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INTRODUCTION

The genus Rhopalostroma was erected by Hawksworth (1977) 
to accommodate a series of palaeotropical pyrenomycetes that 
are characterised by producing narrowly obconical, often stipi-
tate stromata. Perithecia are embedded in a monostichous layer 
at the upper part of the stroma, below the convex surface of 
the semiglobose to subglobose stromatal head, surrounded by 
characteristic pigment granules. The asci are early deliquescent 
and can normally not be observed even in fresh material. The 
ascal tips lack the amyloid apical apparatus that is commonly 
encountered in most Xylariaceae. The ascospores of Rhopalo
stroma are unicellular, brown, ellipsoid to reniform and bear 
a germ slit. Ten species of Rhopalostroma are distinguished, 
based on the size and the morphological characteristics of 
ascospores and stromata (Whalley et al. 1998). 

Rhopalostroma belongs to the hypoxyloid Xylariaceae, which 
have Nodulisporium-like anamorphic stages. Hawksworth 
(1977) had already observed such typical conidiophores 
on the stromata of the type specimen of R. angolense, and 
Hawksworth & Whalley (1985) later cultured another species 
from India, confirming these results. The morphologically highly 
similar, neotropical genus Phylacia mainly differs from Rho
palostroma in the lack of ascospore germ slits and perithecial 
ostioles, whereas Thamnomyces, which is distributed in tropical 
America and Africa, features wiry stromata. Hawksworth (1977) 
has already discussed the possible affinities of Thamnomyces 
and Rhopalostroma, and Ju et al. (1997) postulated affinities 
of the latter genus to Daldinia. Stadler et al. (2004a) reported 
that these genera and Phylacia have various stromatal sec-
ondary metabolites in common. Relationships of Phylacia and 
Thamnomyces to Daldinia were also established by employing 

molecular phylogenetic data (Bitzer et al. 2008, Stadler et al. 
2010b). Ruwenzoria, a recently described tropical xylariaceous 
genus (Stadler et al. 2010a), also features early deliquescent 
asci that are devoid of an amyloid apical apparatus. However, 
its stromata are massive, showing an effused-pulvinate habit, 
and its closest relative as inferred from molecular phylogenetic 
data appeared to be Entonaema liquescens, a xylariaceous 
pyrenomycete featuring hollow, liquid-filled stromata. 

As revealed by morphological, chemotaxonomic and molecular 
phylogenetic data, all the above genera appear to be allied to 
one another – although no molecular data have hitherto been 
recorded in a Rhopalostroma species. The only extant viable 
culture of Rhopalostroma was obtained from the perithecial 
contents of a specimen of R. indicum, the type species of the 
genus, that had been collected over 20 years ago (Stadler et 
al. 2004a). A Nodulisporium-like anamorph was observed in 
this culture. It had, however, been possible to obtain cultures 
from other Xylariaceae (e.g. D. novaezelandiae; cf. Stadler 
et al. 2004b) several years after collection, and we preferred 
to wait until fresh material became available to serve as a 
representative of the genus in our ongoing phylogenetic stud-
ies of xylariaceous fungi. Recently, R. angolense, one of the 
species originally included in the genus by Hawksworth (1977) 
was encountered in western Africa. The current study deals 
with the characteristics of this species and with its affinities 
to other members of the family as inferred from a polythetic 
approach. 

MATERIALS AND METHODS

Fungal material studied

Various fungal sporocarps were collected by S.G. during a 
field trip to several countries in western Africa in the summer of 
2009. The Xylariaceae amongst them were identified by using 
the microscopic methods described by Stadler et al. (2008), 
aided by a comparison of morphological and chemotaxonomic 
data with those previously obtained during studies of type and 
authentic specimens (cf. Stadler et al. 2004a for Rhopalostroma 
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species). For preparation of cultures, the perithecial contents 
were plated on YMG agar (yeast extract 0.4 %; malt extract 
1 %; dextrose 0.4 % (w/v); all ingredients supplied by Merck 
Darmstadt, Germany; see Stadler et al. 2008) and observed 
microscopically. The ascospores readily germinated after 2 d, 
and pure cultures were finally obtained by repetitive transfer of 
the mycelia onto new agar plates. Since the air-dried stromata 
had been infested by mites and psocids, they were frozen over 
night at –20 °C, prior to culturing. These invertebrate contami-
nants were successfully removed by an additional subculture 
on YMG agar supplied with 50 mg/L of the insecticidal and 
acaricidal agent Ivermectin (Sigma). The herbarium specimens 
are housed in M, and representative cultures were deposited 
with CBS and MUCL. 

Microscopic observations of teleomorphic structures were 
made in water (for studying ascospore morphology), in Melzer’s 
reagent (for testing the amyloidity of ascal apical structures), 
in Chlorazol black (for measurements of ascal stipes), and in 
10 % KOH (for testing the dehiscence of perispore). In cases 
of apparent absence or lack of reaction of ascal apical struc-
tures in Melzer’s reagent, an attempt was also made after 
pretreatment with 3 % KOH. Measurements of ascospores 
were made in water at 1 000 ×. Micrographs of ascospores 
were taken in water or 10 % KOH. KOH-extractable pigments 
were obtained as described in Ju & Rogers (1996). Inoculated 
plates or Erlenmeyer flasks, containing 100 mL of agar media 
or 20 g of cellulose pulp, respectively, were incubated for 12 h 
at 23 °C under fluorescent light. Microscopic observations of 
anamorphic structures from cultures on Difco Oatmeal agar 
(OA) or YMG media (Bitzer et al. 2008) were made in water 
at 400–1 000 ×, using phase contrast. For microscopic char-
acteristics, c. 30 measurements were made to calculate the 

mean values. Colours were determined using the colour charts 
of Rayner (1970). 

HPLC profiling

Secondary metabolite profiling was carried out using a dual 
HPLC system, comprising a diode array detector (DAD) and 
mass spectrometric (MS) detectors, the latter providing mass 
spectra in the positive and negative electrospray ionisation (ESI) 
mode, using HPLC-based dereplication library of Xylariaceae 
metabolites (Bitzer et al. 2007). The resulting chromatograms, 
MS and HPLC-DAD-spectra were used to identify the secondary 
metabolites in the crude extracts. Standards of numerous pure 
chemotaxonomic marker molecules obtained during previous 
studies of the Xylariaceae (in particular, those isolated previ-
ously from Phylacia and Daldinia species by Bitzer et al. (2008) 
and Stadler et al. (2004a), respectively; Fig. 1) were available, in 
order to provide unambiguous identifications of the compounds 
obtained from stromata and cultures of R. angolense. For the 
chemotaxonomic study, the cultures were grown on HLX (10 g 
Difco Bacto vitamin-free casamino acids (Becton Dickinson, 
Heidelberg), 1 g K

2
HPO

4
, 0.5 g MgSO

4 
× 7 H

2
O, 0.5 g KCl, 

0.01 g FeSO
4
 × 7 H

2
O, 30 g sucrose, ad 1 L tap water, pH 6.3, 

supplemented with vitamin solution, as specified in Brewer et 
al. 1968) and YMG media as described by Bitzer et al. (2008). 
Fermentations were performed in 500 mL Erlenmeyer flasks 
containing 200 mL of culture media, employing the standard-
ised conditions used in previous studies on Xylariaceae. The 
time course of metabolite production was followed by HPLC 
profiling of samples taken daily for up to 10 days of fermenta-
tion, and glucose and pH were determined concurrently. The 
rationale for using this standardised methodology is that in all 
Xylariaceae hitherto studied, secondary metabolite production 
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Fig. 1   Chemical structures of chemotaxonomically significant metabolites of the hypoxyloid Xylariaceae.
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was previously found to reach its maximum intensity as the free 
glucose in the culture medium was depleted, accompanied by 
an increase of the pH value, and that such results were always 
highly reproducible in a given strain or species (cf. Bitzer et 
al. 2008). 

Molecular-phylogenetic analysis

Total DNA was isolated from cultures of Rhopalostroma an
golense, using the ChargeSwitch® gDNA Plant Kit (Invitrogen) 
as recommended by the manufacturer. The ITS region (ITS1, 
5.8S, and ITS2 rRNA gene) was amplified using the primers 
ITS1F (Gardes & Bruns 1993) and ITS4 (White et al. 1990). 
Increments were added as recommended by the manufac-
turer of the Taq polymerase (Invitrogen) and sterile distilled 
water was added to obtain a final reaction volume of 25 µL. 

The PCR commenced by an initial denaturation step (95 °C, 
3 min). Following 30 cycles of denaturation (94 °C, 0.5 min), 
primer annealing (52 °C, 1 min), and elongation (72 °C, 2 min), 
a final elongation (72 °C, 5 min) completed the PCR. Addition 
of 17.5 µL 100 % isopropanol and 2.5 µL 5 M NaCl served to 
precipitate the amplicons over night at room temperature. Fol-
lowing centrifugation and resuspension, the ITS region was 
sequenced through the sequencing service of the faculty of 
genetics (Ludwig-Maximilians-University, Munich), using an 
ABI 3730 capillary sequencer. A consensus sequence of the 
forward and reverse strands, obtained by applying the PCR 
primers, was created by using the Staden software package 
(Staden 1996).

The sequence was aligned by eye with selected sequences 
from well referenced strains/specimens. Only unambiguously 

Fig. 2   Characteristics of Rhopalostroma angolense, specimen S. Gardt n° 284. a. Four stromata; b. stroma; c. dissected stroma, showing perithecial regions 
in the head and white stromatal context; d. vertical section of the fertile part of the stroma showing the crust composed of orange yellow granules visible in 
a bruised part (arrow) and the perithecial layer; e. stromatal surface with darker ostiolar openings; f. transverse section through the stipe; g. olivaceous pig-
ments released in KOH, from the crust in the upper part; h. brown pigments released in KOH, from the crust of stipe. — Scale bars: a, b = 5 mm; c = 1 mm; 
d–f = 0.5 mm.
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alignable positions were used for the phylogenetic analysis 
(positions 31–58, 122–143, 154–355, 360–380, 390–440, 
and 448–473, according to AM993138, Xylaria hypoxylon). 
The most likely molecular-phylogenetic tree was reconstructed 
using RAxML v7.0.3 (Stamatakis 2006), as implemented in ARB 
(Ludwig et al. 2004). The program was also used to test the 
robustness of the tree topology by calculating 500 bootstrap 
replicates. Default parameters and the GTRCAT model of nu-
cleotide substitution were applied for both analyses, with all free 
model parameters having been estimated by RAxML.

RESULTS

Extended description of Rhopalostroma angolense
 Specimens examined. AngolA, Golungo Alto, Quibolo, on rotten wood, 
Mar. 1856, Welwitsch 103 p.p., K(M) 110674 – holotype of R. angolense, 
fide Hawksworth (1977). – Côte d’IvoIre, Région Sud, Station Ecologique 
de Lamto, N 06° 13’ W 005 0’, dense forest, on dead bark of Ceiba pentan
dra, 4 Aug. 2009, leg. S. Gardt 284 (M, culture in CBS 126414 and MUCL 
52664, GenBank acc. no of ITS nrDNA sequence FN821965), used in the 
morphological, chemical and molecular studies). – SIerrA leone, Yoabu, Bari, 
Ceiba pentandra, 25 Nov. 1949, F.C. Deighton (IMI 40343).

Stromata (Fig. 2a, b) narrowly obconical with a rounded apex, 
erect, gregarious, unbranched, 0.8–1.3 cm high × 2.6–4 mm 
diam at apex, 1.5–1.8 mm diam at base, dark brown with 

purplish tinge, hard-textured; fertile head hemispherical. Sur-
face (Fig. 2e) finely pruinose, matt, without visible perithecial 
mounds, dotted with minute black ostioles flush with the surface; 
outer crust 80–100 µm thick, brittle, at base composed of dull 
red brown granules yielding dark brick (60) pigments in 10 % 
KOH (Fig. 2h), at apex composed of dull yellow granules (arrow 
in Fig. 2d) yielding olivaceous (48) pigments in 10 % KOH (Fig. 
2g). Stromatal interior (Fig. 2c, f) soft-textured, pithy-fibrous, 
dark grey between the perithecia, delimited from the pale grey 
underlying tissue by a thin black line, blackish below down to 
the base of the stipe. Perithecia (Fig. 2d) 0.65–0.75 mm high 
× 0.2–0.25 mm diam, lanceolate, monostichous, crowded, in 
contact. Asci (Fig. 3a–c) cylindro-clavate to cylindrical, stipitate, 
containing 8 obliquely uniseriate overlapping ascospores in 
unilaterally spicate arrangement on elongated ascogenous hy-
phae, 130–150 µm total length, the spore bearing pars 80–100 
µm long × 7.5–8.5 µm broad, the stipes 40–50 µm long with a 
bulbous base, very thin–walled and readily deliquescent, without 
apical apparatus nor reaction in Melzer’s reagent. Paraphyses 
5–6 µm at base, progressively tapering above, deliquescent. 
Ascospores (Fig. 3d, e) 13–17 × 6–7 µm (M = 14.7 × 6.3 µm), 
ellipsoid-inequilateral with broadly rounded ends to reniform, 
dark brown, with small guttules clustered at both ends, smooth, 
with a straight germ slit 3/4 to 4/5 spore-length on flattened or 
concave side; lacking a dehiscent perispore in KOH.

Fig. 3   Asci and ascospores of Rhopalostroma angolense, specimen S. Gardt n° 284. a. Asci, ascospores and paraphyses; b. immature asci; c. close up on 
attachment of asci to ascogenous hypha; d. ascospores in water; e. ascospores in KOH, showing the germ slits (arrow). a, b and c stained in chlorazol black 
— Scale bars: a = 20 µm; b = 30 µm; c–e = 10 µm. 
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 Culture characteristics — Colonies on Difco OA plates (Fig. 
4d, e) at 23 °C reaching the edge of 9 cm Petri dish in 6–8 d, 
at first whitish, felty, azonate, with diffuse margins, becoming 
smoke-grey (105) with an olivaceous tone; reverse turning 
citrine (13) or remaining uncoloured. Small stromatal primor-
dia and oily droplets of exudates occurring on the agar plates 
after 7–10 d, and cultures developing a characteristic odour, 
reminiscent to that of Daldinia species. Mycelium composed of 
thick-walled hyphae (Fig. 5a), becoming melanised, irregularly 
swollen between the septa, and up to 6 µm thick. Production 
of conidiophores sparse, starting in zones near the centre of 
colonies as the mycelium becomes melanised. Conidiophores 
macronematous, simple, hyaline, slightly roughened, up to 
60 µm long and 3–3.5 µm diam, referable to the Sporothrix-
like branching pattern of Ju & Rogers (1996). Conidiogenous 

cells terminal, cylindrical, 12–20 × 3.5 µm, producing conidia 
holoblastically. Conidia (Fig. 5f–h) hyaline, finely roughened, 
aseptate, pyriform to ellipsoid, often truncate at the base, 5–7 
× 2.5–4 µm.
 Cultures in 500 mL — Erlenmeyer flasks (Fig. 4a–c) contain-
ing 20 g cellulose pulp or 100 mL Difco OA showed a similar 
morphology as those on agar plates, but produced semiglobose 
stromatal primordia to 2.5 cm diam after 4–6 wk. Conidiogenous 
structures arising as a greyish pruina, covering the primordia, 
showing the following characteristics: Conidiophores (Fig. 
5b–e) up to 150 µm long, simple or dichotomously branched, 
more differentiated than the conidiophores in the mycelia, de-
veloping a Virgariella- to Nodulisporium-like branching pattern 
as defined by Ju & Rogers (1996). The conidia formed on these 
stromatal primordia had essentially the same dimensions as 

Fig. 4   Cultures of Rhopalostroma angolense in 500 mL Erlenmeyer flasks supplied with 100 mL of Difco OA after 5 wk (a, b) and YMG medium after 6 wk 
(c), respectively, showing stromatal primordia (c); d, e. culture of R. angolense on a Difco OA plate (9 cm diam); e showing augmented section of d, revealing 
stromatal primordia and oily droplets in the centre of the colony. — Scale bars: a, b = 10 µm; c = 1 cm.
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those observed in the agar cultures. No fertile stromata were 
obtained even at prolonged incubation times (9 wk).
 Secondary metabolites and chemotaxonomy (Fig. 6) — In 
accordance with the study of Stadler et al. (2004a), the fresh 
stromata of R. angolense contained BNT (binaphthalene tetrol; 
1) and a series of yet unknown metabolites. Some of them 
appeared similar to the major components of certain Thamno
myces and Phylacia species, and especially the unidentified 
compound U1 appears to be a marker for the genus, because 
it was previously also detected in four other Rhopalostroma 
species. The secondary metabolite profiles of the cultures 
were very similar to those obtained from representatives of 

the genera Phylacia (Bitzer et al. 2008), Ruwenzoria (Stadler 
et al. 2010b), and Thamnomyces (Stadler et al. 2010a), in that 
they were apparently devoid of 1-methoxy-8-naphthol (3) and 
contained compounds 4, 6, 10, and 11 as major components. 
In contrast to Daldinia and the aforementioned genera, the 
isosclerones 2 and 3 were not observed in the cultures of  
R. angolense. Neither were mellein derivatives (8, 9), which 
are characteristic of Hypoxylon (Bitzer et al. 2008). 

Interestingly, the stromatal KOH reaction, which was not 
studied by Hawksworth (1997), varied from brown at the base 
to olivaceous at the top in the freshly collected material from 
Côte d’Ivoire. According to concurrent HPLC analyses of both 

Fig. 5.   Microscopic characteristics of Rhopalostroma angolense, from Difco OA plates (a, f, g) and 500 mL Erlenmeyer cultures, each after 5 wk of incubation. 
a. Thick-walled hyphae observed in melanising cultures; b–e. conidiophores, ranging from the simple Sporothrix to the more complex Virgariella types sensu 
Ju & Rogers (1996); f–h. conidia; g. conidium arising laterally from a simple conidiogenous cell of the Sporothrix type sensu Ju & Rogers (1996). — Scale 
bars: a, d–h = 10 µm; b–e = 20 µm.

c

b

d

a

g h

e

f



17M. Stadler et al.: Phylogenetic affinities of Rhopalostroma

parts, this unusual phenomenon is merely due to different 
concentrations of essentially the same compounds, rather than 
to different molecules. Larger amounts of BNT were observed 
in the extracts from the base, whereas the unknown compo-
nents that might be azaphilones prevailed in extracts from the 
perithecial region.

 Notes — The specimen from Côte d’Ivoire agreed well with 
the description of R. angolense by Hawksworth (1977), with 
regard to both its teleomorphic and anamorphic characters. 
Affinities with Daldinia, Phylacia, and Thamnomyces are ob-
vious, based on the presence of a continuous outer layer of 
granules enclosing the perithecia and the internal sterile tissues, 
as well as by the macro- and micromorphology of the cultures. 
The anamorph observed is rather similar to that described by 
Hawksworth (1977), who had observed the conidiogenous 
structures on young stromata of herbarium specimens. Hawks-
worth (1977) had also observed asci, but gave slightly deviat-
ing dimensions. To our knowledge, this study is the first report 
including photographic illustrations of the ascal structures of 
a Rhopalostroma species. The specimens examined for com-
parison with the fresh material were rather similar with respect 

to their morphology and HPLC profiles, except that slightly 
larger ascospores (13–19 × 6–8 µm; M = 15.9 × 6.7 µm) were 
found in IMI 40343, and the holotype specimen deviated from 
the other two in containing additional compounds that are pre-
sumably perylene quinones (cf. Stadler et al. 2004a and next 
paragraph).

KOH-extractable pigments of other 
Rhopalostroma species

In this context, it appeared practical to report unpublished mor-
phological and chemotaxonomic data on Rhopalostroma spp. 
studied previously by Stadler et al. (2004a) and more recently, 
during a revision of the specimens in IMI, since only the HPLC 
profiling data, but not the KOH-extractable pigments of these 
materials had been studied earlier on. 

Three specimens of R. kanyae (IndIA, Rajasthan, Mt Abu, Eu
phorbia caducifolia, 14 Sept. 1974, K.S. Panwar, (IMI 188030; 
see Hawksworth 1977 as Rhopalostroma sp.); Mayda Pradesh, 
Shabdol, amerkantak, on Bauhinia retusa, 5 Mar. 1993, U.S. 
Patel (IMI 361432 as Rhopalostroma sp.). thAIlAnd, Chiangmai 
Prov. Doi Inthanon NP, Mae Klang Waterfall, 23 Sept. 1993,  

Fig. 6 
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Fig. 7   Phylogenetic relationships among Xylariaceae as inferred from ITS nrDNA sequence data. Bootstrap support values exceeding 50 %, from 500 RAxML 
replicates, are assigned to the tree topology of the most likely tree found by RAxML. Taxon names are followed by the GenBank Acc. No. of the sequences and 
the culture collection and herbarium access numbers, if available (a ‘T’ indicates type strains). Selected long branches were bisected in length (//).

K. Auncam (IMI 368200, holotype of R. kanyae) were identified 
among the collections in IMI. Specimen IMI 188030 had been 
described by Hawksworth (1977) as ‘Rhopalostroma sp.’, but he  
did not formally name it as a new taxon, because the specimen 
was in rather poor condition. We found that it corresponded well  
with the type of R. kanyae, a species subsequently erected by 
Whalley & Thienhirun (1996). Another specimen in IMI, originat-
ing from India, was also identified as R. kanyae, which is to our 
knowledge here reported for the first time from outside Thailand. 
In all three specimens, HPLC revealed BNT, overlaid by other 
components that are also present in, e.g., Daldinia petriniae 
and D. lloydii, further binaphthalenes were detected in traces 
by HPLC-MS. According to recent results on Thamnomyces  
(Stadler et al. 2010a), these pigments are most probably perylene  
quinones (e.g., compound 7 in Fig. 1), arising from oxidation of 

BNT (1). The KOH-extractable pigments of this species ranged 
from olivaceous-grey (121) to isabelline (65) or fawn (87). The 
type specimen of R. africanum (UgAndA, Mt Elgon, on dead 
wood, Dec. 1814, Small 137.1, K(M) 110622, holotype) showed 
similar pigments in KOH. However, stromatal fragments from 
the type specimen of R. angolense (see above) also showed an 
isabelline tinge in KOH some minutes after incubation. Moreo-
ver, the putative perylene quinones were also detected in traces 
in the ancient material, despite being absent in fresh collections. 
Therefore, this phenomenon could be due to autoxidation of 
BNT during storage to perylene quinones. In this context, it has 
been discussed that KOH-extractable pigments of ancient type 
material should be confirmed by studies in fresh specimens, 
wherever possible (Stadler et al. 2004a, 2010a). 

Daldinia childiae, AM749932, CBS 115725
D. pyrenaica, AM749927, MUCL 43749T
D. petriniae, AM749937, MUCL 51850

99%

D. fissa, AM749925, CBS 119316
D. gelatinoides, GQ355621, MUCL 46173

63%

99%

D. loculata, AF176964, TL 4613 (C)
Entonaema liquescens, AY616686, ATCC 46302

Ruwenzoria pseudoannulata, GU053568, MUCL 51394T
D. concentrica, AY616683, CBS 113277

D. grandis, AM749918, CBS 114736
61%

Thamnomyces camerunensis, FN428828, MUCL 51396
T. dendroidea, FN428831, CBS 123578

Rhopalostroma angolense, FN821965, CBS 126414

55%

Phylacia poculiformis, FN428830, MUCL 51706

72%

Ph. sagrana, AM749919, CBS 119992
D. eschscholzii, AY616684, CBS 113047

D. placentiformis, AM749939, MUCL 47709
D. clavata, AM749931, CBS 113044

95%

D. caldariorum, AM749934, MUCL 49211

84%

79%

77%

73%

71%

Annulohypoxylon atroroseum, AJ390397
Rostrohypoxylon terebratum, DQ631943, CBS 119137T

A. nitens, DQ322099, ST2436
A. annulatum, AM749938, MUCL 47218

98%

52%

Hypoxylon fragiforme, AY616690, CBS 114745, M-0066232
H. howeanum, AM749928, MUCL 47599

63%

100%

Nodulisporium hinnuleum, AM749940, CBS 286.62
A. minutellum, AJ390399

A. cohaerens, AY616687, M-0066231
A. multiforme, AY616706, M-0067221

78%

H. fuscum, AY616693, CBS 113049

81%

H. nicaraguense, AM749922, CBS 117739
H. polyporus, AM749941, MUCL 49339

100%

H. carneum, AM749926, CBS 119310
H. perforatum, AM749935, CBS 115281

H. petriniae, AM749923, CBS 115158T

100%

H. rubiginosum, AM749936, CBS 119309
Pyrenomyxa morganii, AM749920, CBS 116990T

66%

100%

H. haematostroma, AM749924, MUCL 47600

87%

Xylaria mesenterica, AM900592, MUCL 49332
Nemania serpens, FN428829, CBS 533.72

X. longipes, AF163038, CBS 148.73

59%

X. hypoxylon, AM993138, CBS 121680
Rosellinia aquila, FN428832, MUCL 51703

98%

Camillea obularia, AF201714, ATCC 28093
Biscogniauxia nummularia, AJ390415

77%

100%

AF192323, Diatrype stigma, AF192323

0.10

//

C. Xylarioid Xylariaceae

B. (Annulo-)Hypoxylon

A. Daldinoid Xylariaceae

D. Biscogniauxia/ Camillea

A2

A1
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The type specimen of R. gracile (thAIlAnd, Kanchanaburi, 
Cassia, Jan. 1982, L. Manoch (IMI 62895, isotype)) showed 
weakly purple pigments in KOH, and BNT (1) was detected in 
traces by HPLC. The holotype specimen in K (cf. Stadler et al. 
2004a) was in better condition and yielded vinaceous-purple 
(101) to vinaceous-grey (116) pigments in KOH. The same was 
found for the type specimen of R. indicum (IndIA, Karnataka St., 
Belehonnur, Ficus retusa, 25 Nov. 1974, B.N. Muthappa (BPI 
586811, isotype). The isotype specimen of R. dennisii (IndIA, 
Kerala, Calicut University, Artocarpus integrifolia, 29 June 
1978, S. Zachariah (IMI 227748, isotype)) also revealed BNT 
(1) and other binaphthyls; as well as daldinin C (12) and other 
azaphilones, which are presumably daldinin derivatives. The 
KOH-extractable pigments were isabelline (65) to honey (64). 
These preliminary results appear rather promising as additional 
characters to include in a future key to identify Rhopalostroma 
species. However, the type specimens of several species were 
not yet available for comparison, and fresh material is also 
unavailable of some taxa that were described first in the 19th 
century. Additional field work in the Asian and African tropics 
will be indispensable to study such characters in detail, based 
on fresh material. 

Molecular-phylogenetic analysis

The likelihood of the most likely tree found is -3727.46. Relative 
to a substitution rate of 1.0 for transversions between guanine 
and thymine (G↔T), the nucleotide substitution rates estimated 
by RAxML ranged from 0.9 (A↔C and C↔G) to 1.2 (A↔T) for 
transversions and from 3.0 (A↔G) to 4.4 (C↔T) for transitions. 
The topology of the most likely tree reveals four major groupings 
(clades A–D), two of which (clades A and B) are, however not 
supported by the bootstrap analysis (Fig. 7). 

Representatives of the genera Camillea and Biscogniauxia 
(clade D in Fig. 7: Xylariaceae featuring Nodulisporium-like 
anamorphs and, bipartite stromata, but lacking apparent KOH 
extractable pigments) cluster as sister group to the other Xy
lariaceae in the phylogenetic analysis. Aside from these, four 
major groupings are revealed in the most likely tree. With 98 % 
bootstrap support (BS), the monophyletic origin of the xylari-
oid Xylariaceae (clade C in Fig. 7, i.e., species of Nemania, 
Rosellinia, and Xylaria with Geniculosporium-like anamorphs) 
is supported best. All representatives of the hypoxyloid genera, 
Annulohypoxylon, Hypoxylon, Pyrenomyxa, and Rostrohypo
xylon, featuring stromatal pigments and unipartite stromata, 
are found in two weakly supported clades. While species of 
Annulohypoxylon and Hypoxylon become intermingled accord-
ing to the most likely tree, the results are not contradictory to 
the separation of both genera (Hsieh et al. 2005), due to the 
low support (40 % BS at most) of the respective branches. 
Despite that, both genera appear paraphyletic in their current 
circumscription for other reasons, as already shown (Hsieh et 
al. 2005, Tang et al. 2007) using different methodologies to as-
sess molecular phylogeny: Pyrenomyxa morganii clusters within 
Hypoxylon (100 % BS) and Rostrohypoxylon terebratum within 
Annulohypoxylon (98 % BS). What we refer to as the daldinoid 
Xylariaceae here, forms a monophyletic group (clade A in Fig. 
7) according to the most likely tree, which is, however, not 
supported by the bootstrap analysis (31 % BS). Nevertheless, 
the two subclades A1 and A2, are reasonably well supported 
(71 % and 73 % BS, respectively). One comprises the majority 
of Daldinia spp. from the temperate climate zones, along with 
the tropical D. grandis, Entonaema liquescens and Ruwenzoria 
pseudoannulata. Within the second subclade, the predomi-
nantly tropical Daldinia spp., D. eschscholzii, D. caldariorum, 
and D. placentiformis (77 % BS) cluster as sister group to a 
reasonably well-supported clade (79 % BS) including the spe-
cies of Phylacia and Thamnomyces as well as Rhopalostroma 

angolense. The monophyletic origin of Thamnomyces and  
R. angolense is supported with 72 % BS.

DISCUSSION

The molecular and chemotaxonomic data generated in this 
study further confirmed the affinities of Rhopalostroma as pos-
tulated previously (Hawksworth 1977, Ju et al. 1997, Stadler 
et al. 2004a, 2010a; see summary in Table 1). The closest 
relatives of Rhopalostroma are Daldinia, Phylacia, and in par-
ticular, Thamnomyces. Along with Entonaema and the recently 
erected genus Ruwenzoria, these genera comprise a lineage 
in the hypoxyloid Xylariaceae, for which even the erection of 
a new higher taxon might eventually be appropriate. Interest-
ingly, the phylogenetic tree is congruent with chemotaxonomic 
data. For instance, all species included in clade B have been 
shown previously to produce mellein type isocoumarins in their 
culture, a feature that is also encountered in Biscogniauxia and 
Camillea, whereas all taxa included in clades A and C produce 
different compounds instead (cf. Bitzer et al. 2008, Fournier et 
al. 2010, Stadler et al. 2010a, b).

Despite their aberrant ascal and stromatal morphology, Phyla
cia and Thamnomyces were linked to the Xylariaceae several 
years ago. While R.W.G. Dennis had still been unsure as to 
their affinities in his taxonomic studies of tropical Xylariaceae 
in the 1950s and 1960s (cf. discussion in Stadler et al. 2010a), 
he later proposed that these genera might be cleistocarpous 
relatives of the Xylariaceae (Dennis 1970). Subsequently, 
this hypothesis was reinforced by studies of their anamorphic 
morphology: Nodulisporium-like anamorphic structures were 
observed in Phylacia (Rodrigues & Samuels 1989), as well as 
in Thamnomyces (Samuels & Müller 1979 for Thamnomyces) 
and even in Rhopalostroma (cf. Hawksworth & Whalley 1985). 
All these genera seem to have gradually lost the ability to 
actively discharge ascospores in the course of their evolution 
and adaptation to plants (and possibly insect vectors, which 
are always found in abundance in the overmature stromata 
of the Xylariaceae). The striking resemblance of the HPLC 
profiles in stromata as well as cultures of these genera is 
in complete accordance with the outcome of the molecular 
phylogeny. As previously discussed for Phylacia (Bitzer et al. 
2008) and Thamnomyces (Stadler et al. 2010a), these relation-
ships are also reflected by certain common characters of the 
phenotypes that are not currently regarded as taxonomically 
significant. For instance, the macromorphology of cultures of 
these taxa is quite similar, they tend to develop thick inflated 
hyphae or stromatic structures in the ageing mycelia, and they 
all develop a characteristic odour, owing to sweet to acrid-smell-
ing volatile components that remain to be identified. These 
characters are rarely observed in cultures of Hypoxylon and 
Annulohypoxylon.

Asci arising from elongated ascogenous hyphae are present 
in all the aforementioned daldinoid and hypoxyloid genera, 
except for Phylacia. They are known with certainty from some 
species of Hypoxylon and Daldinia, but were to our knowledge 
never observed in other hypoxyloid Xylariaceae (Biscogniauxia, 
Camillea), nor in the xylarioid Xylariaceae (i.e. the genera with 
Geniculosporium-like anamorphs as defined in Ju & Rogers 
1996). Out of the hypoxyloid Xylariaceae, Pyrenomyxa and 
Phylacia appear most derived with respect to having abandoned 
active discharge of ascospores. However, as already shown by 
Stadler et al. (2005) and Bitzer et al. (2008), the cleistocarpous 
features of these genera arose independently from one another, 
with Pyrenomyxa being closely related to the H. rubiginosum 
complex (cf. phylogenetic position of Py. morganii in Fig. 7.). 
From a morphological point of view, Rhopalostroma spp. are 
reminiscent of small stipitate Daldinia spp. lacking internal 
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zonation and with asci that have lost their apical ring (notably, 
R. angolense was first described as a member of Daldinia). 
Ascospores of Rhopalostroma never have a dehiscent peri-
spore and the germ slit can be located either on the flattened 
side (e.g. R. angolense) or on the convex side (e.g. SEM il-
lustrations of R. kanyae by Whalley & Thienhirun 1996). In the 
majority of Daldinia species, except for D. caldariorum (cf. Ju 
et al. 1997), the germ slit is always located on the convex side 
of the inequilateral ascospores.

The culture previously obtained from the herbarium specimen 
of R. indicum (BPI 586811; Stadler et al. 2004a) is probably not 
of that fungus. The 5.8S/ITSnrDNA data (not shown), as well 
as the morphology of the anamorph, suggest that it represents 
D. eschscholzii or a closely related taxon. It remains unclear 
whether it was derived from a laboratory contamination or 
whether the stromata were already contaminated by spores of 
the Daldinia. In this connection it may be pertinent to note that 
we have recently obtained the anamorph of D. eschscholzii 
from a series of other Xylariaceae stromata, including spe-
cies of Kretzschmaria and Xylaria (M. Stadler, unpubl. data). 
Bitzer et al. (2008) also reported that stromata of Phylacia may 
be inhabited by xylariaceous Xylocoremium spp. In all these 
three genera, the isolations were reproducible and so cannot 
be attributed to a superficial contamination; interestingly, the 
‘mycophilic’ contaminants are species that are widely known to 
be common as ubiquitous endophytes in the tropics. 
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