenous locus per cell, smooth, pale grey-brown, becoming hyaline toward the apex, (35–)45–65 × 8–12 μm. *Conidia* thallic-arthric, hyaline to very pale brown, dry, smooth, guttulate, thin-walled, cylindrical, (25–)40–50(–65) × 8–11 μm, (0–11(–2) septate, somewhat swollen in the apical cells, up to 14 μm wide, apex and base of intercalary conidia truncate, with a punctiform septal plug at each end, apical conidia with obtuse or rounded apex; conidia occurring in unbranched conidial chains. *Stylaspergillus* state. Conidiophores macro- or mononematous, mostly formed as a lateral branch from the same conidiophore giving rise to the *Parasympodiella* state, medium to dark brown, thin-walled, branched, 50–70(–100) μm high, 6–8 μm wide, with a clavate to subglobose vesicle-like apical cell, variable in length, narrower than the main conidiophores, 10–14 × 12–17 μm. Conidiogenous cells holoblastic, terminal or intercalary, integrated, indeterminate, with sympodial proliferation, and one conidiogenous locus per cell, smooth, pale grey-brown, becoming hyaline toward the apex, 35–50(–75) × 8–12 μm between conidiogenous loci. *Conidia* subulate, aseptate, hyaline, curved, with an attenuated end, and slightly truncate base, thickened, (8–)10–12(–15) × 0.8–1.2 μm, produced in mucoid masses.

Notes — *Parasympodiella eucalypti* is most similar to *P. elongata*, but it has longer conidia and shorter conidiophores (Crous et al. 1995b). In culture *P. eucalypti* forms a typical *Stylaspergillus* synanamorph. The *Stylaspergillus* state of *P. elongata* differs from *S. laxus* by its branched conidiophores, metula-like structures, shorter conidia, and less dense conidiogenous cells on its apical vesicle. Phylogenetically it clusters close to *Parasympodiella laxa* and *P. eucalypti* (Fig. 1).

Parasympodiella laxa (Subram. & Vittal) Ponnappa, Trans. Brit. Mycol. Soc. 64: 344. 1975 — Fig. 15

Myrtaceum on PNA superficial, consisting of branched, septate, smooth, hyaline to pale brown hyphae, 6–10 μm wide. Conidiophores micro- to macroconematous, scattered, erect, solitary, unbranched, cylindrical; sterile part dark brown, with a somewhat thickened wall, 8–10 μm wide, up to 500 μm long, with up to 8 septa; swollen base 12–17 μm wide; fertile part grey-brown, later becoming paler toward the apex, up to 500 μm long, comprising up to 8 conidiogenous cells. Conidiogenous cells holoblastic, terminal and intercalary, integrated, indeterminate, with sympodial proliferation, and one conidiogenous locus per cell, smooth, pale grey-brown, becoming hyaline toward the apex, 35–50(–75) × 8–12 μm between conidiogenous loci. Conidia thallic-arthric, forming in loose chains, hyaline to pale brown, dry, smooth, guttulate, thin-walled, cylindrical, (25–)35–50(–60) × 8–9 μm, (0–)3(–7)-septate, apex and...
base of intercalary conidia truncate, with a punctiform septal plug at each end, apical conidia with obtuse or rounded apex, occurring in unbranched conidial chains. Stylaspergillus state. Conidiophores macro- or mononematous, formed as a lateral branch or intercalary from the same conidiophores giving rise to the Parasympodiella state, or arising separately from the same mycelium, medium to dark brown, generally branched, sometimes giving rise to 2 apical branches, 60–80(–120) μm high, 6–9 μm wide, with a clavate apical cell, 10–12 × 10–18 μm. Conidiogenous cells terminal or intercalary, crowded in the upper half of the apical cell, ampulliform or lageniform, phialidic, inwardly curved, thin-walled, smooth, pale brown, slightly paler toward the apex, 5–9 × 4–6 μm. Conidia subulate, aseptate, hyaline, curved, with an attenuated end and slightly truncate base, thickened, (12–)15–20(–25) × 0.8–1.8 μm, produced in mucoid masses.

Specimen examined. NEW ZEALAND, Auckland, on Camellia japonica, C.F. Hill, CBS 102698.

Notes — The present isolate closely matches the original description of *Parasympodiella laxa* based on its conidial morphology and that of its reported synanamorph, *S. laxus* (Sutton et al. 1982). Phylogenetically it clusters close to *P. longispora* and *P. elongata* (Fig. 1).

Penidiella corymbia Cheewangkoon & Crous, sp. nov. — MycoBank MB513851; Fig. 16

Teleomorph. Unknown.

Differt a speciebus diversis Penidiellae hyphis manifeste constrictis et conidiis septatis.

Etymology. Named after its host genus, *Corymbia*.

Mycelium consisting of branched, septate, smooth to slightly verrucose, pale to dark brown, 2–3 μm wide hyphae, swollen cells up to 6.5 μm wide, with semi-thickened walls; hyphae becoming constricted at septa, darker and thicker-walled in wider hyphae. Conidiophores micronematous to semi-macronematous, arising from creeping mycelium, mostly from narrow hyphae, solitary, erect, cylindrical, somewhat constricted at septa, straight to slightly curved, medium to dark brown, slightly thick-walled, smooth to finely verrucose, (15–)25–35(–40) × 3–3.5(–4) μm. Conidiogenous cells terminal, rarely intercalary, cylindrical, tapering to a flattened apical region, finely verrucose, medium brown, paler toward the apex, (8.5–)13–20(–25) × 3–3.5 μm, with up to two conidiogenous loci, often apical, sometimes situated on small lateral shoulders, loci truncate, not denticulate; scars slightly thickened, darkened, 2.5–3 μm wide, visible as small dark circles when viewed directly from above. Ramoconidia subcylindrical or obovoid, 0–2-septate, base

Fig. 16 *Penidiella corymbia*. a–h. Conidiophores, conidiogenous cells and conidial chains; i–l. chlamydospores; m–o. conidiogenous cells with prominent scars; p–r. hyphae; s, t. conidia. — Scale bars = 10 μm.
subtruncate to slightly rounded, but not coronate, mostly with 2 apical hila, pale to medium brown, finely verruculose, slightly thick-walled, ≤ 1 µm, (7–)10–12(–14) × 2.5–3 μm; scars thickened and darkened, minute marginal frill present on basal end of some conidia; basal hila 2.5–3 μm wide, apical hila 1.5–2 μm wide. Conidia in branched acropetal chains, broadly fusiform to obovoid, 0–1-septate, pale to medium brown, 7–9(–12.5) × 2.5–3(–3.5) μm; terminal conidia obovoid, aseptate, pale brown, paler towards the apex, mostly smooth, base truncate, 4.5–6.5 × 2–3 μm. Microcyclic conidiation observed, original conidia become swollen, darker and thick-walled, up to 5 μm wide; wall 1–1.5 μm thick. Chlamydospores globose to subovoid, dark brown, thin-walled, 7–9 × 7–9(–14) μm, terminal or intercalary, mostly 1-celled, rarely septate (up to 3 horizontal septa), produced from narrow hyphae.

Culture characteristics — Colonies on MEA reaching 1.5 cm diam after 10 d at 25 °C in the dark; margin feathery, colonies erumpent, spreading, with moderate aerial mycelium. Surface pale brown to olivaceous, reverse olivaceous-black.

Notes — Penidiella corymbia is a typical member of the genus Penidiella in having solitary conidiophores with a branching system consisting of ramoconidia, intercalary and terminal conidia, and lacking a rachis (Crous et al. 2007a, Cheewangkoon et al. 2008). Penidiella corymbia is different from most other Penidiella species by having prominently constricted hypha and septate conidia. It is similar to P. rigidophora based on its macronematous conidiophores and conidial dimensions. Phylogenetically it clusters with other members of Penidiella (Fig. 1), but is distinct from all other species known to date based on ITS sequence data (Table 1).

Polyscytalum algarvense Cheewangkoon & Crous, sp. nov. — MycoBank MB513852; Fig. 17

Teleomorph. Unknown. Polyscytalum fuegiano similis, sed conidiosibus trevioribus et tioribus, 11–13.5 (–15) × 2–2.5 μm.

Etymology. Named after the Algarve Province in Portugal, where this fungus was collected.

Colonies on OA. Conidiomata consisting of a dark brown, submerged, sclerotium-like structure, which give rise to white, brush-like conidiophores and conidial chains, up to 200 μm tall and 380 μm diam. Mycelium immersed, dense, subcylindrical, medium to dark brown, thick-walled, frequently somewhat constricted at septa, up to 6 μm wide; aerial mycelium hyaline, smooth, ≤ 2 μm wide. Conidiophores erect, solitary, cylindrical, hyaline, straight to slightly flexuous, simple or with two lateral branches, smooth, 45–60(–90) × 3–3.5 μm, up to 5-septate, thickened at septa, usually swollen and slightly brown at the base. Conidiogenous cells terminal, integrated, cylindrical, slightly tapering to a flat apex, or short and broad denticles, hyaline, 13–16(–23) × 2–2.5 μm, with 1–2(–4) conidiogenous loci; scars thickened and slightly refractive, 1.5–2 μm wide. Conidia elongating acropetally, or branching di- or trichotomously, forming long conidial chains that remain attached, cylindrical, with slight taper towards both ends, smooth, hyaline, with minute guttulates, aseptate, 11–13.5(–15) × 2–2.5 μm, with two conidiogenous loci in ramoconidia; scars flat to slightly rounded, thickened, slightly refractive, 1.5–2 μm wide. Conidia elongating acropetally, or branching di- or trichotomously, forming long conidial chains that remain attached, cylindrical, with slight taper towards both ends, smooth, hyaline, with minute guttulates, aseptate, 11–13.5(–15) × 2–2.5 μm, with two conidiogenous loci in ramoconidia; scars flat to slightly rounded, thickened, slightly refractive, 1.5–2 μm wide. Culture characteristics — Colonies obtaining 3 cm diam on MEA after 1 wk at 25 °C in the dark; flat, with sparse aerial mycelium, and entire margins; yellow-buff (surface), and similar in reverse. Colonies on OA flat, appearing dark brown, with moderate, white aerial mycelium, and irregular margins.

Fig. 17 Polyscytalum algarvense. a–c. Sporodochia on OA; d–f. conidiophores, conidiogenous cells and conidial chains; g–i. conidia; j. conidiogenous cell; k. creeping hyphae. — Scale bars: a = 300 μm; b = 200 μm; c = 150 μm; d–k = 10 μm.
Notes — *Polyscytalum algarvense* closely resembles other members of the genus *Polyscytalum* in forming conidiophores on swollen hyphal cells, cylindrical, polyblastic conidiogenous cells with denticles, and catenate, acropetal chains of cylindrical, hyaline conidia (Ellis 1971). Three species of *Polyscytalum* have thus far been reported from *Eucalyptus*, namely *P. gracilisporum* (Sutton & Hodges 1977, Crous & van der Linde 1993), *P. hareae* (Sutton 1978, Kirk 1981) and *P. truncatum* (Sutton & Hodges 1977), which differ in conidium and conidiophore morphology. *Polyscytalum algarvense* is morphologically most similar to *P. fuegianum* (Gamundí et al. 1977), in mostly producing simple conidiophores, conidiogenous cells with only a few terminal loci, and aseptate conidia. However, *P. algarvense* has shorter and wider conidia in vivo than that of *P. fuegianum* (15.4–19.2 × 1.4–2 μm). Phylogenetically *P. algarvense* is allied to *P. fecundissimum* (GenBank EU035441) (Fig. 1).

Pseudocercospora palleobrunnea Cheewangkoon & Crous, sp. nov. — MycoBank MB513853; Fig. 18

Teleomorph. Unknown.

Differt a speciebus *Pseudocercosporeae myrtacearum* conidiis subcylindraceis, 1–6-septatis, (35–)40–55(–85) × (2.5–)3–4(–4.5) μm.

Etymology. Named after its pale brown conidia.

Mycelium internal and external, pale brown, consisting of septate, branched, smooth hyphae, 4–6 μm wide. *Caespituli* pale to medium brown, 80–130 μm high and up to 230 μm wide.

Conidiophores fasciculate, densely aggregated, arising from the upper cells of a well-developed sub-superficial stroma; stroma dark brown, up to 70 μm high and 180 μm wide; conidiophores medium brown, paler toward the apex, slightly verruculose, 2–4-septate, subcylindrical, straight or slightly sinuous, rarely branched, (40–)50–65(–80) × 3–4.5 μm. Conidiogenous cells terminal, unbranched, mono- to polyblastic, sympodial, subcylindrical, pale brown, slightly verruculose to smooth, terminating in truncate or bluntly rounded loci, (6–)10–15(–22) × (2.7–)3–4(–4.8) μm. *Conidia* solitary, subcylindrical, tapering to a bluntly rounded apex and truncate base, thick-walled, subhyaline to pale brown, guttulate, curved, mostly widest above the middle, 1–6-septate, (35–)40–55(–85) × (2.5–)3–4(–4.5) μm; hila 2–3 μm wide, not darkened, but slightly thickened along the rim.

Culture characteristics — Colonies reaching 17 mm diam on MEA after 1 mo at 25 °C in the dark; colonies circular, convex, with entire margin and medium aerial mycelium; pale greenish grey (surface), fuscous-black (reverse).

Specimen examined. AUSTRALIA, Queensland, Moubray Park, on *Syzygium* sp., 27 Aug. 2006, P.W. Crous, CBS H-20290 holotype, culture ex-type CPC 13387 = CBS 124771, CPC 13388, 13389.

Fig. 18 *Pseudocercospora palleobrunnea*. a. Sporodochium; b–e. conidiophores, conidiogenous cells and conidia; f. conidia. — Scale bars: a = 35 μm; b–f = 10 μm.
1–6-septate, subcylindrical to obclavate, 25–60 × 2–3.5 μm), *P. syzygiicola* (conidia cylindrical, 1–11-septate, 40–80 × 2–3 μm), and *P. syzygiigena* (conidia 1–5-septate, subcylindrical-filiform, 15–60 × 1.5–3 μm), but can be distinguished from them based on its conidal shape, septation and dimensions. Based on ITS sequence data (Table 1) *P. palleobrunnea* is phylogenetically closely related to *Mycosphaerella fori*, the *Pseudocercospora* state of which is quite distinct, having conidia that are 1–3-septate, 50–100 × 2–3.5 μm (Hunter et al. 2006b).

Pseudoramichloridium Cheewangkoon & Crous, gen. nov. — MycoBank MB513854

Ramichloridio simile, sed coloniis in cultura (MEA) atro-olivaceis et tarde crescentibus, cicatricibus et hilis leviter incrassatis, fuscatis et refractivis.

Type species. *Pseudoramichloridium henryi* Cheewangkoon & Crous, sp. nov.

Etymology. Named after its morphological similarity to the genus *Ramichloridium*.

Mycelium consisting of submerged and aerial hyphae; submerged hyphae pale to medium olivaceous-brown, thin- to slightly thick-walled; aerial hyphae smooth or verruculose, narrower and darker than the submerged hyphae. **Conidiophores** unbranched, slightly thick-walled, darker than the subtending hyphae, arising vertically from submerged or creeping aerial hyphae, with additional thin septa. **Conidiogenous cells** integrated, terminal, proliferating sympodially, giving rise to a long rachis with crowded, polyblastic scars that are protruding, somewhat prominent, thickened along the rim, slightly reflective, somewhat darkened. **Conidia** obovoid to fusiform, thin-walled, smooth to verruculose, aseptate, pale brown, smooth to slightly verruculose, with truncate base; hilum thickened, slightly reflective, somewhat darkened; conidial secession schizolytic. Colonies are dark olivaceous and slow-growing on MEA, and exophiala-like states are absent.

Pseudoramichloridium henryi Cheewangkoon & Crous, sp. nov. — MycoBank MB513855; Fig. 19

Teleomorph. Unknown, *Teratosphaeriaceae*.

Pseudoramchioridio brasiliano simile, sed conidiis longioribus, 6–8(–9) × (2–)2.5–3 μm.

Etymology. Named after the host species on which it occurs, *Corymbia henryi*.

Mycelium consisting of submerged and aerial hyphae; narrow hyphae submerged, hyaline to subhyaline, thin-walled, smooth to slightly verruculose, 2–3 μm wide; fertile hyphae submerged, partly erumpent, become wider, thicker and darker-walled, up to 5 μm wide, constricted at septa, forming an erumpent, darkened stroma; aerial hyphae mostly produced on setae-like structures among conidiophores, smooth to slightly verruculose, thick-walled, pale to medium brown, becoming thinner-walled and paler toward the apex, 80–120(–150) × 2.5–3 μm. **Conidiophores** mono- and macronematous, produced on stroma-like structures, not on creeping hyphae, or arising from thickened, darkened hyphae, not swollen at the base, cylindrical, straight, unbranched, thick-walled, medium brown, up to 90 μm long, 2.5–3 μm wide, 3–8-septate. **Conidiogenous cells** integrated, terminal, polyblastic, smooth, thick-walled, medium to pale brown, thinned at septa, forming an erumpent, darkened stroma; aerial hyphae mostly produced on setae-like structures among conidiophores, smooth to slightly verruculose, thick-walled, pale to medium brown, becoming thinner-walled and paler toward the apex, 80–120(–150) × 2.5–3 μm. **Conidia** aseptate, solitary, hyaline to very pale brown, smooth, thin-walled, obovoid to fusiform, 6–8(–9) × (2–)2.5–3 μm; hilum prominently thickened along the rim, slightly reflective, somewhat darkened, 1–1.2 μm wide.

![Fig. 19 Pseudoramichloridium henryi. a. Colony on MEA; b. colony on SNA; c, d. conidiophores, conidiogenous cells and conidia; e, f. conidia. — Scale bars = 10 μm.](image-url)
Fig. 20 *Quambalaria simpsonii*. a. Colony on MEA; b–i. hyphae, conidiogenous cells and conidia; j. conidia. — Scale bars = 10 μm.

Fig. 21 *Rachicladosporium americanum*. a–e. Conidiophores, conidiogenous cells and conidia; f. conidiogenous cells with prominent scars. — Scale bars = 10 μm.
Culture characteristics — Colonies on MEA reaching 15 mm diam after 14 d at 25 °C; circular, convex, with a slightly undulate, smooth margin, and moderate aerial mycelium; pale greenish grey to pale olivaceous-grey (surface); olivaceous-black (reverse).

Notes — Morphologically **Pseudoramichloridium** (Terato-phaeriaeaceae) resembles the genus Ramichloridium (Myco-phaerellaceae) by having well-differentiated, pigmented, unbranched, sympodially proliferating rachi producing aseptate, pigmented conidia, and lacking exophiala-like states (de Hoog et al. 2008). **Pseudoramichloridium** can be distinguished from Ramichloridium by having colonies that are dark olivaceous and slow-growing on MEA, and conidal scars and hila that are faintly thickened, darkened and somewhat refractive. Conidia of **Pseudoramichloridium henryi** are longer, 6–8(–9) × (2–)2.5–3 μm, than those of **Pseudoramichloridium brasiliunm**, (4–)5–6(–8.5) × 2–2.5(–3) μm.

Pseudoramichloridium brasiliunm (Arzanlou & Crous) Cheeewangkoon & Crous, comb. nov. — MycoBank MB513586

Description and illustrations — Arzanlou et al. (2007).

Quambalaria simpsonii Cheewangkoon & Crous, sp. nov. — MycoBank MB513857; Fig. 20

Teleomorph. Unknown.

Etymology. Named after the Australian mycologist, Dr J.A. Simpson, who introduced the genus Quambalaria.

Mycelium superficial, partly immersed; aerial hyphae hyaline, smooth, thin-walled, loosely septate, branched, 1.5–2.2 μm wide. **Conidiogenous cells** scattered, cylindrical, similar to hyphae, terminal or integrated in short side branches, (9–)18–40(–53) × (1.5–)1.8–2(–2.2) μm, widest at swollen apex, which forms conidia via sympodial growth, 2–3.5(–4.2) μm wide, often elongating, giving rise to another conidiogenous cell at a higher level; conidiogenous loci denticulate, inconspicuous, pointed or flattened. **Conidia** aseptate, hyaline, smooth, thin-walled, continuous; **ramoconidia** fusiform or ellipsoid, with tapered base, (4.6–)5.5–8.5(–10.4) × (2.5–)3(–3.5) μm, usually giving rise to one or several obovoid to fusiform secondary conidia, (2.5–)3–4.5(–6.2) × (1.7–)2–2.5(–2.9) μm, sometimes giving rise to 1–4 obovoid, tertiary conidia, (2–)2.5–3.4(–)1.3–1.5–1.8(–2.3) μm.

Culture characteristics — Colonies on MEA reaching 15 mm diam after 14 d at 25 °C; circular, convex, with a slightly undulate, smooth margin, and moderate aerial mycelium; pale greenish grey to pale olivaceous-grey (surface); olivaceous-black (reverse). Whereas those of **Q. coyrecup** are reported as turning yellowish white or pale orange on MEA and PDA (Paap et al. 2008).

Phylogenetically **Q. simpsonii** is more closely related to **Q. cyanescens** and **Q. eucalypt** than **Q. coyrecup** based on LSU and ITS sequences (Fig. 1, Table 1).

Rachicladosporium americanum Cheewangkoon & Crous, sp. nov. — MycoBank MB513858; Fig. 21

Teleomorph. Unknown.

Rachicladosporio luculiae similis, sed conidiis longioribus.

Etymology. Named after the USA, where it was collected.

Mycelium septate, not constricted at septa, which are not thickened nor darkened; hyphae smooth, slightly verruculose, pale to medium brown, loosely branched, walls semi-thickened, 4.5–6(–7.5) μm wide. **Conidiophores** arising laterally from creeping hyphae, micronematous to semi-macronematous, erect, straight to slightly flexuous, cylindrical, neither geniculate nor nodulose, occasionally short-branched, up to 95 μm long, 5–6.5 μm wide, 4–11-septate, pale to medium brown, smooth to slightly verruculose, walls slightly thickened. **Conidiogenous cells** integrated, mostly terminal, sometimes intercalary, cylindrical, 4–6.5 × (7.5–)9.5–15(–)15 μm, conidiogenesis holoblastic, proliferation sympodial, with a single or up to three conidiogenous loci, often at the apex, sometimes situated on small lateral shoulders, loci truncate, not denticulate, 1.5–2.5 μm wide, thickened and darkened, visible as small dark circles when viewed directly from above. **Ramoconidia** cylindrical, (13–)16–18(–23) × (3–)3.5–4 μm, 1–2-septate, slightly constricted at septa, concolorous with conidiophores, walls semi-thickened, smooth to slightly verruculose, apically with up to 3 truncate hila, 2–2.5 μm wide, thickened and darkened, not refractive. **Conidia** catenate, in loosely branched chains, ellipsoid, fusiform to subcylindrical, tapering towards both ends, (10–)12–16(–18) × (3–)3.5–4 μm, walls semi-thickened, 0–1-septate, mostly with 1–median septum, slightly constricted at septum; hila truncate, 1–2 μm wide, thickened, somewhat darkened, not refractive; terminal conidia ellipsoid, paler towards apex, with rounded apex, thin-walled, 0–1-septate, 8–11 × 3–3.5 μm; base with truncate hilum that is thickened, darkened, but not refractive.

Culture characteristics — Colonies on MEA reaching 2 cm diam after 10 d at 25 °C in the dark, flat, elevated at centre; colonies felty, with dense sporulation and sparse aerial mycelium; brownish olivaceous in the centre, grey-olivaceous at the margin (surface), dark brown (reverse).

Specimen examined. USA, Virginia, Fort Royal, on leaf litter of unknown host, 1 May 2007, P.W. Crous, CBS H-20292 holotype, culture ex-type CPC 14045 = CBS 124774, CPC 14046, CPC 14047.

Notes — Using the key to cladosporioid genera provided by Crous et al. (2007b), **R. americanum** is a typical member of the genus Rachicladosporium, except that it lacks an apical rachis (though this feature is not considered diagnostic, and hence not used in the key). Morphologically, **R. americanum** can also be distinguished from **R. luculiae** by its longer conidia. Phylogenetically the two species cluster together, suggesting that the rachis observed in the type species, **R. luculiae**, is probably not a feature of generic importance.

Selenophoma australiensis Cheewangkoon & Crous, sp. nov. — MycoBank MB513859; Fig 22

Teleomorph. Unknown.

Selenophomae eucalypti similis, sed conidiis minoribus, (5.5–)6–6.5(–7) × 3–3.5 μm.

Etymology. Named after its country of origin, Australia.
Selenophoma australiensis. a. Colony on SNA; b, c. hyphae; d–i. conidia produced from hyphal cells; j, k. endoconidia; l. chlamydospores; m. cross section through pycnidium on canation leaf agar; n, o. conidiogenous cells; p. conidia. — Scale bars: a = 200 μm; b–p = 10 μm.

Selenophoma state. *Conidiomata* on CLA pycnidial, dark brown, subepidermal to erumpent, globose, 70–110 × 80–110 μm; wall consisting of 2–3 layers of medium to dark brown textura angularis, thick-walled. *Conidiophores* not uniform, short, barrel-shaped or subobovoid, simple, medium brown, thick-walled, composed of 1–3 cells, tapering to the conidiogenous cell, occasionally reduced to conidiogenous cells, 7–10 × 5–7 μm. Conidiogenous cells subglobose, obpyriform or obovoid, phialidic, with apical periclinal thickening, (5–)6–7.5 × (4–)6–7(–8) μm. *Conidia* aseptate, hyaline, ellipsoidal to obovoid, thin-walled, guttulate, (5.5–)6–6.5(–7) × 3–3.5 μm. *Hormonema* state. Mycelium immersed and superficial; hyphae hyaline, thick-walled, smooth to slightly verruculose, loosely septate; brown hyphae (type 1) thick-walled, slightly verruculose, densely septate, mostly constricted at septa, phialides integrated in hyphal cells, loci ≤ 1.5 μm wide, producing hyaline, asceptate conidia, 4–5.5 μm wide; brown hyphae (type 2), thin-walled, smooth, loosely septate, not constricted at septa, producing endoconidia, 5–8 μm wide, aggregating in masses in the centre of colonies. Conidiogenous cells undifferentiated from creeping hyphae, intercalary or terminal on brown hyphae, 4–5 × 5–6(–8) μm, producing 1–2 conidia basipetally, with prominent loci, and visible collarette after conidial secession, apex 1–1.5 μm wide. *Conidia* producing synchronously, along hyphae and on short lateral branches, asceptate, hyaline, ellipsoid to obovoid, smooth, tapering to ≤ 1.5 μm wide truncate base, slightly thick-walled, turning brown and thicker walled when mature, occasionally becoming 1-medianly septate, slightly constricted at septum, (2.7–)3–3.5(–4) × (5.5–)7–8(–8.5) μm. *Arthroconidia* ellipsoid, medium brown, thick-walled, medianly septate, or with slightly longer basal cell, conspicuously constricted at septum, with broadly rounded ends; hilum with 1–2 μm wide; conidia 4.8–5.5 × (8.5–)9–10(–11.5) μm, sometimes producing secondary conidia via microcyclic conidiation, 7–7.5 × 3.5–4.5 μm. *Endoconidia* produced in thick- and thin-walled hyphae, 0–2-septate, ellipsoidal, constricted at septa, thick-walled. Chlamydospores multisepulate, brown, composed of subglobose cells, thick-walled, constrict at septa, irregular in shape, 10–17 × 10–13 μm.

Notes — Considerable confusion surrounds the delimitation of *Aureobasidium* and *Hormonema*, complicating species identification in these genera (see discussion under *Sydowia eucalypti* below). For this reason, we prefer to name the current species in *Selenophoma*, which possesses a similar yeast synanamorph as observed in *S. eucalypti* (Crous et al. 1995a).
Sphaceloma tectificae Cheewangkoon & Crous, sp. nov.
— MycoBank MB513860; Fig. 23

Synanamorph. Sporotrichum sp.
Teleomorph. Unknown.

Cellulae conidiogenae phialidicae, hyalinae, laeviae, non ramosae, ex hyphis lateraliter oriundae, obclavatae vel cylindraceae, (4–)8–10 × 2.5–3(–5) μm. Conidia hyalina, acrogena, ellipsoidea vel brevicylindracea vel obovoidea, aseptata, 4–8 × 2.5–3(–5) μm.

Etymology. Named after the host species on which it occurs, *Eucalyptus tectifica*.

Sphaceloma state. Acervular conidiomata not observed in culture. *Conidiogenous cells* phialidic, hyaline, smooth, unbranched, occurring as lateral tips on hyphae, sometime with one basal supporting cell, obclavate to cylindrical, tapering sharply to a truncate apex, (4–)8–10 × 2.5–3(–5) μm. *Conidia* acrogenous, ellipsoid to short cylindrical or obovoid, aseptate, 4–8 × 2.5–3(–5) μm.

Sporotrichum synanamorph. Mycelium consisting of branched, septate, smooth, hyaline to pale brown hyphae, minutely guttulate, occasionally constricted at septa, 2–3(–5) μm wide, somewhat aggregated in bundles, densely septate. *Conidiophores* macronematous, arising from creeping mycelium, sometimes reduced to conidiogenous cells, pale brown, darker towards conidiogenous cells, cylindrical, simple or branched, 0–4-septate, (12–)20–30(–40) × 2–2.5 μm. *Conidiogenous cells* terminal, integrated, smooth to slightly verruculose, thin-walled, straight or geniculate, somewhat swollen to irregular, (7–)15–20(–30) × (3–)4–5(–6) μm, with crowded conidiogenous loci in an apical rachis, denticles ≤ 1 μm high, flat tipped, with minutely thickened and reflective scars, visible as a circle when viewed from directly above, 1–1.3 μm diam. *Conidia* in short, branched chains; *ramoconidia* cylindrical to ellipsoid, tapering toward both ends, sometimes swollen at the crowded conidiogenous loci, aseptate, thin-walled, smooth to slightly verruculose, pale to medium brown, 7–9(–11) × 2.5–3(–4) μm; hila thickened along the rim, refractive, not darkened; *intercalary conidia* ellipsoid to fusiform, aseptate, pale to medium brown, 6–8(–9.5) × 2.2–3 μm; *terminal conidia* obovoid, pale brown, paler toward the apex, (2.5–)3.5–5 × 2–2.5 μm. *Chlamydospores* globose to subglobose, thin-walled, 0–multicellular, hyaline, muriformly septate, 5–8 × 8–10 μm. *Microcyclic conidiation* present.

Culture characteristics — Colonies on MEA reaching 15 mm diam after 15 d at 25 °C in the dark; colonies irregular, centre strongly folded, convoluted, with sparse, pale, orange-grey aerial mycelium, turning greenish grey and woolly when sporulating; margin feathery, producing a diffuse pigment that changes the colour of the media to reddish orange.

Notes. *Sphaceloma tectificae* produces both a *Sphaceloma* and *Sporotrichum* state in culture, as illustrated by Doidge & Butler (1924) for the anamorphs of *Elsinoë fawcettii*, confirming that these genera are actually synanamorphs. Although *S. tectificae* is phylogenetically closely related to *E. fawcettii*, they still differ in 45 nucleotides based on their ITS sequence data (Table 1). Morphologically *S. tectificae* produces smaller conidia than *E. fawcettii*, and its *Sporotrichum* synanamorph also has larger and more densely branched conidiophores. Phylogenetically *S. tectificae* clusters apart from *E. eucalyptorum* (Summerell et al. 2006) and *E. eucalypticola*.

![Fig. 23 Sphaceloma tectificae. a. Colony on MEA; b–h. Sporotrichum synanamorph; b–f. conidiophores, conidiogenous cells and conidia; g. Sporotrichum producing from Sphaceloma conidial anastomosis; h, i. Sphaceloma sp. — Scale bars: a = 2 cm; b–i = 20 μm.](image-url)
Strelitziana australiensis Cheewangkoon & Crous, sp. nov.
— MycoBank MB513861; Fig. 24

Teleomorph. Unknown.

Strelitziana australiensis similis, sed conidiis ad apicem cum appendice mucosa.

Etymology. Named after its country of origin, Australia.

Mycelium superficial, partly immersed, hyaline to pale brown, septate, branched, smooth, 2.8–4 μm wide, constricted at septa, which tend to be more frequent closer to the conidiogenous cells. Chlamydospores mostly subglobose or ellipsoid, medium to dark brown, thick-walled, 1–4-septate, somewhat constrict at septa, (8–)10–14×7–11 μm. Conidiophores mostly reduced to conidiogenous cells, rarely 1–2-septate, subcylindrical, with an apical conidiogenous cell. Conidiogenous cells irregular in shape, subglobose to obvoid, somewhat curved, (5–)7–10×(3.5–)7–11 μm, intercalary, rarely terminal, polyphialidic, conidial succession rhexolytic, with remnants of the separating cell visible on conidiogenous cells, collarettes 1.5–2×1.5–4 μm, appearing as open denticles, up to 12 per conidiogenous cell. Conidia cylindrical, rounded apex, smooth, hyaline to very pale brown, minutely guttulate, 4–8-septate, (30–)50–60×(73)×2.8–3.2 μm, with a small, globose, hyaline, apical mucilaginous appendage, 4.5–5.5 μm; base obconically truncate; sometimes remnants of the separating cell remain attached to the conidial hilum as a minute marginal frill, up to 1 μm long, 1.5–2 μm wide; microcyclic conidiation observed in culture.

Culture characteristics — Colonies reaching up to 2.5 cm diam on MEA after 2 wk at 25 °C in the dark; colonies irregular, flat, raised at the middle, slightly folded, with irregular margin, and sparse, smoky-grey aerial mycelium; medium to dark brown (surface); dark brown (reverse).

Notes — Strelitziana australiensis can be classified in Strelitziana based on its rhexolytic conidiation, polyphialides, pigmented structures, and unthickened conidial scars (Arzanlou & Crous 2006). Although S. africana is presently the only member of this genus, it has similar conidial dimensions to S. australiensis. However, S. africana lacks an apical mucilaginous appendage, chlamydospores and has obclavate conidia, making it easy to distinguish from S. africana. Phylogenetically, the two species also cluster together in Strelitziana (Fig. 1).

Sydowia eucalypti (Verwoerd & du Plessis) Crous, Sydowia 55: 143. 2003 — Fig. 25

Synanamorphs. Coniothyrium-like and Hormonema-like.

Coniothyrium-like synanamorph on PNA: Conidiomata pycnidial to avervular, dark brown, semi-thick-walled, up to 120 μm diam and 200 μm high. Conidiophores reduced to conidiogenous cells, annellidic, integrated, indeterminate, formed from the inner cells of the conidiomatal wall, hyaline to pale brown, smooth, slightly thick-walled, short-cylindrical to narrowly ampulliform, slightly tapered toward the apex, (2.5–)3.5–5.5 × 1.8–3.3. Conidia aseptate, medium brown to olivaceous-brown, ellipsoid to ovoid, not guttulate, thin-walled, 6–8(–10) × (2.3–)3–5.5.

Notes — Morphologically, Sydowia eucalypti (anamorph Selenophoma eucalypti) has characteristics of Aureobasidium and Hormonema in culture (de Hoog & Yurlova 1994, Crous et al. 1995a, 2003, Bills et al. 2004, Zalar et al. 2008). However, the connection between Aureobasidium and Selenophoma was commented on by Ramaley (1992). Thus far only Sydowia polyspora and Hormonema dematioides have been suggested as representing a potential anamorph–teleomorph relationship (Robak 1952, Butin 1964). Several other genera in the Dothideomycetes (Sydowia, Pringsheimia, Dothidea, Dothiora) produce hormonema-like anamorphs in culture (Froidevaux 1972, Sivanesan 1984). The taxonomic status of Aureobasidium and Hormonema remains controversial, however, as these two genera are not well-differentiated using molecular techniques and physiological characteristics (de Hoog & Yurlova 1994, Yurlova et al. 1996). Phylogenetically Selenophoma eucalypti clusters with species of Aureobasidium and Hormonema. The coniothyrium-like synanamorph reported here for Sydowia eucalypti is frequently isolated from Eucalyptus leaves in nature, leading to confusion when a yeast-like growth appears in culture. We therefore hope that this relationship between the Sydowia teleomorph, Selenophoma anamorph, coniothyrium-like synanamorph and the Hormonema yeast has now been clarified.

Zeloasperisporium eucalyptorum Cheewangkoon & Crous, sp. nov. — MycoBank MB513862; Fig. 26

Etymology. Named after the host genus on which it was collected, Eucalyptus.

Mycelium internal to superficial, consisting of sparingly branch- ed, loosely septate, pale brown, smooth or minutely verruculose, thin-walled, (1.5–)2.5–3.5 μm wide hyphae. Conidiophores reduced to conidiogenous cells, micronematous, arising as lateral hyphal branches, erect, straight, subcylindrical.
or conical, not geniculate, unbranched, (17–)20–25(–31) × 3–3.5(–4.5) μm, tapering towards the apex, pale to medium brown, smooth or minutely verruculose, slightly thick-walled, somewhat constricted at the apex below the conidiogenous loci. Conidial proliferation sympodial, with one to several subdenticulate to flat conidiogenous loci, mostly crowded at the apex, protuberant; conidial scars thickened-refractive, appearing as thickened circles when viewed from directly above, ≤ 1 µm wide. Conidia solitary, straight to curved, fusiform, tapered towards the apex, 1-septate, distinctly constricted at the median septum, pale to medium brown, verruculose, somewhat thick-walled, (15–)17–22(–25) × 4.5–6(–7) μm; apex subhyaline, thinner and smoother than the rest of the conidial body, at times forming a globose, apical mucoid appendage; base truncate or slightly rounded, tapering toward a protruding scar, which is somewhat thickened and darkened-refractive, 0.8–1.2 µm wide; microcyclic conidiation observed in culture. Micronematous synanamorph. Conidiogenous cells short-cylindrical, brown, smooth, as lateral pegs on hyphae, 2–4 × 1.5 μm, with minute apical scars. Conidia not observed.

Culture characteristics — Colonies reaching up to 15 mm diam on MEA after 2 wk at 25 °C in the dark; subcircular, irregular, convex, with a slightly folded, undulate surface, and pale brownish grey aerial mycelium; surface pale brownish olivaceous-grey; reverse dark olivaceous-brown.

Notes — Zeloasperisporium eucalyptorum is very similar to Z. hyphopodioides in conidiogenesis and conidial shape (Castañeda et al. 1996, Crous et al. 2007d), but conidia of Z. eucalyptorum are wider and shorter. Phylogenetically Z. eucalyptorum clusters close to Z. hyphopodioides (ITS region 93 % identical), but the two species still differ by 40 nucleotides (Fig. 1).

DISCUSSION

The present study treats 26 fungal species representing 22 different genera, including genera that harbour well-known saprobes, plant pathogens, or both. Based on the high number of novel species encountered, we questioned the aspect of host-specificity within the various genera treated. In other words, although described as novel from Eucalyptus, could one expect to isolate the same fungus from another genus in the Myrtaceae, or even from a totally unrelated plant family?

Based on the various literature sources cited in this paper, it was clear that host ranges associated with these fungal genera are highly variable, with some genera being reported to occur on one to more than 100 different plant families. However, few records are available of individual species having the ability to undergo host-shifting and/or host-jumping. Myrtaceae, and particularly Eucalyptus, support an extremely high number of diverse fungal genera (Sankaran et al. 1995). It is therefore possible that when members of Myrtaceae are introduced into a new habitat outside their natural range, the fungi with potentially high host-shifting/jumping ability can colonise Myrtaceae plantations from surrounding native plant hosts. On the other hand, if all those fungi are naturally occurring on Myrtaceae, these plantations could act as sources of fungi that could shift/jump to other, nearby native plants. After host-shifting/jumping, a particular fungal species might progressively become adapted and specialised to its new host, leading to further speciation (Brasier 2000, Roy 2001, Munday et al. 2004, Giraud 2006, Fauci et al. 2007). To determine the
possible extent in which this is happening, however, a detailed survey of the fungal diversity present on Myrtaceae in native forests and in plantations, as well as on and in the surrounding flora, would be required, which was beyond the scope of the present study.

Of the fungal novelties described in the present study, species of *Quambalaria* appear to be restricted to *Eucalyptus* and *Corymbia* (Myrtaceae) (Simpson 2000, de Beer et al. 2006, Langrell et al. 2008, Paap et al. 2008, Pegg et al. 2008, Zhou et al. 2008). *Quambalaria* cyanogenesis is the only exception, being reported from both eucalypts (Paap et al. 2008) and human skin, though the latter is believed to be an opportunistic infection (de Hoog & de Vries 1973). Although species from the genus *Cladoriella* have thus far only been reported from *Eucalyptus* (Crous et al. 2006e, present study), this is in contrast to the morphologically similar genus, *Pseudocercospora*. The latter contains more than a 1,000 species, spread over a wide range of host families. In spite of this, however, molecular data to prove that these species occur on hosts in diverse genera is still outstanding. Similar to *Pseudocercospora*, species of *Elsinoë* are also able to colonise > 60 plant families, though most species appear to be specialised to specific hosts (Sinclair & Lyon 2005). Some species appear to have the ability to occur on other hosts within the same family, e.g. *E. araliae* on *Aralia*, *Fatsia*, *Hedera* and *Schefflera* (Araliaceae), and *E. fawcettii* on *Citrus*, *Clausena*, *Fortunella*, *Lablab* and *Poncirus* (Rutaceae). In a few cases where there have been reports of species with wider host ranges (Spaulding 1961, Crous, et al. 1989, Taylor et al. 2001), these lack conclusive molecular evidence to back up these observations.

Most *Sydowia* and *Selenophoma* species are potentially able to grow on a wide range of unrelated plant families (Park & Sprague 1953, Sutton 1980, Crous et al. 2000), but once again molecular data is lacking to substantiate these observations. Sooty moulds like species of *Antennularia* and *Leptosphaerium* spp. can colonise various unrelated plant families (Adhikari 1990, Singh & Rawat 1990). This is not surprising, however, as they usually grow on insect secretions, and colonise surfaces of living plants, rather than interact directly with their hosts. Based on these data, it would appear that the most host-specific pathogenic fungi treated here are host-specific. To complicate matters further, even some saprobes appear to exhibit a high level of host specificity. The only feasible way to address these issues would be to either intensively sample all hosts in a specific region, or to use new DNA sequencing technologies to determine all taxa occurring on selected hosts. Given the fact that we consider the 1.5 M species of fungi to be a vast underestimate, and that we only know around 10% of this number to date, and approximately 16% of this fraction is known from culture, and even less represented in GenBank, the present inadequacy of fungal DNA databases make it impossible to accurately assess host specificity (Hawksworth 2004, Crous et al. 2006c). Based on these findings it is clear that further in-depth studies are urgently called for, as these data could hold serious consequences not only for import and export of agricultural and forestry produce, but also for devising effective strategies for biodiversity conservation.

REFERENCES

Adhikari RS. 1990. Some new host records of fungi from India — IV. Indian Phytopathology 43: 593–594.

Crous PW. 2002. Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. APS Press, Minnesota, USA.

Paap T, Burgess T, McComb JA, Shearer BL, Hardy GESUJ. 2008. Quambalaria species, including Q. corycru sp. nov., implicated in canker and shoot blight diseases causing decline of Corymbia species in the southwest of Western Australia. Mycological Research 112: 57–69.

