THE SECONDARY PHLOEM OF SOME OCHNACEAE AND THE SYSTEMATIC POSITION OF LOPHIRA LANCEOLATA V. TIEGHEM EX KEAY

R. W. DEN OUTER

Department of Botany, Agricultural University, Wageningen, The Netherlands

SUMMARY

The secondary phloem of Lophira lanceolata v. Tieghem ex Keay (Ochnaceae) has been compared with that of some representatives of the family, especially of the tribe Ochneae of the subfamily Ochnoideae. The removal of Lophira from the subfamily Ochnoideae ('Exalbuminosae'), as proposed by Kanis (1968), appears to be justified from an anatomical standpoint.

INTRODUCTION

The Ochnaceae is a family primarily of shrubs and trees which have centres of distribution in tropical Africa, America, and the East Indies. The family can be divided into two subfamilies and five tribes (Kanis, 1968), viz. the subfamily Ochnoideae comprising the tribes Ochneae and Elvasieae Rchb. and the subfamily Sauvagesioideae Lindl. including the tribes Sauvagesieae, Euthemideae Planch., and Lophireae Rchb. The tribe Ochneae is subdivided (Kanis, 1968) into the subtribes Ochninae and Ouratinae (v. Tieghem) Kanis, and the tribe Sauvagesieae into the subtribes Sauvagesiinae and Luxemburgiinae (Planch.) Kanis. The systematic position of the monogeneric African tribe Lophireae, however, is questionable. Because of the different opinions existing on this matter, a comparison of the secondary phloem of Lophira lanceolata v. Tieghem ex Keay with that of some representatives of the Ochnaceae seemed worthwhile.

MATERIALS AND METHODS

Bark samples used were from the Versteegh and den Outer collection, Ivory Coast, West-Africa (1969). All the material studied was vouched. The samples were collected from stems of small trees at breast height and from basal parts of shrubs, and immediately fixed in FAA. Only *Lophira lanceolata* is a rather large tree.

Anatomical features were studied in transverse, radial, and tangential sections and macerations. All sections were embedded in Kaiser's gelatin-glycerin after treatment (Johansen, 1940). Means of the length of sieve-tube members, parenchyma strands, and fibre-sclereids are based on at least twenty-five individual measurements. The ray type designations employed here are those of Kribs (1935); the sieve-tube type, sieve-area type, and companion-cell type were classified according to Zahur (1959).

RESULTS

The results are summarized in table 1.

The axial system of the conducting secondary phloem of the investigated Ochnaceae

species is composed of sieve tubes, companion cells, parenchyma cells, and sometimes fibre-sclereids (see plate I and II).

In Campylospermum flavum, C. dybowskii, and C. glaberrimum, and in Idertia morsonii, the main part of the axial system is occupied by parenchyma cells, whereas sieve tubes lie scattered in between this ground tissue (see plate I, 4). The transverse section of the sieve tubes is almost rectangular and rather small: in tangential direction about 15 μ m, in radial direction about 9 μ m. The sieve tubes of Campylospermum flavum, however, are somewhat larger.

Ochna rhizomatosa, Rhabdophyllum affine, and R. calophyllum constitute a group intermediate between the first mentioned species and Lophira lanceolata.

In Lophira lanceolata the axial system is composed half of sieve tubes and about half of parenchyma cells. They constitute 1-3 cell wide (mostly one cell wide) irregular tangential bands that alternate regularly (see plate II, 7 and 9).

Besides the characteristics mentioned in table I, the sieve tubes also differ in size from those species mentioned above; in tangential direction about $32 \mu m$, in radial direction about $26 \mu m$. The transverse section of the sieve tubes is also oval to round rather than rectangular.

Both Lophira lanceolata and the species from the intermediate group possess fibresclereids with a diameter of about 40 μ m (see plate II, 6 and 8). They are somewhat larger in Ochna rhizomatosa, viz. about 60 μ m (see plate I, 3 and 5). Only in Lophira lanceolata these fibres occur in groups, whereas they lie scattered in the species of the intermediate group. While in the intermediate group the fibres occupy about 20 percent of the cross section of the conducting secondary phloem, this is only 5 percent in Lophira lanceolata.

The crystals occurring in the bark are isodiametric to somewhat elongated in species of the first group, styloids in species of the intermediate group, and about isodiametric again in *Lophira lanceolata*; but in *Lophira lanceolata* they are much less numerous than in the other species.

Also stone cells occur in the bark of all the investigated species (see plate I, I and 2), only in *Lophira lanceolata* they are present in large quantities.

The phloem rays are heterogeneous, often uniseriate but also multiseriate, whereas Lophira lanceolata possesses mainly homogeneous phloem rays which are seldom uniseriate.

Both the parenchyma cells of the axial system and those of the phloem rays have brown to red-brown contents, except for *Lophira lanceolata* where only the parenchyma cells of the axial system sometimes possess brown contents.

So the picture produced by the conducting secondary phloem near the cambium of *Lophira lanceolata* differs in a few points from that of the other investigated species of the family.

The arrangement of sieve tubes and axial parenchyma cells is quite often in tangential uniseriate layers, taking into account that layers with sieve tubes alternate with those consisting of parenchyma cells. The sieve tubes of the other investigated species lie scattered within a ground tissue of parenchyma cells. Only Ochna thizomatosa (v. Tieghem) Keay and Rhabdophyllum affine (Hook. f.) v. Tieghem show a slight tendency towards an irregular tangential layering of the elements of the secondary phloem. Furthermore Lophira lanceolata is the only species possessing sieve-tube members of type II with compound sieve plates, large sieve areas in the tangential walls of the sieve-tube members, companion cells of type C, fibre-sclereids in groups, and homogeneous phloem rays consisting of procumbent cells.

DISCUSSION

The structure of the secondary phloem of *Lophira* differs from all the other investigated species. These species all belong to the tribe *Ochneae* (Farron, 1963, 1969). Although the number of investigated species is small, it is obvious from the results of this study that *Lophira* does not quite fit within the tribe *Ochneae* of the subfamily *Ochnoideae*. Whether *Lophira* fits in the subfamily *Sauvagesioideae* as far as the anatomy of its secondary phloem is concerned, is not sufficiently known in the absence of suitable material for study.

Also the secondary xylem of Lophira presents several features unique in the family (Decker, 1966), viz. vasicentric tracheids, greater diameter of vessel elements, axial parenchyma in distinctive metatracheal bands, and homogeneous rays. The tribes Ochneae and Elvasieae on the other hand have heterogeneous rays, diffuse and vasicentric axial parenchyma, and no vasicentric tracheids. Still following Gilg (1925), Decker (1966) placed Lophira in the subfamily 'Exalbuminosae' (Ochnoideae) as representing a distinct tribe, because of the presence of vessel elements with vestured pits and the absence of unilaterally compound pitting between vessel and parenchyma like in the other representatives of the 'Exalbuminosae'. It must be kept in mind that she studied especially the tribe Sauvagesieae ('Luxemburgieae') of the subfamily 'Albuminosae' (Sauvagesioideae). Also according to Metcalfe and Chalk (1950) the genus Lophira differs in wood structure from all the others, particularly in its parenchyma arrangement and its much more highly specialized rays. The parenchyma of the Ochnaceae is typically paratracheal and often scanty in the 'Albuminosae', apotracheal, abundant diffuse in the 'Exalbuminosae' with a tendency towards abaxial aliform types; however, it occurs in broad metatracheal bands in Lophira. If there are affinities of Lophira with the family Ochnaceae it would appear to be with the 'Exalbuminosae' rather than with the 'Albuminosae' (Metcalfe and Chalk, 1950), but its position is rather isolated. This in spite of the fact that Lophira lacks 'cristarque' cells that are characteristic for the subfamily 'Exalbuminosae' (Bailey, 1933).

Kanis (1968) accepted Engler's (1874) main division of the Ochnaceae into the 'Exalbuminosae' and 'Albuminosae' as two distinct subfamilies, named Ochnoideae and Sauvagesioideae respectively. The tribe Lophireae was not included by Engler. Gilg (1893, 1895, 1925) and Dwyer (1941) placed it in the Ochnaceae, more specifically in the 'Exalbuminosae' because the seeds lack albumen. However, a position in the Sauvagesioideae seems more logical (Kanis, 1968) since it shares non-distichous leaves and a 2-carpelled, 1-celled, manyovuled ovary with that subfamily. Except for the position of the tribe Lophireae, the systems of Kanis (1968) and Gilg (1925) are not very different from each other.

The removal of *Lophira* from the *Ochnoideae* appears fully justified, not only because of the evidence used by Kanis (1968) but also because of its anatomy. This goes for the secondary phloem, but may after all also apply to the secondary xylem in spite of Decker's conclusion. Besides this, Metcalfe and Chalk (1950) pointed to the taxonomic importance of the 'cristarque' cells in the genera united in the subfamily *Ochnoideae* and *Lophira* lacks those cells.

Lophira had been placed also in the Dipterocarpaceae (Agardh, 1825; Don, 1831) because it shares some features with that family, namely cortical bundles, vestured vessel pits, vasicentric tracheids, metatracheal axial parenchyma, chambered crystalliferous axial parenchyma, and winged exalbuminous seeds. Vestal (1937) and Decker (1966) suggest that there may be a connection between the Dipterocarpaceae and the Ochnaceae through Lophira.

una	-O	dah Fi	bast- type	sieve type	tube average member	sicve blates
a v. Tieghem <i>ex</i> Keay a favum (Schum. et Thonn.) Farron ad adybowskii v. Tieghem hutch. et Dalz.) Farron Hutch. et Dalz.) Farron affine (Hook. f) v. Tieghem 247 247 247 247 247 247 247 247	and 537 and 253	20 3 4 and 2 6 6	2ui 2ui 5 5 5 5 5 5 to 2ui 5 5 to 2ui		465 1900 1900 1900 1900 1900 1900 1900 190	obl., comp., 7 s.a. ± horizontal, simple ± horizontal, simple ± horizontal, simple ± horizontal, simple ± horizontal, simple ± horizontal, simple

BLUMEA — VOL. 23, No. 2, 1977

uc		oent; lls ight
ormati	· .	ocuml crysta ells upr ills upr
er info		ells pr a few 7 ray c ray cc
furth	ſ	ray c only many most
s	kimun nber 15	
m ray	mun of row	H 4 7773 8 6 6 7 7 4
phloe	type	Ho II He II He II He II He II He II He II
cn-	rage mber cells and	Ŷ
m-par a cells	ge ave of nu per	く うううすう と ∞
phloe chym:	averag length of strand μ m	550 290 260 260 580 610 695
	_	tetric tetric tetric
	rstals	odian odian odian oid oid oid
aue	ne cry ls	styl styl si
cal tiss	sto cel	+ +++++++++++++
chanie	e —	grouj
u me	verag ibre- clereic ength tm	80 (in
panio	64 S L Z	
com	type	U 44444 4
	type sicve area	
	ontal eter of arcas e side um	
	Horiz diame sieve on the walls,	000
	eccies Im-	
	pe pe	1 4 ÷ 4 ÷ 5 ÷ ∞

ACKNOWLEDGEMENTS

Our sincere thanks for Mrs. I. van Touw-Koeten who prepared most of the slides used for this study. Furthermore we are most grateful to Prof. Dr. M. T. M. Willemse, who critically read the manuscript, and to Mrs. T. Peterkamp-Kuijt who typed it.

REFERENCES

AGARDH, K. A. (1825): Aphorismi Botanici, XVI, Lundae: 209.

- BAILEY, I. W. (1933): The cambium and its derivative tissues. VII. Structure, distribution and diagnostic significance of vestured pits in dicotyledons. J. Arnold Arbor. 14:259-273.
- DECKER, J. M. (1966): Wood anatomy and phylogeny of Luxemburgieae (Ochnaceae). Phytomorphology 16: 39-55.
- DON, G. (1831): General System, I., London: 814.
- DWYER, J. D. (1941): The American species of the Luxemburgieae (Ochnaceae). Ph. D. Thesis. Fordham Univ., New York.
- ENGLER, A. (1874): Ochnaceae. Engl. Bot. Jahrhb. 17:75-82.
- FARRON, C. (1963): Contribution à la taxonomie des Ourateae Engl. (Ochnacées). Ber. Schweiz. Bot. Ges. 73: 196-217.
- (1969): Deux Ochnacées nouvelles du Cameroun et du Gabon. Andansonia 9:115-117.
- GILG, E. (1893): Über den anatomischen Bau der Ochnaceae und die systematische Stellung der Gattung Lophira Banks und Tetramerista Mig. Ber. Deutsch. Bot. Ges. 11:20-25.
- (1895): Ochnaceae. In A. Engler und K. Prantl: Die natürlichen Pflanzenfamilien. Leipzig.
- (1925): Ochnaceae. In A. Engler und K. Prantl: Die natürlichen Pflanzenfamilien, ed. 2. Leipzig.
- JOHANSEN, D. A. (1940): Plant microtechnique. McGraw-Hill Book Company Inc. New York and London, 523 p.
- KANIS, A. (1968): A revision of the Ochnaceae of the Indo-Pacific area. Blumea 16: 1-83.
- KRIBS, D. A. (1935): Salient lines of structural specialization in the wood rays of dicotyledons. Bot. Gaz. 96:547-557.

METCALFE, C. R., and L. CHALK (1950): Anatomy of the dicotyledons. I. Clarendon Press, Oxford.

VESTAL, P. A. (1937): The significance of comparative anatomy in establishing the relationship of the Hypericaceae to the Guttiferae and their allies. Philipp. J. Sci. 64: 199-256.

ZAHUR, S. (1959): Comparative study of secondary phloem of 423 species of woody dicotyledons belonging to 85 families. Agr. Exp. St. Mem. 358, 160 p.

LEGENDS TO THE PLATES

Plate I. Ochnaceae. Transverse sections of the secondary phloem. 1 and 4. Campylospermum dybowskii v. Tieghem; 2. Idertia morsonii (Hutch. et Dalz.) Farron; 3 and 5. Ochna rhizomatosa (v. Tieghem) Keay.

Plate II. Ochnaceae. Transverse sections of the secondary phloem. 6. Rhabdophyllum calophyllum (Hook.f.) v. Tieghem; 7 and 9. Lophira lanceolata v. Tieghem ex Keay; 8. Rhabdophyllum affine (Hook. f.) v. Tieghem. ca=cambium; cc=companion cell; cr=crystalliferous cell; f=fibre-sclereid; p=phloem-parenchyma cell; r=phloem-ray parenchyma cell; s=sieve tube; sc=stone cell.

444

LEGENDS TO TABLE I

+	= present = absent
V+O number	= number of the bark sample and corresponding herbarium material of the Versteegh and den Outer collection, Ivory Coast, West-Africa, 1969
dbh	= diameter at breast height of small trees, or diameter of basal parts of shrubs
bast type 2ui	= sieve tubes constitute I-3 cell wide (mostly one cell wide) irregular tangential bands, which alternate regularly with tangential bands of the same width composed of parenchyma cells
5	= sieve tubes scattered in ground tissue of parenchyma cells
sieve-tube type, cl	assified according to Zahur (1959):
I 	= sieve tubes are essentially long (> 500 μ m), with very oblique sieve plates with 10 or more sieve areas. When the number of sieve areas is extremely variable, or when the sieve areas are very closely placed, the plate length and the angle of inclination were relied upon as defining features
11	= intermediate between types I and III
111	= sieve tubes are short (100–300 μ m) with slightly oblique to transverse, simple sieve plates
obl., comp., 7 s.a.	= oblique sieve plate, compound, with 7 closely placed sieve areas
sieve-area type, cla	assified according to Zahur (1959):
sieve-area type, cla II	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse
sieve-area type, cl: II IItg	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse a small number rather poorly developed sieve areas on the tangential side walls only, unequally spaced or diffuse
sieve-area type, cl: II IItg III	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse a small number rather poorly developed sieve areas on the tangential side walls only, unequally spaced or diffuse sieve areas on the side walls entirely absent or obscure
sieve-area type, cl: II IItg III companion-cell ty	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse a small number rather poorly developed sieve areas on the tangential side walls only, unequally spaced or diffuse sieve areas on the side walls entirely absent or obscure pe, classified according to Zahur (1959):
sieve-area type, cl: II IItg III companion-cell ty A	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse a small number rather poorly developed sieve areas on the tangential side walls only, unequally spaced or diffuse sieve areas on the side walls entirely absent or obscure pe, classified according to Zahur (1959): the companion cells are much shorter than the sieve-tube elements and usually occur single
sieve-area type, cl: II IItg III companion-cell ty A C	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse a small number rather poorly developed sieve areas on the tangential side walls only, unequally spaced or diffuse sieve areas on the side walls entirely absent or obscure pe, classified according to Zahur (1959): the companion cells are much shorter than the sieve-tube elements and usually occur single the companion cells are as long as the sieve-tube elements, but are septated to form a strand of cells so that more than one companion cell accompanies each sieve-tube member
sieve-area type, cl: II IItg III companion-cell ty A C phloem-ray type,	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse a small number rather poorly developed sieve areas on the tangential side walls only, unequally spaced or diffuse sieve areas on the side walls entirely absent or obscure pe, classified according to Zahur (1959): the companion cells are much shorter than the sieve-tube elements and usually occur single the companion cells are as long as the sieve-tube elements, but are septated to form a strand of cells so that more than one companion cell accompanies each sieve-tube member classified according to Kribs (1935):
sieve-area type, cl: II IItg III companion-cell ty A C phloem-ray type, He	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse a small number rather poorly developed sieve areas on the tangential side walls only, unequally spaced or diffuse sieve areas on the side walls entirely absent or obscure pe, classified according to Zahur (1959): the companion cells are much shorter than the sieve-tube elements and usually occur single the companion cells are as long as the sieve-tube elements, but are septated to form a strand of cells so that more than one companion cell accompanies each sieve-tube member classified according to Kribs (1935): heterogeneous phloem rays; procumbent and upright cells are present
sieve-area type, cli II IItg III companion-cell ty A C phloem-ray type, He Ho	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse a small number rather poorly developed sieve areas on the tangential side walls only, unequally spaced or diffuse sieve areas on the side walls entirely absent or obscure pe, classified according to Zahur (1959): the companion cells are much shorter than the sieve-tube elements and usually occur single the companion cells are as long as the sieve-tube elements, but are septated to form a strand of cells so that more than one companion cell accompanies each sieve-tube member classified according to Kribs (1935): heterogeneous phloem rays; procumbent and upright cells are present homogeneous phloem rays; only procumbent cells are present
sieve-area type, cl: II IItg III companion-cell ty A C phloem-ray type, He Ho I	 assified according to Zahur (1959): a small number rather poorly developed sieve areas on the side walls, unequally spaced or diffuse a small number rather poorly developed sieve areas on the tangential side walls only, unequally spaced or diffuse sieve areas on the side walls entirely absent or obscure pe, classified according to Zahur (1959): the companion cells are much shorter than the sieve-tube elements and usually occur single the companion cells are as long as the sieve-tube elements, but are septated to form a strand of cells so that more than one companion cell accompanies each sieve-tube member classified according to Kribs (1935): heterogeneous phloem rays; procumbent and upright cells are present homogeneous phloem rays; only procumbent cells are present uniseriate rays and multiseriate rays with long uniseriate tails