ZOOLOGISCHE MEDEDELINGEN

UITGEGEVEN DOOR HET

RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAA'TSCHAPPELIJK WERK)

NOTES ON THE SPECIES OF THE GENUS SCHWIEBEA DESGRIBED BY OUDEMANS (ACARINA, ASTIGMATA)

by
A. FAIN
Prins Leopold Instituut voor Tropische Geneeskunde, Antwerpen
With 24 text-figures

Introduction

Oudemans (1916) has erected the genus Schwiebea, for the reception of a single species, S. talpa. Since that time more than thirty species have been described in or transferred to this genus. Some of these species have been poorly described or are known only from the hypopial nymph and, therefore, their exact taxonomic position remains uncertain. Beside the typical species, Oudemans (1924a, b) has described two other species in the genus Schwiebea: S. scalops and S. italica. Moreover, two other species described by Oudemans in the genus Tyroglyphus have been transferred to Schwiebea by some authors: T. novus Oudemans, 1906, and T. eurynympha Oudemans, i9II.
The purpose of this paper is to redescribe these five species of Oudemans and by this way to contribute to a better knowledge of these species as well as of the genus Schwiebea.
The description and drawings that are published were made after the typical material in the Rijksmuseum of Leiden.

Remarks on some organs of the hypoyi of Acaridae
We here use the nomenclature proposed by us for certain organs of the hypopi. We have replaced the term "gnathosoma" by the term "palposoma"
(see Fain, 1968 and 1972). This organ is a cuticular projection bearing two solenidia and one or two pairs of simple hairs. It is not homologous of a gnathosoma but only a sensory organ. We think therefore that the term palposoma is more appropriate than the old term gnathosoma used so far.

We have created the new term "conoid" ($=$ in french "conoildes") for the two pairs of modified hairs situated in the posterior and lateral regions of the suctorial plate and also for the modified hairs present in some genera on the coxae I, III and IV. These hairs so far had been called "suckers". Actually they are not suckers but conical and soft hairs. Their exact role is not known but it seems highly probable that such structures are not attaching organs. One might surmise that they serve as elastic buffers that aid for the detaching of the hypopi from the skin of insects to which they are fixed (Fain, 1973).

Description of the species of Oudemans

Schwiebea talpa Oudemans, 1916 (figs. I-6)
This species has been described after a single female specimen.
The specimen has been remounted by K. Samsinak (iii.1959) in "liquido de Swann".

We have examined the specimen and present new drawings of it here (figs. I-6). The idiosoma is 305μ long and 189μ wide (maximum width). Its total length, gnathosoma and palps included, is 350μ. The gnathosoma alone is $5 \mathrm{I} \mu$ long and 42μ wide. The propodosomal shield is well distinct and has a straight posterior border; its maximum width is 57μ.

Idiosoma chaetotaxy: distance sce-sce $78 \mu, d 3-d 357 \mu, d 4-d 4$ 6I $\mu, l_{4}-l_{4} 75 \mu, l_{5}-l_{5} 36 \mu$. The $v e$, sci, $d_{I}, d_{2}, d_{5}, l_{I}$, sh and anals are lacking. The $s c x$ are very short, ovoid.

Leg chaetotaxy: the number of spines on the tarsi is difficult to ascertain owing to the dorsal position of the specimen. We have made drawings of the dorsal surface of the legs showing the disposition of the spines in this position.

Solenidiotaxy (figs. 3^{-6}): Leg I: ωI is regularly inflated toward apex, its base is thin. There is a thin apical $\omega 3$ and a very thin basal $\omega 2$ completely concealed in lateral view by the $\omega 3$. The phi is strong. There is only one sigma on genu I. Leg III: the tibial solenidion is rather thin and $15-16 \mu$ long.

Habitat. - The holotype female has been found on decaying leaves, in Bonn, vii. rgor.

Figs. i-2. Schwiebea talpa Oudemans. Holotype female in dorsal (fig. i) and ventral (fig. 2) view ($d g=$ dermal glands).

Schwiebea scalops Oudemans, 1924 (figs. 7-10, 12)
This species is represented only by the holotype female (slide nr. 3 I39). The specimen has been remounted by K. Samsinak in Swann medium (iii.1959). It is excessively transparent, the dorsal shield is not visible and the epimera are very poorly distinct. In the original drawings of Oudemans the epimera III and IV are separated.

Idiosoma 357μ long and 195μ wide (maximum). The chelicerae are 66μ long. Length of tarsi I-IV: $24 \mu-23 \mu-15 \mu-18 \mu$.

Chaetotaxy: Length of the setae: sc e $65 \mu, h 30 \mu, l_{2} 12 \mu, d_{4} 40 \mu, l_{4}$ $36 \mu, l_{5} 33 \mu$. The $v e$, sci, $d_{I}, d_{2}, d_{3}, d_{5}, l_{I}$ and a setae are lacking.

Figs. 3-6. Schwiebea talpa Oudemans. Holotype female; tarsus, tibia and genu of leg I (fig. 3), of leg III (fig. 5) and of leg IV (fig. 6) ; tarsus II (fig. 4). Figs. 7-10. Schwiebea scalops Oudemans. Holotype female; tarsus and genu I (fig. 7), II (fig. 8) and III (fig. 9) ; tibia and tarsus IV (fig. IO). Fig. II. Schreiebea italica Oudemans. Tarsus, tibia and genu I of a paralectotype, female.

Distance between setae: sce-sce $90 \mu, l 2-l 2 \mathrm{I}_{5} \mu, d 4-d 460 \mu, l 4-l 4$ 66μ.

Solenidiotaxy (figs. 7-IO): ω I of tarsi I-II short and flanqued with a very strong $b a$ seta. The genu I bears 2 slightly unequal and divergent solenidia. The solenidion of tibia III is $22-23 \mu$ long.

Habitat. - On Bromelia margarethae, from Colombia and sent to Buitenzorg, Java.

Schwiebea italica Oudemans, 1924 (figs. II, I3)
This species is represented by 10 females mounted on a single slide (nr. 31I7). All are females and nine of them are ovigerous. These specimens have been remounted in Swann medium by K. Samsinak (iii.1959).

Fig. 12. Schweiebea scalops Oudemans. Holotype female; dorsal surface.
Fig. 13. Schwiebea italica Oudemans. Lectotype and paralectotype, female; dorsal surface.

The specimens are excessively cleared and difficult to study. The size of the specimens (idiosoma) varies from $405 \mu \times 216 \mu$ minimum to $495 \mu \times 270 \mu$ maximum. Samsinak has designated a lectotype amongst these specimens. It is 425μ long and 255μ wide (idiosoma).

The specimens may be divided into two groups according to the length of
the $d 3$ setae. In 4 specimens these setae are 6 -12 μ long, while in the 6 other specimens the $d 3$ setae are 28 to 45μ long.
In most of the specimens of the second group (with long $d 3$) we have observed one pair of very small $l 2$ setae (5μ long). These $l 2$ setae have not been observed in the specimens of the first group. The difference in length of the d_{3} setae does not correspond with the size of the body, for both the smallest and the largest specimens belong to the second group. The lectotype belongs to the second group.

The epimera are not visible but in the original drawings of Oudemans, the epimera III and IV are separated.

Chaetotaxy: The ve, sci, $d_{I}, d_{2}, d_{5}, l_{I}$, sh and a setae are lacking. Length of setae: vi $70-75 \mu$, sc e $80-90 \mu, h 60 \mu, d 36$ to $45 \mu, d 470-80 \mu$, $l 25 \mu, l_{3} 50 \mu, l_{4} 75 \mu, l_{5} 60-70 \mu$. In many specimens the cuticle is folded, therefore the distance between the setae is not measurable.

Solenidiotaxy (fig. II): as in S. scalops except that ω_{I}, ω_{2} and ω_{3} are relatively longer.
Habitat. - On bulbs of Dahlia variabilis, Instituut voor Plantenziekten, Buitenzorg, Java. These bulbs originated from Palermo, Italy.

Schwiebea eurynympha (Oudemans, 1911) (figs. 14-19)
Tyroglyphus eurynympha Oudemans, 1911: 189.
Acotyledon eurynympha; Zachvatkin, 1941: 207.
Schwiebea eurynympha; Turk \& Turk, 1957: 129 ($=$ S. eurynymphae) ; Cooreman, 1963: 18; Woodring, 1966: 106.

This species is represented in the Oudemans collection only by one hypopus (holotype) (slide nr. in47). We here give a new description and new figures of this specimen.

The length of the idiosoma is 225μ, the width 171μ. Anterior border of the propodosoma with a median conical projection 40μ wide and 25μ long. Ventral surface with 4 large punctated areas, two median and two laterals, separated by three narrow groves. The anteromedian area is formed by the coxae I and II, the posteromedian area by the coxae III and IV. Palposoma long and narrow, bearing two apical solenidia and 2 pairs of simple hairs. Tarsi I-II much longer than tarsi III and IV. Claws III and IV twice as long as claws I-II. Tarsi I ending in a seta with an apical saucer-like or spoon-like formation and bearing 5 narrowly leaf-like setae. Tarsi II without saucer-like seta. Tibiae I-II with 2 very strong ventrolateral spines. The solenidion $\omega 3$ of tarsi I is longer than half the length of the tarsus. The ωI of tarsus I is nearly as long as half the length of the tarsus. The coxal I

Figs. 14-15. Schwiebea eurynympha (Oudemans). Holotype hypopus in ventral (fig. 14) and dorsal view (fig. 15) ($c p=$ paramedian conoids; $\mathrm{cl}=$ lateral conoids).
setae are thin and very lateral, the coxal III setae are thick and conical ($=$ conoids).

Most of these characters are encountered in the hypopi of Rhizoglyphinae and we think that this species should be placed in this subfamily. It is more difficult to determine its exact generic position. The following arguments prove that it does not belong to the genus Rhizoglyphus.

The hypopus of S. eurynympha is distinguished from that of Rhizoglyphus echinopus (sensu Van Eyndhoven) by the following characters:
(I) the coxal fields I-II and III-IV are not divided by a longitudinal median grove, unlike in R. echinopus;

Figs. 16-19. Schwiebea eurynympha (Oudemans). Holotype hypopus; tarsus, tibia and genu of legs I (fig. 16), II (fig. 17) ; tarsus and tibia of legs III (fig. 18) and IV (fig. 19). Figs. 20-22. Troupeauia nova (Oudemans). Holotype hypopus; tarsus, tibia and genu I (fig. 20), III (fig. 21) and IV (fig. 22).
(2) the(?) absence of the $v e$ setae; these setae are present in R. echinopus;
(3) the coxal I setae are simple hairs; in R. echinopus they are conoids;
(4) there is no saucer-like hair on the apex of tarsus II, while in R. echinopus both the tarsi I and II bear such hairs;
(5) the propodosoma is much shorter dorsally;
(6) the claws III and IV are twice as long as the claws I-II, while in R. echinopus all the claws are subequal.

Some of these characters are sufficient to separate these two kinds of hypopi at the generic level. However, it does not prove that eurynympha belongs to Schreiebea. Actually we lack a good description of an hypopus of this genus, and it is even not certain if the type species of the genus (S. talpa) possesses an hypopial stage.

In this paper we will maintain provisionally the species eurynympha in the genus Schzeiebea.

Habitat. - In decaying leaves, Den Haag, 1910 (Nederland).
Troupeauia nova (Oudemans, 1906) (figs. 20-24)
Tyroglyphus novus; Oudemans, 1906: 122; Oudemans, in Poppe, 1907.
Troupeauia nova; Zachvatkin, 1941: 301.
Schiebea nova; Turk \& Turk, 1957: 131; Cooreman, 1963: 23; Woodring, 1966: 108.
We have examined the holotype hypopus of this species. This specimen was rather opaque and we have remounted it. The idiosoma is 228μ long and ${ }^{15 I} \mu$ wide. The propodosoma is relatively long (78μ, dorsally). Anterior extremity of propodosoma rounded. Other parts of the body and legs poorly sclerotized. Dorsal setae short and thin. Epimera II free. Epimerae III and IV fused in the midline with a thin longitudinal sclerite. Suctorial plate rather small, a little wider than long. Legs slender. Tarsi I-II long and narrow. All claws are subequal. The setae of coxae I and III are thin. The setae of the legs are hair-like, except a few which are modified into narrow spines. Tarsi I and II bear one saucer-like seta and five narrow leaf-like hairs. Tarsus III with eight hairs among which five are leaf-like. Tarsi IV with eight hairs of which four are leaf-like. The tibiae I-II bear only one narrow and rather long spine. Solenidia very thin. The solenidion of tibia III is relatively very long.

These characters do not correspond with the genus Schwiebea. Zachvatkin (1941) had erected for this species the new genus Troupeauia.

We think that this species should be maintained in this genus until the corresponding adults are discovered.

The drawings given by Turk \& Turk (1957, fig. 85) of the hypopus of Schreiebea nova (Oudemans) are inaccurate and one might surmise that these authors actually had another species before them.

Habitat. - Near Bremen (Coll. Poppe, 1905).

Figs. 23-24. Troupeauia nova (Oudemans). Holotype hypopus in ventral (fig. 23) and dorsal view (fig. 24).

Acknowledgements

We thank Dr. L. Van der Hammen, who kindly sent us the original material of Oudemans for study.

Bibliography

Cooreman, J., ig63. Notes et observations sur quelques acariens inféodés aux coléoptères scolytides de la faune belge. - Bull. Inst. r. Sci. nat. Belg. 39 (30) : 1-48.
Fain, A. 1968. Un Hypope de la famille Hypoderidae Murray 1877 vivant sous la peau d'un rongeur (Hypoderidae: Sarcoptiformes). - Acarologia io (I): ilit-II5.
, 1972. Notes sur les hypopes des Saproglyphidae (Acarina: Sarcoptiformes). II. Redéfinition des genres. - Acarologia 14 (2): 225-249.
--, 1973. Notes sur les hypopes des Saproglyphidae (Acarina: Sarcoptiformes). III. Le genre Crabrovidia Zachvatkin, 1941. Description de 8 espèces nouvelles symphorétiques sur les Sphecidae (Hyménoptères). - Bull. Ann. Soc. r. Belg. Ent. 109 : 153-189.
Oudemans, A. C., 1906. Acarologische aanteckeningen xxv. - Ent. Ber. 2: 121-123.
-, 1907. In: Poppe, Nachtrag zur Milbenfauna der Umgegend Bremens. -- Abh. Naturw. Ver. Bremen 19: 47-67.
--, 191. Acarologische aanteekeningen xxxviii. - Ent. Ber. 3: 183-191.
--, 1916. Acari verzameld bij Bonn. - Ent. Ber. 4: 250-25I, 26 I -266.
——, 1924a. Acarologische aanteekeningen lxxv. - Ent. Ber. 6: 265-274.
——, 1924b. Acarologische aanteekeningen lxxvii. - Ent. Ber. 6: 317-336.
Turk, E., \& F. Turk, 1957. In: Stammer, Beiträge zur Syst. ü. Ökol. Mitteleurop. Acarina. Teil I: Tyroglyphiden: I-23I.
Woodring, J. P., 1966. North American Tyroglyphidae (Acari): II The genus Schwiebia, with description of four new species. -- Proc. Louisiana Acad. Sci. 29: 85-112.
Zachvatkin, A. A., 1941. Fauna of U. S. S. R. Arachnoidea Vol. VI. Tyroglyphoidea (English translation).

