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INTRODUCTION

Indonesian coral reefs are among the most diverse in
the world. No other area contributes as much to global
coral reef diversity, which should make it a primary
target for research, protection, and management
(Mora et al. 2003). In general, diversity declines when
moving away from this high-diversity region, but the
heterogeneous distribution of species complicates
the determination of the actual regional boundaries
(Briggs 1992, 1999, 2000, Hoeksema 1990, Barber et al.
2000, Santini & Winterbottom 2002, Hoeksema & Putra
2003, Mora et al. 2003, Wallace et al. 2003). The diver-
sity of Indonesia is due to both high alpha (local) and
high beta (change in species composition among sites)
diversity (Plotkin & Muller-Landau 2002, Tuomisto et
al. 2003). In order to preserve diversity by designing
and placing conservation refugia, it is essential to
understand how assemblages change in space and

time (Plotkin & Muller-Landau 2002). Despite this
realization, we still know very little about how marine
diversity is spatially distributed, especially among
lesser-studied invertebrate taxa such as sponges
(Hooper et al. 1999, Ellingsen 2002, Hooper & Kennedy
2002).

Spatial patterns of assemblages can be due to dis-
persal-limiting factors or the spatial arrangement of
environmental conditions. Existence of similar assem-
blages in adjacent habitats may be due to either or
both of these conditions. Separating the contribution of
space and the contribution of environment to patterns
of community similarity is therefore necessary for
understanding the mechanisms that influence commu-
nity structure across land- and seascapes (Spencer et
al. 2002). It is still unclear, however, how these factors
combine to influence spatial patterns of assemblages
in well-connected reef areas such as the coastal areas
of the Indomalayan region.
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Recently, the availability of remotely sensed data
has facilitated relating community similarity to key
environmental parameters that are assumed to deter-
mine the distribution and abundance of species across
large spatial scales (Turner et al. 2003). In the present
study we relate the spatial variation of sponge assem-
blages and sponge species richness to ground-truthed,
remotely sensed data sets derived from the SPOT XS
satellite program, in addition to locally measured
variables such as depth, water transparency, and geo-
graphic location in the Spermonde Archipelago,
Indonesia. Remotely sensed habitat variables included
the area of human settlement. Despite the fact that
human settlement is a major source of land-use change
and a threat to biodiversity, there is currently a lack of
studies that explicitly address its impact (Miller &
Hobbs 2002). It is essential, however, to detect and
analyze settlement patterns, in order to accurately
assess the impact of humans on the environment
(Henderson & Xia 1997). However, relatively little is
known about the effects of human settlement on most
plants and animals (Miller & Hobbs 2002, but see
Brickle 2002).

Extensive marine biological and physical geo-
graphic studies have been carried out in the Sper-
monde Archipelago, which makes it one of the best-
explored regions in Indonesia (Moll 1984, Hoeksema
1990, Verheij 1993, de Voogd et al. 1999, Massin
1999, Pet-Soede 2000, Renema 2002, Cleary et al.
2005). The Indonesian Archipelago comprises >17 000
smaller and larger islands, and, consequently, has an
extended shallow-water region, which makes it the
largest and most important coral reef nation in the
world (Spalding et al. 2001). An important component
of Indonesia’s marine diversity is the wealth of species
of sponges that, together with soft and stony corals,
form complex reef substrates and shelter numerous
other taxa such as shrimps, crabs, brittlestars, and
holothurians (Kauferstein & Mebs 1999, Massin 1999,
Fransen 2002). Sponges are ancient and diverse meta-
zoans, with complex distributional patterns, envi-
ronmental requirements, and modes of reproduction.
The published literature on the sponge taxonomy of
Indonesia remains incomplete, although around 850
species are thought to be present (van Soest 1989,
1990, 1994, Hooper et al. 2000, de Voogd & van Soest
2002). The unresolved taxonomy of many sponges
has, however, hampered previous studies on sponge
ecology, and only a limited number of studies have
addressed sponge distribution, biodiversity, and re-
lated subjects (van Soest 1989, 1990, Amir 1992, de
Voogd et al. 1999, 2004). An understanding of the dis-
tribution and ecology of sponges is important because
sponges are sources for a wide variety of substances
with bioactive properties and may continue to provide

important services if managed in an ecologically sus-
tainable manner (Munro et al. 1994, 1999, de Voogd
et al. 2002).

Many environmental parameters are known to affect
sponge distributions, such as depth (Wilkinson &
Cheshire 1989, Alvarez et al. 1990, de Voogd et al.
1999, Bell & Barnes 2000), light (Cheshire & Wilkinson
1991), tidal amplitude (Barnes 1999), and water flow
rate (Bell & Barnes 2000). In addition to environmental
parameters, dispersal limitation may be an important
factor in explaining the spatial turnover of species
(Hooper et al. 2002, Mora et al. 2003, Tuomisto et al.
2003). The relationship, however, between distribution
patterns of adults and mode of reproduction has rarely
been studied in sponges (Uriz et al. 1998). Sponges
have various strategies for reproduction and dispersal.
Within the class Demospongiae, for example, the
reproductive mode was considered subclass specific,
but gradually many exceptions have been found
(Hooper & van Soest 2002). Still, the mode of sexual
reproduction appears to apply at ordinal or at least at
family level. Thus, based on family membership we
may assign viviparity and oviparity. In general, larvae
tend to settle in close proximity to the parent sponge,
after only a few hours to a day; thus, sponge dispersal
is assumed to be limited for most viviparous sponges
(Zea 2001). Most oviparous species, however, are
expected to exhibit more pronounced dispersal abili-
ties. Although many of the oviparous sponges form
their larvae externally, some release zygotes or early
embryos (Maldonado & Uriz 1999).

In addition to comparing oviparous and viviparous
species we also compared the 10 most common (pre-
sent at >80% of the surveyed sites) sponge species
with the next 11 to 50 most common species (present at
>40% of the sites). Because of their abundance and
distribution, common species should produce a surplus
of dispersal propagules. Consequently, we expect dis-
tance to be a less important explanatory factor for the
most common sponge species than for less common
sponge species.

In this study we aim to: (1) Determine whether
sponge assemblages are spatially homogeneous and,
if not, if the spatial variation in beta diversity (com-
munity similarity) is related to distance and/or envi-
ronment. (2) Determine whether this relationship dif-
fers according to sexual reproduction strategy and
abundance. Here, we predicted that purely spatial
variation would be a stronger predictor of commu-
nity similarity in viviparous than in oviparous
species, and in less common than in common species.
(3) Assess the degree to which spatial patterns of
sponge diversity can be related to remotely sensed
(satellite) and/or locally measured environmental
variables.
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MATERIALS AND METHODS

Location. The research area is located in the Sper-
monde Archipelago, just off the coast of Makassar, SW
Sulawesi, Indonesia. The archipelago is 2800 km2 in
size, and consists of 160 fringing reefs, barrier reefs,
and patch reefs. Four ecological reef zones were iden-
tified, based on cross-shelf distribution of coral species,
bathymetry, geography, geomorphology, and distance
offshore. The zones differ in biotic and abiotic para-
meters (van Vuuren 1920, de Klerk 1983, Hoeksema
1990). Offshore sites are relatively oligotrophic, while
inshore sites are subjected to outflow from major
rivers. The geomorphology of the reefs is determined
by the northwest monsoon, between November and
April. The eastern sides of the reefs are more sheltered
and show more sediment accumulation
than the western sides. The northwest-
ern sides of the reefs of Lae-Lae, Bone
Baku, Sama lona, Kudingareng Keke,
Bone Lola, Barang Lompo, Langkai,
and the southeastern sides of the reefs
Samalona and Kudingareng Keke were
examined (Fig. 1).

These reefs were chosen because
they are representative of the prevalent
conditions in each zone and have been
focal reefs for previous and ongoing
studies of other taxa including corals
(Moll 1984, Hoeksema 1990, Cleary et
al. 2005), sea urchins (de Beer 1990),
foraminiferans (Renema 2002), sea cu-
cumbers (Massin 1999), and sea grasses
and macroalgae (Verheij 1993).

Sponges. A total of 34 stations were
surveyed using SCUBA, from April to
July 1997 and April to November 2000.
Surveys were made at different depth
intervals (3, 6, 9, 12, and 15 m) along a
100 m transect line. Sponge species
and their abundance were noted in
1 m2 quadrants laid at each consecutive
1 m section. Smaller (cryptic, boring,
and thinly encrusting <4 cm) speci-
mens were excluded from this study.
Species were visually identified in the
field, and fragments of unrecognized
species were collected for closer exam-
ination. Voucher specimens were pre-
served in 70% ethyl alcohol and
deposited in the sponge collections of
the Zoological Museum Amsterdam
(ZMA) and the National Museum of
Natural History ‘Naturalis’, Leiden
(NNM), the Netherlands. Sponges were,

furthermore, classified as viviparous and oviparous
based on family membership following Hooper & van
Soest (2002).

Environmental variables and distance. Vertical
water visibility and depth were assessed as local envi-
ronmental variables. Vertical water visibility was
measured using a secchi-disc (diameter 30 cm, English
et al. 1997) throughout the period of investigation,
around noon, near the surveyed sites. The minimal
vertical transparency measured at a specific site was
used in our analyses. Depth was measured using a
computerized depth meter (Suunto). Geographic posi-
tions were recorded at each transect with a handheld
GPS device (Garmin 12 XL) and converted to Universal
Transverse Mercator values, which were used to gen-
erate a matrix of Euclidean distances between pairs of
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Fig. 1. Map of the Spermonde Archipelago showing the sampled reefs. These
included the inhabited islands: (1) Lae Lae, (3) Samalona, (5) Barang Lompo and
(7) Langkai, the submerged reefs; (2) Bone Baku, (4) Bone Lola, and the resort
island (6) Kudingareng Keke. Inset shows the location of the Spermonde

Archipelago in relation to the island of Sulawesi



Mar Ecol Prog Ser 309: 131–142, 2006

sites. In addition to these variables the distance off-
shore was noted for each sample site.

Remotely sensed environmental variables were cal-
culated with the use of a GIS image based on automatic
and supervised classification processes applied to a
SPOT-XS satellite image, K-J/Sat: 320-370/3, recorded
on 30 August 1995. Verification by field surveys was
completed in December 1995. Additional records and
corrections were provided by a BCEOM (Le Bureau
Central d’Etudes pour les Equipements d’Outre-Mer)
consultant in August 1996. The data were collected as
part of the Marine Resource & Education Project
(MREP), and is presently managed by BAKOSUR-
TANAL (Badan Koordinasi Survei dan Pemetaan Na-
sional), Indonesia. The following remotely sensed envi-
ronmental classes were identified: (1) sedimentary
materials (sand, coral rubble, etc. > 60% of each pixel),
(2) coral formations (live coral cover > 60% of each
pixel), (3) sparse coral formations (live coral cover from
40 to 60% of each pixel), (4) dense hard substratum
(>60% of each pixel), (5) scattered hard substratum
(40 to 60% of each pixel), (6) area of human settlement,
(7) island size, and (8) reef size.

Analyses. Total species richness was assessed (using
the program Estimates, Colwell 2000) over all transects
in order to examine how comprehensive our sampling
of the Spermonde Archipelago was. In the ‘Results’ we
present a sample-based rarefaction estimation of
cumulative species richness, a Chao2 (see Colwell &
Coddington 1994) nonparametric estimation of cumu-
lative species richness and the cumulative number of
uniques and duplicates per transect. The Chao2 esti-
mate gave the least biased estimate of true species
richness for small numbers of samples in a study of 8
species richness estimators (Colwell & Coddington
1994) and has been previously used to assess marine
benthic diversity (Ellingsen 2002).

Within PRIMER-5 (Primer-E), log10 (x +1)-trans-
formed species abundance data were used to generate
a measure of the similarity between plots using the
Bray-Curtis similarity index (Bray & Curtis 1957), often
used by ecologists (Legendre & Gallagher 2001,
Ellingsen 2002, Cleary 2003, Cleary & Genner 2004)
and ranked among the best of coefficients tested by
Faith et al. (1987). Within PRIMER-5, environmental
and spatial data were used to generate a measure of
differences in environmental conditions between plots
using normalized Euclidean distances. Akaike’s infor-
mation criterion (AIC using Statistica for Windows 6.1,
Statsoft) and multiple matrix regression (using PER-
MUTE! 3.4.9, Casgrain 2001) were used to assess to
what extent variation in species richness and commu-
nity similarity depended upon environmental and/or
spatial datasets. The input file for AIC analysis and
PERMUTE! consisted of unfolded, upper-triangular

matrices, read by rows, in a vertical format. Each col-
umn in the input file represented an unfolded, upper-
triangular matrix-variable, i.e. a single variable for
similarity based on the Bray-Curtis similarity index
and a single variable for each of the environmental and
distance variables (see Casgrain 2001 for a detailed
description of the procedure). Within PERMUTE!, the
options selected were forward selection, 999 permuta-
tions, and a Bonferroni-corrected p-to-enter of 0.10.
Note that only the variables selected with the AIC pro-
cedure were used in the PERMUTE! analyses, in order
to test the full model for significance and to assess the
relative contribution of each variable to the model after
controlling for other variables in the model.

AIC is an information–theoretic alternative to sta-
tistical approaches of standard-hypothesis testing,
such as multiple regression. AIC (Akaike 1973) uses an
entropy maximization principle as a theoretic basis for
the selection of models. Akaike (1973) found a simple
relationship between Fisher’s maximized log-likelihood
function and the Kullback-Liebler (K-L) distance (Burn-
ham & Anderson 1998), thereby providing a simple
and effective method for selecting the most-parsimo-
nious model for the analysis of empirical data: AIC =
–2 log(Lθ) + 2K, where Lθ is the maximized log-likeli-
hood, a function of the unknown parameters θ, given
the data and the model. K is the number of estimable
parameters in the model. AIC is computed for each of
the models; the model that minimizes AIC is estimated
to be best in the sense of K-L information loss (Burn-
ham & Anderson 2002). Note that the AIC approach
does not generate α-significance values, but instead
focuses on strength of evidence and generates a
measure of uncertainty for each model. In contrast to
standard-hypothesis tests, such as stepwise multiple
regression, which often yield different results depend-
ing on the order in which the models are computed, the
AIC yields consistent results and is independent of the
order of computation. For a detailed description of the
AIC approach see Burnham & Anderson (1998, 2001,
2002).

In order to assess the relative importance of envi-
ronmental and spatial factors in structuring commu-
nity similarity, 3 separate analyses were performed
using: (1) all variables, (2) only environmental va-
riables, and (3) only the spatial variable (distance
between sample sites). The variance-partitioning
technique described by Borcard et al. (1992) was then
used to determine the variance explained exclusively
by spatial variables (purely spatial component), the
variance explained exclusively by environmental vari-
ables (purely environmental component) and the vari-
ance jointly explained by spatial and environmental
variables (spatially structured environmental compo-
nent). Environmental and spatial variables included:
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(1) log10 transformed area of sedimentary materials,
(2) log10 transformed area of coral formations, (3) log10

transformed area of sparse coral formations, (4) log10

transformed area of dense hard substratum, (5) log10

transformed area of scattered hard substratum, (6) log10

transformed area of human settlement, (7) log10 trans-
formed island size, (8) log10 transformed reef size,
(9) depth, (10) exposure (sheltered: 0; exposed: 1),
(11) log10 transformed water transparency, (12) log10

transformed offshore distance, and (13) log10 trans-
formed distance between sample sites. In addition to
testing for an association of the response matrix of
community similarity of all sponges, we also tested
oviparous sponges, viviparous sponges, the 10 most
common (present in greatest number of transects)
sponge species, and the next 11 to 50 most common
sponge species separately. We furthermore compared
pairwise estimates of community similarity using the
Sørensen index (Sørensen 1948), which only uses
presence–absence data. Since there was a highly sig-
nificant (all p < 0.001) positive relationship between
both indices in all comparisons (range R2: 0.771 to
0.924), we only present the results with the quantita-
tive Bray-Curtis index.

RESULTS

We identified 15 842 individual sponges to a total of
151 species belonging to 68 genera and 37 families.
The inventory appeared to be nearly complete because
the sample-based rarefaction curve approached an
asymptote and the Chao2 species richness estimator
was close to the observed species richness and
appeared to stabilize at 169 ± 10 (±1 standard devia-
tion) species. The curves for uniques (species found
only in a single transect) and duplicates (species found
only in 2 transects) also clearly declined (Fig. 2).

The greatest overall densities were found for Amphi-
medon paraviridis (30 ind. 10 m–2), Aaptos suberitoides
(17.1 ind. 10 m–2), Clathria reinwardti (13.4 ind.
10 m–2), Haliclona sp. ‘blue’ (11.6 ind. 10 m–2), Lamel-
lodysidea herbacea (11.5 ind. 10 m–2), Hyrtios erectus
(8.9 ind. 10 m–2), Stylissa carteri (7 ind. 10 m–2), Cha-
linula hooperi (6.6 ind. 10 m–2), Clathria cervicornis
(5.9 ind. 10 m–2), and Petrosia hoeksemai (5.3 ind.
10 m–2).

The number of sponge species found in each of the
34 transects varied between 14 and 77, while total
sponge density varied between 1.2 and 12.7 ind. m–2.
Only 17 species were common (Kaandorp 1986), i.e.
co-occurred in >22 different sites (66% level of sites).
We found slightly more viviparous (81) than oviparous
(70) species, but the abundance of viviparous species
pooled was much higher (11 042) than for oviparous

species (4800). This was mainly due to exceptionally
high densities of the species Haliclona sp. ‘blue’,
Lamellodysidea herbacea, Clathria reinwardti, Amphi-
medon paraviridis, and Hyrtios erectus, which to-
gether accounted for 53% of the total number of indi-
viduals. Table 1 lists the 10 most common species in
the Spermonde Archipelago.

Species richness was significantly related to depth
(partial b = 0.552, partial p < 0.001, partial R2 = 0.305)
and human settlement (partial b = 0.129, partial
p < 0.001, partial R2 = 0.017), which together explained
32% of the variation in species richness among tran-
sects. Species richness increased with depth (data not
shown), with the largest difference between 3 and 6 m
(and appeared to stabilize at 15 m, although there
were no surveys that exceeded this depth). Species
richness declined with increased human settlement.

Despite a significantly negative univariate associa-
tion between community similarity and distance
between sites (all species: b = –0.397, p < 0.001, R2 =
0.157; oviparous species: b = –0.266, p < 0.001, R2 =
0.071; viviparous species: b = –0.435, p < 0.001, R2 =
0.189; top 10: b = –0.259, p < 0.001, R2 = 0.067; top 11 to
50: b = –0.306, p < 0.001, R2 = 0.094; see Fig. 4), dis-
tance did not enter significantly into the multivariate
model, indicating that the univariate relationship be-
tween distance and community similarity was due to
an indirect association with other spatially structured
environmental variables (Figs. 3 & 4, Tables 2 & 3).

Environmental matrices were significantly associated
with the spatial turnover (community similarity) of all
species, oviparous, viviparous, most common 10, and
most common 11 to 50 species (Table 2). Depth, the
area of sparse coral formations, and transparency were
significant predictors of spatial variation in all assessed
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groups (Table 3). The area of coral formations was a
significant predictor in all groups except the 10 most
common species, and the area of human settlement was
a significant predictor in all groups except oviparous
species. Additional significant predictors included the
area of scattered hard substratum for viviparous spe-
cies, offshore distance for the 10 most common species,

and exposure for the most common 11 to 50 species. Us-
ing forward selection, the best predictor variables were
the area of sparse coral formations (13 to 23% of varia-
tion explained), followed by depth (9 to 13% of varia-
tion explained). Water transparency explained be-
tween 1 and 4% of the variation in similarity. The area
of human settlement explained between 2 and 4% of
the variation in similarity (Table 3). The amount of vari-
ation explained by the purely spatial component was
0% in all groups, while the spatially structured envi-
ronmental component explained between 7 and 18%
of the variation in similarity, and the purely environ-
mental component, between 17 and 29% (Table 2).

The relationship between similarity and the area of
sparse coral formations and depth is shown in Fig. 3,
where it can be seen that sites with the greatest overall
similarity tended to be located at similar depths and
in areas with a similar environment surrounding the
sample site. At different depths and in different habitat
types, similarity was very low.

DISCUSSION

The few qualitative studies of sponge distributions at
small (Wilkinson & Cheshire 1988, 1989, Wilkinson &
Evans 1989, Uriz et al. 1992, Carballo et al. 1996,
Hooper et al. 1999, de Voogd et al. 1999, Corriero et al.
2000, Zea 2001, Hooper & Kennedy 2002, Hooper et al.
2002) and large spatial scales (van Soest 1994, Maldon-
ado & Uriz 1995, Hooper et al. 1999) have shown that
sponge assemblages are far from homogeneous, with-
out, however, explicitly relating this to environmental
parameters. In the present study we quantitatively
showed that sponge assemblages are spatially hetero-
geneous and that this heterogeneity is strongly related
to deterministic (environmental) processes.

In a similar study to ours, Hooper & Kennedy (2002)
found no relationship between similarity and distance
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Species Location
LL BB SA-E SA-W BL BA KK-E KK-W LK

Amphimedon paraviridis Fromont 64 248 52 847 212 22 66 326 58
Callyspongia aff. pseudofibrosa 24 21 15 37 9 42 12 39 14
Desqueyroux-Faúndez
Callyspongia biru de Voogd 0 31 125 101 17 17 22 20 40
Chalinula hooperi Bakus & Nishiyama 4 83 12 29 9 5 76 56 165
Clathria reinwardti Vosmaer 66 121 236 336 278 193 70 269 24
Haliclona sp. ‘blue’ 0 33 51 326 70 8 46 60 8
Hyrtios erectus Keller 8 39 147 185 138 157 42 86 94
Petrosia hoeksemai de Voogd & van Soest 2 33 41 153 35 75 13 84 23
Petrosia nigricans Lindgren 2 15 23 32 38 60 8 76 29
Spheciospongia congenera Ridley 10 68 15 70 26 12 12 15 4

Table 1. The 10 most common species and their abundances at different reef sites surveyed. LL: Laelae; BB: Bone Baku; SA:
Samalona; BL: Bone Lola; BA: Barang Lompo; KK: Kudingareng Keke; LK: Langkai; E, W: eastern and western sides of reefs
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Fig. 3. 3-dimensional surface plot of the community similarity
of all sponge species between pairs of sites as a function of the
normalized Euclidean difference in sparse coral formations
and the Euclidean difference in depth (m) between sites. The
fitted plane was obtained with the distance-weighted least
squares fitting option in Statistica for Windows 6.1. The shad-
ing in the plane indicates variation in the difference in simi-
larity between pairs of transects. Light shading indicates pro-
nounced similarity. The greatest difference in similarity was
between transects located at the most different depths and 

with the most different degree of sparse coral formations
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between reefs. In an analogous study, Pandolfi (2002)
showed that there was a high degree of variance in
estimates of community similarity at multiple spatial
scales in Caribbean coral communities, indicating that

distance per se was not driving community
patterns. Zea (1993), on the contrary, found
that the distribution of sponge species in the
southwestern Caribbean was related to dis-
persal limitation and noted that greater larval
recruitment was observed where adults lived
in higher densities.

In contrast to our hypothesis, distance was
unimportant in structuring both viviparous
and oviparous species assemblages or in
structuring less common versus common
species assemblages. The lack of a relation-
ship between distance and community simi-
larity suggests that dispersal limitation is
unimportant in structuring sponge assem-
blages within the Spermonde Archipelago.
Rather, assemblages of sponges are strongly
associated with environmental differences
between sites related to habitat hetero-
geneity, depth, and the degree of human set-
tlement. The environmental effects of human
settlement can be extremely complex and
may involve a number of confounding factors
(Miller & Hobbs 2002). Two major changes to
the local environment, as a result of human
settlement, include increased sedimentation
and increased eutrophication. Both of these
have been shown to affect sponges (Aerts &
van Soest 1997, Bell & Barnes 2000, Holmes
2000), although in the present study we were
not able to disentangle the possible effects
that patterns of human settlement have on
sponge assemblages. Sedimentation is an im-
portant ecological factor for hard bottom biota
that can affect their composition, structure,
and dynamics. Increased sediment as a result
of human perturbation can, furthermore,
threaten biodiversity and ecosystem function-
ing. The response, however, to sedimentation
can differ among assemblages, depending
on life history and individual developmental
stages, in addition to varying over space,
time, and different depositional environ-
ments. We found, for instance, relatively few
species and individuals at sites in shallower
water environments and high levels of human
settlement. Sponges, in general, do not thrive
well in highly disturbed areas, particularly
with elevated rates of sedimentation; fine
sediments occlude the pores, and pumping
rates are drastically reduced (Reiswig 1971,

Gerrodette & Flechsig 1979), although some species
such as Paratetilla bacca were virtually restricted to
highly perturbed environments. The association, how-
ever, with human settlement is not an artifact of hu-
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mans inhabiting larger islands or reef areas, since nei-
ther of these variables were significant in the multi-
variate analysis. Our results therefore indicate that
patterns of human settlement are already impacting
sponge diversity in the Spermonde Archipelago.

Remotely sensed habitat variables, such as the area
of sparse coral formations and human settlement, were
important predictors of sponge community structure in
line with a number of predominantly terrestrial studies
on a diverse array of taxa (Rozenzweig 1995, Tilman
1999, Webb 2000, Pearman 2002). In Canada, most of
the variation in butterfly species richness was, for
example, successfully predicted by remotely sensed
data of habitat heterogeneity, with secondary, but sig-

nificant, contributions coming from cli-
mate and topography (Kerr et al. 2001).
Sparse coral formations are character-
ized by a high structural complexity of
the reef substrate in contrast to dense
coral formations. Space is a highly
limited resource for sessile organisms
living on hard substratum (Dayton
1971), and scleractinian corals are the
main sponge competitors (Aerts & van
Soest 1997, de Voogd et al. 2004). Con-
sequently, few sponge species are able
to settle in dense coral fields, but use
the high structural complexity of lower
coral cover environments. Also, high
structural complexity of the reef sub-
strate is known to promote sponge
diversity and abundance (Diaz et al.
1990). Remotely sensed data of marine
habitat/substrate types can thus pro-
vide important insights into the distrib-
ution of sponges. For instance, sites
with the greatest overall similarity
tended to be located at similar depths
and in areas with a similar set of habi-
tats surrounding the sample site. At dif-
ferent depths and in different habitat
types, similarity was very low. A large
amount of variation in the spatial simi-
larity of various species groups in this
study remained unexplained. Similar
studies (Borcard et al. 1992, Duiven-
voorden et al. 2002, Githaiga-Mwicigi
et al. 2002, Magalhaes et al. 2002,
Tuomisto et al. 2003) have shown that
the amount of unexplained variation in
selected taxa (fish, forest trees, birds,
mites, bacteria) could be substantial (35
to 77%), and may be related to non-
deterministic fluctuations, unmeasured
environmental variables, or spatial

variation acting at a different (i.e. very local or very
large) spatial scale or described by a more complex
(e.g. polynomial) function. For sponges, local factors
related to microenvironment and small-scale variation
in substrate have been shown to influence settlement
and survival (Hooper & Kennedy 2002). Competition
for space, mediated by allelochemicals (Porter &
Targett 1988), is another important factor determining
sponge assemblages at very small spatial scales.
Despite the importance of these local factors, however,
we still managed to explain >40% of the variation
in similarity using remotely sensed and locally mea-
sured environmental variables, indicating that sponge
assemblages respond to their environment at multiple

138

Category df AIC Pure Spat Pure Total p
spat env env expl

Oviparous 4 4625 0 7 26 33 <0.001
Viviparous 6 4148 0 18 22 40 <0.001
Top 10 5 4384 0 7 29 36 <0.001
Top 11–50 6 4611 0 9 17 27 <0.001
Total 5 4178 0 16 27 43 <0.001

Table 2. Results of Akaike’s information criterion (AIC) and multiple matrix
regression analyses. Pure spat: pure spatial component; Spat env: spatially
structured environmental component; Pure env: pure environmental com-

ponent; Total expl: total variation explained by the model

Group Environmental predictor Partial b Partial p Partial R2

All species Sparse coral formations –0.484 0.001 0.234
Depth –0.363 0.001 0.132
Coral formations –0.185 0.001 0.024
Human settlement –0.152 0.001 0.022
Water transparency –0.145 0.001 0.017

Oviparous species Sparse coral formations –0.443 0.001 0.196
Depth –0.318 0.001 0.101
Water transparency –0.163 0.001 0.021
Coral formations –0.110 0.005 0.009

Viviparous species Sparse coral formations –0.457 0.001 0.208
Depth –0.317 0.001 0.101
Human settlement –0.204 0.001 0.040
Coral formations –0.228 0.001 0.037
Water transparency –0.120 0.003 0.011
Scattered hard –0.096 0.007 0.006
substratum

Most common Sparse coral formations –0.443 0.001 0.196
10 Depth –0.312 0.001 0.097

Water transparency –0.222 0.001 0.040
Human settlement –0.133 0.001 0.017
Offshore distance –0.123 0.002 0.011

Most common Sparse coral formations –0.362 0.001 0.131
11–50 Depth –0.305 0.001 0.093

Human settlement –0.126 0.001 0.015
Coral formations –0.131 0.005 0.012
Water transparency –0.106 0.013 0.009
Exposure –0.079 0.044 0.006

Table 3. Results of multivariate nonparametric forward regression analyses
using PERMUTE!
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spatial scales. It is, furthermore, important to note that
the amount of variation explained in this study is well
above the mean (38.4 ± 13.8%), but within the range of
similar studies that used variance partitioning (Borcard
et al. 1992, Duivenvoorden et al. 2002, Githaiga-
Mwicigi et al. 2002, Magalhaes et al. 2002, Tuomisto
et al. 2003).

As in the present study, various published studies
have attributed spatial variation in community struc-
ture to deterministic (environmental) processes. Pure
distance, for example, explained very little variation in
the community similarity of fish assemblages in Seixe,
Portugal (0 out of 58%; Magalhaes et al. 2002), bird
assemblages in South Africa (1.7 out of 27%; Githaiga-
Mwicigi et al. 2002), or tree assemblages in Panama (7
out of 41%; Duivenvoorden et al. 2002). Although, in
the present study, we tested for differences between
viviparous and oviparous sponges, it has to be taken
into account that other modes of reproduction may
play an important role in sponge recruitment and dis-
persal. For example, it was concluded that fragmenta-
tion was the major mode of propagation for an
oviparous verongid sponge in the West Indies when
this species had a particular ‘rope-shaped’ morpho-
logy; moreover, the allocation of energy for the pro-
duction of gametes was largely reduced (Tsurumi &
Reiswig 1997). Thus, sponges with a branch-forming
morphology are easily fragmented, and it has been
postulated that this mode of asexual reproduction is an
important mode of recruitment in sponge populations
with this type of morphology (Wulff 1984). Indeed, 3 of
the 4 most abundant viviparous sponges Clathria rein-
wardti, Amphimedon paraviridis and Hyrtios erectus
found in the Spermonde Archipelago had a branching
or stick-like morphology; thus, the dominance of these
species could very well be a result of fragmentation or
a maximized recruitment of both interacting modes of
reproduction. Although, the Spermonde is prone to
physical disturbance originating from the dominant
northwest monsoon (Umbgrove 1929, Hutchinson
1945, de Klerk 1983), it is not comparable to the mag-
nitude and frequency of hurricane-driven disturbances
in the Caribbean (Hutchinson 1945). Thus, the impact
of fragmentation may not be as important in less-dis-
turbed areas, such as in the Indomalayan region. Other
modes of dispersal include the ability of some sponge
larvae and free-floating buds to mix with plankton
(Kelly-Borges & Bergquist 1988). It has been suggested
that detached fragments that contain larvae increase
the dispersal capacity of some species (Maldonado &
Uriz 1999). Although there was no purely spatial com-
ponent, the spatially structured environmental com-
ponent explained substantially more variation in vivi-
parous than in oviparous sponges and marginally more
in the less common than in the most common sponge

species. The discontinuous geographic distribution and
localized small-scale aggregations of a sponge species
in the Mediterranean were related to the very short-
distance dispersal of its crawling larvae, while the geo-
graphical ubiquity and small-scale randomness of
another species were due to larvae with greater dis-
persal capabilities (Uriz et al. 1998). The high abun-
dance of certain viviparous species indicates the im-
portance of the various modes of reproduction in the
ability to disperse and settle. But Mariani et al. (2000)
found a positive correlation between larval and adult
abundance of the oviparous sponge Cliona viridis, and
suggested that the dispersal ability of the paren-
chymella larvae is low. This implies that within a
sponge community some species can be self-seeding
and are important for maintaining the sponge popula-
tion, whereas other species may act as a source for
downstream regions. Clearly sponge dispersal is
highly complex. In addition, many species are wide-
spread in the Spermonde Archipelago, a fact probably
related to the high connectivity of the individual reefs
across the shelf. Few endemics have, furthermore,
been recorded that have their whole distribution lim-
ited to the Spermonde, in comparison to other studies
(Hooper & Kennedy 2002, Fromont et al. 2005). Barber
et al. (2000) remarked that populations of the stomato-
pod Haptosquilla pulchella were genetically homoge-
nous in the Spermonde Archipelago. They also ob-
served a distinct genetic break in the Indonesian
Archipelago over a distance of only 200 km, and con-
cluded that populations within Indonesia might not be
as connected as is generally assumed. Thus, dispersal
limitation may become more important at larger spatial
scales than those assessed in this study. Ayre & Hughes
(2000), for example, remarked that although reefs in
the Great Barrier Reef are dependent on the self-seed-
ing of many brooding and spawning corals, gene flow
does occur, because of the stepping stone structure of
the Great Barrier Reef. Whether a similar structure
exists in the Indonesian Archipelago has yet to be
investigated for most reef taxa. Many species found in
the Spermonde are also known from other Indonesian
regions (van Soest 1989, de Voogd & van Soest 2002).
In the growing awareness that biodiversity has to be
preserved, the processes that regulate diversity need
to be better understood. Mora et al. (2003) stressed the
importance of speciation and dispersal abilities of
species in the Indomalayan center of biodiversity for
assembling communities in the Indian and Pacific
Oceans. Unfortunately, our understanding with re-
spect to the generality of this biodiversity, distribution
pattern, and responses to environmental factors is still
limited (Hooper & Kennedy 2002).

The present study shows that environmental pro-
cesses, particularly those related to sparse coral forma-
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tions, depth, and human settlement, explain a large
amount of the variation in sponge similarity within the
Spermonde Archipelago. These results should faci-
litate our understanding of marine biodiversity hot-
spots such as Indonesia. Similar studies in proximate
areas such as the marine park of Taka Bone Rata (SE
Sulawesi), Bunaken National Park (NE Sulawesi), and
the Berau Area (NE Kalimantan) are suggested for a
better understanding of sponge distributional patterns.
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