QUATERNARY GIBBONS FROM THE
 MALAY ARCHIPELAGO

by
D. A. HOOIJER
(Rijksmuseum van Natuurlijke Historie, Leiden)

CONTENTS

INTRODUCTION

In the years 1888-1890 Eug. Dubois explored a number of limestone caves in the Padang Highlands, central Sumatra, and made a large collection of teeth of a great variety of mammals. The fauna is characterized by the relative abundance of orang-utan (more than 3000 teeth: Hooijer, 1948), and contains no extinct species. The cave teeth differ from their homologues in recent skulls of the same species only by their greater average size; in several cases examined the differentiation has proceeded to the stage of good temporal subspecies ${ }^{1}$). The Sumatran cave fauna has been referred to the prehistoric portion of the Holocene by Dubois (1891, p. 93), and so far no more precise statement can be made; a few thousand years would suffice for the subspecific advance shown by various recent Sumatran mammal species over their representatives in the cave fauna of the same island.

[^0]The object of the present paper is the collection of gibbon teeth from the prehistoric caves of Sumatra in the Dubois collection. Dubois has never even mentioned that his collection from the Sumatran caves contained any gibbon material; no reference to these is found in his papers. In 1940 Von Koenigswald gave a list of the fossil Primates from Pleistocene deposits in Java, comprising Symphalangus syndactylus, and Hylobates "leuciscus" as well as Hylobates spec. (Von Koenigswald, 1940, p. 63). The first and second of these are stated to occur both in the Djetis and in the Trinil faunas, the last is recorded from the Djetis fauna exclusively. The age of these two faunas is Middle Pleistocene (Hooijer, 1952b). Finally, Pleistocene teeth from two fissure deposits in Java have been recorded by Badoux (1959) as Symphalangus syndactylus, and Hylobates cf. "leuciscus". These deposits are regarded by Badoux (1.c., p. 136) as transitional between the Middle and the Upper Pleistocene.

While no material of gibbons has ever been recorded from the cave deposits of Java, and no further material has been collected in the Sumatran caves since Dubois explored them seventy years ago, gibbon material has recently been found at Niah Great Cave in Sarawak, Borneo (Medway, 1959). This material, which will be described by me in a forthcoming issue of The Sarawak Museum Journal, will be referred to in the present paper for the sake of completeness.

Recent material of Southeastern Asiatic gibbons has been examined in the Leiden Museum (registered below as L.M.), in the Zoological Museum at Amsterdam (A.M.), and in the British Museum (Natural History) in London (B.M.). The following measurements have been taken:

Calvarium

I. Greatest length (prosthion-opisthocranion).
2. Basal length (prosthion-basion).
3. Length of cranial cavity (from basion).
4. Greatest width of brain case.
5. Biorbital width.
6. Postorbital constriction.
7. Height of calvarium (projective height from basion to vertex, perpendicular to ear-eye horizon).

Mandible
8. Total length (infradentale-gonioncaudale).
9. Length of ramus ascendens.
ro. Bicondylar width (across outer edges).
II. Height of symphysis.
12. Height of ramus horizontalis (a) at middle of P_{3}.
13. Idem (b) at middle of M_{3}.
14. Height of ramus ascendens (from deepest point of incisura semilunaris to gonionventrale).

These measurements will be indicated by the above numbers in the tables of skull measurements. In addition, I have taken dental measurements, which are self-explanatory, and I have employed some statistics: $\mathrm{n}=$ the number of variates; $\mathrm{R}=$ range of variation; $\mathrm{M}=$ mean; $\boldsymbol{\sigma}=$ standard deviation; $\mathrm{C}=$ coefficient of variation. The standard deviation, $\boldsymbol{\sigma}$, is $\sqrt{\frac{\sum \mathrm{e}^{2}}{\mathrm{n}-\mathrm{I}}}$ in which e is the deviation of every single variate from the mean. The variation coefficient, C , is $\frac{\sigma \cdot 100}{\mathrm{M}}$. The standard error of a difference, $\mathrm{E}_{\text {diff. }}=\sqrt{\mathrm{E}_{\mathrm{Mrec} .}{ }^{2}+\mathrm{E}_{\text {Msubf. }}{ }^{2}}$. These standard errors $\left(\mathrm{E}_{\mathrm{M}}=\frac{\boldsymbol{\sigma}}{\sqrt{\mathrm{n}}}\right.$) are necessary to determine whether the difference in average size found between two series of variates has statistical significance; differences between the means more than two times greater than the standard error of the difference may be considered significant for subspecific differentiation (see Hooijer, 1950, p. ir).

All measurements recorded in the present paper are in mm.

Order PRIMATES Linnaeus
 Family PONGIDAE Elliot
 Genus SYMPHALANGUS Gloger

Symphalangus syndactylus syndactylus (Raffles)

Material examined:
Infants

1. Skull. Deli, N.E. Sumatra, coll. L. P. de Bussy. A.M.
2. Mounted skin of female. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. h.

Juveniles

3. Skull. Sumatra, from C. G. C. Reinwardt. L.M., cat. ost. d.
4. Skull. Sumatra, from C. G. C. Reinwardt. L.M., cat. ost. e.
5. Skull of male. Tandjoeng Morawa, N.E. Sumatra, coll. B. Hagen. L.M., cat. ost. 1.
6. Mounted skin and skull of male. Telok Betong, S. Sumatra, from the Rotterdam Zoo, It-5-1923. L.M., reg.no. 1223.
7. Mounted skin of female (skull inside). Padang, W. Sumatra, from C. G. C. Reinwardt, I823. L.M., cat. syst. e.
8. Mounted skin of male. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. f.
9. Mounted skin of female. Padang, W. Sumatra, from S. Müller, I834. L.M., cat. syst. g.
so. Flat skin of male. Palembang, S. Sumatra, from the Rotterdam Zoo, 3-7-1924. L.M., reg.no. 1326.

Subadults

II. Skeleton of male. "Java", from S. Müller. L.M., "Hylobates leuciscus", cat. ost. b.
12. Skull. Padang Highlands, central Sumatra, coll. J. F. Snelleman, 1878. L.M., cat. ost. n.
13. Flat skin and skeleton of male. From the Rotterdam Zoo, 29-9-1925. L.M., reg.no. 142Ic.
14. Skull of female. From the Amsterdam Zoo, 3-9-1928. A.M.
15. Skull of female. Sumatra, from the Amsterdam Zoo, 6-7-1931. A.M.
16. Skull of male. Boekit Simpang, Moeara Laboe, W. Sumatra, from the Amsterdam Zoo, II-8-193i. A.M.
17. Flat skin and skeleton of female. From the Rotterdam Zoo, 12-12-1935. L.M., reg.no. 2403.

Adults (sex not recorded)

18. Skull. Sumatra, from C. G. C. Reinwardt. L.M., cat. ost. b.
19. Skull. Sumatra, from C. G. C. Reinwardt. L.M., cat. ost. c.
20. Skull. Padang Highlands, central Sumatra, coll. J. F. Snelleman, 1878. L.M., cat. ost. m.
21. Incomplete skull. Boea, Padang Highlands, central Sumatra, from the collection of E. Dubois, 194I. L.M., reg.no. 5021.
22. Sixteen teeth of an animal that died in captivity in Soerabaja, Java, in 1929. Coll. W. C. van Heurn. L.M., reg.no. 2688.
23. Flat skin (skull inside). Achin, N. Sumatra, coll. Rookmakers, io-io-I930. L.M., reg.no. 5100 .

Adult males
24. Skeleton. Batang Singalang, central Sumatra, from S. Müller. L.M., cat. ost. a. Supernumerary premolar in left maxillary.
25. Skull. Marolam, N.E. Sumatra, coll. B. Hagen, 15-10-1880. L.M., cat. ost. g.
26. Skull. Tandjoeng Morawa, N.E. Sumatra, coll. B. Hagen, 24-2-1880. L.M., cat. ost. k .
27. Mounted skin and skeleton. Pangkalan Brandan, N.E. Sumatra, from the Rotterdam Zoo, 3-5-1923. L.M., reg no. 1220.
28. Skull. Ajer Poetih, Padang Highlands, central Sumatra, from the collection of E. Dubois, 194I. L.M., reg.no. 46 ri.
29. Skull. Ogan Oeloe, Palembang, S. Sumatra, from the collection of E. Dubois, 194I. L.M., reg no. 4617.
30. Skull. Upper Bintoehan, S. of Benkoelen, S. Sumatra, from the collection of E. Dubois, 194I. L.M., reg.no. 4618.
31. Skull. Goenoeng Sago, Boekit Nantiga, central Sumatra, from the collection of E. Dubois, 1941. L.M., reg.no. 4620.
32. Calvarium. Telok Betong, S. Sumatra, from the collection of E. Dubois, I941. L.M., reg.no. 4676.
33. Skull. Ajer Poetil, Padang Highlands, central Sumatra, from the collection of E. Dubois, 1941. L.M., reg.no. 4615 .
34. Skull. Tandjoeng Morawa, N.E. Sumatra, from the Amsterdam Zoo, 26-I2-1930. A.M.
35. Mounted skin. Padang, W. Sumatra, from S. Müller, 1837. L.M., cat. syst a.
36. Mounted skin (skull inside). Padang, W. Sumatra, from S. Müller, 1837. L.M, cat. syst. c.
37. Flat skin. Poeloe Sangkar, Korinchi, central Sumatra, coll. E. Jacobson, 1-6-I920. L.M., reg.no. 99I.
38. Skull. Tandjoeng Morawa, N.E. Sumatra, coll. B. Hagen, 2-8-188o. L.M., cat. ost. f.
39. Skull. Marolam, Deli, N.E. Sumatra, coll. B. Hagen, 20-9-1880. L.M., cat. ost. h. Malformed M^{3} and M_{3} sin.
40. Skull. Tandjoeng Morawa, N.E. Sumatra, coll. B. Hagen, I-4-1880. L.M., cat. ost. i.

4I. Skull. Bander Laboean, Deli, N.E. Sumatra, coll. B. Hagen, i-if-i88o. L.M., cat. ost. j.
42. Mounted skin and skeleton. Tandjoeng Johore, N.E. Sumatra, from R. van Prehn Wiese, 29-12-1904. L.M., cat. syst. m, cat. ost. o.
43. Stuffed skin and skull. N.W. slope of Mt. Ophir, central Sumatra, coll. E. Jacobson, 19-5-1917. L.M., reg.no. 1о13.
44. Skull. Soengei Karang, N.E. Sumatra, coll. F. C. van Heurn, 15-6-1919. L.M. There is a fourth molar in the left maxillary.
45. Stuffed skin and skull. From the Rotterdam Zoo, 22-5-1935. L.M., reg.no. 2332.
46. Skull. Sumatra, from the collection of E. Dubois, 194I. L.M., reg.no. 2682.
47. Skull. Ogan Oeloe, Palembang, S. Sumatra, from the collection of E. Dubois, 194I. L.M., reg.no. 4619.
48. Calvarium. Benkoelen, W. Sumatra, from the collection of E. Dubois, 194I. L.M., reg.no. 4675 .
49. Skull. From the Amsterdam Zoo, 29-4-1934. A.M.
50. Mounted skin (skull inside). Padang, W. Sumatra, from S. Müller, 1837. L.M., cat. syst. b.
5 I Mounted skin (skull inside). Padang, W. Sumatra, from S. Müller, 1837. L.M., cat. syst. d.

Symphalangus syndactylus continentis Thomas

Material examined:
Adult males
I. Skin and skull (type). Semangko Pass, Selangor-Pahang Boundary, Malay Penin-
sula, coll. H. C. Robinson, 26-1-1908. B.M., no. 8.7.20.i.
2. Skin and skull. Goenoeng Tahan, Pahang, Malay Peninsula, coll. H. C. Robinson,
1906. B.M., no. 6.io.4.I.

Adult females
3. Skin and skull. Semangko, Selangor. B.M., no. io.Io.r.4.

Thomas (1908, p. 301) noted that there are no external differences between the subspecies from Sumatra and the Malay Peninsula, but that the size of the peninsular form would be rather less than that of the Sumatran syndactylus. I have measured a series of Sumatran skulls, and compared them with the British Museum skulls only to find trifling differences, as will be seen from tables I and 2. But there is no doubt a tendency for the peninsular
specimens to be smaller than their Sumatran relatives, and Thomas's subspecies may be maintained for the sake of convenience. I have not found any significant differences in the quality of the fur of the Sumatran specimens, but it should be noted that Pohl (19II) found skins from animals living at about I 500 m altitude to have longer and fuller fur than those from lowland animals.

TABLE I

Skull measurements of adult males of Symphalangus syndactylus

	syndactylus (Sumatra)					continentis (Malaya)	
No.	n	R	M	σ	C	1	2
I	II	122-138	129	6.4	5.0	127	123
2	1 I	90-109	100	5.8	5.8	93	93
3	11	62-73	69	3.9	5.7	63	66
4	II	62-70	68	2.7	3.9	62	68
5	11	$66-80$	74	4.9	6.6	70	70
6	11	42-52	48	3.0	6.3	43	47
7	11	50-59	55	2.9	$5 \cdot 3$	50	53
8	10	82-100	90	5.4	6.0	86	84
9	10	31-40	35	3.0	8.6	35	30
10	10	61-77	70	6.0	8.6	69	72
$1{ }^{\text {I }}$	10	23-29	26	2.1	8.0	25	24
12	10	18-23	20	1.9	9.5	18	18
13	10	14-19	17	I. 5	8.8	16	14
14	10	28-37	31	3.3	10.6	32	28

TABLE 2
Skull measurements of adult females of Symphalangus syndactylus

	syndactylus (Sumatra)				continentis (Malaya)	
No.	n	R	M	σ	C	3
1	12	112-126	121	3.8	3.1	116
2	12	85-95	91	3.2	3.5	87
3	12	60-69	66	2.5	3.8	68
4	12	62-71	66	2.8	4.2	65
5	12	62-73	67	3.2	4.8	-
6	12	46-52	49	2.0	4.1	45
7	12	48-56	54	2.4	4.4	53
8	II	77-84	80	2.3	2.9	79
9	II	27-34	3 I	2.5	8.1	30
10	II	62-69	65	2.2	$3+$	-
11	II	21-27	23	1.9	8.3	19
12	II	16-20	18	I. 8	10.0	16
13	II	$13-17$	15	I.I	7.3	14
14	II	24-3I	28	2.2	7.9	31

As already related in a previous paper (Hooijer, 1952a) there are marked differences in size and proportions between the male and the female skulls
of Symphalangus syndactylus syndactylus; the male skull is, on an average, larger than the female, with a proportionally narrower brain case, more projecting orbits, deeper postorbital constriction, and lesser height. The mandible as a whole is relatively larger in the male than in the female, but proportionally narrower. From the few data at present available on the continental siamang it would seem that the sexual differences in the skull of this subspecies are as marked as those in the Sumatran form. In the species of Hylobates examined the sexual differences in the skull are less pronounced than those in Symphalangus; this is, perhaps, a primitive trait in the larger form as compared with the gibbons of the genus Hylobates.

There are no skull remains either of Symphalangus or of Hylobates in the fossil collections available to me at present, and consequently we may now pass on to the teeth, of which there are a fair number in the cave collections from Sumatra made by Dubois. The difference in size between the sexes that we found in the skulls of Symphalangus is also manifest in the teeth: the male teeth average larger than the female, and the difference is most pronounced in the canines, although even in these elements the ranges of variation of dimensions do overlap to some extent (tables 3 and 4).

TABLE 3
Measurements of upper teeth of males and of females of Symphalangus syndactylus syndactylus

The statistical data on the teeth of both sexes of the siamang show further that the lateral upper incisor, 1^{2}, is smaller relative to I^{1} in the females than
in the males. There is no difference in the relative sizes of the two upper premolars between the two sexes, but the upper molars do show some interesting sexual differences in relative size: M^{2} is larger relative to M^{1} in the males than in the females, and M^{3} is also less reduced in size as compared with M^{1} in the males than in the females. In the mandible, we note that M_{2} is again larger relative to M_{1} in the males than in the females; in the males M_{2} is just exceeded in size by M_{3}, whereas in the females M_{3} averages

TABLE 4
Measurements of lower teeth of males and of females of
Symphalangus syndactylus syndactylus

	males					females				
	n	R	M	σ	C	n	R	M	σ	C
Is tr.	9	3.1-4.0	3.5	0.27	7.8	5	3.0-4.0	3.5	0.36	10.3
ap.	9	3.6-4.3	4.0	0.23	5.7	6	3-5-4.5	3.9	0.36	9.2
$\mathrm{I}_{2} \mathrm{tr}$.	9	3.4-4.3	3.8	0.25	6.7	7	3.2-4.4	3.7	0.38	10.2
ap.	9	4.3-5.0	4.6	0.25	5.5	9	3.9-5.2	4.4	0.45	10.3
C ap.	9	7.1-9.6	8.7	0.78	8.9	Io	6.8-8.3	7.7	0.53	6.8
tr.	9	6.1-8.0	6.8	0.59	8.7	10	5.2-6.5	5.7	0.47	8.3
P3 ap.	6	8.2-9.5	8.9	0.44	5.0	ıо	7.4-9.2	8.1	0.70	8.6
tr.	8	4.6-5.5	5. 1	0.35	6.8	ıо	4.0-5.5	4.7	0.41	8.8
P_{4} ap.	8	6.3-8.0	7.2	0.47	6.5	10	5.6-8.0	6.5	0.67	10.3
tr.	8	4.7-5.3	5.1	0.19	3.6	ıо	4.4-5.2	4.8	0.30	6.2
M1 ap.	10	7.7-8.6	8.2	0.37	4.5	7	7.5-8.5	8.1	0.40	4.9
tr.	II	5.5-6.9	6.4	0.40	6.2	6	6.1-6.6	6.3	0.21	3.3
M_{2} ap.	9	8.6-9.8	9.0	0. 36	4.0	8	7.8-9.2	8.5	0.48	5.7
tr.	8	6.8-7.5	7.2	0.25	3.5	9	6.1-7.4	6.7	0.41	6.2
M3 ap.	4	8.6-9.8	9.2	0.51	5.5	6	7.7-9.5	8.4	0.65	7.7
tr.	7	6.4-7.7	7.1	0.40	5.6	7	6.0-7.5	6.5	0.49	7.6

smaller than M_{2}. These tendencies toward reduction of I^{2} and M^{3} stamp the female as more progressive than the male; this is a feature also shown in the greater brachycephalization of the skull. The predominance in size of M^{2} over the other molars is a characteristic of the pongid dentition; as shown by Remane (1921, p. 27, table X) the second molar is most often the largest in the series in the gorilla, chimpanzee, orang-utan, and gibbons (Symphalangus and Hylobates), with the exception only of the female chimpanzee, in which M^{1} is the largest of the upper molars in more than 50 per cent. of the cases examined. In the males, the percentages of occurrence of M^{3} as the largest molar are higher than in the females (Remane, 1.c.), the females displaying the more advanced condition.

The comparison between the dentition of the subfossil orang-utan from the Sumatran caves and that of the living orang-utan has shown (Hooijer, 1948) that the excess in size of the second molar over the other molars is
more pronounced in the prehistoric form than it is in the recent, whereas further the lateral incisors are less reduced in relative size, and the male canines are larger relative to the female in the prehistoric as compared with the recent orang-utan. On an average, the prehistoric teeth are sixteen per cent. larger than the recent. These results were based on a study of material much richer than that available in the case of the gibbons. It seems reasonable to suppose that the gibbons, too, have undergone significant changes in the relative proportions of the elements of their dentition during the time which has elapsed since the deposition of the teeth in the Sumatran caves. How much of these evolutionary trends are we going to find in our gibbon material? The following chapters will provide the answer to this question.
First of all, we have to separate the teeth of Symphalangus from those of Hylobates in the Sumatran cave collections. Both the dark-handed Hylobates agilis Cuvier and the white-handed Hylobates lar (L.) occur today in Sumatra beside the large siamang Symphalangus syndactylus (Raffles). Although the teeth of Hylobates are generally smaller than those of Symphalangus the ranges of variation of dimensions overlap: the upper ranges of the gibbon incisors, canines, premolars, and first molars overlap with siamang ranges. Fortunately, in addition to size, there are morphological differences; those pertaining to the post-canine dentition have been dealt with by Remane (1921) and Eckardt (1929). The following is a summary of their findings:

In the first and second upper molars of Symphalangus the length (ap.) exceeds the width (tr.). In Hylobates the reverse condition is found.
In Symphalangus the cusps of the molars are less marginal in position, less well defined, and relatively lower than those in Hylobates.

In the upper molars the protocone is always the largest cusp; then follow, in order of diminishing crown surface area: in Symphalangus metacone and paracone, but in Hylobates paracone and metacone. The metacone is relatively larger in Symphalangus than in Hylobates. The hypocone is the smallest cusp; it is smaller relative to the other cusps in Symphalangus than in Hylobates.

In order of decreasing height the paracone always comes first; it is the highest cusp. The second highest cusp is the metacone in Symphalangus, but the protocone in Hylobates, while the hypocone always is the lowest cusp. Thus, in Symphalangus the metacone is higher than the protocone; in Hylobates the protocone is higher than the metacone.

In Symphalangus there is a depression on the crown surface between paracone and protocone as well as between metacone and hypocone; in Hylobates the area between paracone and protocone is not depressed, but there is a valley between metacone and hypocone.

In the lower molars the hypoconid is more forward in position in Symphalangus than in Hylobates; in Symphalangus it is placed in front of the entoconid, whereas in Hylobates it is often opposite to the entoconid.

The anterior cusps of the lower molars (protoconid and metaconid) are much larger than the others; in Symphalangus the metaconid is the largest cusp both in M_{1} and M_{2}; in Hylobates the protoconid is the largest in M_{1}, and the metaconid is the largest in M_{2}.

In Symphalangus the highest cusp in the lower molar is the hypoconid; the others are about equally high. In Hylobates the metaconid is the highest cusp; then follow hypoconid and entoconid; the protoconid is the lowest cusp.

The most conspicuous ridge in the upper molars is the crista obliqua, which runs from the tip of the protocone to the tip of the metacone. It is more strongly developed in Symphalangus than in Hylobates, and often reduced in M^{3} of Hylobates, but rarely so in Symphalangus.

The anterior transverse ridge in the upper molars, connecting paracone and protocone, ends lingually in front of the protocone in Symphalangus, whereas in Hylobates it runs to the tip of the protocone.

The most constant ridge in the lower molars is the posterior trigonid ridge between protoconid and metaconid; in Symphalangus it is more rounded off apically than in Hylobates, and cut into by a median cleft.

In Symphalangus there is no ridge between entoconid and hypoconulid (mesoconid in Remane and Eckardt), but in Hylobates this connecting ridge is rather often present.

The cingulum is less well developed in Symphalangus than in Hylobates, in which latter it may be seen at the protocone, passing backward into the hypocone. In the lower molars the cingulum is much reduced; a trace is sometimes seen between protoconid and hypoconid, and only in Hylobates.

Accessory cusps occur more frequently in Hylobates than in Symphalangus (Eckardt even negates their occurrence in the latter genus), and may be found between metacone and hypocone in the upper, and between hypoconid and entoconid, or between metaconid and entoconid in the lower molars.

The boundary between crown and root is much less distinct in Symphalangus than in Hylobates. In Hylobates the neck of the molars is constricted at the crown-root junction, most markedly so in the upper jaw; this constriction is less pronounced in Symphalangus.

CAVE MATERIAL OF SYMPHALANGUS AND HYLOBATES FROM SUMATRA

The incisors and canines of Symphalangus do not show structural differences from their homologues in Hylobates; there is only a difference in
size, and one of averages only, as stated above. This being the state of affairs, there is no way of establishing even the generic identity of the isolated specimens in the collections from the limestone caves in the Padang Highlands, central Sumatra. But this is no reason to exclude them from the present study, for they yield important information just the same.

INCISORS

There are fifteen specimens of the central upper incisor, I^{1}, in the Sumatran collection, Coll. Dub. no. in $669 / \mathrm{I}-\mathrm{I} 5$. Nos. I-7 are from the right side, nos. 8-15 from the left. Nos. 1, 2, 4, 7-9, II-I3 and 15 are from the Sibrambang cave, nos. 3, 6 and 14 from the Lida Ajer cave, no. io from the Djamboe cave, whereas the cave from which no. 5 was obtained is unknown. These subfossil specimens are indistinguishable from those of recent Symphalangus, but likewise indistinguishable from those of Hylobates; it is, however, easy to separate them from their narrower and higher homologues in Presbytis and Trachypithecus, while the stout hypsodont Macaca ${ }^{1}{ }^{1}$ does not even remotely resemble them. There is, in this subfossil series, variation in the relative development of the lingual cingulum (tuberculum dentale), as shown in pl. I figs. $\mathrm{I}-2$, as well as in size; the measurements are given in table 5 .

With the exception only of five specimens (nos. 5, 7, II, 14 and 15) the cave I^{1} are larger than the largest recent male I^{1} of Symphalangus that I have seen; two cave specimens (no. 4: pl. I fig. I, and no. 12) represent just this recent maximum size, 5.7 by 4.8 mm . The smallest subfossil specimens (nos. 14 and 15) are still within the variation limits of recent male and female Symphalangus (smallest male 4.7 by 4.2 mm ; smallest female 5.2 by 4.0 mm), but they are also within the limits of Hylobates; the largest (male) I ${ }^{1}$ of Hylobates agilis measures 5.5 by 4.3 mm , the smal'est, 4.4 by 3.8 mm . It is, therefore, evident that the cave incisors are larger than the recent, on an average; the largest cave specimens undoubtedly represent Symphalangus, while possibly Hylobates is represented among the smaller teeth.

TABIE 5
Measurements of subfossil [1 of Symphalangus and Hylobates

No. of specimen	I	2	3	4	5	6	7	8	9	IO	II	I2	I3	I4	I 5
Transverse	6.5	6.0	6.3	5.7	5.6	5.8	5.7	6.6	6.8	7.0	5.9	5.7	5.4	5.3	5.0
Anteroposterior	5.0	5.0	5.4	4.8	4.2	4.8	4.7	5.4	5.2	4.6	4.4	4.8	5.2	4.0	4.3

There are only six specimens of the lateral upper incisor, I^{2}, in the cave collections from Sumatra, Coll. Dub. no. II670/I-6, of which nos. I-2 are
from the right, nos. 3-6 from the left side. Nos. I, 2 and 5 originate from the Sibrambang cave, no. 6 from the Djamboe cave; the locality of nos. 3-4 is not recorded. This is a narrower, but usually anteroposteriorly thicker tooth than I^{1}, more distinctly asymmetrical, with the cutting edge rising into a blunt tip, the lateral slope of which is invariably longer and more steep than the medial. The lingual cingulum may or may not be swolien, but is always present. The measurements given in table 6 indicate that the cave teeth fall right in the upper end of the range of variation for the recent specimens of Symphalangus with the exception of one (no. 5) that is above this range. All are larger than the recent I^{2} of Hylobates, the largest (male) I^{2} of Hylobates agilis measuring only 4.2 by 4.6 mm . It is highly probable that most, if not all, of the cave specimens actually represent Symphalangus.

TABLE 6
Measurements of subfossil I² of Symphalangus and Hylobates

No. of specimen	I	2	3	4	5	6
Transverse	4.7	4.9	4.4	4.8	5.1	5.0
Anteroposterior	5.0	5.1	5.2	5.0	5.6	5.0

No specimens of the central lower incisor, I_{1}, appear to be referable to gibbons, but of the lateral lower incisor, I_{2}, there are two specimens that can confidently be referred to either Symphalangus or Hylobates, one right and one left, Coll. Dub. no. ir671/r-2. The crown bulges out markedly above the root (a distinction from Presbytis and Trachypithecus), and varies much individually in the development of the cutting edge, straight (incisiform) or pointed (caniniform), as lateral incisors usually dc (see Remane, 192r, p. 107, fig. 24). The right I_{2} is from the Sibrambang cave, and measures 4.0 mm transversely against 5.0 mm anteroposteriorly, that is, within the limits of Symphalangus (table 4) but above the range of Hylobates as far as the anteroposterior diameter is concerned (at most 4.5 mm in Hylobates agilis; 4.7 mm in Hylobates moloch abbotti Kloss from Borneo). The other, the left I_{2}, is not much wider (4.2 mm) but much thicker anteroposteriorly $(5.7 \mathrm{~mm})$ than the right I_{2}; the cave from which it came is not recorded. This is almost certainly a Symphalangus specimen. The recent I_{2} of Symphalangus that comes nearest to it as to size (in a female, no. 47) is 5.2 mm anteroposteriorly.

CANINES

The gibbon canine is numerically the best represented dental element in the Sumatran collection, but the quality of many specimens is rather poor because of (natural) wear or damage. The full height can be taken only in
comparatively few specimens; this measurement can be taken for the upper canine only in eight out of forty recent skulls of Symphalangus, viz., those in which the canine is not yet worn.

In table 7 are given the anteroposterior length at the base of the crown, the basal width, and the full height of the unworn crowns of upper canines of recent Symphalangus, the height measured in a straight line on the posterior side of the tooth from the base of the enamel to the tip. For comparative purposes I have included in this table the identical measurements of a series of six unworn upper canines of Hylobates agilis, likewise of both sexes. This table shows in the first place that there is no difference in the relative height of the unworn crown of the upper C between the two sexes; although the male canine is the highest it is also longer and wider at the base, and in the ratio of the height to the basal length or to the basal width it falls well into the range of the females. In Hylobates there are no sexual differences in the proportions of the upper C either. Further, table 7 shows that the height of the crown, in relation to its basal diameters, is much the same in Symphalangus and in Hylobates; in other words, there is no way of telling the upper canines of the two genera apart in collections of isolated specimens. There only remains a difference in average size, not in proportions.

TABLE 7
Measurements and ratios of unworn upper C of Symphalangus syndactylus and of Hylobates agilis

Symphalangus no.	33	22	17	43	45	47	48	12
	¢	? ${ }^{\text {a }}$	우	\%	9	아	아	? 9
I. Basal length	10.6	10.4	8.7	8.3	7.4	88	9.1	7.4
2. Basal width	7.8	6.8	6.7	60	$5 \cdot 3$	5.4	5.7	5.0
3. Total height	22.3	21.4	16.8	20.0	15.2	18.6	19.3	17.6
4. Ratio 3: 1	2.1	2.1	1.9	2.4	2.1	21	2.1	2.4
5. Ratio 3:2	2.9	3.1	2.5	$3 \cdot 3$	2.9	34	3.4	$3 \cdot 5$
Hylobates agilis no.	9	14	15	21	25	26		
	*	δ	$\hat{8}$	¢	9	아		
I. Basal length	7.0	8.0	7.2	6.7	6.2	7.5		
2. Basal width	4.8	5. I	5.5	48	4.8	4.8		
3. Total height	17.0	18.4	14.5	17.0	13.0	16.2		
4. Ratio 3: 1	2.4	2.3	2.0	2.5	2.1	2.2		
5. Ratio 3:2	3.5	3.6	2.6	3.5	2.7	3.4		

The gibbon upper canine (both sexes), being three times as high as wide at the base, is a much more hypsodont tooth than its homologue in the males of the other living pongids. The upper canines of the male Presbytis and Trachypithecus are about equally high but differ in their peculiar twist and
grooving of the root, while the Macaca male upper C, which also resembles that of Symphalangus and Hylobates, may be distinguished by its more marked anterior lingual groove, which extends on to the root, the ridging of the convex labial surface, and the absence of a lingual cingulum. In the gibbons the high and slender crown of the upper canine has no ridge on the labial surface; this surface is gently rounded throughout, and the anterior lingual groove, which follows the gentle backward curvature of the crown, fades away near the tip and does not extend quite to the base of the enamel, which is marked by a low cingulum internally forming a point at the posterior edge. The posterior edge of the crown, which is only slightly concave from above downward, is sharp already in the unworn state, and becomes a true cutting edge when the lingual enamel is worn away against the labial surface of P_{3}. The lingual ridge behind the vertical groove, as well as the anterior, blunt edge of the crown, both touch the lower canine and are worn away so that in old specimens the groove is no longer shown. By the process of wear the height of the crown is much reduced, the tip being beveled internally, eventually becoming so thin transversely that it is easily broken off intra vitam.

In the collections from the Sumatran caves there are 136 specimens of upper canines of gibbons, but only eleven teeth are unworn or so slightly worn that the height may be taken. Their measurements will be found in table 8. Of this series, Coll. Dub. no. II672/I-II, four are from the right, and seven from the left side. Nos. I-3, $5-7$, 10 and 11 originate from the Sibrambang cave, no. 9 from the Djamboe cave, while the cave of nos. 4 and 8 is unknown. No. 5, a beautifully preserved crown of a left upper C, is shown in pl. I fig. 8 .

TABLE 8
Measurements and ratios of unworn subfossil upper C of Symphalangus and Hylobates

No. of specimen	1	2	2	4	5	6
I. Basal length	10.7	10.0	8.1	8.6	9.5	8.9
2. Basal width	7.6	6.5	5.1	5.6	7.3	6.4
3. Total height	22.8	20.0	17.0	18.7	2 I .2	17.6
4. Ratio 3: 1	2.1	2.0	2.1	2.2	2.2	2.0
5. Ratio 3:2	3.0	3.1	3.3	3.3	2.9	2.8
No. of specimen	7	8	9	10	II	
I. Basal length	8.9	8.7	9.1	7.8	7.4	
2. Basal width	6.0	6.5	6.4	5.7	5.3	
3. Total height	18.3	17.8	19.4	16.7	17.1	
4. Ratio 3: 1	2.1	2.0	2.1	2.1	2.3	
5. Ratio 3:2	3.1	2.7	3.0	2.9	3.2	

The subfossil upper canine listed in the first column of table 8 is slightly higher than any of the recent presented in table 7 , and none of the subfossil canines is as small as the female canines of Hylobates; this tends to show, again, that the cave teeth are larger than the recent. The degree of hypsodonty of the cave canines is within recent limits, however; there is no difference in relative crown height between the recent and the subfossil upper C. The subfossil collection no doubt comprises male as well as female canines both of Symphalangus and of Hylobates; whether the sexual difference in size was any greater in prehistoric times than it is now (as was the case in the orang-utan: Hooijer, 1948) we do not know. The size difference is more marked in recent Symphalangus (almost no overlap of dimension ranges) than in recent Hylobates (with widely overlapping ranges).

The remaining 125 subfossil specimens of upper C are all worn, and the majority is incomplete at the base due to posterior wear, damage, or rodent gnawing. Only twenty upper canines remain of which the basal diameters of the crown can be taken, seven right and thirteen left (Coll. Dub. no. $11673 / \mathrm{I}-20$). Nos. 1, 2 and 8 -16 are from the Sibrambang cave, no. 3 is from the Lida Ajer cave, nos. 4 and 17-19 are from the Djamboe cave, nos. 5-7 and 20 are without a record for the cave in which they were found. They vary in anteroposterior length at base from 7.8 to 11.3 mm , and in transverse width at base from 5.5 to 8.2 mm , thereby slightly extending the upper limits of the ranges already found for the unworn subfossil upper C (table 9).

TABLE 9

Measurements of subfossil upper C of Symphalangus and Hylobates

No. of specimen	I	2	3	4	5	6	7	8	9	10
Anteroposterior	8.3	9.0	10.7	8.5	10.7	9.7	9.0	II. 3	9.7	9.0
Transverse	6.1	6.7	8.2	6.4	7.4	6.5	6.8	7.7	6.1	6.1
No. of specimen	II	12	I3	14	15	16	17	18	19	20
Anteroposterior	9.0	8.3	9.4	8.7	8.8	8.2	7.8	8.9	9.0	8. 1
Transverse	5.8	6.4	6.6	6.6	5.7	6.0	6.1	6.6	6.5	5.5

The lower canines of Symphalangus and Hylobates that are not yet noticeably worn at the tip, and of which, beside the basal diameters, the total height of the crown can be given (table io), tend to be larger and highercrowned in males than in females. This tendency is more marked in Symphalangus than in Hylobates agilis.

TABLE ıо
Measurements and ratios of unworn lower C of Symphalangus syndactylus and of Hylobates agilis

The total height of the crown, measured in a straight line on the posterior side of the tooth from the base of the enamel to the tip, averages 5.2 mm in three males of Symphalangus syndactylus against only 12.6 mm in five females; in Hylobates agilis these figures are 1.9 mm (six males) and 10.3 mm (three females). The difference in relative crown height between the sexes is more pronounced in the lower C than in the upper, the highestcrowned lower C belonging to males, and the lowest-crowned to females. However, it is further clear from table to that there is no difference in relative crown height between Symphalangus and Hylobates, so that we shall not be able to definitely establish the generic identity of the lower canines as isolated specimens either.
Lower canines of gibbons are easily distinguished from those of Presbytis and Trachypithecus males by their much less transversely compressed crowns and better developed posterior cingular development; in Macaca the lower canine is also narrower transversely, and in the males shows a characteristic vertical groove in the middle of the medial surface of the crown not seen in the gibbons. The roots in male Macaca lower canines are longitudinally grooved on the medial surface, whereas the medial surface of the ronts of gibbon lower C is convex or flattened, not grooved.

As wear advances on the lower C the tip and the posterior prominence at the base of the crown are spared for a longer period than those in the upper canine; skulls in which the upper C is heavily worn internally (mainly against the anterior lower premolar; anteriorly against the lower canine) may still show lower canines without appreciable wear at tip or base behind. Therefore, although the number of isolated lower gibbon canines in the Sumatran cave collection is equal to that of the upper, viz., 136, there are many more lower canines of which the height can be taken, and fewer specimens unfit for measurement at the base. In table iI are found the measurements and ratios of twenty-eight lower canines, fifteen from the right

TABLE ${ }_{1 I}$
Measurements and ratios of unworn subfossil lower C of Symphalangus and Hylobates

No. of specimen	I	2	3	4	5	6	7
1. Basal length	8.9	8.0	8.5	8.7	7.9	8.3	7.8
2. Basal width	6.7	5.7	6.1	6.2	6.3	6.6	6.4
3. Total height	15.0	14.4	14.3	14.2	I3.3	15.2	14.4
4. Ratio 3: I	1.7	1.8	1.7	1.6	1.7	1.8	I. 8
5. Ratio 3:2	2.2	2.5	2.3	2.3	2.1	2.3	2.3
No. of specimen	8	9	10	II	12	I3	14
I. Basal length	8.5	9.1	8.3	8.3	8.7	7.8	7.7
2. Basal width	6.3	6.8	5.8	6.2	6.7	6.0	5.4
3. Total height	13.7	I5. I	14.8	12.3	14.3	14.9	13.7
4. Ratio 3: I	1.6	1.7	1.8	I. 5	I. 6	1.9	I. 8
5. Ratio 3:2	2.2	2.2	2.5	2.0	2.1	2.5	2.5
No. of specimen	15	16	17	18	19	20	2 I
I. Basal length	8.2	10.0	8.4	7.7	8.2	9.2	8.5
2. Basal width	6.4	7.5	6.4	6.1	6.1	7.0	6.5
3. Total height	14.6	15.8	12.7	152	15.0	15.0	16.3
4. Ratio 3: I	1.8	1. 6	1.5	2.0	1.8	1.6	1.9
5. Ratio 3:2	2.3	2.1	2.0	2.5	2.5	2.1	2.5
No. of specimen	22	23	24	25	26	27	28
I. Basal length	7.8	9.0	7.8	8.8	9.0	90	7.2
2. Basal width	62	6.7	6.1	6.7	69	6.8	5.6
3. Total height	I2.6	14.7	13.4	15.8	I5.4	16.7	12.8
4. Ratio 3: I	1. 6	1.6	1.7	1.8	1.7	1.9	I. 8
5. Ratio 3:2	2.0	2.2	2.2	2.4	2.2	2.5	2.3

side and thirteen from the left (Coll. Dub. no. It $674 / \mathrm{I}-28$). No. 6 is shown in pl. I fig. ro. Nos. t^{-9} and $16-25$ are from the Sibrambang cave, nos. io and il from the Lida Ajer cave; the name of the cave of nos. $12-15$ and $26-28$ is not recorded. A few subfossil specimens exceed the recent lower C of Symphalangus syndactylus in dimensions, while none are as small as
the female lower C of Hylobates agilis, signifying the greater average size of the cave specimens as compared with the recent, but the height ratios of the cave teeth vary between the same limits as do those of the recent canines. The remaining specimens of lower canines of gibbons in the Sumatran cave collections, all incomplete apically, vary in basal anteroposterior length from 6.5 to 9.8 mm , and in width from 5.1 to 7.2 mm , slightly extending the lower limits of the ranges already found for the unworn specimens of table II.

CAVE MATERIAL OF SYMPHALANGUS FROM SUMATRA

PREMOLARS

The upper premolars are bicuspids; the labial cusp (paracone) is larger than the lingual (protocone), and the anteroposterior valley between them is crossed by a ridge, which runs from the tip of the paracone to the marginal ridge in front of the protocone, both in Symphalangus and in Hylobates. This ridge, the anterior transverse ridge (vordere Trigonleiste in Remane, 1921, p. 7I) exceptionally (in P^{4}) runs to the tip of the protocone (as in upper molars of Hylobates). In front of the anterior transverse ridge, enclosed by the marginal ridge of the crown, is the anterior fossa; behind the ridge is the much larger posterior fossa of the crown. The anterior fossa extends lower down on the crown in the anterior upper premolar (P^{3}) than in the posterior $\left(\mathrm{P}^{4}\right)$, making the anterior edge of the paracone longer, and the labial surface of the crown more produced rootward anteriorly in P3 than in P^{4}.

The upper premolars of Presbytis and Trachypithecus as well as those of Macaca differ from their homologues in the gibbons in their higher crowns, narrower and deeper fossae, and by the roots (two buccal and one lingual) being separate, not fused to a considerable extent as they are in gibbons. The protocone in the monkey P3-4 is more distinctly marked off behind, too.

The P3 of Symphalangus syndactylus differs from that of Hylobates not only in size but also in proportions: the former is relatively wider than the latter. In table 12 are given the measurements of four recent P^{3} of Symphalangus and those of four recent P^{3} of Hylobates; the variation in anteroposterior length is the same in both series, but the Symphalangus specimens are significantly wider than those of Hylobates.

TABLE 12
Measurements of recent P^{3} of Symphalangus and of Hylobates

	Symphalangus				Hylobates agilis			
No. of specimen	40	44	41	33	15	19	23	14
Anteroposterior	4.9	5.0	5.1	5.5	4.9	5.0	5.1	5.5
Transverse	6.7	6.4	6.1	6.8	5.3	5.4	5.3	5.4

It is, therefore, possible to distinguish between the P^{3} of the two genera of gibbons. There are nineteen specimens of P^{3} in the Sumatran cave collection all of which appear to belong to the larger siamang gibbon; ten from the right and nine from the left side (Coll. Dub. no. in $675 / \mathrm{I}-19$). Nos. i-6 and in-I8 originate from the Sibrambang cave, no. 7 from the Lida Ajer cave (pl. II fig. i), and nos. 8-1o and 19 from caves the name of which is not on record. The cave specimens, doubtless including males as well as females, nevertheless average larger than do the recent male P^{3} of Symphalangus; the mean anteroposterior length of the subfossil Symphalangus P^{3} is 6.1 mm , the mean transverse width is 6.7 mm , against 5.9 and 6.6 mm , respectively, in recent males (5.5 and 6.2 mm , respectively, in recent females: table 3). The difference would have been more marked had we been able to sex the cave specimens, and compare them for each sex separately. Since this proves to be impossible I have assembled the data on the recent P^{3} of Symphalangus syndactylus, twenty-two specimens, eleven of either sex, which average 5.7 mm anteroposteriorly, and 6.4 mm transversely, and compared them with the series of nineteen subfossil P3 presented in table 13 .

TABLE 13
Measurements of P^{3} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen	I	2	3	4	5	6	7	8	9	Io
Anteroposterior	6.1	6.5	7.0	6.4	6.3	5.7	6.0	5.7	6.4	6.2
Transverse	6.7	7.0	7.7	6.7	6.5	6.8	6.4	6.8	6.7	6.6
No. of specimen	II	12	13	14	15	16	17	18	19	
Anteroposterior	6.1	5.8	6.0	5.7	6.2	5.7	6.3	6.0	6.4	
Transverse	6.3	6.3	6.8	6.4	7.3	6.5	6.7	6.9	6.7	

TABLE 14
Statistical data on P^{3} of Symphalangus syndactylus

	n	M	σ	C	$\mathrm{E}_{\text {diff }}$.	$\frac{M_{\text {subf. }}-M_{\text {rec }}}{E_{\text {dife }}}$
Anteroposterior, recent	21	5.7	0.45	7.91		
Idem, subfossi1	19	6.1	0.35	5.7 \}	0.13	3.1
Transverse, recent	22	6.4	0.48	$7.5\}$		
Idem, subfossil	19	6.7	0.34	5.1		

Notwithstanding the overlap of dimensions, the difference between the means of the anteroposterior diameters of the recent and the subfossil specimens is three times the standard error of this difference, and it is two times the standard error of the difference for the transverse diameters. Therefore, the difference in size between the recent and the subfossil P3 of Symphalangus syndactylus is statistically significant; it is justifiable to regard the cave siamang as a large temporal race of the living species under the name Symphalangus syndactylus subfossilis nov. subsp., the formal diagnosis of which will be given at the end of the present chapter. It is further worthy of note that the sample of the cave siamang P^{3} has lower variation coefficients, and thereby is less variable than the recent sample used for comparison, as might be expected in a local population as compared with a sample consisting of specimens from widely separated localities on the island of Sumatra.

The P4 of Symphalangus syndactylus gradually pass into those of Hylobates, the smallest Symphalangus P4 being indistinguishable from the largest Hylobates P^{4} as to size and proportional width (table 15).

TABLE ${ }_{5} 5$
Measurements of recent P^{4} of Symphalangus and of Hylobates

	Symphalangus syndactylus			Hylobates agilis			
No. of specimen	4 I	45	38	46	23	14	19
Anteroposterior	4.7	4.9	5.0	5.0	4.	4.8	5.0
Transverse	5.8	6.0	5.7	6.0	5.6	5.6	5.7

The difference in average size between the P^{4} of the two genera is very great, however. In the Sumatran cave collections there are fifty-one specimens of P^{4}, which fall into two distinct groups, forty-nine specimens varying from 5.3 to 6.8 mm anteroposteriorly, and from 6.2 to 7.8 mm transversely, and two specimens of which the dimensions are $4.4-4.6 \mathrm{~mm}$ anteroposteriorly, and $5 . I-5.4 \mathrm{~mm}$ transversely. Moreover, one of the small specimens is in situ in a fragment of the maxillary with M1.2 displaying Hylobates characters; this is doubtless a specimen of Hylobates. I shall deal with the two small specimens later, under the genus Hylobates, and refer all of the larger specimens to Symphalangus. They are registered as Coll. Dub. no. in676li-49, nos. 1-26 being from the right, the others from the left side. Nos. 1-20 and $27-45$ are from the Sibrambang cave, nos. 21,22 and 46 from the Lida Ajer cave, and nos. 23-26 and 47-49 from an unknown cave. The subfossil specimens average larger than the recent, and, as shown in table 17, the difference in size does stand the statistical test. The cave P^{4} is
significantly larger than the recent P^{4} of Symphalangus syndactylus syndactylus (twenty-two specimens, eleven male and eleven female).

TABLE 16
Measurements of P^{4} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen	I	2	3	4	5	6	7	8	9	Io
Anteroposterior	5.8	5.9	5.8	5.6	5.8	5.6	5.4	6.0	5.6	6.1
Transverse	7.1	6.5	6.4	7.0	7.5	6.4	6.6	6.9	6.2	6.7
No. of specimen	11	12	13	14	15	16	17	18	19	20
Anteroposterior	6.2	6.0	6.1	6.0	5.5	5.5	5.4	6.6	6.2	6.0
Transverse	7.8	6.8	7.2	6.9	7.0	6.8	6.5	7.5	6.9	7.3
No. of specimen	21	22	23	24	25	26	27	28	29	30
Anteroposterior	5.8	5.8	6.0	5.3	5.8	6.1	5.5	6.5	5.9	6.8
Transverse	7.0	6.7	6.3	6.7	6.7	6.8	6.6	7.3	7.4	7.7
No. or specimen	3 I	32	33	34	35	36	37	38	39	40
Anteroposterior	6.0	5.9	6.0	6.2	5.5	6.2	6.7	5.9	6.3	5.8
Transverse	7.1	7.7	7.0	7.1	6.9	7.4	7.1	6.5	7.3	6.8
No. of specimen	4 I	42	43	44	45	46	47	48	49	
Anteroposterior	5.6	6.4	5.6	6.1	6.1	5.7	6.4	5.7	5.9	
Transverse	6.8	7.7	7.0	6.6	7.0	7.1	6.6	6.7	6.8	

TABLE 17

Statistical data on P^{4} of Symphalangus syndactylus

$\left.\begin{array}{lcccccc} & & & & \\ & \mathrm{n} & \mathrm{M} & \boldsymbol{\sigma} & \mathrm{C} & \mathrm{E}_{\text {diff. }} & \mathrm{M}_{\text {subf. }}-\mathrm{M}_{\text {rec. }} \\ \mathrm{E}_{\text {diff. }} \\ \text { Anteroposterior, recent } & 20 & 5.6 & 0.47 & 8.3\} & 0.1 \mathrm{l} & 2.7 \\ \text { Idem, subfossil } & 49 & 5.9 & 0.34 & 5.8\end{array}\right\}$

The anterior lower premolar $\left(\mathrm{P}_{3}\right)$ is an anteroposteriorly elongated tooth with a strong pyramidal cusp, the protoconid. The buccal surface is convex and produced rootward anteriorly; this surface shears against the upper canine during transverse movements of the mandible. Three ridges descend from the tip of the protoconid, one anteriorly, one lingually, and one posteriorly. The anterior and posterior ridges both curve inwards near the base, joining the lingual cingulum, and enclosing a depressed area on the lingual surface of the crown that is divided by the transverse ridge, the metaconid ridge, into an anterior trigonid fossa and a posterior talonid fossa. As pointed out by Remane (1921, p. 78) the two genera of gibbons differ in the development of the metaconid ridge, which joins the lingual cingulum in Symphalan-
gus but often fails to do so in Hylobates (cf. Remane, l.c., p. 74, fig. $18 \mathrm{~m}-\mathrm{o}$), in which case there is a continuous lingual basal ledge not elevated in the middle of its course. The reduction of the metaconid ridge, and thereby that of the metaconid, is a good character to distinguish the Hylobates P^{3} from that of Symphalangus, in which the metaconid is occasionally present as a distinct cusp just lingually of the protoconid and not much inferior to it in height (Symphalangus syndactylus syndactylus, nos. 12 and 17).
The gibbon P_{3} (as well as P_{4}) is distinguished from that of the monkeys Presbytis, Trachypithecus, and Macaca by its lower crown, less well developed antero-external downward protrusion of the enamel, and by its fused roots. In the monkeys, especially in the male Macaca in which the downward extension of the antero-external enamel is very striking indeed, the crowns are higher and the anterior and posterior roots separate along their entire length; in Symphalangus and in Hylobates only the root tips are free.

Eleven cave specimens of P_{3}, three right and eight left, all from the Si brambang cave, have transverse ridges from the protoconid joining the lingual cingulum. In one specimen (no. 4) the base of the anterior ridge descending from the tip of the crown is thickened, forming a kind of cusp (pl. I figs. 5), whereas in another (no. 5) there is a distinct metaconid only slightly less high than the protoconid (pl. I fig. 9). All of these specimens represent Symphalangus (Coll. Dub. no. ix677/r-ir).

TABLE 18

Measurements of P_{3} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen I	2	3	4	5	6	7	8	9	Io	It	
Anteroposterior	8.7	9.7	8.8	9.6	9.0	-	9.4	8.5	-	8.2	Io.0
Transverse	5.0	5.1	4.9	5.7	5.0	5.5	5.6	5.2	5.6	5.0	5.6

Comparison of the subfossil P_{3} with a series of twenty recent P_{3} of the siamang (six male, ten female, and four of unknown sex) as given in table 19 proves the difference in size to be significant.

TABLE 19
Statistical data on P_{3} of Symphalangus syndactylus

	n	M	$\boldsymbol{\sigma}$	C	$\mathrm{E}_{\text {diff. }}$	$\frac{\mathrm{M}_{\text {subff }}-\mathrm{M}_{\text {rec. }}}{\mathrm{E}_{\text {diff. }}}$
Anteroposterior, recent	20	8.5	0.66	7.8		0.25
Idem, subfossil	9	$9 . \mathrm{I}$	0.6 I	6.7	0.4	
Transverse, recent	20	4.8	0.40	8.4	0.13	
Idem, subfossil	II	5.3	0.3 I	59		3.8

The subfossil P_{3} is, again, less variable than its recent homologue, as shown by the low variation coefficients.
The last lower premolar, P_{4}, is represented in the Sumatran cave collections by ten specimens, five from each side (Coll. Dub. no. п1678/i-ro), all from the Sibrambang cave. The metaconid varies from a cusp fully as high as the primary protoconid to a small point lingually of the protoconid, but it is always readily seen; in Hylobates it seems generally smaller relative to the main cusp than in Symphalangus. There is much individual variation in size of the anterior fossa, the trigonid fossa in front of protoconid and metaconid, as well as in the anteroposterior extent of the talonid fossa behind the pair of cusps. The talonid fossa is much shortened in a number of Hylobates premolars; such abortive specimens are rare in Symphalangus (no. 45). The posterior marginal ridge connecting the posterior ridges from protoconid and from metaconid, enclosing the talonid fossa, often shows a cusp-like elevation behind the protoconid representing the hypoconid, and less frequently a cusp behind the metaconid, which is the entoconid. In Hylobates these supernumerary cusps are exceptionally seen. Two subfossil specimens, both P_{4} sin., no. 7 with a distinct hypoconid, and no. Io showing the entoconid, are presented in pl. I figs. 3-4. The former specimen is much shorter than the latter.

TABLE 20
Measurements of P_{4} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen	I	2	3	4	5	6	7	8	9	10
Anteroposterior	$7 . \mathrm{I}$	6.6	6.8	7.7	6.6	7.7	7.1	7.2	7.2	7.8
Transverse	5.2	4.8	4.7	5.5	5.0	5.1	50	4.7	5.2	5.3

The subfossil P_{4} averages just as large as does the recent male P_{4} of Symphalangus syndactylus syndactylus (table 4), but larger than the average of a series of seven male, ten female, and three of unknown sex (table 2r). The difference between the means of the anteroposterior diameters of the subfossil and the recent P_{4}, as well as that of the transverse diameters, is just two times the standard error of the difference, and, therefore, only just great enough for the subfossil teeth to be significantly larger than the recent. As we have seen above, the upper premolars and the anterior lower premolar of Symphalangus syndactylus subfossilis nov. subsp. stood the statistical test very well indeed. This indicates that in the posterior lower premolar the diminution in size since the time of the deposition of the teeth in the Sumatran caves was somewhat less marked than that in the other premolars. In the subfossil race the anterior lower premolar is larger
relative to the posterior lower premolar than it is in the recent Sumatran race, a feature doubtless correlated with the comparatively large size of the canines in the extinct cave form.

TABLE 2I
Statistical data on P_{4} of Symphalangus syndactylus

	n	M	$\boldsymbol{\sigma}$	C	$\mathrm{E}_{\text {diff. }}$	$\frac{\mathrm{M}_{\text {subf. }}-\mathrm{M}_{\text {rec. }}}{\mathrm{E}_{\text {diff. }}}$
Anteroposterior, recent	20	6.8	0.63	9.3		0.20
Idem, subfossil	10	7.2	0.44	6.1	0.2	2.0
Transverse, recent	20	4.9	0.28	5.7	0.10	2.0
Idem, subfossil	10	5.1	0.27	5.3		

MOLARS

It is an easy matter to separate gibbon molars from the bilophodont cercopithecoid molars of Presbytis, Trachypithecus, and Macaca in the Sumatran cave collections. The distinction between the molars of Symphalangus and those of Hylobates is also made without much trouble; the distinguishing features given by Remane (1921) and Eckardt (1929) have already been listed above (pp. 9-io). Now there remains the determination of the serial position of the isolated cave molars as either first or second or third or even fourth molars (fourth molars occur in two out of fifteen Symphalangus skulls: Schultz, 1933, p. 236; only in one out of my series of thirty Symphalangus skulls, viz., in no. 44).

With the exception of the last, which is exceptional anyway, the upper molars of Symphalangus can be classed fairly well. The first upper molar is peculiarly trapezoidal in outline, projecting much more forward buccally than lingually due to the advanced position of the paracone. It its wider behind than in front. In the second upper molar, which is wider than the first, the protocone has shifted forward somewhat, making the crown a little more regularly quadrate. It tends to be widest in front. The third upper molar, with the protocone placed still more forward, shows retrogressive tendencies in the reduction of the posterior cusps, in particular the metacone. The crown is wider than long, and widest anteriorly.

There are 68 specimens of the first upper molar of Symphalangus in the cave collections from Sumatra, Coll. Dub. no. ir679/i-68. Nos. 1-35 are from the right side, nos. $36-68$ from the left. Nos. $1-22$ and $36-58$ originate from the Sibrambang cave; nos. 23-30 and 59-67 are from the Lida Ajer cave; nos. 3^{1-33} are from the Djamboe cave: the cave from which nos. 34, 35 and 68 were obtained is not recorded. A few specimens are figured to
show the characteristic crown shape of $M 1$ in the siamang, two from the right side (nos. I and 23: pl. II figs. 2-3) and one from the left (no. 60: pl. II fig. 4). Only two specimens, nos. 29 and 6r, are in situ in small maxillary fragments also holding part of the alveoli of M^{2}, but the M^{2} belonging to these M^{1} have not been found; the remaining specimens are isolated.

TABLE 22
Measurements of M^{1} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen	1	2	3	4	5	6	7	8	9	10
Anteroposterior	7.7	9.1	84	$8 . \mathrm{I}$	8.2	7.7	$8 . \mathrm{I}$	8.6	8.0	8.3
Transverse	7.3	90	8.2	7.6	7.7	7.5	8.0	8.2	7.0	8.2
No. of specimen	11	12	13	14	15	16	17	18	19	20
Anteroposterior	7.8	8.7	8.3	9.3	9.0	8.6	8.9	8.2	9.0	8.0
Transverse	7.0	8.4	7.9	8.6	8.4	7.9	7.8	7.7	8.4	7.8
No. of specimen	21	22	23	24	25	26	27	28	29	30
Anteroposterior	8.9	9.2	8.2	8.5	8.8	8.1	9.0	8.5	8.1	8.6
Transverse	8.3	8.5	7.7	7.9	8.6	7.2	8.0	7.9	7.4	8.2
No. of specimen	31	32	3.3	34	3.5	36	37	38	39	40
Anteroposterior	8.7	8.8	8.2	8.7	8.7	8.3	9.0	8.0	8.7	8.4
Transverse	8.0	8.1	8.0	8.1	8.2	8.0	8.8	7.5	8.5	7.8
	41	42	4.3	44	45	46	47	48	49	50
No. of specimen	4.1									
Anteroposterior	8.2	8.1	9.0	8.4	8.2	8.8	8.3	9.1	8.8	8.1
Transverse	7.8	7.2	8.5	8.3	7.7	8.6	8.0	8.2	$8 . \mathrm{I}$	7.9
No. of specimen	51	52	53	5.	55	56	57	58	59	60
Anteroposterior	8.0	7.9	8.2	8.8	8.4	8.0	7.8	8.2	9.2	8.3
Transverse	8.3	8.6	8.2	8.2	8.2	7.6	7.4	8.0	8.4	7.8
No. of specimen	6 I	62	63	64	65	66	67	68		
Anteroposterior	8.3	85	8.3	8.9	8.9	8.2	8.6	8.2		
Transverse	8.5	7.8	7.5	8.8	9.1	7.9	8.5	7.7		

The crista obliqua, connecting protocone and metacone, is distinct in all except the heavily worn specimens; the anterior transverse ridge terminates lingually in front of the tip of the protocone, and the cingulum at the lingual side of the protocone occurs only in a few specimens, including the figured no. 60. Accessory cusps between metacone and hypocone were observed only in two or three cases, including the figured no. I; these very tiny elevations of the posterior marginal ridge were seen in one recent skull (no. 47), and only in the right M^{1}, not in the left. The measurements of the subfossil M^{1} are given in table 22.

For comparison with the subfossil serics I have used all the recent M1
available, 13 male, 8 female, and 7 of unknown sex; 28 specimens in all. Table 23 shows that the cave molars decidedly exceed the recent in dimensions: the difference between the means is almost three times the standard error of this difference both for the anteroposterior and for the transverse diameter of the crown.

TABLE 23
Statistical data on M1 of Symphalangus syndactylus

	n	M	σ	C	$\mathrm{E}_{\text {diffe }}$	$\frac{M_{\text {subf }}-M_{\text {rec }} .}{E_{\text {diffe }}}$
Anteroposterior, recent	28	7.7	0.39	5.1)	0.28	2.9
Idem, subfossil	68	8.5	0.40	4.7)		
Transverse, recent	28	7.2	040	5.54	0.29	2.8
Idem, subfossil	68	8.0	0.45	5.7 \%		

The second upper molar of Symphalangus is even more abundantly represented in the Sumatran cave collections than is the first: 79 specimens, 41 of which from the right side. These specimens, Coll. Dub. no. I $1680 / \mathrm{I}-79$, originate from the following caves: nos. I-28 and $42-64$, Sibrambang cave; nos. 29-38 and 65-74, Lida Ajer cave; nos. 39, 40 and 75, Djamboe cave; nos. 41 and $76-79$, no record. Two specimens from the Sibrambang cave, one right (no. 1) and one left (no. 45), as well as one left M^{2} (no. 79) are shown in pl. I fig. 6, pl. II figs. $7-8$.

TABLE 24
Measurements of M^{2} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen	I	2	3	4	5	6	7	8	9	Io
Anteroposterior	9.1	8.5	8.8	9.7	8.4	8.9	8.7	8.0	8.9	8.5
Transverse	8.6	8.6	9.0	90	8.5	9.0	9.0	7.9	8.8	8.3
No. of specimen	11	12	13	I 4	I 5	16	17	18	19	20
Anteroposterior	9.4	9.2	8.3	9.0	10.0	9.3	8.7	9.0	9.0	9.3
Transverse	9.0	8.8	8.2	8.7	90	8.7	8.8	9.2	8.7	9.1
No. of specimen	21	22	23	24	25	26	27	28	29	30
Anteroposterior	$9 . \mathrm{I}$	8.4	9.5	8.8	9.3	8.7	8.3	8.3	7.9	8.5
Transverse	9.7	8.2	9.1	92	8.7	9.0	8.4	8.7	8.2	8.5
No. of specimen	31	32	33	34	35	36	37	38	39	40
Anteroposterior	9.2	8.5	8.8	$8 . \mathrm{I}$	8.4	8.3	8.0	8.5	9.1	9.1
Transverse	8.5	9.5	9.0	8.5	8.8	8.3	8.4	8.2	8.9	8.7
No. of specimen	41	42	43	44	45	46	47	48	49	50
Anteroposterior	8.0	9.2	8.6	9.0	9.2	8.7	8.8	9.2	9.6	9.4
Transverse	8.1	8.5	8.5	8.7	9.0	8.8	8.6	9.1	8.9	8.7

QUATERNARY GIBBONS

No. of specimen	51	52	5.3	54	55	56	57	58	59	60
Anteroposterior	9.0	9.6	9.1	9.7	9.3	9.3	9.1	9.3	9.3	9.3
Transverse	8.5	9.1	8.4	9.3	9.3	9.5	9.4	9.0	8.8	9.1
	61	62	63	64	65	66	67	68	69	70
No. of specimen	8.1	8.5	8.7	8.5	9.6	8.4	9.2	8.0	82	9.1
Anteroposterior	7.8	8.2	8.3	8.5	8.7	8.7	8.9	8.5	8.5	9.0
Transverse										
	7 I	72	73	7.4	75	76	77	78	79	
No. of specimen	9.6	8.9	9.5	9.0	9.2	8.9	8.3	8.1	9.0	
Anteroposterior	9.7	8.3	9.3	9.0	8.3	8.4	8.2	8.7	8.5	
Transverse										

No. 79 is the only one which has a noticeable posterior accessory cusp. It will be observed (table 24) that in no less than 27 out of the 79 subfossil M^{2} the width exceeds the length, and that in 5 specimens the width equals the length. Although as a rule in recent Symphalangus the length exceeds the width in M^{2} as well as in M^{1}, in my series of 26 recent skulls in which M^{2} can be measured both ways the width exceeds the length in 4 , and equals the length in 2 more. Thus, the tendency for M^{2} to be wider than long is present both in the living and in the subfossil siamang, but more marked in the cave form than in the recent.

The statistical data presented in table 25 show that the subfossil M^{2}, on an average, has a relatively greater width than the recent. The difference in size, as may be expected, is statistically significant: M^{2}, indeed, passes the test with flying colours, one might say.

TABLE 25
Statistical data on M2 of Symphalangus syndactylus

	n	M	σ	C	$\mathrm{E}_{\text {diff }}$.	$\frac{M_{\text {subf }}-M_{\text {rec }}}{E_{\text {diff. }}}$
Anteroposterior, recent	26	8.2	0.55	6.71	0.12	5.8
Idem, subfossil	79	8.9	0.49	5.5		
Transverse, recent	26	7.9	0.56	7.15	0.12	6.7
Idem, subfossil	79	8.7	0.40	4.63		

The third upper molar of Symphalangus is represented in the Sumatran cave collections by 64 specimens, nos. 1-34 from the right, nos. $35-64$ from the left side (Coll. Dub. no. 1168i/r-64). The posterior pair of cusps is much reduced relative to the anterior pair in most specimens; a small-sized but typical specimen, no. I, is shown in pl. II fig. 5 above a very wide and short specimen, no. II (pl. II fig. 6); both are from the right side and originate from the Sibrambang cave. Nos. $1-24$ and $35-54$ are from the lastmentioned cave, which furnished the bulk of the Sumatran cave material; nos. $25-32$ and $55-6 \mathrm{I}$ originate from the Lida Ajer cave, no. 62 is from the

Djamboe cave, and the name of the cave from which nos. $33,34,63$ and 64 were obtained is not recorded. The measurements are presented in table 26 .

TABLE 26
Measurements of M^{3} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen	I	2	3	4	5	6	7	8	9	10	11
Anteroposterior	7.2	7.9	7.9	8.7	8.0	7.0	7.5	8.1	8.2	8.6	7.5
Transverse	8.1	8.5	8.4	8.8	8.5	8.2	9. 1	8.5	8.8	8.9	9.6
No. of specimen		13	14	15	16	17	18	19	20	21	2
Anteroposterior	8.2	8.0	7.9	9.0	7.4	7.7	7.5	7.5	8.7	7.6	7.9
Transverse	8.8	9.2	8.9	9.7	8.2	8.5	8.0	7.8	9.0	8.5	8.3
No. of specimen	23	2.4	25	26	27	28	29	30	$3{ }^{1}$	32	33
Anteroposterior	8.4	9.3	7.5	7.4	7.8	7.3	8.4	7.8	7.8	8.0	7.6
Transverse	8.9	8.8	8.2	8.0	8.4	9.3	9.1	8.0	8.5	8.2	8.2
No. of specimen	34	35	36	37	38	39	40	41	42	43	44
Anteroposterior	7.5	8.2	8.3	8.4	7.4	8.6	8.5	7.6	7.6	8.I	7.5
Transverse	7.8	8.2	8.8	9.0	8.9	8.7	9.2	8.2	8.1	8.7	9.3
No. of specimen		46	47	48	49	50	51	52	53	54	55
Anteroposterior	8.4	7.9	8.7	7.8	7.3	7.9	7.6	8.0	7.2	8.6	8.2
Transverse	7.8	8.6	8.9	7.8	8.0	8. 1	8.4	8.1	8.2	8.9	9.0
No. of specimen	56	57	58	59	60	61	62	63	64		
Anteroposterior	7.2	7.7	8.4	7.8	7.7	7.4	7.4	7.8	7.4		
Transverse	8.4	8.8	8.6	8.0	8.1	8.5	8.4	8.2	8.7		

The great majority of the subfossil specimens are wider than long, as is the rule in the recent M^{3} of Symphalangus, although the difference appears to be more marked in the subfossil than in the recent specimens. Only in nos. 24 and 45 the length is greater than the width, but both of these are worn and lack a posterior contact facet so that they doubtless represent last molars. No. 45, a left M^{3}, is shown in pl. II fig. IO; it closely resembles in shape the sole elongated specimen of M^{3} in my recent series of skulls (no. 33). It has an accessory tubercle on the posterior marginal ridge between metacone and hypocone. Such posterior accessory cusps are rather frequently observed among the subfossil specimens, in contradistinction to the recent: nos. $10,13,25,34,35,38,40,45,47,54$ and 60 possess posterior accessory cusps. In one out of these eleven subfossil M^{3}, viz., no. 35 (pl. II fig. 9) there are even two extra cusps between metacone and hypocone. I have not found any posterior extra cusps on M ${ }^{3}$ of recent Symphalangus, not even in the skull no. 47 in which the right M1 bears such a cusp. Remane ($192 \mathrm{I}, \mathrm{p} .53$) observed posterior extra cusps only in one out of ten recent

M ${ }^{3}$ of Symphalangus, and found none in M^{2} or M1. The frequency of occurrence of these cusps in the subfossil M^{3} of Symphalangus is one in six.

TABLE 27
Statistical data on M^{3} of Symphalangus syndactylus

	n	M	σ	C	$E_{\text {diff. }}$	$\frac{M_{\text {subf. }}-M_{\text {ree }}}{E_{\text {diff. }}}$
Anteroposterior, recent	16	7.4	0.63	8.5	0.17	2.9
Idem, subfossil	64	7.9	0.49	6.2		
Transverse, recent	16	7.8	0.55	7.1 \}	0.15	4.7
Idem, subfossil	64	8.5	0.44	6.2		

The data given in table 27 show that the subfossil M^{3} is significantly larger and also relatively wider than the recent. The subfossil series is less variable than the recent, as usual.

In the lower molar series of Symphalangus, M_{1} is characterized by the buccal anterior cusp (protoconid) being more advanced in position than the lingual (metaconid), making the anterior transverse valley oblique in its course. The width over the talonid portion of the crown is invariably greater than that over the anterior cusps (trigonid width). M_{2} is a larger and wider tooth, with the anterior cusps more nearly opposite each other; the trigonid width may exceed the talonid width. In M_{3} the talonid portion may be reduced in width and length, but the crown may also be longer than that of M_{2} in the same skull. The entoconid is smaller, however, and the hypoconulid more centrally placed. The greatest width is usually in front.

We have got 35 specimens of M_{1} in the Sumatran cave collections; nos. I-19 from the right, and nos. 20-35 from the left side (Coll. Dub. no. 11682/r-35). Nos. i-18 and 20-32 are from the Sibrambang cave, no. 33 is from the Lida Ajer cave, and the cave from which nos. 19, 34, and 35 were obtained is unknown. Nos. I and 20 (pl. II figs. ir-12) have an accessory internal cusp between metaconid and entoconid; such extra cusps occur in a few recent M_{1} (of skulls nos. 47 (both sides) and 28 (left side only)) as well. In recent skull no. 43 the metaconid is split in both M_{1}. Splitting of cusps of molars in gibbons, further cases of which will be given below, was found by Remane (1921, p. 57) only in M_{1} (entoconid).

The measurements of the subfossil M_{1} of Symphalangus syndactylus are recorded in table 28 . For comparison I have used a total of 19 recent M_{1}, 9 male, 6 female, and 4 of unknown sex. The statistics (table 29) show that the subfossil M_{1} is significantly larger than the recent, and more variable, especially in its anteroposterior diameter.

TABLE 28
Measurements of M_{1} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen	1	2	3	4	5	6	7	8	9	10
Anteroposterior	9.0	8.3	9.1	9.2	8.8	8.2	8.0	9.1	7.7	8.7
Transverse	7.I	6.7	7.3	6.7	6.9	6.4	6.4	7.4	6.0	6.9
No. of specimen	11	I2	13	14	15	16	17	18	19	20
Anteroposterior	8.6	8.6	8.7	8.3	8.8	8.7	8.4	8.3	9.0	9.0
Transverse	6.7	6.8	7.0	6.8	6.4	6.9	7.0	6.8	7.2	6.6
No. of specimen	21	22	23	24	25	26	27	28	29	30
Anteroposterior	8.1	8.2	8.9	8.5	8.3	8.4	8.2	80	8.7	8.9
Transverse	6.8	6.6	69	6.5	6.5	6.4	6.6	6.4	6.9	7.2
No. of specimen	31	32	33	34	35					
Anteroposterior	97	9.6	7.7	8.3	9.1					
Transverse	7.2	7.3	6.0	6.7	6.6					

TABLE 29
Statistical data on M_{1} of Symphalangus syndactylus
$\left.\begin{array}{lcccccc} & \mathrm{n} & \mathrm{M} & \boldsymbol{\sigma} & \mathrm{C} & \mathrm{E}_{\text {diff. }} & \begin{array}{l}\mathrm{M}_{\text {subff }}-\mathrm{M}_{\text {rec. }} \\ \mathrm{E}_{\text {diff. }} \\ \text { Anteroposterior, recent }\end{array} \\ \text { 19 } & 8.2 & 0.32 & 3.9 \\ \text { Idem, subfossil } & 35 & 8.6 & 0.47 & 5.5 & 0.1 \mathrm{II} & 3.6 \\ \text { Transverse, recent } & 19 & 6.3 & 0.3 \mathrm{I} & 4.9 \\ \text { Idem, subfossil } & 35 & 6.8 & 0.34 & 5.0\end{array}\right\}$

The second lower molar, M_{2}, is represented in the Sumatran cave collections by 45 specimens (Coll. Dub. no. ir683/I-45), the first 23 of which are from the right side. Nos. 1-19 and $24-42$ are from the Sibrambang cave, nos. 20-22, 43 and 44 from the Lida Ajer cave, no. 23 from the Djamboe cave, and no. 45 is from an unknown cave. No. 41 only is anomalous in showing an accessory cusp split off from the entoconid; it is almost a "tuberculum intermedium" as figured in the two M_{1} recorded above. Remane ($192 \mathrm{I}, \mathrm{p} .56$) found this tubercle in $3 \mathrm{M}_{1}$ and I_{2} of Symphalangus; it does not occur in the recent M_{2} of Symphalangus which I have seen.

A statistical comparison between the subfossil M_{2} (table 30) and 20 recent M_{2} (including 7 male and 8 female specimens) shows that the cave specimens average decidedly larger than the recent, and that the difference between the means is more than four times the standard error of this difference, and, therefore, significant (table 3r).

The last lower molar of Symphalangus, of which there are 60 specimens in the Sumatran cave collections, is rather variable in shape; short and

TABLE 30
Measurements of M_{2} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen	1	2	3	4	5	6	7	8	9	10
Anteroposterior	10.2	10.3	9.9	9.2	9.6	9.3	8.9	9.9	9.4	9.7
Transverse	7.8	8.0	7.6	7.0	7.1	7.1	7.3	7.5	7.4	7.7
No. of specimen	11	12	13	14	15	16	17	18	19	20
Anteroposterior	9.5	9.2	9.8	9.4	9.2	8.8	9.2	8.8	9.6	10.2
Transverse	7.3	7.2	7.2	7.7	7.3	7.0	7.3	7.1	7.2	7.8
No. of specimen	21	22	23	24	25	26	27	28	29	30
Anteroposterior	10.0	8.9	10.4	9.7	10.0	10.3	9.9	9.8	9.4	9.2
Transverse	7.8	7.3	7.8	8.2	7.4	8.0	7.9	7.8	7.5	7.0
No. of specimen	31	32	33	34	35	36	37	38	39	40
Anteroposterior	10.4	8.9	9.4	9.9	9.4	9.8	9.3	8.7	9.I	9.7
Transverse	8.1	7.6	7.4	7.6	7.7	7.5	7.2	7.2	7.3	7.3
No. of specimen	41	42	43	44	45					
Anteroposterior	9.2	9.4	8.9	9.3	10.2					
Transverse	7.4	7.3	7.7	7.2	7.7					

TABLE 3I
Statistical data on M_{2} of Symphalangus syndactylus

	n	M	σ	C	$\mathrm{E}_{\text {diff. }}$	$\frac{M_{\text {subf }}-M_{\text {rec. }} .}{E_{\text {diff. }}}$
Anteroposterior, recent	20	8.8	0.56	6.41	0.15	4.7
Idem, subfossil	45	9.5	0.47	$5.0\}$	0.15	4.7
Transverse, recent	20	7.0	0.44	6.3	O.II	45
Idem, subfossil	45	7.5	0.31	4.1)		4.5

wide crowns (e.g., no. 57: pl. II fig. 14) occur beside long and narrow specimens. The roots are mostly fused, and are recurved backward. There are 3I right specimens against 29 from the left side (Coll. Dub. no. ir684) I-60). Nos. $1-28$ and $32-56$ originate from the Sibrambang cave, nos. 29, 57 and 58 from the Lida Ajer cave, no. 59 from the Djamboe cave; the cave from which the remaining nos. 30 , 3 I and 60 were obtained is unknown. No. I (pl. II fig. I3), a rather elongated specimen, has a split hypoconid, not observed among the recent molars one of which, however, has a split entoconid (the right M_{3} in skull no. 33). Accessory tubercles between metaconid and entoconid, or tubercula intermedia, occur in various specimens, and are either large as in nos. 2 and 3, or small as in nos. 12, 49 and 54 . One of the cave specimens, no. 4, has a tiny posterior contact facet not seen in the others; this indicates that the mandible to which this molar belonged had a supernumerary molar. Fourth molars do occur in the recent siamang gibbon, but only rarely; one case of M_{4} on both sides of the
mandible is cited by Remane (192I, p. IO), and in the material examined by me there is only one instance of M^{4} (skull no. 44). Schultz (r933, p. 236) records fourth molars to occur in two out of fifteen skulls of Symphalangus, but does not state whether they are maxillary or mandibular.

The cave specimens (table 32) have been compared with 14 recent M_{3} (4 male, 6 female, and 4 of unknown sex). As is clear from table 33 the subfossil last lower molars, less variable than their recent homologues as is the case in most of the premolars and molars, are decidedly larger than the recent as well.

TABLE 32
Measurements of M_{3} of Symphalangus syndactylus subfossilis nov. subsp.

No. of specimen	1	2	3	4	5	6	7	8	9	10
Anteroposterior	9.8	10.7	10.3	9.2	8.4	8.6	9.2	9.8	8.7	9.0
Transverse	7.7	8.2	7.8	7.1	6.9	7.5	7.2	8.0	7.7	7.4
No. of specimen	II	12	13	14	15	16	17	18	19	20
Anteroposterior	10.1	9.0	9.4	9.5	9.2	9.9	8.5	8.7	8.8	9.0
Transverse	8.1	7.4	7.5	7.1	7.5	7.8	7.6	7.1	7.5	7.6
No. of specimen	2 I	22	23	24	25	26	27	28	29	30
Anteroposterior	10.1	8.6	10.1	10.0	8.9	96	8.7	8.9	9.0	9.3
Transverse	6.9	7.2	8.1	7.8	7.0	7.5	7.0	6.8	7.0	7.3
No. of specimen	31	32	33	34	35	36	37	38	39	40
Anteroposterior	9.5	10.5	9.7	9.7	9.7	10.5	8.2	9.0	8.6	8.5
Transverse	8.3	8.0	7.8	7.7	8.0	7.9	6.8	7.5	6.7	7.I
No. of specimen	4 I	42	43	44	45	46	47	48	49	50
Anteroposterior	8.3	8.9	9.5	8.5	9.7	8.7	9.7	8.5	9.3	9.4
Transverse	7.5	7.8	7.8	7.4	7.5	7.4	7.7	6.9	7.2	7.5
No. of specimen	51	52	53	54	55	56	57	58	59	60
Anteroposterior	9.1	9.5	9.8	10.0	9.8	9.3	8.4	9.1	8.6	9.4
Transverse	7.0	7.7	7.1	7.3	7.3	7.4	7.5	7.5	7.5	

TABLE 33
Statistical data on M_{3} of Symphalangus syndactylus

	n	M	σ	C	$\mathrm{E}_{\mathrm{diff}}$.	$\frac{M_{\text {subf }}-M_{\text {rec }}}{E_{\text {diff }}}$
Anteroposterior, recent	14	8.8	0.74	8.4 \}	0.20	2.5
Idem, subfossil	60	9.3	0.36	3.91		2.5
Transverse, recent	14	6.9	0.50	7.2 ?	0.14	4.3
Idem, subfossil	59	7.5	0.38	$5.1)$	0.14	4.3

As we have seen above, the subfossil siamang gibbon averages decidedly larger in tooth dimensions than the living form from Sumatra. There can
be no doubt that the cave teeth belong to a subspecies directly ancestral to the extant Symphalangus syndactylus syndactylus (Raffles) from the same island. From the measurements given in tables 13-33 it is evident that the premolars and molars have not been reduced in size to exactly the same extent (the incisors and canines unfortunately must be left out of account since the possibility of admixture of Hylobates elements cannot be excluded). Table 34 gives the average „robustnesses" (a measure of the crown surface: the product of the anteroposterior and the transverse crown diameters) of the cave and the recent teeth as well as the ratios of size. It will be seen from this table that the crown surface in the subfossil siamang is from io

TABLE 34
Robustness of P and M of Symphalangus syndactylus

	S.s. subfossilis	S.s. syndactylus	Ratio
P^{3}	40.87	36.48	$112: 100$
P^{4}	40.71	36.40	$112: 100$
M^{1}	68.00	55.44	$123: 100$
M^{2}	77.43	64.78	$119: 100$
M^{3}	67.15	57.72	$116: 100$
P_{3}	48.23	40.80	$118: 100$
P_{4}	36.72	33.32	$\mathrm{IIO}: 100$
M_{1}	58.48	51.66	$111: 100$
M_{2}	71.25	6.60	$116: 100$
M_{3}	69.75	60.72	$\mathrm{II5}: 100$

to 23 per cent. larger than that in the hologous recent teeth. The P_{3} has been reduced in size to a greater extent than the P_{4}; in the subfossil race M^{1} is larger than M^{3}, and has been reduced to a greater extent than any of the other molars; in the living form it averages slightly smaller than M^{3}. In the mandible, the molar most reduced in size is M_{2}, whereas the reduction in size of M_{3} is only very slightly less. If this does represent a process of reduction starting from the back of the tooth row it would seem that the process is more advanced in the upper jaw than in the lower, in which M_{1} is comparatively slightly affected, as is P_{4}. The reduction in size of P_{3} is rather marked (15 per cent.); this, as already mentioned, is no doubt a process of adjustment to the diminishing size of the upper canine which, too, must have been much larger in the extinct cave form than in the recent.

It is now possible to present the following diagnosis of the subfossil race of Symphalangus syndactylus from the prehistoric Sumatran caves:

Symphalangus syndactylus subfossilis nov. subsp.
Diagnosis: Tecth identical in specific characters with those of recent Symphalangus syndactylus (Raffles) but of larger average size; the difference in tooth size is statistically significant. The anterior lower premolar is larger relative to the posterior than in the living form ; in the upper tooth row the first molar averages larger than the third, in the lower the second molar is larger relative to the first and third than in the living form.

Holotype: The right upper second molar, Coll. Dub. no. in68o|r, represented on pl. I fig. 6 of the present paper.

Locality: Sibrambang cave, Padang Highlands, Central Sumatra. The bulk of the material is from this cave; other specimens are from the Lida Ajer and the Djamboe cave in the Padang Highlands.

Age: Early Holocene.

PLEISTOCENE MATERIAL OF SYMPHALANGUS FROM JAVA

From the Pleistocene of Java, in which island the siamang gibbon is now extinct, teeth of Symphalangus have been recorded by Von Koenigswald (1940) as well as by Badoux (1959). The left lower (second?) molar from a fissure deposit at Patjitan figured by Von Koenigswald (1940, pl. III fig. 8) appears to be within recent limits (dimensions of crown approximately 9 by 7 mm). Badoux (1959 , pp. 90-93, pl. VIII figs. 1-15) records 40 isolated teeth from two fissure deposits at Punung only two of which are not within the range of their recent homologues, viz., an $\mathrm{M}^{3} 6.0$ by 6.5 mm in diameters, which is smaller, and an M_{3} IO.I by 8.0 mm in diameters, which is larger than the corresponding molar in the recent $S y m-$ phalangus. On the whole, it seems to me that the fossil Javan gibbon was smaller-toothed than the subfossil Sumatran race. It might upon further study prove to present a case parallel to those of the orang-utan, porcupine, tiger and tapir, which are represented in the Pleistocene of Java by forms smaller-toothed than those from the cave fauna of Sumatra (see Hooijer, 1949). There is no material referable to Symphalangus in the Dubois collection from Java.

Genus HYLOBATES Illiger
 Hylobates agilis Cuvier

Material examined:
Juveniles
I. Skull. W. Sumatra, from the Amsterdam Zoo, August, 1923 (a). A.M.
2. Skull. W. Sumatra, from the Amsterdam Zoo, August, 1923 (b). A.M.
3. Mounted skin and skeleton of female. Sumatra, from the Rotterdam Zoo, 7-4-1931. L.M., reg. no. 1945.
4. Stuffed skin and skull of male. Sumatra, from the Rotterdam Zoo, 29-8-1919. L.M., reg. no. 930.
5. Mounted skin of male. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. f.
6. Mounted skin of female (skull inside). Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. i.
7. Mounted skin of female (skull inside). Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. j.

Subadults

8. Skull of female. Soeliki, W. Sumatra, from the Amsterdam Zoo, ro-8-1823. A.M.
9. Mounted skin and skull of male. Padang, W. Sumatra, from S. Müller, I836. L.M., cat. syst. g.

Adults (sex not recorded)

10. Skull. Padang, W. Sumatra, from C. G. C. Reinwardt. L.M., cat. ost. d.
ir. Skull. N. Sumatra, purchased from Schlüter and Mass. Coll. Sody no. 3. L M.
11. Skull. Padang, W. Sumatra, from C. G. C. Reinwardt. L.M., cat. ost. b.
12. Skull. Padang, W. Sumatra, from C. G. C. Reinwardt. L.M., cat. ost. c.

Adult males
14. Mounted skin and skeleton. Sumatra, from the Rotterdam Zoo, 18-6-1932. L.M., reg. no. 2085.
15. Skull. From the collection of E. Dubois, i941. L.M., reg. no. 4608.
16. Skeleton. Batang Singalang, central Sumatra, from S. Müller. L.M., cat. ost. a.
17. Mounted skin and skull. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. b.
18. Mounted skin and skeleton. Padang, W. Sumatra, from the Rotterdam Zoo, 25-81922. L.M., reg. no. I 166.
19. Mounted skin and skull. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. h.
20. Mounted skin and skull. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. k.
21. Mounted skin and skull. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. m.
22. Mounted skin and skull. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. n.
23. Mounted skin and skull. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. p. M_{3} sin. congenitally absent.
24. Mounted skin and skull. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. q.

Adult females

25. Stuffed skin and skull. W. Sumatra, coll. E. Jacobson, i935. L.M., reg. no. 2372.
26. Skull. From the Rotterdam Zoo, 22-11-1938. L.M., reg. no. 3716.
27. Mounted skin and incomplete skull. Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. c.
28. Mounted skin and skull. Padang, W. Sumatra, from S. Müiller, I836. L.M., cat. syst. d.
29. Mounted skin and incomplete skull. Padang, W. Sumatra, coll. Henrici, 1838. L.M., cat. syst. e.
30. Mounted skin and skull. E. of Padang, W. Sumatra, from S. Müller, 1836. L.M., cat. syst. a.

3I. Mounted skin. Padang, W. Sumatra, from C. G. C. Reinwardt. L.M., cat. syst. 1.
32. Mounted skin and skull. Padang, W. Sumatra, from S. Müller, i836. L.M., cat. syst. o.
33. Mounted skin and skeleton. From the Rotterdam Zoo, 18-8-193I. L.M., reg. no. 1987.

This, the dark-handed gibbon, is one of the species of Hylobates today living in Sumatra, the other being Hylobates lar albimanus (Vig. et Horsf.). Both agilis and lar also occur in Malaya, but subspecific distinction has been made only in the latter species and not in agilis (although Chasen, 1940, p. 63, cites the Malayan and Sumatran form as Hylobates agilis agilis no other subspecific name of H. agilis is mentioned in his work). Kloss (r929, p. II3/r4) states to have attempted to treat the gibbons of Java and Borneo, together with agilis, as allied subspecies, but finally to have kept agilis as

TABLE 35

Skull measurements of adult males and females of Hylobates agilis

	males					females				
No.	n	R	M	σ	C	n	R	M	σ	C
I	II	102-108	105	2.0	1.9	7	99-109	104	4.4	4.2
2	II	72-75	74	1.3	I. 8	7	$69-8 \mathrm{I}$	73	3.9	5.3
3	II	56-61	59	1.4	2.4	7	57-62	59	1.9	3.2
4	II	58-64	62	2.1	3.4	7	58-62	60	1.4	2.3
5	II	62-68	65	1.8	2.8	8	59-64	62	1.7	2.8
6	II	45-52	49	1.8	3.7	8	45-50	48	1.8	3.8
7	II	49-57	52	2.3	4.4	7	48-55	5 I	2.6	5.I
8	II	60-69	66	3.0	4.5	8	61-69	64	2.4	3.8
9	II	21-28	25	2.0	8.0	8	22-25	24	1. 4	6.0
10	II	51-58	55	2.7	5.0	8	52-59	55	2.4	4.4
II	II	18-21	19	I. 3	6.8	8	17-20	19	I.I	5.8
12	II	14-17	16	1.2	7.5	8	12-18	15	1.7	11.3
${ }^{1} 3$	11	9-13	12	1,2	10.0	8	9-13	11	1. 7	15.5
14	II	18-23	2 I	I. 8	8.6	8	18-22	20	1.7	8.5

a species in its own right, placing the others under "cinereus" (recte: moloch). Pocock (1927, P. 725) regarded agilis as a subspecies of lar, but he stands alone in this, and in the most recent classification by Fiedler (1956 , p. 219) H. agilis is listed as a distinct species.

The skull measurements given in table 35 show that the sexual difference in average skull size is very small in agilis, much smaller than in Symphalangus syndactylus (tables I and 2). It stands to reason that the sexual differences in tooth size are also slight in Hylobates; tables 36 and 37 bear this out. The sexual differences are most marked in the anteroposterior diameters of the upper canine and the anterior lower premolar. The last lower molar averages larger in the females than in the males instead of
smaller as most other teeth do; the central upper incisor is also larger in the females than in the males.

TABLE 36
Measurements of upper teeth of males and of females of Hylobates agilis

		males					females				
		n	R	M	σ	C	11	R	M	σ	C
I^{1}	tr.	7	4.4-5.5	4.9	0.4 I	8.4	4	4.9-5.4	5.I	0.24	4.7
	ap.	6	3.8-4.3	4.0	0.23	5.8	5	3.7-4.2	4.0	0.2 I	$5 \cdot 3$
I^{2}	tr.	8	3.5-4.2	3.9	0.22	5.6	5	3.7-4.0	3.9	0.14	3.6
	ap.	8	3.7-4.6	4.2	0.37	8.8	6	3.7-4.3	4.0	0.24	60
C	ap.	8	$6.4-8.5$	7.5	0.69	9.2	7	6.2-7.5	7.0	045	8.5
	tr.	9	4.4-5.9	$5 \cdot 3$	0.47	8.9	7	4.7-5.5	5.I	0.29	5.9
P^{3}	ap.	II	4.5-5.7	5.0	0.39	7.8	6	4.4-5.0	4.7	0.2 I	4.5
	tr.	II	4.8-5.4	$5 . \mathrm{I}$	0.24	4.7	6	4.5-5.3	4.8	0.28	5.8
P^{4}	ap.	9	3.8-5.0	4.3	0.43	9.8	6	4.1-4.3	4.2	0.06	I. 4
	tr.	10	4.8-5.7	5.2	0.36	6.9	7	4.6-5.2	4.9	0.19	39
M^{1}	ap.	10	5.5-6.7	5.9	0.36	6.1	6	5.7-6.3	5.9	021	3.5
	tr.	IO	5.7-6.7	6.2	0.3 I	5.0	6	5.9-6.6	6.3	0.29	4.6
M^{2}	ap.	II	5.8-6.5	6.1	0.22	3.6	6	5.7-6.1	5.9	0.16	2.7
	tr.	II	5.8-6.8	6.4	0.32	5.0	6	6.2-6.6	6.4	0.14	2.2
M^{3}	ap.	II	4.9-6.0	5.4	0.40	7.4	5	5.2-5.6	5.4	0 I6	3.0
	tr.	II	5.2-6.9	6.0	$0.4{ }^{\text {I }}$	6.8	6	5.8-6.6	6.2	0.28	45

TABLE 37
Measurements of lower teeth of males and of females of Hylobates agilis

	males					females				
	11	R	M	σ	C	n	R	M	σ	C
It tr.	9	3.2-3.5	3.4	0.13	3.8	6	3.3-3.5	3.3	0.09	27
ap.	9	3.2-4.0	3.6	0.29	8.1	7	3.I-3.9	$3 \cdot 4$	0.30	8.8
$\mathrm{I}_{2} \mathrm{tr}$.	9	3.3-4.I	3.6	0.24	6.7	7	3.4-4.0	3.6	0.19	5.3
ap.	9	3.8-4.5	4.I	0.30	7.3	7	3.8-4.2	4.0	0.15	3.8
C ap.	II	6.2-7.3	6.9	0.33	4.6	8	6.2-7.0	6.7	0.34	5.1
tr.	II	4.6-5.9	5.I	0.38	7.5	8	4.2-5.3	4.9	0.38	7.8
Ps ap.	10	5.9-7.8	7.0	0.59	8.4	7	6.2-6.9	6.4	0.25	3.9
tr.	II	3.7-4.8	4.0	0.31	7.7	7	3.8-4.6	4.1	0.29	7.1
P_{4} ap.	10	4.6-5.5	5.0	0.36	7.2	7	4.6-5.2	4.8	0.21	4.4
tr.	10	3.8-4.8	4.2	0.36	8.6	7	4.0-4.5	4.2	0.21	5.0
Me ap.	IO	5.6-6.8	6.3	0.37	5.9	6	6.1-6.6	6.3	0.18	2.9
tr.	10	4.9-5.6	5.I	0.27	$5 \cdot 3$	6	5.0-5.3	5.2	0.13	2.5
M_{2} ap.	II	5.9-6.9	6.4	0.33	5.2	6	6.0-6.3	6.1	0.13	2.1
tr.	10	5.2-6.4	5.6	0.34	6.1	6	5.3-5.8	5.6	0.16	2.9
M3 ap.	IO	5.5-6.6	6.0	0.36	6.0	6	5.8-6.8	6.3	0.38	6.0
tr.	II	4.8-5.8	5.2	0.34	6.6	6	5.5-5.9	5.6	0.15	2.7

CAVE MATERIAL OF HYLOBATES FROM SUMATRA

In sharp contrast to Symphalangus, Hylobates is very poorly represented in the collections from the Sumatran caves. The best specimen is a set of
teeth, $\mathrm{P}^{4}-\mathrm{M}^{2}$ dext., in a calcareous concretion, originating from the Lida Ajer cave (Coll. Dub. no. I 1685 ; pl. I fig. 7). This truly remarkable specimen (in view of the rarity of Hylobates in the caves) is fully within the limits of recent males of H. agilis, and above the range of the females in the dimensions of P^{4} and M^{2} (table 38). The only further upper tooth of Hylobates from Sumatran caves is an isolated P4 dext. from the Sibrambang cave (Coll. Dub. no. i1686) very similar to that in the Lida Ajer specimen and only slightly longer and narrower (table 38). Whether these cave specimens represent H. agilis or perhaps H. lar (one subspecies of H. lar is found today in Sumatra: H. lar albimanus) cannot be established as the few (male) skulls of the Sumatran race of H. lar available to me are indistinguishable in dental characters from those of H. agilis. The same applies to two lower molars, both from the Sibrambang cave (Coll. Dub. no. if687), which appear to be the only elements of the lower dentition referable to Hylobates. They represent M_{2} sin. and M_{3} dext., and they are only a trifle longer than their homologues in recent H. agilis (table 38).

TABLE 38
Measurements of subfossil teeth of Hylobates spec.

Coll. Dub. nos.	II 685	11686	11687
P^{4} ap.	4.4	4.6	-
tr.	5.4	$5 . \mathrm{I}$	-
M^{1} ap.	5.8	-	-
tr.	6.5	-	-
M^{2} ap.	6.5	-	-
tr.	6.7	-	-
M_{2} ap.	-	-	7.1
tr.	-	-	5.9
M 3 ap.	-	-	70
tr.	-	-	5.7

In view of the extreme scarceness of Hylobates premolars and molars in the Sumatran caves (4 uppers against 279 of Symphalangus, and 2 lowers against 161 of Symphalangus) it would seem unlikely that any Hylobates incisors are included among the 23 gibbon incisors recorded above, but a few Hylobates canines may be present among the rich material of canines (36 uppers and I 36 lowers). However, as there is no way of telling Hylobates incisors and canines apart from those of Symphalangus these elements must be left generically undetermined. We have seen that the Symphalangus of prehistoric Sumatra was distinctly larger-:-oothed than the extant form of the island, and the same would seem to hold good for the prehistoric Hylobates spec., which is either in the upper end of the range of variation
for the recent specimens, or even above this range in dental dimensions. Since the species of the subfossil Hylobates teeth cannot be determined, they must be recorded as Hylobates spec.

PLEISTOCENE MATERIAL OF HYLOBATES FROM JAVA

There is neither Pleistocene nor prehistoric cave material of Hylobates in the Dubois collection from Java. Von Koenigswald (1940, p. 64, pl. II fig. 15) figures a tooth from the Pleistocene of Sangiran in Java as belonging to Hylobates "leuciscus". The earliest available valid name of the Javanese gibbon, as Cabrera (1930) has pointed out, is Simia moloch Audebert, 1797, and the correct name of the Javanese gibbon is Hylobates moloch moloch (Audebert); see Chasen, 1940, p. 64. Among 40 isolated teeth from two fissure deposits at Punung in Java recorded by Badoux (1959, pp. 90-93) there is only one specimen, an M^{3}, that is stated to be within the range of Hylobates "leuciscus"; the others are larger and are referred to Symphalangus syndactylus. It is not quite clear whether Badoux considers this molar to represent the living gibbon of Java, for in his diagram on p. 98 it is represented as Symphalangus spec. If the small specimen really belongs to Hylobates this would indicate that Hylobates is very rare at Punung, making up just about the same very small percentage of the total number of gibbon teeth as at the Sumatran caves, in which, as we have already seen, Symphalangus is about seventy-five times more abundantly represented than is Hylobates.

CAVE MATERIAL OF HYLOBATES FROM BORNEO

A left ramus of the mandible with $\mathrm{P}_{4}-\mathrm{M}_{3}$, originating from an alluvial deposit in Sarawak, Borneo, has been recorded as Hylobates spec. by Lydekker (1887, p. 298). I have examined the specimen in the British Museum (Natural History), and found it to belong to a langur, Presbytis spec. However, remains of Hylobates have recentiy been found at the Great Cave of Niah, in Sarawak, during explorations of the cave by the Sarawak Museum under the direction of Mr. T. Harrisson (Medway, 1959, p. 632). Through the courtesy of Mr. Harrisson I have been able to examine these remains, which will be reported upon elsewhere. Suffice it to say that the cave specimens are indistinguishable from, and either within the limits or slightly above the range of recent Hylobates moloch abbotti Kloss today inhabiting the western parts of Borneo. Hence, the picture appears to be the familiar one of a cave form differentiated from the living form of the same region only in its slightly greater average size.

PLEISTOCENE MATERIAL OF HYLOBATES FROM CHINA

Although this does not strictly come within the purview of the present paper, dealing as it does with the Malay Archipelago exclusively, mention may be made here of a fragment of the left ramus of the mandible with M_{2-3} from out the limestone fissures of Yenchingkou, Szechwan, the only Hylobates found in situ so far beyond the present range of the gibbons. It was described by Matthew and Granger (1923, p. 588, fig. 18) as Bunopithecus sericus Matthew et Granger, but later referred to Hylobates by Colbert and Hooijer (1953, p. 27). The Pleistocene molars are indistinguishable from those of recent Hylobates; the last molar in this single specimen is longer and wider than the second, as is the case in 3 out of 18 mandibles of H. agilis (and in 3 out of 13 mandibles of Symphalangus), and in size they are near or within the limits of the living Hylobates hoolock (Harlan) from Burma as given by Remane (1921, p. 25). Whether or not the Pleistocene Chinese gibbon merits a distinct specific name cannot be made out on the basis of the material at present available.

REFERENCES

Badoux, D. M., 1959. Fossil mammals from two fissure deposits at Punung (Java). Thesis Utrecht University, Utrecht (Kemink en Zoon), r5i pp., 8 pls., 8 diagrams, 2 maps.
Cabrera, A., 1930. A note on the name of the Javanese gibbon. Proc. Zool. Soc. London, 1930, p. 257.
Chasen, F. N., 1940. A handlist of Malaysian mammals. Bull. Raffles Mus., no. I5, XX + 200 pp., map.
Colbert, E. H., and D. A. Hooijer, 1953. Pleistocene mammals from the limestone fissures of Szechwan, China. Bull. Amer. Mus. Nat. Hist., vol. io2, pp. I-i34, pls. 1-40, 42 figs.
Dubors, E., r89r. Voorloopig bericht omtrent het onderzoek naar de Pleistocene en Tertiaire Vertebraten-fauna van Sumatra en Java, gedurende het jaar 1890 . Natuurk. Tijdschr. Ned. Indië, vol. 51, pp. 93-100.
Eckardt, H., 1929. Vergleichend morphologische Studien an den Molaren des OrangUtan und des Gibbon. Zeitsch. £. Morph. u. Anthrop., vol. 27, pp. 225-338, pls. VI-X, 21 figs.
Fiedler, W., 1956. Übersicht über das System der Primates, in: H. Hofer, A. H. Schultz and D. Starck, Primatologia, vol. i, Basel and New York (S. Karger), pp. 1-266, 81 figs.
Hoorjer, D. A., 1948. Prehistoric teeth of Man and of the orang-utan from central Sumatra, with notes on the fossil orang-utan from Java and southern China. Zool. Med. Museum Leiden, vol. 29, pp. 175-30I, pls. I-IX, 2 figs.
-, 1949. Mammalian evolution in the Quaternary of southern and eastern Asia. Evolution, vol. 3, pp. 125-128.
-, 1950. Man and other mammals from Toalian sites in south-western Celebes. Verh. Kon. Ned. Akad. v. Wet. Amsterdam, afd. Natuurk., sect. 2, vol. 46, no. 2, 164 pp., 3 pls.
, 1952a. A note on sexual differences in the skull of gibbons. Proc. Kon. Ned. Akad. v. Wet. Amsterdam, vol. 55, ser. C, pp. 375-381, I fig.

Hoonjer, D. A., 1952b. Fossil mammals and the Plio-Pleistocene boundary in Java. Ibid., vol. 55 , ser. B, pp. 436-443.
-, 1955. Fossil Proboscidea from the Malay Archipelago and the Punjab. Zool. Verh. Museum Leiden, no. 28, $146 \mathrm{pp} ., 17 \mathrm{pls}$.
-_, 1958. Fossil Bovidae from the Malay Archipelago and the Punjab. Ibid., no. 38, 112 pp., 9 pls.
Kloss, C. B., 1929. Some remarks on the gibbons, with the description of a new subspecies. Proc. Zool. Soc. London, I929, pp. II3-127.
Koenigswald, G. H. R. von, i940. Neue Pithecanthropus-Funde 1936-1938. Ein Beitrag zur Kenntnis der Praehominiden. Wet. Med. Dienst Mijnb. Ned. Indië, no. 28, pp. I-205, pls. I-XIV, 40 figs., map.
Lydekker, R., 1887. Catalogue of the fossil Mammalia in the British Museum (Natural History), part V. London (Taylor \& Francis), XXXV + 345 pp., 55 figs.
Matthew, W. D., and W. Granger, 1923. New fossil mammals from the Pliocene of Sze-Chuan, China. Bull. Amer. Mus. Nat. Hist., vol. 48, pp. 563-598, 27 figs.
Medway, Lord, 1959. Food bone in Niah cave excavations (-1958). A preliminary report. Sarawak Mus. Journ., vol. 8, no. 12 (new series), pp. 627-636.
Рососк, R. I., 1927. The gibbons of the genus Hylobates. Proc. Zool. Soc. London, 1927, pp. 719-741, figs. 19-23.
Pohl, L., igti. Eine Höhenvarietät von Siamanga syndactylus Desm. Zool. Anz., vol. 38, pp. 51-53.
Remane, A., 192I. Beiträge zur Morphologie des Anthropoidengebisses. Arch. f. Naturgesch., vol. 87, part A, fasc. 11, pp. 1-179, 31 figs.
Schultz, A. H., 1933. Observations on the growth, classification and evolutionary specialization of gibbons and siamangs. Human Biology, vol. 5, pp. 212-255, 385-428, pls. I-III, io figs.
Thomas, O., igo8. On mammals from the Malay Peninsula and Islands. Ann. Mag. Nat. Hist., ser. 8, vol. 2, pp. 301-306.

EXPLANATION OF THE PLATES

Plate I
Figs. I and 2, Symphalangus c.q. Hylobates spec., I ${ }^{1}$ dext.; fig. I, Coll. Dub. no. $11669 / 4$, Sibrambang cave, Sumatra, lingual view; fig. 2, Coll. Dub. no. $11669 / 3$, Lida Ajer cave, Sumatra, lingual view.

Figs. 3-6, Symphalangus syndactylus subfossilis nov. subsp., Sibrambang cave, Sumatra; fig. 3, P_{4} sin., Coll. Dub. no. $11678 / 7$, crown view; fig. 4, P_{4} sin., Coll. Dub. no. $11678 /$ io, crown view; fig. $5, \mathrm{P}_{3}$ sin., Coll. Dub. no. 1 $1677 / 4$, lingual view; fig. 6, M^{2} dext. (holotype), Coll. Dub. no. in680/i, crown view.

Fig. 7, Hylobates spec., P4-M2 dext., Coll. Dub. no. 11685 , Lida Ajer cave, Sumatra, crown view.

Fig. 8, Symphalangus c.q. Hylobates spec., upper C sin., Coll. Dub. no. ${ }_{11672} / 5$, Sibrambang cave, Sumatra, lingual view.
Fig. 9, Symphalangus syndactylus subfossilis nov. subsp., P_{3} sin., Coll. Dub. no. п $1677 / 5$, Sibrambang cave, Sumatra, lingual view.

Fig. io, Symphalangus c.q. Hylobates spec., lower C dext., Coll. Dub. no. 11674/6, Sibrambang cave, Sumatra, lingual view.
All figures $3 \times$ natural size.
Plate II
Crown views of teeth of Symphalangus syndactylus subfossilis nov. subsp. from Sumatran caves; fig. I, P3 dext., Coll. Dub. no. 11675/7, Lida Ajer cave; fig. 2, M1 dext., Coll. Dub. no. 11679/i, Sibrambang cave; fig. 3, M^{1} dext., Coll. Dub. no. 11679/23, Lida Ajer cave; fig. 4, M1 sin., Coll. Dub. no. 1 1679/60, Lida Ajer cave; fig. 5, M3 dext., Coll. Dub. no. I168 $\mid \mathrm{I}$, Sibrambang cave; fig. 6, M3 dext., Coll. Dub. no. ir68i/II, Sibrambang cave; fig. 7, M ${ }^{2}$ sin., Coll. Dub. no. in680/45, Sibrambang cave; fig. 8, M ${ }^{2}$ sin., Coll. Dub. no. 1 1680/79, no record; fig. 9, M ${ }^{3}$ sin., Coll. Dub. no. ı 168 I/35, Sibrambang cave; fig. ıo, M ${ }^{3}$ sin., Coll. Dub. no. ir 68 i/45, Sibrambang cave; fig. II, M_{1} dext., Coll. Dub. no. ir682|I, Sibrambang cave; fig. 12, M_{1} sin., Coll. Dub. no. 11682/20, Sibrambang cave; fig. 13 , M_{3} dext., Coll. Dub. no. i1684/i, Sibrambang cave; fig. I4, M_{3} sin., Coll. Dub. no. in684/57, Lida Ajer cave.

All figures $3 \times$ natural size.

[^0]: I) For summaries of and references to the cases of the orang-utan, porcupine, tiger, tapir, and rhinoceroses, see Hooijer, 1949; for the elephant, see Hooijer, 1955, and for the bovids, see Hooijer, 1958.

